ATSC 404: Vector Calculus Assignment

Due January 08 (in class hand in)

1. Compute the gradient $\vec{\nabla} f$ for each of the following functions.

(a)
$$f(x, y, z) = (x^2 + y^2 + z^2)^{1/2}$$

(b)
$$f(x, y, z) = xy + yz + xz$$

- (c) $f(x, y, z) = (x^2 + y^2 + z^2)^{-1}$
- 2. Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. Prove that $\vec{\nabla}(1/r) = -\vec{r}/r^3$
- 3. Captain Ralph finds himself on the sunny side of Mercury and notices his space suit is melting. The temperature in a rectangular coordinate system in his vicinity is $T(x, y, z) = \exp^{-x} + \exp^{-2y} + \exp^{-3z}$. He is at (1,1,1), in what direction should he start to move in order to cool down the fastest?
- 4. Sketch the gradient field $-\vec{\nabla}V$ for $V(x,y) = (x+y)/(x^2+y^2)$. Sketch the equipotential surface V = 1.
- 5. Sketch a few streamlines of the two-dimensional flow fields
 - (a) $\vec{u}(x,y) = (y,-x)$

(b)
$$\vec{u}(x,y) = (x,-y)$$

- (c) $\vec{u}(x,y) = (x,x^2)$
- 6. Suppose that the isotherms in a region are all concentric spheres centered at the origin. Prove that the heat flux vector field points either toward or away from the origin.

 $5\hat{k}$)

7. Compute the divergence and the curl of the following vector fields.

(a)
$$\vec{F}(x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$$

(b) $\vec{F}(x, y, z) = yz\hat{i} + xz\hat{j} + xy\hat{k}$
(c) $\vec{F}(x, y, z) = (x^2 + y^2 + z^2)(3\hat{i} + 4\hat{j} + y^2)(3\hat{i} + 4\hat{j})$

- 8. Verify that $\vec{F} = y\hat{i} + x\hat{j}$ is incompressible.
- 9. Let $\vec{F}(x, y, z) = 3x^2y\hat{i} + (x^3 + y^3)\hat{j}$.
 - (a) Verify that $\vec{\nabla} \times \vec{F} = 0$.
 - (b) Find a function f such that $\vec{F} = \vec{\nabla} f$.

10. Let $f(x, y, z) = x^2 y^2 + y^2 z^2$. Verify directly that $\vec{\nabla} \times \vec{\nabla} f = 0$. Find $\nabla^2 f$.