
Here	  are	  some	  additional	  notes	  on	  Green’s	  Functions	  to	  try	  to	  give	  a	  physical	  picture	  
of	  how	  to	  use	  a	  Green’s	  function	  (the	  response	  of	  a	  linear	  system	  to	  a	  delta	  function	  
or	  impulse)	  to	  get	  the	  response	  of	  a	  system	  to	  a	  more	  complicated	  forcing	  function.	  
	  
The	  first	  3	  pages	  are	  my	  notes	  on	  how	  to	  try	  to	  build	  up	  this	  picture	  physically:	  	  in	  
the	  sketches	  the	  box	  labeled	  “Filter”	  is	  essentially	  the	  solution	  to	  the	  differential	  
equation,	  
	  
e.g.,	  	   for	  the	  D.E.	  	  	   ∇2	  G(r,r1)	  =	  δ(r-‐r1)	  

a δ-‐function	  input	  results	  in	  an	  output	  G(r,	  r1)	  
	  
The	  second	  3	  pages	  are	  from	  Blakely,	  giving	  a	  specific	  linear	  systems	  example	  
(linear	  damping).	  
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2.3 Green's Functions

We now turn to Green's functions, important tools for solving certain
classes of problems in potential theory. A heuristic approach will be used,
first considering a mechanical system and then extending this result to
Laplace's equation.

2.3.1 Analogy with Linear Systems

We begin with the differential equation describing motion of a particle
subject to both a resistance R and an external force

d
m —v(t) = -Rv(t) + f(t), (2.25)

where v(t) is the velocity and m is the mass of the particle, respectively.
One conceptual way to solve equation 2.25 is to abruptly strike the
particle and observe its response; that is, we let the force be zero except
over a short time interval Ar,

(-£-, i f r < £ < r + Ar;
f(t) = \ AT (2.26)

(̂  0, otherwise.

As soon as the force returns to zero, the velocity of the particle behaves
like a decaying exponential, and the solution has the form

v(t) = Aexp (t - (r + Ar)) , t > r + AT . (2.27)

The coefficient A can be found if the velocity of the particle is known
at the moment that the force returns to zero; that is, v{r + Ar) = A.
To find this velocity, we integrate both sides of equation 2.25 over the
duration of the force

T+AT T+AT

m[v(r + Ar) - v(r)] = -R I v(t) dt + — / dt.
T T

The first integral can be ignored if Ar is small and the particle has some
mass. Also v(r) = 0. Hence,

mv(r + Ar) = / ,
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Fig. 2.4. Velocity of a particle of mass m resulting from an impulsive force of
magnitude / .

and A = I/m for small AT. Combining this result with equation 2.27
provides

v(t) =
0, if t < r.

(2.28)

Equation 2.28 represents the response of the particle to a single abrupt
blow (Figure 2.4). Now suppose that the particle suffers a series of blows
Ik at time r^, k = 1, 2 , . . . , N. The response of the particle to each blow
should be independent of all other blows, and the velocity becomes

N
t>rN. (2.29)

If the blows become sufficiently rapid, the particle is subjected to a
continuous force. Then /& —-> f(r)dr and

v(t) = -m t > T0 ,

which can be rewritten as
t

V(t)= J i{>(t,T)f(T)dT, (2.30)
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where
(0, iit<r

Equation 2.30 is the solution to the differential equation 2.25. It pre-
sumes that the response of the particle at each instant of impact is
independent of all other times. Given this property, the response of the
particle to f(t) is simply the sum of all the instantaneous forces, and
the particle is said to be a linear system. Many mechanical and electrical
systems (and, as it turns out, many potential-field problems) have this
property.

The function ip(t,r) is the response of the particle at time t due to an
impulse at time r; it is called the impulse response or Green's function
of the linear system. The Green's function, therefore, satisfies the initial
conditions and is the solution to the differential equation 2.25 subject
to the initial conditions when the forcing function is an impulse.

Equation 2.26 is a heuristic description of an impulse. In the limit as
AT approaches zero, the impulse of equation 2.26 becomes arbitrarily
large in amplitude and short in duration while its integral over time
remains the same. The limiting case is called a Dirac delta function 8(t),
which has the properties

oo

J 6(t)>

f(t)S(t)dt =
— oo

oo

f(t)6(T-t)dt = f(T). (2.31)
-oo

These definitions and properties are meaningless if 8(i) is viewed as
an ordinary function. It should be considered rather as a "generalized
function" characterized by the foregoing properties.

Green's functions are very useful tools; equation 2.30 shows that if
the Green's function i\) is known for a particular linear system, then the
state of the linear system due to any forcing function can be derived for
any time.


