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where again MT is the total mass. In other words, the potential of any
bounded mass distribution appears as a point source when viewed suffi-
ciently far away. Hence, as a —> oc, r2^ can be moved outside the last
integral of equation 3.24, and
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Combining with equation 3.23 provides

/ gzdS = 2TT7MT, (3.25)
SP

where Sp now includes the entire horizontal plane.
Hence, the vertical component of gravity integrated over an infinite

plane is proportional to the total mass below the plane, so long as the
mass is bounded in volume. In principle, equation 3.25 provides a way to
estimate the total excess mass causing an anomaly in measured gravity if
we can successfully isolate the field of the anomalous mass from all other
gravitational sources. No assumptions are required about the shape of
the source or how the density is distributed, so long as it is small with
respect to the dimensions of the survey.

This may seem simple enough, but Gauss's law has many limitations
in such applications. Gravity surveys are never available over infinite
planes. The best that we can hope for is that the survey extends well
beyond the localized sources of interest. Unfortunately, isolated sources
never exist in nature, and it is often difficult to separate the gravitational
anomaly caused by the masses of interest from anomalies caused by
all other local and regional sources. We'll have more to say about this
problem of "regional-residual" separation in a later chapter.

3.5 Green's Equivalent Layer
An argument was presented in Section 2.1.3 on the basis of Green's third
identity that any given potential has an infinite variety of consistent
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62 Newtonian Potential

boundary conditions. Here we carry that point a little further and show
that a gravitational potential caused by a three-dimensional density dis-
tribution is identical to the potential caused by a surface density spread
over any of its equipotential surfaces (Ramsey [235]).

Let Se be a closed equipotential surface resulting from a distribution
of mass with density p, and let R represent the region inside Se. The
gravitational potential is observed at point P outside of Se. Green's
second identity (Section 2.1.2) is given by
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where U and V are any functions with partial derivatives of first and
second order. Now let U be the potential of the mass and let V = 1/r,
where r represents the distance away from P. Because P is located
outside the region, the second identity reduces to
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where Us is the constant potential of the equipotential surface. The first
integral on the right-hand side vanishes according to equation 2.2, and
substituting Poisson's equation into the integral on the left-hand side
provides

I^dS. (3.26)
r dn

Se

The left-hand side of equation 3.26 is the potential of the density dis-
tribution observed at P. The right-hand side is the potential at P of a
surface distribution a spread over 5e, where a = — -^-^- Hence, from
the perspective of point P, the potential caused by a three-dimensional
density distribution is indistinguishable from a thin layer of mass spread
over any of its equipotential surfaces. This relationship is called Green's
equivalent layer.

Furthermore, the total mass of the body is equivalent to the total
mass of the equivalent layer. This can be seen by integrating the surface
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density over the entire surface and applying the divergence theorem (Ap-
pendix A), that is,
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Green's equivalent layer is of more than just academic interest. It
shows that a potential can be caused by an infinite variety of sources,
thus demonstrating the nonuniqueness of causative mass distributions.
In later chapters, we will discuss applications of equivalent layers to the
interpretation of gravity and magnetic data. The fact that the equivalent
layer may have no resemblance to the true source will be of no impor-
tance in those applications. These hypothetical sources simply prove to
be handy tools in manipulating the potential field.

3.6 Problem Set

1. Starting with the equation for gravitational attraction outside a uni-
form sphere, derive the "infinite slab formula"

g = 27T7^k, (3.27)

where p and t are the density and thickness of the slab, respectively,
and k is a unit vector directed vertically down. (Hint: Use superpo-
sition of two spheres and let their radii —* oo.)

2. A nonzero density distribution that produces no external field for
a particular source geometry is called an annihilator (Parker [207]).
The annihilator quantitatively describes the nonuniqueness of poten-
tial field data because any amount of the annihilator can be added
to a possible solution without affecting the field of the source. Find
a simple annihilator p for a spherical mass of radius a as viewed
from outside the sphere. (Hint: Let p represent density contrast so
that p can reach negative values.)

3. Let the radius and density of the earth be represented by a and p,
respectively.
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