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ABSTRACT

The authors analyze the performance of 22 Intergovernmental Panel on Climate Change (IPCC) global

climate models (GCMs) over all of North America and its western subregion using several different evalu-

ation metrics. They assess the model skill in simulating climatologies of several climate variables and the skill

in simulating the daily synoptic patterns. The evaluation is performed by comparing the model output with the

North American Regional Reanalysis (NARR) over the period 1980–99. One set of metrics, based on root-

mean-square errors and variance ratios, compares modeled versus the NARR mean annual cycle and in-

terannual variability. Based on these measures the three top performing models are the ECHAM5–Max

Planck Institute Ocean Model (MPI-OM), the third climate configuration of the Met Office Unified Model

(HadCM3), and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled General Cir-

culation Model, version 3.1 [CGCM3.1(T47)]. Models that perform well over all North America also perform

well over its western subregion. However, the model ranking is sensitive to the choice of climate variable. For

another evaluation measure the method of self-organizing maps was applied to classify the characteristic daily

patterns of sea level pressure over the region. The evaluation consists of correlating the frequencies of these

patterns, as generated in GCMs, with the frequencies in the NARR over the baseline period. Most of the

models are successful in simulating the frequencies of daily anomaly patterns from the 20-yr-average daily

pattern. However, very few GCMs are able to reproduce the occurrences of characteristic daily weather

patterns in the NARR on seasonal basis over the baseline period. In terms of relative performance, the three

top performing models are the Meteorological Research Institute (MRI) CGCM2.3.2, ECHAM5–MPI-OM,

and the Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2(hires)].

The model skill in simulating daily synoptic patterns is not strongly linked to the skill in simulating the

climatologies of selected variables. Despite the large scatter of model performance across all the metrics,

some models consistently rank high [e.g., ECHAM5–MPI-OM and MIROC3.2(medres)]. Likewise, some

models consistently rank low [e.g., the Community Climate System Model, version 3 (CCSM3) and the

Goddard Institute for Space Studies Model E-R (GISS-ER)] independently of the evaluation measures,

domain size, and climate variable of interest.

1. Introduction

Global climate models (GCMs) are commonly used

tools for projecting future climate. GCM data contrib-

uting to the Fourth Assessment Report (AR4) of the In-

tergovernmental Panel on Climate Change (IPCC) have

been collected in the Coupled Model Intercomparison

Project Phase 3 (CMIP3) and are being used for impact

studies of climate change on regional and local scales (e.g.,

Coquard et al. 2004; Brekke et al. 2008). Such studies

share the problem of deciding which GCMs to use for

further downscaling over a region of interest. A common

way to address this problem is to evaluate model output

against the reference data and then prequalify the models

based on their ability to simulate climate in the region or

variable of interest (e.g., Dettinger 2005; Milly et al. 2005;

Tebaldi et al. 2005; Wang and Overland 2009; Barnett et al.

2008). Lacking reference data for the future, the climate

model performance is evaluated against the present-day

climate. Models that best simulate the present-day climate

are assumed to yield the most credible projections of fu-

ture climate, but there is no widely accepted set of mea-

sures for evaluating climate model performance (Gleckler

et al. 2008). Most evaluation tools are statistical measures

(e.g., mean error, root-mean square error, correlation, and
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variance) for quantifying the differences between modeled

and observed climatologies of a variable and region of

interest. Gleckler et al. (2008) used statistical measures to

evaluate the performance of 22 GCMs from CMIP3 over

global and subglobal domains, and explored the possi-

bility of establishing a single evaluation measure for

overall model skill. Their results demonstrated that the

skill of a model is highly sensitive to the choice of the

statistical measures, climate variables, and spatial do-

mains over which the evaluation is performed. These

findings have discouraged the search for a single measure

of overall model performance and encouraged the use of

a wide range of evaluation measures.

Studies that evaluated the GCM simulation of mean

climate in the region of interest (e.g., Gleckler et al.

2008; Reichler and Kim 2008; Pierce et al. 2009) con-

firmed that the multimodel ensemble average is superior

to any individual model. Because the errors tend to be

distributed around zero, averaging across models reduces

the error. Similarly, if the measures for climate variability

are averaged across the models, the mean ratio of model

variance to observed variance approaches unity. When

climate variability is considered in this way, the multi-

model ensemble outperforms any individual model

(Pierce et al. 2009). However, reduction of model errors

by averaging across the ensemble does not increase

confidence in the ability of the models to reproduce the

climate features of interest (e.g., Tebaldi and Knutti

2007). Confidence in model performance is of particular

importance to impact studies that commonly involve the

additional steps of downscaling and process modeling.

In this study we evaluate the performance of 22 GCMs

from CMIP3 over all North America and its western

subregion using several different evaluation metrics. We

direct our evaluation to the set of climate variables con-

sisting of upper-air temperature and specific humidity,

precipitation, geopotential heights, and mean sea level

pressure. For these variables we adopt the evaluation

measures from recent studies (e.g., Gleckler et al. 2008;

Pincus et al. 2008; Walsh et al. 2008; Pierce et al. 2009) in

order to quantify the biases in the modeled climatologies,

specifically, the seasonal cycle and interannual variability.

Although evaluation of modeled climatologies provides

a reasonably comprehensive picture of model perfor-

mance, it excludes some aspects of climate occurring on

daily scales, such as the frequency and intensity of

storms. The frequency of storms depends on the regional

cyclonic activity, which is usually analyzed by looking at

the patterns of sea level pressure. Therefore, in addition

to analysis of modeled seasonal cycle and interannual

variability, we evaluate how well the GCMs simulate the

frequency of the daily synoptic patterns of sea level pres-

sure in the region. We accomplish this by using a clustering

algorithm known as self-organizing maps (SOMs) to

identify and classify the characteristic synoptic patterns.

SOMs are shown to be a powerful tool for model evalu-

ation, allowing a detailed examination of the differences

between simulated and observed atmospheric circulation

(e.g., Finnis et al. 2008; Schuenemann and Cassano 2009).

Although the results of GCM evaluation over North

America are relevant to a variety of climate change

impact studies, our particular motivation is the impact

on glaciers. Our overall goal is to select those GCMs that

are best suited for modeling future volume changes of

glaciers in southwestern Canada. Scattered over the

Coast Mountains and Rocky Mountains, glaciers of this

region cover ;26 000 km2, roughly 8 times the total

area of glaciers in the European Alps. Glaciers in

southwestern Canada are a significant source of water

for agricultural, domestic, and industrial uses and for

hydropower generation. Thus, the credibility of GCM

climate projections is an important issue for hydrologic,

energy and economic planning for the region, as well as

for glacier modeling. The climate variables for our

evaluation of GCM performance are all shown to be

linked to glacier mass balance variability. For example,

studies on glacier mass balance in this region have dem-

onstrated that the observed winter mass balance strongly

correlates positively with winter precipitation, whereas

summer mass balance correlates negatively with summer

air temperatures (e.g., Tangborn 1980; Hodge et al. 1998).

Several studies have also demonstrated that variations in

glacier mass balance are linked to variations in the at-

mospheric circulation, represented by regional patterns

of sea level pressure, winds, and/or geopotential heights

(e.g., Yarnal 1984; McCabe and Fountain 1995; Bitz and

Battisti 1999; Shea and Marshall 2007; Arendt et al. 2009).

Finally, observed accumulation and ablation for several

glaciers within this region have been successfully mod-

eled using upper-air climate variables, such as geo-

potential heights and specific humidity on 850 hPa and

upper levels (e.g., Rasmussen and Conway 2001, 2003;

Matulla et al. 2008).

Sections 2 and 3 summarize the data and methods

used in this analysis, including a description of the SOM

algorithm. Statistical measures are used to compare

modeled versus observed seasonal cycle and interannual

variability of selected climate variables; the SOM-based

cluster analysis compares modeled versus observed fre-

quencies of the synoptic patterns. In section 4 we present

and discuss the results of the evaluation and rank the per-

formance of GCMs according to the set of evaluation

metrics. We further investigate relationships among model

rankings that result from different metrics. We also analyze

the sensitivity of model ranking to the size of the spatial

domain and the choice of a baseline period over which the
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skill is assessed. Section 5 summarizes the results and

provides a list of top-performing GCMs.

2. Model output and validation data

Our evaluation is based on the twentieth-century

simulations by 22 GCMs from CMIP3 (Table 1), which

have been archived at the Program for Climate Model

Diagnosis and Intercomparison at Lawrence Livermore

National Laboratory (LLNL). We used the same set of

models as in the evaluation study by Gleckler et al. (2008).

For most of these models the twentieth-century simulation

is run from the 1800s with prescribed greenhouse gas

concentrations and, in some cases, estimated sulfate

aerosols and variable solar forcing (Randall et al. 2007,

their Table 8.1). To make our evaluation analysis consis-

tent, we use only one run for the GCMs that have multiple

runs for a given scenario. We evaluate model performance

for the climate variables that have been downscaled for

glacier mass balance modeling (Jarosch et al. 2010) or

linked to glacier mass balance via regression models

(Matulla et al. 2009). These variables are monthly grids of

precipitation (PR), geopotential heights at 500 hPa (Z500)

and 850 hPa (Z850), specific humidity at 850 hPa (SH850),

air temperature at 850 hPa (T850), and monthly and daily

grids of sea level pressure (SLP).

The evaluation is performed by comparing GCM his-

torical simulations with the North American Regional

Reanalysis (NARR), which we take as the reference

dataset. The NARR was generated by the National Cen-

ters for Environmental Prediction (NCEP) using surface,

radiosonde, and satellite observational data assimilated

into the Eta forecasting model. Output from more than 200

variables is available on an approximately 32-km grid, at 29

pressure levels and at 3-hourly intervals from the period

1979 to the present. A detailed description of the NARR is

provided in Mesinger et al. (2006). We take the NARR as

the reference data for GCM evaluation because, in a sep-

arate contribution (Jarosch et al. 2010), NARR air tem-

perature and precipitation have been successfully validated

against observations and downscaled for the mass balance

modeling of glaciers in southwestern Canada. We assume

that the NARR is a reasonable representation of the ob-

served record for our intended impact study.

GCM historical simulations are compared with the

NARR record for the period 1980–99. Although this 20-yr

period is relatively short, it has the most complete and

accurate observational data, largely because of the ex-

pansion of and advances in space-based remote sensing

(Gleckler et al. 2008). This period has also been used in

some of the recent studies on GCM evaluation (e.g.,

Gleckler et al. 2008; Pincus et al. 2008). To choose a 20-yr

period from GCM historical simulations one needs to take

into account that the individual years from the historical

simulations are not expected to line up with those in the

TABLE 1. Model identification, originating center, and atmospheric resolution.

Model Center and location Atmosphere resolution

BCCR-BCM2.0 Bjerknes Centre for Climate Research (Norway) T63 L31

CGCM3.1(T47) Canadian Centre for Climate Modeling and Analysis (Canada) T47 L31

CGCM3.1(T63) T63 L31

CNRM CM3 Météo-France, Centre National de Recherches Meteorologiques (France) T42 L45

CSIRO Mk3.0 Atmospheric Research (Australia) T63 L18

GFDL CM2.0 U.S. Dept. of Commerce, NOAA N45 L24

GFDL CM2.1 Geophysical Fluid Dynamics Laboratory (United States) N45 L24

GISS-AOM NASA Goddard Institute for Space Studies (United States) 90 3 60 L12

GISS-EH 72 3 46 L17

GISS-ER 72 3 46 L26

FGOALS-g1.0 LASG/Institute of Atmospheric Physics (China) 128 3 60 L26

INM-CM3.0 Institute for Numerical Mathematics (Russia) 72 3 45 L21

IPSL CM4 Institut Pierre Simon Laplace (France) 96 3 72 L19

MIROC3.2(hires) Center for Climate System Research (The University of Tokyo) T106 L56

MIROC3.2(medres) National Institute for Environmental Studies, and T42 L20

Frontier Research Center for Global Change (JAMSTEC, Japan)

ECHO-G Meteorological Institute of the University of Bonn, Germany T30 L19

Meteorological Research Institute of KMA, and Model and

Data group (Germany and Korea)

ECHAM5–MPI-OM Max Planck Institute for Meteorology (Germany) T63 L32

MRI-CGCM2.3.2 Meteorological Research Institute (Japan) T42 L30

CCSM3 National Center for Atmospheric Research (United States) T85 L26

PCM T42 L18

HadCM3 Hadley Centre for Climate Prediction and Research, Met Office (United Kingdom) 96 3 72 L19

HadGEM1 N96 L38
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observational record. This is because the only relationship

between the GCM year and the real year is the equivalent

amount of forcing from the natural and anthropogenic

factors. To quantify how sensitive our analysis is to the

choice of evaluation period we extract GCM data for two

20-yr time windows: 1980–99, which overlaps with the

NARR period, and 1970–89, which is shifted 10-yr back-

ward from the NARR period. To facilitate GCM in-

tercomparison and validation against the NARR, all

climate fields are interpolated to a common 10 3 NARR

grid (approximately 320 km 3 320 km) in a conical con-

formal Lambert map projection.

3. Validation methods

a. Statistical metrics

Statistical metrics are used here to evaluate GCM

simulations of the mean annual cycle and of interannual

variability. We perform this analysis on two spatial do-

mains: a ‘‘large’’ domain, equivalent to the original domain

of the NARR, which covers all North America, and

a ‘‘small’’ domain that occupies the northwest corner of

the large domain (Fig. 1). For these two domains and our

six selected climate variables we calculate relative model

errors and variance ratios over the evaluation period as

described below.

Following Gleckler et al. (2008) we define the relative

model error using the root-mean-square difference between

a simulated field F (GCM output) and a corresponding

reference field R (NARR data). The root-mean square

error (RMSE) is calculated as

RMSE2 5
1

W
�

i
�

j
�

t
wi,j,t(Fi,j,t 2 Ri,j,t)

2, (1)

where the indices i, j, and t correspond to the longitude,

latitude, and time dimensions; and W is the sum of the

weights (wi,j,t), which for the spatial dimensions are pro-

portional to gridcell area and for time are proportional to

the length of each month. The gridcell area in our in-

terpolated common grid is constant. The sums are accu-

mulated over 12 months and separately over each of the

two spatial domains. For each climate field Gleckler et al.

(2008) defined a typical model error as the median of all

RMSE calculations over all the GCMs. Thus, in our en-

semble of 22 GCMs there are 22 RMSE calculations for

one climate variable. Relative model performance, for

a given model and climate variable, is then defined as

a difference between the RMSE and the typical model

error, normalized by the typical model error. Normalizing

the RMSE calculations in this way yields a measure of how

well a given model compares with the typical model. For

example, if the relative error has a value of 0.5 then the

model RMSE is 50% larger than the typical model error.

In an attempt to define an optimal overall index of model

performance in simulating mean annual cycle climatology,

Gleckler et al. (2008) introduced a model climate perfor-

mance index (MCPI). This was done by averaging relative

errors for each model across all climate variables consid-

ered. In our work, the MCPI is calculated by averaging the

relative errors over our six selected climate variables.

Another statistical measure for evaluating GCM per-

formance examines how well the model simulates the in-

terannual variability of the climate variables of interest.

This is analyzed by the variances of monthly mean

anomalies, computed relative to the monthly climatology

for the 20-yr baseline period. The ratio of simulated to

observed variances for the two domains (small and large)

is calculated for each GCM and climate variable. A vari-

ance ratio (GCM vs NARR) close to unity indicates that

the variance of simulated monthly anomalies, for a given

climate variable, compares well with NARR, whereas

a lower ratio suggests too little simulated variability and

a higher ratio implies too much.

Continuing to follow Gleckler et al. (2008), we cal-

culate the model variability index (MVI), which serves

as an overall index of model performance for simulating

the interannual variability. MVI is defined as

MVI 5 �
N

n51
bn 2

1

bn

� �2

, (2)

where b2 is the ratio of simulated to observed variance

and N is the total number of climate variables (in the

FIG. 1. Analysis domains: large domain (large rectangular)

equivalent to the NARR domain and small domain (rectangle in-

side the large one).
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present work N 5 6). Defined this way, the MVI is

positive, with smaller values indicating better overall

agreement between modeled and reference data.

b. Self-organizing maps technique

Here we follow the methodology from Finnis et al.

(2008) and Schuenemann and Cassano (2009) and

compare daily SLP patterns in 22 GCMs to those in the

NARR. The patterns are extracted by the method of

SOMs. We aim to find the GCMs that best reproduce the

occurrences of NARR synoptic-scale patterns over our

large and small domains.

SOMs are a common type of unsupervised artificial

neural network particularly adept at pattern recognition

and classification, and in many respects are analogous to

more traditional forms of cluster analysis. The main

difference from the other forms of cluster algorithms is

that in SOMs no assumptions regarding the resulting pat-

terns are made by the user. Kohonen (2000) offers an ex-

planation of the development and details of the SOM

algorithm. The method is used in a wide range of disciplines

(Kaski et al. 1998; Oja et al. 2002), but here we use it to

classify patterns in the climate data, an approach that has

been successfully demonstrated in previous studies (e.g.,

Hewitson and Crane 1994, 2002; Malmgren and Winter

1999; Cavazos 2000; Ambroise et al. 2000; Hsu et al. 2002;

Hong et al. 2004, 2005; Finnis et al. 2008). The SOM method

offers several advantages over principal component analy-

sis, for example in revealing real synoptic patterns and in

feature extraction (Reusch et al. 2005; Liu et al. 2006).

Briefly the SOM algorithm proceeds as follows: the

input data consists of climate fields each of which is

converted to a row vector. The output is an SOM that

consists of a prescribed number of nodes that represent

the archetypal patterns in the input data. Initially, the

SOM consists of random nodes, where each node has an

assigned weight vector and a position in the 2D map

space. The procedure for placing a vector onto the map is

to find the node with the closest weight vector to the input

vector and to assign the map coordinates of this node to

the vector. The node with the closest weight vector (in

Euclidian space) is called the ‘‘best matching unit.’’ The

next step is to update the nodes in the neighborhood of

the best matching unit by pulling them closer to the input

vector, for example:

W(t 1 1) 5 W(t) 1 Q(t)a(t) [V(t) 2 W(t)], (3)

where t is the current iteration, W is the weight vector, V

is the input vector, Q is restraint due to distance from the

best matching unit (usually called the neighborhood

function), and a is a time-dependent learning restraint.

Repeating this process for all the input data is referred

to as training the SOM. Training is performed for a cho-

sen iteration limit. After the training process, individual

SOM nodes represent characteristic patterns in the

original data. The amount of original information re-

tained depends primarily on the size of the SOM (i.e., the

number of nodes), with smaller sizes producing broad

generalizations of the input dataset, and larger sizes

capturing increasingly fine details. The essential feature

of the SOM is that neighboring nodes represent similar

patterns, while those that are placed farther apart are

more dissimilar.

For the period 1980–99 we apply the SOMs technique

to daily SLP anomalies from the NARR and 21 GCMs

[note that daily data from the Hadley Centre Global

Environmental Model version 1 (HadGEM1) model is

not available in the LLNL archive]. Prior to the SOM

analysis, daily SLP are interpolated to the common grid

(320 km 3 320 km). The input data for the SOM training

process are temporal SLP anomalies calculated by sub-

tracting the daily averaged SLP over the 20-yr baseline

period from the daily SLP at each grid point, for the

NARR and each GCM separately. As an alternative in-

put for SOM analysis, we also calculate spatial SLP

anomalies by subtracting the domain-averaged daily SLP

from the SLP at each grid point. The spatial SLP anom-

alies have been more commonly used in previous SLP

pattern analysis (e.g., Finnis et al. 2008; Schuenemann

and Cassano 2009), allowing the SOM algorithm to focus

on the SLP gradients rather than the varying magnitudes

of SLP from day to day.

Our SOM analysis uses the Matlab SOM Toolbox

(Vesanto et al. 2000) and assigns tunable parameters of

the SOM training process (e.g., neighborhood function

and radius, type of training, initialization of weight vec-

tors, number of iterations, etc.). To ensure the robustness

of our analysis we train SOMs using several different map

sizes (number of patterns) with varying parameters. Fol-

lowing the guidelines from Liu et al. (2006) we accept a set

of parameters that minimizes the average quantization

error (i.e., the average distance between each data vector

and the best matching unit) and topographic error (i.e., the

percentage of the data vectors for which the first and the

second best-matching unit are not the neighboring nodes).

Our set of optimized parameters in Matlab SOM Toolbox

consists of the following: hexagonal lattice, sheet SOM

shape, linearly initialized weights, bubble neighborhood

function with initial and final neighborhood radii of 3 and

1, and batch training performed over 5000 iterations. With

this set of parameters we train the SOMs on a seasonal

basis [winter months of December–January–February

(DJF), spring months of March–April–May (MAM),

summer months of June–July–August (JJA), and autumn

months of September–October–November (SON)]. Prior
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to the SOM training, the SLP anomalies are converted

into row vectors (from a 2D spatial field into a 1D array).

Hence, our input data to the SOM training consists of row

vectors from the NARR followed by the row vectors from

one of the 21 GCMs, making in total 21 sets of input data.

The training is performed independently for each set and

each season. The SOMs for the temporal SLP anomalies

are produced for the large and small spatial domain, while

the SOMs for the spatial SLP anomalies are produced

only for the small domain.

For a given size of SOM one can use a different set of

optimized parameters. We found that, once the SOM

map size is set, the sensitivity of pattern recognition in

the SOM training to the choice of optimized parameters

is small. However, our evaluation of GCM performance

might be sensitive to the choice of the SOM size. We

experimented with different SOM sizes in order to find

a reasonable compromise between detail and in-

terpretability of the SLP patterns characteristic for each

season. Our final choice for both spatial domains is to use

three SOM sizes: 4 3 3, 4 3 4, and 5 3 4. Having more

than one SOM size allows us to test the sensitivity of

model evaluation to the size of SOM.

4. Results

a. Simulation of mean annual cycle

In Fig. 2 we provide a summary of relative errors over

the small and large domain, for our six selected climate

variables (PR, SLP, Z500, Z850, SH850 and T850). The

results are shown for the monthly climatology computed

over 1980–99 from each GCM. Models with negative

relative errors are in better agreement with the refer-

ence data (NARR) than the typical model. Thus, the

more negative the relative error, the better the skill of

the model in simulating the mean annual cycle of the

selected variable. Note that the ECHAM and the global

Hamburg Ocean Primitive Equation (ECHO-G) model

only have data available for two of the climate variables

(PR and SLP) from our selected set. As illustrated in Fig.

2, some models perform better than others, although no

model scores above average or below average for all the

climate variables. For some models the range of relative

errors for a set of climate variables is narrower than for

other models. For example, models with a narrow range

over the small domain are the HadGEM1, the third climate

configuration of the Met Office Unified Model (HadCM3),

and the ECHAM5–Max Planck Institute Ocean Model

(MPI-OM), whereas L’Institut Pierre-Simon Laplace

Coupled Model, version 4 (IPSL CM4), Goddard Institute

for Space Studies Model E-R (GISS-ER), and the Geo-

physical Fluid Dynamics Laboratory Climate Model ver-

sion 2.0 (GFDL CM2.0) have a wide range. Several models

have more relative errors greater than 0.5 over the small

domain than is the case over the large domain. This sug-

gests that simulating mean annual cycle over the small

domain is more challenging than over the large domain.

However, the correlation between the relative errors over

large and small domains is high (r . 0.7) for all the climate

FIG. 2. Relative errors over (left) the small and (right) the large domain for the six climate

variables: PR, SLP, Z500, and Z850, specific humidity at 850 hPa (SH850) and air temperature

at 850 hPa (T850).
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variables except precipitation. Thus, the relative model

performance in simulating the mean annual cycle of the

selected five variables over the small domain is comparable

to that for the large domain.

The results presented in Fig. 2 are almost identical

when using two different baseline periods (1970–89 and

1980–99) over which the mean annual cycle in GCMs is

calculated. Therefore, the model performance in simu-

lating the mean annual cycle of our 6 variables is not

sensitive to the 10-yr shift in the baseline period. For both

domains and all climate variables, the multimodel mean

and median have relative errors that are smaller than the

typical model error. Furthermore, in most cases the

multimodel mean and median score better than any in-

dividual model, a result that has been previously reported

(e.g., Taylor and Gleckler 2002; Gleckler et al. 2008). An

exception here is the performance of GISS Atmosphere–

Ocean Model (GISS-AOM) and ECHAM5–MPI-OM,

which score better than the multimodel mean and median

for simulating geopotential height at 500 hPa (Z500) over

the small domain. ECHAM5–MPI-OM also scores best

over the small domain when simulating specific humidity

at 850 hPa (SH850).

Looking at the relative errors of each individual cli-

mate variable across all the models, we note that some

climate variables have a distribution with severe out-

liers. For example, geopotential height Z500 for IPSL

CM4 model over both domains has the largest relative

errors in the set (the values are between 2 and 3, beyond

the x-axis scale illustrated in the figure). Both geo-

potential heights, Z850 and Z500, have larger scatter of

relative errors across the models, than the other climate

variables. The large scatter of relative errors for Z850 is

mainly caused by the large errors from IPSL CM4 and

GISS-ER.

We also examine whether there is a relationship be-

tween the performances across climate variables for each

model, where a strong relationship would indicate re-

dundancy in the evaluation. Correlating the relative errors

from a pair of two different variables, we find significantly

positive correlation (at the 95% confidence level) for the

pairs (SLP, Z850) and (Z500, Z850) over both domains.

For the small domain there is also a significant relation-

ship between how well the model simulates PR and SLP

(r 5 0.56), and PR and Z850 (r 5 0.60). In contrast, the

relationship between how well the model simulates SLP

and Z500 is weaker (r 5 0.46), a result found at the global

scale by Gleckler et al. (2008).

b. Simulation of interannual variability

Here we analyze simulated interannual variability by

examining variances of monthly mean anomalies that

are computed relative to monthly climatology. The re-

sults are shown for the monthly climatology computed

over 1980–99 from each GCM. Figure 3 illustrates the

ratio of simulated (GCM) to reference (NARR) vari-

ances, b2 for each climate variable in the two domains.

Values are expressed as b2 2 1/b2 so that the values closer

to zero indicate that the variance of simulated monthly

anomalies compares well with the NARR variance.

Negative values reveal low simulated variability, while

positive values correspond to high simulated variability.

FIG. 3. Values of b2 2 1/b2, where b2 represents the ratios of simulated (GCM) to reference

(NARR) variances, over the small and large domain, for the six climate variables in Fig. 1.
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Similar to the results in the previous section, some models

score better than the others, while no model is superior

for all the climate variables. Across all models the cor-

relation of the variance ratios between the large and small

domains is high (r . 0.75) for every climate variable ex-

cept PR (r 5 0.28) and SH850 (r 5 0.35).

Evaluation of the multimodel mean and median is

omitted from this analysis because averaging over the

models reduces the variability and leads to an unrealistically

small variance. Averaging the b2 2 1/b2 values in Fig. 3

across all the models for each climate variable reveals that

the variances of SLP, Z850, and Z500 are better simulated

than the variances of the remaining variables. All models

show low variance ratios for precipitation over the large

domain (average value for b2 2 1/b2 across all models is

22.46), suggesting too little simulated variability. The pre-

cipitation over the small domain shows too high simulated

variability (average value for b22 1/b2 is 1.41). This reveals

an inconsistency in model skill when simulating the vari-

ance of monthly precipitation over the two domains.

Correlating the variance ratios across the models for

different pairs of variables we find significantly positive

correlation (at the 95% confidence level) occurring over

both domains for the following pairs: (PR, SLP), (SLP,

Z500), (SLP, Z850), (Z500, Z850), and (PR, Z850).

Especially high positive correlation coefficient (r . 0.9) is

between SLP and Z850. Neither domains show significant

correlation between PR and T850 (r , 0.35). Addition-

ally, SLP and SH850 have significantly positive correla-

tions over the large domain (r 5 0.60), while only weak

correlations over the small domain (r 5 0.36).

We repeat this analysis using the monthly climatology

computed over 1970–89 for each GCM. The correlation

between the b2 2 1/b2 values in Fig. 3 over the small do-

main and the values calculated over 1970–89 period is very

high (r . 0.90) for each climate variable except for SH850

(r 5 0.78). Nevertheless, the results over large domain show

larger disparity. Here the correlation between values b2 2

1/b2 for SH850, derived from different baseline periods,

drops to 0.57, while for Z500 r 5 0.74, for T850 r 5 0.80 and

for the remaining variables r . 0.90. Thus, for all variables

except SH850 the model performance, in term of simulat-

ing the interannual variability, has a small sensitivity to the

10-yr shift in the baseline period.

c. Simulation of occurrences of synoptic patterns

Figures 4a–f illustrates characteristic daily SLP anomaly

patterns for winter and summer over the small and large

domain for the period 1980–99. The patterns are derived

from the SOM training with map size 4 3 4 using temporal

(Figs. 4a,b,e,f) and spatial (Figs. 4c,d) SLP anomalies from

the NARR and one GCM (in this example CCSM3). The

SOM of the temporal SLP anomalies shows the 2D

distribution of SLP daily anomalies from the 20-yr average

of daily SLP patterns (Figs. 4a,b,e,f). During winter months

the most common daily pressure system is the Aleutian low.

As a result, the majority of SOM patterns in winter repre-

sent characteristic anomalies in the strength of the Aleutian

low (Fig. 4a). During summer months the Pacific tends to

be dominated more by the subtropical anticyclone. How-

ever, as it was the case for winter months, the majority of

the 2D anomaly patterns in summer also reveal positive and

negative biases in the strength of the Aleutian low (Fig. 4b).

Nevertheless, the amplitude of these anomalies in summer

is smaller than in winter. SOM patterns for spring and au-

tumn months (not shown in the figure) depict similar pat-

terns, again showing the dominance of the Aleutian low in

the temporal SLP anomaly patterns.

While SOM of the temporal SLP anomalies reveal the

daily anomalies from the 20-yr-average pattern of daily

SLP, more information on actual weather maps is given in

the SOM of the spatial SLP anomalies. For example, the

SOM nodes in Fig. 4d depict the dominant weather patterns

in winter and enable us to follow the development of winter

cyclones over the map. Most patterns are characterized

by low pressure centers in the North Pacific in the vicinity

of the climatological Aleutian low (e.g., nodes [4, 1], [4, 2],

[4, 3], and [4, 4]). Some nodes illustrate the cyclones that

are shifted southward as anticyclones become more pres-

ent over the Beaufort Sea (e.g., nodes [3, 1] and [3, 2]), and

some nodes show the weaker low pressure systems that are

shifted into the Gulf of Alaska (e.g., [2, 2] and [2, 3]) or

shifted into the interior of Alaska (e.g., [2, 4] and [1, 4]). In

the SOM for summer (Fig. 4d), the circulation types are

mainly dominated by the northeastern Pacific subtropical

anticyclone, and the pressure gradient over the domain is

generally smaller than in winter. SOMs for the transi-

tional seasons (MAM and SON), which are not presented

in the figure, produce a range of patterns characteristic of

winter (e.g., North Pacific cyclones) and summer (e.g.,

high pressure centers in the North Pacific that are located

slightly southward from their positions in summer).

Having created the SOMs of characteristic SLP anomaly

patterns for the NARR and each GCM, the next step is to

evaluate model performance. Good models would recreate

the same synoptic patterns that take place in the real at-

mosphere, here represented by the NARR, at the same

frequencies of occurrence. We calculate the node frequency

(in %) as the total number of days with a certain pattern

(node) divided by the total number of days for that par-

ticular season over the 20-yr baseline period. The success of

the model depends on how well these frequencies from

GCM simulations correlate with frequencies from the

NARR.

In Fig. 5 we plot the frequency of each node from the

NARR and a GCM (here CCSM3). The node coordinates
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FIG. 4. The 4 3 4 SOMs of SLP anomalies (hPa) trained from the NARR and one GCM (CCSM3) over the baseline period 1980–99.

Patterns of temporal SLP anomalies over the small domain (a) in winter (DJF) and (b) in summer (JJA). Patterns of spatial SLP anomalies

over the small domain (c) in winter and (d) in summer. Patterns of temporal SLP anomalies over the large domain (e) in winter and (f) in

summer.
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in Figs. 5a,b, correspond to the node coordinates in Figs.

4a,c, respectively. For the patterns of temporal SLP

anomalies (Fig. 5a), a series of node frequencies in the

GCM has significant positive correlation (at the 95% con-

fidence level) with the series of node frequencies in the

NARR (r 5 0.68). Very positive correlation between these

series means that each pattern (showing a characteristic 2D

distribution of biases from the 20-yr average of daily SLP)

in the GCM occurs as often as the equivalent pattern occurs

in the NARR for a given season over the baseline period.

For the patterns of spatial SLP anomalies (Fig. 5b) the

correlation is significant but negative (r 5 20.51). Very

negative correlation here means that the occurrence of SLP

spatial patterns in the GCM is almost in antiphase with the

occurrence of the equivalent patterns in the NARR. In

other words, the spatial SLP patterns that happen very

frequently in the NARR happen only occasionally in the

GCM and vice versa. We perform this correlation analysis

between the NARR and each GCM, for each season (DJF,

MAM, JJA, SON), each SOM size (4 3 3, 4 3 4, 5 3 4),

and for both spatial domains. The results (r values) for the

temporal and spatial 4 3 4 SOMs over the small domain

and for all seasons are shown in Table 2. Correlations that

are significantly greater than zero (at the 95% confidence

level) are in boldface. As illustrated in the table, correlation

varies widely from one model and season to another,

ranging from near-perfect positive correlation to negative

correlation. Analysis for other SOM sizes (4 3 3 and 5 3 4)

gave comparable ranges for r values.

For temporal SLP anomaly patterns, 15 out of 21

GCMs have significantly positive correlations with the

NARR frequencies across all the seasons and all SOM

sizes (4 3 3, 4 3 4, 5 3 4). Specifically, for the small do-

main, winter has 95% of cases with significantly positive r

values, spring has 92%, autumn has 82%, and summer has

73%. For the large domain, summer has 100% of cases

with significantly positive correlations, followed by winter

with 94% of cases, while spring and autumn both have

90%. This high number of significantly positive correla-

tions means that almost every GCM is able to reproduce

the frequencies of the temporal SLP anomaly patterns in

the NARR on seasonal basis over the baseline period.

Further analysis showed that the success in reproducing

these frequencies depends on how well a GCM simulates

the 20-yr average of seasonal SLP pattern. The larger the

difference (in terms of RMSE) between the average

seasonal SLP patterns in a GCM and the NARR, the

larger the difference between the frequencies of charac-

teristic anomaly patterns in the GCM and the NARR.

While the frequencies of temporal SLP anomaly pat-

terns are well simulated across all GCMs, analysis for

spatial SLP anomaly patterns shows a very small number

of significantly positive correlations between GCM and

the NARR frequencies. Across all the models and all

SOM sizes, winter has 27% of cases with significantly

positive correlation, followed by spring with 22%, autumn

with 11%, while summer has only 2%. This relatively

small number of significantly positive correlations means

that a very few GCMs are able to reproduce the fre-

quencies of spatial SLP anomaly patterns in the NARR

for any season over the baseline period. Furthermore,

frequencies of the patterns from some GCMs have sig-

nificantly negative correlation with those from the

NARR. This reveals not only the poor GCM performance

in reproducing the frequency of spatial SLP patterns in

the NARR, but shows that the occurrences of patterns in

some GCMs are almost in antiphase with those in the

NARR. For example, both the Commonwealth Scientific

and Industrial Research Organisation Mark version 3.0

(CSIRO Mk3) model with r 5 20.47 and IPSL CM4 with

r 5 20.62 overestimate the occurrence of a strong

Aleutian low in the winter season, and therefore un-

derestimate the occurrence of other characteristic pat-

terns in the season. The summer season has the largest

FIG. 5. Comparison of model performance for temporal and spatial SLP anomalies. NARR

and GCM (CCSM) frequency of occurrences (%) for each node on the 4 3 4 SOM of winter

SLP anomalies over the small domain. (a) Node coordinates correspond to the node co-

ordinates of SOM in Fig. 4a. (b) Node coordinates are from SOM in Fig. 4c.
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number (49%) of cases with significantly negative r

values, and most models in those cases underestimate the

occurrence of a weak low pressure over the Bering Sea or

Arctic North America combined with northeastern Pa-

cific subtropical anticyclone. Some of these models {e.g.,

Flexible Global Ocean–Atmosphere–Land System

Model gridpoint version 1.0 (FGOALS-g1.0) and Model

for Interdisciplinary Research on Climate 3.2, high-resolu-

tion version [MIROC3.2(hires)]} produce a higher fre-

quency of the summer pattern characterized by a high

pressure center over Arctic North America than does the

NARR (e.g., pattern similar to the node [4, 4] in Fig. 2d).

How robust is this correlation analysis to the choice of

the baseline period over which the SOM patterns and

their frequencies are derived? To answer this we repeat

the SOM training using the SLP temporal and spatial

anomalies from the period 1970–89 for each GCM, while

the NARR period is kept the same (1980–99). We then

compare the new r values between GCM and the NARR

frequencies across all seasons and all SOM sizes. The

results for spatial SLP patterns show that the correlation

between the old and new r values is larger than 0.85,

proving a strong link between the r values from the two

baseline periods. However the results for temporal SLP

anomaly patterns reveal some weaker links. For example,

the correlation between the old and new r values over the

small domain is the highest for summer (average corre-

lation over the 3 SOM sizes is 0.87), followed by

statistically significant correlations for spring (0.73) and

autumn (0.63), while winter has statistically insignificant

correlation of 0.38. Over the large domain, the correla-

tion is also the highest for summer (0.63), followed by

autumn (0.58) and spring (0.50), whereas winter again has

statistically insignificant correlation of 0.06. We conclude

that for all the seasons except winter, the model skill in

simulating the frequencies of daily SLP anomaly patterns

is not significantly sensitive to the 10-yr shift in the

baseline period. A possible explanation for the relatively

high sensitivity in winter is found by looking at the North

Pacific index. This index depicts the fluctuations in the

intensity of the Aleutian low over winter months, as well

as a regime shift in these fluctuations as part of Pacific

decadal time-scale variation (Trenberth and Hurrell

1994). Even if a GCM is able to simulate the interdecadal

variability of the Aleutian low regime there is no reason

to expect that the shift in the regime, as simulated in

GCM, would line up with the regime shift in the NARR.

Thus, a decade shift in the baseline period would make

the largest impact on model evaluation in winter season,

improving the performance of some GCMs that under-

performed in the original baseline period, and/or wors-

ening the performance of some GCMs which performed

better in the original baseline period.

To rank the models based on the correlations between

the node frequencies from the NARR and GCMs, we

introduce a set of evaluation measures. Our first measure

TABLE 2. Correlation coefficients r between node frequencies of 4 3 4 SOM in the NARR and each GCM, on seasonal basis (DJF,

MAM, JJA, and SON). SOMs are given for the temporal and spatial SLP anomalies over the small domain. Bold font marks the cor-

relations significantly . 0 (at the 95% confidence level).

Temporal SLP patterns Spatial SLP patterns

Model DJF MAM JJA SON DJF MAM JJA SON

BCCR-BCM2.0 0.58 0.55 0.60 0.74 0.10 0.34 20.71 0.53
CGCM3.1(T47) 0.64 0.56 0.83 0.60 0.29 0.29 0.13 20.03

CGCM3.1(T63) 0.79 0.60 0.72 0.57 0.42 0.15 0.22 20.46

CNRM-CM3 0.67 0.60 0.38 0.63 0.54 20.06 20.67 0.44

CSIRO Mk3.0 0.85 0.79 0.74 0.50 20.47 0.47 20.09 0.00

GFDL CM2.0 0.79 0.66 0.94 0.43 0.60 20.11 20.33 0.19

GFDL CM2.1 0.76 0.84 0.72 0.46 0.73 0.49 20.17 0.39

GISS-AOM 0.30 0.58 0.15 0.80 0.32 0.27 20.68 0.43

GISS-EH 0.59 0.46 0.34 0.65 0.39 20.43 20.83 0.06

GISS-ER 0.63 0.26 0.17 0.75 20.33 20.57 20.80 20.43

FGOALS-g1.0 0.50 0.75 20.04 0.86 20.28 20.17 20.62 0.28

INM-CM3.0 0.81 0.78 0.69 0.63 20.27 0.47 20.55 20.36

IPSL CM4 0.72 0.73 0.72 0.61 20.60 20.27 20.73 20.53

MIROC3.2(hires) 0.87 0.90 0.83 0.78 20.10 0.50 0.13 0.47

MIROC3.2(medres) 0.72 0.75 0.85 0.85 20.14 0.33 0.22 20.23

ECHO-G 0.77 0.76 0.85 0.81 0.53 0.29 20.45 0.71
ECHAM5–MPI-OM 0.80 0.63 0.75 0.72 0.55 0.34 0.42 0.12

MRI-CGCM2.3.2 0.75 0.67 0.80 0.61 0.51 0.65 20.11 0.10

CCSM3 0.68 0.05 0.50 0.45 20.51 20.70 20.46 20.63

PCM 0.83 0.84 0.77 0.36 0.01 20.40 20.21 20.51

HadCM3 0.73 0.77 0.77 0.56 20.27 0.02 20.62 0.12
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is a correlation measure MC defined as the mean corre-

lation across all the seasons and all three SOM sizes:

MC 5
1

m
�
m

i51
ri, (4)

where m is the product of the seasons and all three SOM

sizes (m 5 12) and r is the correlation coefficient. The

larger this measure, the closer the model performance is

to the NARR performance.

To account for the total number of significant positive

correlations we define a significance measure:

MS 5 �
m

i51
di

di 5 1 if ri $ r0

di 5 0 if ri , r0

,

�
(5)

where r0 is the threshold value for the correlation sig-

nificantly larger than zero at the 95% confidence level

(derived from a t test). Similarly to MC, the larger this

measure, the closer the model performance is to the

NARR performance.

Finally we define a rank measure MR following the

approach in Schuenemann and Cassano (2009), by

ranking the models from best to worst according to the

correlation with the NARR frequencies, for each season

and each SOM size separately. Thus, the top-performing

model has rank 5 1, while the bottom performing has

rank 5 21. These ranks are then totaled across all the

seasons and all three SOM sizes. The smaller the sum, the

better is the model performance. To facilitate comparison

with the measures MC and MS we define this measure as

MR 5 1 2
1

252
�
m

i51
ranki, (6)

so that the larger the value, the closer the model per-

formance is to the NARR performance. In Eq. (6) the

total sum of ranks across all the seasons and all the SOM

sizes (m 5 12) is divided by the product between m and

the bottom rank (rank 5 21).

Figure 6 shows the three measures assessed over the

small domain for temporal and spatial SLP anomaly pat-

terns, and over the large domain for temporal SLP anomaly

patterns. As illustrated in the figure, the evaluation of the

model performance depends on the choice of the eval-

uation measure even when the same climate features are

analyzed. Looking only at measure MS one can see the

discrepancy in model performance between simulating

the temporal SLP anomaly patterns on one hand and

spatial SLP anomalies patterns on the other. This dis-

crepancy is also revealed with MC measure, while the

MR gives only the information of the relative model

performance. Looking specifically at the results for

temporal SLP anomaly patterns over the small domain

we find that the values across all three measures have

significantly positive correlations at the 95% confidence

level (r . 0.80). The largest r value of 0.96 is between the

measures MC and MR. Similar r values across the three

measures are also found for spatial SLP anomaly pat-

terns over the small domain and temporal SLP anomaly

patterns over the large domain. Thus, the sensitivity of

the model ranking to the choice of the three measures is

small.

The correlation between the MS values for spatial and

MS values for temporal SLP anomaly patterns is not

significant at the 95% confidence level (r 5 0.41). This

FIG. 6. (top to bottom) Correlation measure MC, significance

measure MS, and rank measure MR for each model. The measures

are derived for three different cases: SOMs of temporal SLP

anomalies over the small domain, SOMs of temporal SLP anom-

alies over the large domain, and SOMs of spatial SLP anomalies

over the small domain.
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means that the model skill in simulating the temporal

SLP anomaly patterns is not significantly linked to the

skill in simulating the spatial SLP patterns. However,

the same correlation analysis applied on the other two

measures (MC and MR) reveals that the correlations are

significantly positive (r . 0.64). In terms of simulating

temporal SLP anomaly patterns for the two different

domains, there is a significant correlation between the MS

values for the small and MS values for the large domain

(r 5 0.52). Both correlations are also significantly positive

(r . 0.63) when measures MC and MR are used. Thus, the

sensitivity of the model ranking to the choice of our two

domains is small.

d. Model ranking across all measures

Here we rank the model performance using all the

measures we described in previous sections. The ranking is

sorted in ascending order where the top-performing model

has a rank 5 1. First, we rank the GCMs according to how

well they simulate the mean annual cycle and interannual

variability, using the MCPI and MVI, respectively (Fig. 7).

For the small domain, the three top-performing models are

ECHAM5–MPI-OM, HadCM3 and GFDL CM2.0 based

on MCPI, and Centre National de Recherches Météor-

ologiques (CNRM), CGCM3.1(T63), and HadGEM1

based on MVI. For the large domain, the three top-

performing models are ECHAM5–MPI-OM, HadCM3

and CGCM3.1(T47) based on MCPI, and HadGEM1,

ECHAM5–MPI-OM, and the Bjerknes Centre for Cli-

mate Research (BCCR) based on MVI.

We correlate the ranking according to MCPI with the

ranking according to MVI to investigate whether there is

any relationship between the model ability to simulate

the mean climate and its ability to simulate the interannual

variability. For the small domain r 5 0.28 is not significantly

different from zero at the 95% confidence level, while for

the large domain r 5 0.54 is just above the threshold to be

significantly different from zero. Consistent with our results

Gleckler et al. (2008) found at best a weak relationship

between MCPI and MVI, derived from seven selected

climate variables over different domains.

Next we rank the models according to their simulation

of frequencies of daily synoptic patterns using the three

measures (MC, MS, and MR). In Fig. 8 we illustrate the

model ranking according to the sum of the measures MC

and MS over all seasons for three different SOM sizes (4

3 3, 4 3 4, 5 3 4). Depending on the selected SOM size

the model rank can change by as much as 16 places (e.g.,

HadCM3 for the large domain), while the average change

of rank per model is 4 places for the small domain and 5

places for the large domain. The positive correlation

between the model ranking from three different SOM

sizes is statistically significant (r . 0.60) for the small

domain. The same correlation analysis over the large

domain shows significantly positive correlations (r .

0.54) between all the SOM sizes except for the pair 4 3 3

and 5 3 4 where r 5 0.40. We conclude that the sensitivity

of the model ranking to the choice of the three SOM sizes

is greater than ideal, but small enough for this evaluation

of GCM skill.

Is skill in simulating frequencies of daily SLP patterns

related to skill in simulating the mean annual cycle and

the interannual variability of SLP? We address this

question by comparing the model ranking according to

three measures: RMSE [Eq. (1)], variance ratio [b2 2 1/

b2 in Eq. (2)], and MR measure calculated for temporal

and for spatial SLP anomaly patterns over all the sea-

sons and the three SOM sizes (Fig. 9). Correlating the

model rankings over the small domain (Fig. 9a), we find

that the only significantly positive correlation (r 5 0.68)

is for the skill in simulating the mean annual cycle of

SLP and the frequency of the spatial SLP anomaly

patterns. Over the large domain, the only significantly

positive correlation (r 5 0.56) is between the ranking for

the mean annual cycle of SLP and the ranking for the

skill in simulating the frequencies of the temporal SLP

anomaly patterns.

FIG. 7. Model ranking according to MCPI and MVI: (a) small

domain and (b) large domain.

15 OCTOBER 2011 R A D I Ć A N D C L A R K E 5269



Figure 10 summarizes the model ranking from the en-

tire set of evaluation measures we used in this study, all

assessed over the two baseline periods 1970–89 and 1980–

99. Relating each rank to a color (Fig. 10), the scatter of

colors illustrates that the model ranks vary considerably

across the measures. However, some models consistently

rank high {e.g., ECHAM5–MPI-OM and the Model

for Interdisciplinary Research on Climate 3.2, medium-

resolution version [MIROC3.2(medres)]} and some

consistently rank low (e.g., CCSM3 and GISS models).

Summing up all the ranks for each model, our top-five

models are ECHAM5–MPI-OM, MIROC3.2(medres),

MIROC3.2(hires), CGCM3.1(T47), and CGCM3.1(T63).

Although ECHO-G scores high, its evaluation has been

performed over only two available climate variables (PR

and SLP). Similarly, HadGEM scores high according to

the statistical measures, but unavailability of daily data

prevented the evaluation using SOMs.

Figure 10 also reveals that the GCMs developed by the

same modeling center (three GISS models, and a pair of

models in GFDL, MIROC, CGCM, and UKMO) tend to

rank near each other. We further test this observation by

assessing the differences in model rank for each model

pair from the sample of 22 GCMs across all evaluation

metrics. A median rank difference in this sample is 7, and

we refer to it as a typical model difference. Taking only

the rank differences of model pairs from the same mod-

eling center, we find that 68% of differences are smaller

than the typical model difference. Some models from the

same center differ only in their resolution (e.g., CGCM

and MIROC) and therefore their difference in perfor-

mance might be expected to be smaller than across

models from different centers.

In sections 4a–c we showed the sensitivity of evalua-

tion results to the choice of the two baseline periods.

Here we reanalyze our findings by calculating the cor-

relation between the model ranking for the period 1970–

89 and 1980–99 for each evaluation measure in Fig. 10.

All r values are found to be significantly positive at 95%

confidence level, with the highest value of r 5 0.98 when

the ranking according to RMSE for SLE over the large

FIG. 8. Model ranking according to the sum of measures MC and

MS assessed for three different SOM sizes: 4 3 3, 4 3 4, and 5 3 4:

(a) small domain and (b) large domain.

FIG. 9. Model ranking according to the RMSE for SLP, variance

ratio for SLP, and the rank measure calculated for temporal and

spatial SLP anomaly patterns over all the seasons and the three

SOM sizes: (a) small domain and (b) large domain.
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domain is used, and the lowest value of r 5 0.60 when the

ranking according to variance ratio for SLE over the

small domain is used. We conclude that the sensitivity of

the model ranking in Fig. 10 to the choice of the two

baseline periods is small.

In Table 3 we compare our list of the top five models

with the lists of top-performing models from some recent

GCM evaluations over different regions and climate var-

iables of interest. Some of these studies used statistical

measures of evaluation (RMSE, variance ratios) while

some used SOMs and the correlations between node fre-

quencies. As illustrated in the table, some top-performing

models appear on different lists, but only ECHAM5–MPI-

OM appears in every list. Additionally, the worst-

performing models in our study do not appear in any list

with the five top-performing models. The only exception is

CCSM3, which showed good performance in simulat-

ing the frequency of synoptic patterns over Greenland

(Schuenemann and Cassano 2009) while failing to per-

form well in our study. One of the possible reasons for

different model rankings between our studies and others is

the choice of the reference data. Our study is the only one

that used the NARR for the reference climate whereas for

most of those listed in Table 3 used the 40-yr European

FIG. 10. Model ranking (from best performing with rank 5 1 to worst performing model with

rank 5 22) according to the set of metrics over the small (S) and large (L) domain. The metrics

are MCPI, MVI, RMSE for SLP, variance ratio b2 for SLP, sum of metrics MC and MS, and

metric MR, all calculated over all the seasons and all three SOM sizes for temporal (t) and

spatial (s) SLP anomaly patterns. White squares indicate the unavailability of model data. Two

colors per square correspond to the ranking performed over the two baseline periods (left)

1970–89 and (right) 1980–99.
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Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40).

Why do some models consistently score high [e.g.,

ECHAM5–MPI-OM, GFDL CM2.1, MIROC3.2(medres)

in Table 3] independent of the evaluation measures, region,

and variable of interest? One reason might be the model

resolution, yet we find no systematic relationship between

our model ranking and the resolution of the GCMs (see

also Walsh et al. 2008). Nevertheless, according to most of

the evaluation measures in our analysis, the models with

the coarsest resolution score low [all GISS models and

Institute of Numerical Mathematics Coupled Model, ver-

sion 3.0 (INM-CM3.0)]. There is also no systematic re-

lationship between model performance and whether or not

flux adjustment has been applied in the GCM [i.e., ad-

justment of the surface heat, water, and momentum fluxes

in order to maintain a stable control climate; Table 8.1 in

Randall et al. (2007) provides details as to which GCMs

apply the flux adjustments]. Other possible reasons for the

differences in model performance include the cloud and

radiative formulations, the planetary boundary layer pa-

rameterizations, and the land surface schemes. Specifically,

different levels of model performance over our region of

interest (small and large domains) might depend on the

biases in the large-scale atmospheric circulation driven by

processes outside the region.

5. Summary and conclusions

Using a set of evaluation measures we have analyzed

the performance of 22 GCMs over all North America and

its western subregion. Emphasis has been given to the

evaluation of the model skill in simulating climatologies

of several climate variables and the characteristic syn-

optic patterns of daily sea level pressure. The reference

data to which the modeled climate fields have been

compared was the North American Regional Reanalysis

over the period 1980–99. The better the agreement with

the NARR, the higher is the score of the model.

Statistical measures were used to compare modeled

versus observed mean annual cycle and interannual vari-

ability of 6 selected variables: precipitation, sea level pres-

sure, geopotential height at 850 hPa and 500 hPa, specific

humidity at 850 hPa, and air temperature at 850 hPa.

According to these measures some models score better

than others, although no model scores above or below av-

erage for all six climate variables. Models that perform well

over all North America (the large domain) also perform

well over its western subregion (the small domain) for all

climate variables except precipitation. Model skill is in-

terrelated among some variables. For example, skill in

simulating the mean annual cycle and interannual vari-

ability of sea level pressure is correlated with skill in sim-

ulating the same features for geopotential height at

850 hPa. Some correlations between skill across the climate

variables are shown to be sensitive to the size of the do-

main. We find weak or insignificant relationship between

the ability to simulate the mean climate and the ability to

simulate the interannual variability, supporting the results

from Gleckler et al. (2008). Our results also support the

previous findings (e.g., Gleckler et al. 2008; Pierce et al.

2009) that the multimodel ensemble average is superior to

any individual model in simulating the mean annual cycle.

Based on statistical metrics the five top performing mod-

els are ECHAM5–MPI-OM, HadCM3, CGCM3.1(T47),

MIROC3.2(medres), and CGCM3.1(T63).

To provide another set of evaluation measures, we

applied the method of self-organizing maps (SOMs) to

identify and classify the characteristic daily patterns of

sea level pressure (SLP) over the region. The SOM

TABLE 3. The top-ranking models from different studies for different domains and based on different evaluation metrics. Ranking in our

study is based on model performance across all the metrics in the text.

Rank

1 2 3 4 5

This study ECHAM5–MPI-OM MIROC3.2(medres) MIROC3.2(hires) CGCM3.1(T47) CGCM3.1(T63)

Gleckler et al. (2008)

208–908N HadGEM1 ECHAM5/MPI-OM HadCM3 GFDL CM2.1 MIROC3.2(hires)

Walsh et al. (2008)

Alaska GFDL CM2.0 GFDL CM2.1 HadCM3

Greenland GFDL CM2.1 ECHAM5/MPI-OM MIROC3.2(medres)

608–908N ECHAM5–MPI-OM GFDL CM2.1 MIROC3.2(medres)

208–908N ECHAM5–MPI-OM GFDL CM2.1 MIROC3.2(medres) and CGCM3.1(T63)

Finnis et al. (2008)

Mackenzie River

basin

ECHAM5–MPI-OM GFDL CM2.1 CGCM3.1(T63) MIROC3.2(hires)

Schuenemann and

Cassano (2009)

Greenland MIROC3.2(hires) CGCM3.1(T63) ECHAM5–MPI-OM GFDL CM2.1 CCSM3
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nodes represent archetypal patterns derived for tem-

poral and spatial SLP anomalies over the small and

large domain and for each individual season. The

evaluation consisted of correlating the frequencies of

these patterns, as generated in GCMs, to the frequen-

cies in the NARR. For the SOM nodes of temporal SLP

anomalies, which show the 2D distribution of biases

from the 20-yr average of daily SLP pattern, most of the

models have significantly positive correlations over all

4 seasons. This is because most of the models are able

to simulate well the 20-yr average of daily SLP pattern

over the region. Despite this success in model perfor-

mance, very few GCMs are able to reproduce the fre-

quencies of the spatial SLP anomaly patterns in the

NARR on seasonal basis over the baseline period. Many

models with under-average performance in winter over-

estimate the occurrence of patterns with a strong Aleutian

low. In summer, poor-performing models underestimate

the occurrence of a low pressure center over Arctic North

America in conjunction with the northeastern Pacific

subtropical anticyclone. The number of significantly pos-

itive correlations over all four seasons between the mod-

eled and the NARR frequencies differs for the small and

large domains. If one ignores correlation significance and

ranks the models from best to worst based on their cor-

relation with the NARR frequencies, the overall model

ranking over the small domain is very similar to the

ranking over the large domain. Likewise, the ranking for

temporal SLP patterns is similar to the ranking for spatial

SLP patterns. Thus, the choice of evaluation measures

depends on whether one is interested only in the relative

model performance or in the ability to simulate the climate

features of interest. Considering both absolute and relative

model performance in this SOM analysis over the small and

large domain, the five top-performing models are MRI-

CGCM2.3.2, ECHAM5–MPI-OM, MIROC3.2(hires),

ECHO-G, and BCCR.

Our results demonstrate that even with a targeted set

of climate variables and domain of interest, the skill of

a model remains sensitive to the choice of the climate

variable and to the size of spatial domain. Additionally,

the skill of the model in simulating a climate feature that

displays interdecadal oscillation is sensitive to the 10-yr

shift in the 20-yr baseline period over which the skill is

assessed. In our analysis, this sensitivity is particularly

well illustrated for the simulations of temporal SLP

anomaly patterns in winter, when the predominant Aleu-

tian low pattern experiences a regime shift as part of Pacific

interdecadal variability.

Inconsistency in the model skill to simulate a broad

spectrum of climate features shows the need to identify the

features that are the most important for the intended ap-

plication. For modeling the deglaciation of North America,

the application we have in mind, the choice of the GCMs

will depend on the selected downscaling method. For ex-

ample, if we used a method of ‘‘weather typing’’ for sta-

tistical downscaling of GCMs (e.g., Zorita and von Storch

1999; Enke et al. 2005) the logical candidates would be

the top-performing models according to the evaluation

using SOMs. If we chose to combine different statistical

downscaling methods (e.g., linear methods and neural

networks) we would select the models that score high

over the whole set of measures and climate variables.

Despite the large scatter of model performance, our

results reveal that some models consistently rank high

across all the evaluation metrics in our region [e.g.,

ECHAM5–MPI-OM and MIROC3.2(medres)]. Some

models consistently rank low [e.g., CCSM3 and GISS

Model E-H (GISS-EH)]. Our selection of GCMs relies

on the assumption that models that best simulate pres-

ent-day climate also yield the best projections of future

climate. It remains uncertain how model bias in the

present transfers into different projections of the future.
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