
Magnetics, Part I (see also Blakely, chapter 4)

1 Fundamental Equations

Recall that when introducing gravity, we built up the integral equation for the gravity field,
g by the following approach (1) the force on a point mass due to another point mass, (2)
the acceleration of one point mass due to another point mass, (3) the acceleration of a point
mass due to many other point masses, and (4) the continuum representation of (3) - i.e., the
acceleration of a single point mass due to an arbitrary density distribution. We can take a
similar approach in magnetics – here we consider the mutual attraction of two small loops of
electric current loops, the magnetic analog of two point masses.

In gravity, we were then able to use the integral equation for g, together with identities from
vector calculus to derive the fundamental equations (∇ · g = −4πGρ and ∇ × g = 0). The
fundamental equations in magnetics are given by Maxwell’s equations.

1.1 Background: Magnetic Induction

We’re all familiar with magnetic fields; for example, bar magnets, wire carrying a current, etc.
We can calculate the magnetic field produced by a current:

B =
µ0I

2πr
θ̂ (1)

We can consider the magnetic field due to an element of a wire loop carrying a current:
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dB(P ) =
µ0I

4π

dl× r̂
r2

(2)

This comes from considering two loops of current with currents Ia and Ib respectively. The
force acting on a small element dla of loop a caused by the electric current in element dlb of
the second loop is given by the Lorentz force (f = qv ×B) – see Figure 4.1, p. 66 of Blakeley:

dfa = Iadla × dBb (3)

In discussing gravity fields we then considered the force per unit mass - i.e. the force on a test
particle of unit magnitude. Similarly, we now consider loop a to be a “test loop” and define a
vector B such that

dBb = CmIb
dlb × r̂
r2

(4)

where the constant Cm in SI units is Cm = µ0
4π

. So:

dfa = CmIaIb
dla × dlb × r̂

r2
(5)

and

B =
µ0I

4π

∮
C

dl× r̂
r2

(6)

where B is magnetic flux density in Tesla (= Weber/m2). If the current flows in a volume, we
can define the current density, J (Amp/m2) and

B =
µ0

4π

∫
V ′

J× r̂
r2

dr′ (7)

This is the Biot-Savart Law, one of the fundamental equations in physics. We can now see that
all magnetic fields arise due to currents.
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1.2 Maxwell’s equations and Integral Equation for Vector Potential

Recall two of Maxwell’s equations

∇×H = J +
dD

dt
(8)

∇ ·B = 0 (9)

and the constitutive equation:

B = µH (10)

where H is the magnetic field (Amp/m). In a steady state, displacement current dD
dt

= 0.
Assuming that we’re in free space, our equations become:

∇×B = µ0J (11)

∇ ·B = 0 (12)

Consider ∇ ·B = 0 ∫
V

∇ ·B dV =

∫
S

B · n̂ da = 0 (13)

So,
∫
S

B · n̂ da = 0 for any closed volume. This says that the net flux of B out of any volume is
zero. Equivalently, this says that there are no magnetic“charges”. Contrast this with gravity,
where we had

∇ · g = −4πGρ (14)∫
g · n̂ da = −4πG

∫
ρ dV (15)

Another consequence of ∇ ·B = 0 is:

B = ∇×A (16)

where A is a vector potential.

We can use the Helmholtz Decomposition Theorem to get an expression for A. We had, for an
arbitrary vector field F with

∇ · F = s

∇× F = c
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Then

F = ∇φ+∇×A (17)

with

A (r) =
1

4π

∫
V

c(r′)

|r− r′|
dV ′ (18)

φ(r) = − 1

4π

∫
V

s(r′)

|r− r′|
dV ′ (19)

So, for ∇ ·B = 0 and ∇×B = µ0J, we have c = µ0J. As a result,

A (r) =
µ0

4π

∫
V

J(r′)

|r− r′|
dV ′ (20)

Or, if a wire is carrying the current:

A (r) =
µ0

4π
I

∫
C

dl′

|r− r′|
(21)

This expression is always valid. Given J or I, you can compute A from 20 or 21 and then
B = ∇×A.

2 Vector Potential, Magnetic Induction and Scalar Po-

tential due to Circular Current Loop

2.1 General form for A and B due to circular currrent loop

A (r) =
µ0

4π

∮
C

I dl′

|r− r′|
(22)
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Vector identity:
∮
C
ψ dl =

∫
S
n̂×∇ψ dS

Let ψ = µ0I
4π

1
|r−r′|

A (r) =

∮
C

ψ dl =
µ0I

4π

∫
S

n̂×∇
(

1

|r− r′|

)
dS = −µ0I

4π

∫
S

n̂× r− r′

|r− r′|3
dS (23)

Let S be the plane inside the current loop, then n̂ is constant.

A (r) = −µ0I

4π
n̂×

∫
S

r− r′

|r− r′|3
dS (24)

Assume that the radius of the loop a << |r− r′|. Then:∫
S

r− r′

|r− r′|3
dS ' πa2

r− rc

|r− rc|3
(25)

where rc is the position vector of the center of the loop. Define m = πa2I n̂, the dipole moment.
Then,

A(r) = −µ0

4π
m× r− rc

|r− rc|3
(26)

The magnetic field from a small loop is

B = ∇×A = −µ0

4π
∇×m×∇

(
1

|r− rc|

)
(27)

Use the identity:

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b

Put a = m and b = ∇
(

1
|r−rc|

)
∇×m×∇

(
1

|r− rc|

)
= m

(
∇ · ∇

(
1

|r− rc|

))
−∇

(
1

|r− rc|

)
∇ ·m

+

(
∇
(

1

|r− rc|

)
· ∇
)

m− (m · ∇)∇
(

1

|r− rc|

)
(28)

But m is constant so ∇ ·m = 0 and so is ∇m. Thus,

∇×m×∇
(

1

|r− rc|

)
= m

(
∇ · ∇

(
1

|r− rc|

))
− (m · ∇)∇

(
1

|r− rc|

)
(29)
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But

∇ · ∇
(

1

|r− rc|

)
= ∇2

(
1

|r− rc|

)
= −4πδ(r− rc) (30)

We are assuming that the observer is far from the loop, so this first term is 0. Thus,

∇×m×∇
(

1

|r− rc|

)
= −(m · ∇)∇

(
1

|r− rc|

)
(31)

and

B(r) =
µ0

4π
(m · ∇)∇

(
1

|r− rc|

)
(32)

2.2 Specific form for A and B due to circular currrent loop

Now consider the current loop to be centered at the origin, oriented so that n̂ = ẑ. The dipole
moment is m = πa2Iẑ.

For |r| >> a,

A(r) = −µ0

4π
m× r̂

r2
(33)

To evaluate m× r̂ = |m||r̂|sinθφ̂ = |m|sinθφ̂

So there is only a φ̂ component of the vector potential. Next, we evaluate B = ∇×A:

∇×A = r̂
1

rsinθ

(
∂

∂θ
(sinθAφ)− ∂Aθ

∂φ

)
+ θ̂

1

rsinθ

(
∂Ar
∂φ
− sinθ ∂

∂r
(rAφ)

)
+φ̂

1

r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)
(34)

A =
µ0

4π

msinθ

r2
φ̂ (35)

∇×A = r̂
1

rsinθ

(
∂

∂θ
(
µ0

4π
m
sin2θ

r2
)

)
+ θ̂

1

rsinθ

(
−sinθ ∂

∂r
(
µ0

4π
m
sinθ

r
)

)
(36)

= r̂
1

rsinθ
(
µ0

4π
m

2sinθ

r2
)cosθ + θ̂

(
−1

r

)
µ0

4π
msinθ

(
−1

r2

)
(37)

B(r) =
µ0m

4πr3
(2cosθ r̂ + sinθ θ̂) (38)

The magnetic field looks like that of a bar magnet.
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2.3 Scalar potential for the magnetic field

The vector potential representation of B is completely general and holds everywhere. We also
have

∇×B = µ0J (39)

Where J = 0, there are no current sources, so ∇×B = 0. Since ∇×∇φ = 0 for any scalar φ
we can write

B = −∇φm (40)

The choice of sign is arbitrary, but generally (-) is used. Let’s return to our small loop.

B(r) =
µ0

4π
m · ∇∇

(
1

|r− rc|

)
(41)

We want to write this as B = −∇φ. We’ll use the vector identity

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a) (42)

Let a = m, b = µ0
4π
∇
(

1
|r−rc|

)
. So, B = a · ∇b

(a · ∇)b = ∇(a · b)− (b · ∇)a− a× (∇× b)− b× (∇× a) (43)

= ∇
(
µ0

4π
m · ∇

(
1

|r− rc|

))
− 0−m×

(
µ0

4π
∇×∇

(
1

|r− rc|

))
− 0 (44)

But ∇×∇
(

1
|r−rc|

)
= 0. So,

B = ∇
(
µ0

4π
m · ∇

(
1

|r− rc|

))
(45)

φM(r) = −µ0

4π
m · ∇

(
1

|r− rc|

)
(46)

For a loop centered at the origin, φm(r) = µ0
4π

m · r̂
r2

. (Remember that ∇(1
r
) = − r̂

r2
.)

Note that the magnetic potential due to a current loop has the same form as the electric
potential (φE) due to a dipole charge:
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E = −∇φE (47)

φE(r) = − 1

4πε0

p · r̂
r2

(48)

where p is the electric dipole moment. This correspondance between static electric and magnetic
fields has led many people to work with magnetic charges, though none exist.

2.3.1 Derivation of the scalar potential using magnetic monopoles

We can introduce a magnetic mass or monopole (a mathematical construct only). The magnetic
potential due to this monopole is

φ(P ) = +
µ0q

4π

1

r
(49)

q (units of Weber) is often referred to as the pole strength. Now consider a dipole:

φ(P ) = φ1(P ) + φ2(P ) (50)

φ(P ) = +
µ0q

4π

(
1

rb
− 1

ra

)
(51)

where φ1 and φ2 are the potentials due to q and -q, respectively. See sketch below

Proceed exactly as in electrostatics.

r2a = r2 +
(s

2

)2
+ rscosθ (52)

1

ra
=

1

(r2 + rscosθ +
(
s
2

)2
)
1
2

=
1

r

1

(1 + s
r
cosθ +

(
s
2r

)2
)
1
2

(53)

1

ra
' 1

r

(
1− s

2r
cosθ

)
(54)
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Similarly, 1
rb
' 1

r

(
1 + s

2r
cosθ

)
. Put together,

φ(P ) = +
µ0q

4π

(
1

rb
− 1

ra

)
= +

µ0q

4πr

(
1 +

s

2rcosθ
− 1 +

s

2rcosθ

)
(55)

φ(P ) =
µ0q

4πr2
scosθ (56)

m = qs is the dipole moment, so

φ(P ) =
µ0

4π

mcosθ

r2
=
µ0

4π

m · r̂
r2

= −µ0

4π
m · ∇(

1

r
) (57)

The magnetic field due to a dipole can be found by taking the gradient.

B = −∇φ (58)

B =
µ0

4π

m

r3
(3(m̂ · r̂)r̂ − m̂) (59)

The magnetic field is symmetric about the dipole axis, and the potential can be written as

φ(P ) =
µ0

4π

mcosθ

r2
(60)

B = −∇φ (61)

B = −

(
r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

rsinθ

∂

∂φ

)
φ (62)

B =
µ0m

4πr3
(2cosθ r̂ + sinθ θ̂) (63)

Why did we bother with all of this? In considering gravity fields we realized that we can build
up the gravity field due to an arbitrary density distribution as the sum of the contributions
from small point masses. The same is true in magnetics – we can build up the solution for the
magnetic induction, B, due to an arbitrary distribution of magnetization in terms of the sum
of contributions from elemental dipoles, each carrying a magnetic moment m.
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