
Magnetics, Part II (see also Blakely, Chapter 5)

1 Magnetization

Define the magnetization M as the magnetic moment per unit volume. So, if we have a series
of dipoles in a volume V, the total dipole moment will be =

∑
imi and

M =
1

V

∑
i

mi (1)

Units: M = dipolemoment
volume

= (Amp)(m2)
m3 = Amp

m
.

Consider an elementary volume dv with magnetization M. The elementary dipole moment, m,
is given by m = Mdv. Recall our expression for the magnetic potential:

φm(P ) = −µ0

4π
m · ∇P (

1

r
) (2)

Setting m = Mdv and integrating over the volume, we get

φm(P ) =
µ0

4π

∫
V

M(Q) · ∇Q(
1

r
)dv (3)

where ∇P (1
r
) = −∇Q(1

r
).

1.1 Alternative representations for magnetic materials

1.1.1 Currents
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Elementary current will tend to cancel on the inside. If the cancellation is complete, then there
will only be a surface current (Units: Am−1). If not complete, then there will be a volumetric
current density (Units: Am−2).

IS = M× n̂ (4)

IV = ∇×M (5)

So, the field due to a magnetic body can be represented as the sum of fields due to surface and
volume current. In particular, this is useful for working with the vector potential A:

A(r) =
µ0

4π

∫
V

J(r)

|r− r′|
dv′ =

µ0

4π

∫
S

IS(r′)

|r− r′|
dS +

µ0

4π

∫
V

IV(r′)

|r− r′|
dv (6)

1.1.2 Distribution of magnetic charges

φm(P ) =
µ0

4π

∫
V

M(Q) · ∇Q(
1

r
)dv (7)

Use the identity:

∇ · (φA) = ∇φ ·A + φ∇ ·A (8)

Substitute A = M and φ = 1
r
:

M · ∇(
1

r
) = −1

r
∇ ·M +∇ · (M

r
) (9)

So,

φm(P ) =
µ0

4π

[∫
V

∇ ·
(

M(Q)

r

)
dv −

∫
V

∇ ·M(Q)

r
dv

]
(10)

By the Divergence Theorem,∫
V

∇ ·
(

M(Q)

r

)
dv =

∫
S

(
M(Q)

r

)
· n̂ dS (11)
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So,

φm(P ) =
µ0

4π

∫
S

M(Q) · n̂
r

dS − µ0

4π

∫
V

∇ ·M(Q)

r
dv (12)

The quantities ∇ ·M are M · n̂ are referred to as the volumetric magnetostatic charge and
surface charge density respectively. This formulation is very helpful in computing the magnetic
field arising from uniform bodies, since we only need to compute the effects of the magnetic
charges at the ends of the body.

2 Magnetic susceptibility

The magnetization M is composed of induced and remanent contributions. The induced part
depends upon the strength of an inducing field:

Mi = κH (13)

where κ is the constant of proportionality, known as the susceptibility. This linear relationship
is generally valid for the materials that we deal with in geophysics, but it is not universal. This
also yields some insight into the relationship between B and H. Maxwell’s equations for B in
a general medium (again neglecting displacement currents and electric polarization) are:

∇×B = µ0 (Jtotal) (14)

∇×B = µ0 (J +∇×M) (15)

∇ ·B = 0 (16)

where Jtotal is the total current, and J is the free current. We can rewrite equation (15) as:

∇× (B− µ0M) = µ0J (17)

So:

B− µ0M = µ0H (18)

B = µ0(H + M) (19)

B = µ0(H + κH) (20)

B = µ0(1 + κ)H (21)

B = µH (22)
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So, µ = µ0(1 + κ). Remember that H is the magnetic field intensity and B is the magnetic
flux density. The relationship between M and H is complicated and depends upon what is
happening at the atomic level. There are four main types of induced magnetism:

Type Sign Amplitude
diamagnetic κ < 0 small
paramagnetic κ > 0 small
ferrimagnetic κ > 0 moderate
ferromagnetic κ > 0 large

For most rocks, the susceptibility is controlled by the amount of ferrimagnetic minerals: mag-
netite (Fe3O4), ilmenite (FeT iO3), and pyrrhotite (FeS). κ is also controlled by grain size.

The final magnetization is controlled by induced Mi and remanent Mr contributions.
M = Mi + Mr. These can have different directions depending on when and how the remanent
magnetization was acquired. This can create difficulties in isolating either the remanent (plan-
etary, global scale applications) or the induced (local exploration applications) components.
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