
Global Gravity: J2 and Moments of Inertia

1 Moments of inertia

1.1 Motivation and Measurement

Planetary moments of inertia provide important constraints on the internal density distribu-
tion of the planetary body. Estimates of moments of inertia require measurement of the J2
contribution to the gravity field. Usually this is done by observing the rotational responses
(precession) of a spacecraft or satellite orbiting a planet, or by measuring the shape (and hence
the flattening) of the planet very accurately.

1.2 Spherically symmetrical planet

We consider the moment of inertia of a spherically symmetrical planet, i.e., density is just
a function of radius. Spherical symmetry means that the moment of inertia about any axis
going through the center of the planet will be the same. For simplicity, we choose the rotation
axis to compute the moment of inertia. Note: For a general non-spherically symmetric density
distribution we calculate the three principal moments of inertia of the planet. These are the
moments of inertia about the x, y, and z axes. These are called A,B and C respectively. For a
spherically symmetric planet it is clear that A = B = C. Here we compute C.

Figure 1:
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Recall

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

where φ is longitude and θ is colatitude. An element of volume is given by

dV = dxdydz in a cartesian coordinate system

= r2 sin θdrdθdφ in a spherical coordinate system

Back to the planet: The mass element centered at point, P is a perpendicular distance s from
the z axis. It has a moment of inertia about the z axis given by s2dm. The total moment of
inertia of the planet about the z axis is the integral of all such elements over the entire mass
distribution. So

C =

∫
M

s2 dm (1)

We have

dm = ρ(r) dV

and also

s2 = x2 + y2 = r2 sin2 θ(cos2 φ+ sin2 φ)

= r2 sin2 θ

So now we can write

C =

∫
V

r2 sin2 θ ρ(r) dV (2)

where the integral is over the volume of the planet. This integral can be written as one over r
(from 0 to a), over θ (from 0 to π) and over φ (from 0 to 2π) by substituting in the expression
for dV :

C =

2π∫
0

π∫
0

a∫
0

ρ(r)r4 sin3 θ drdθdφ (3)
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We can do these integrals separately. You will note that nothing in the integrand (ρ(r) r4 sin3 θ)
depends upon φ, the longitude, so we can write

C =

π∫
0

a∫
0

ρ(r)r4 sin3 θ drdθ

2π∫
0

dφ

= 2π

π∫
0

a∫
0

ρ(r)r4 sin3 θ drdθ (4)

This can also be written as

C = 2π

a∫
0

ρ(r)r4 dr

π∫
0

sin3 θ dθ (5)

The last integral is simple to do if we let f = cos θ; we can write df/dθ = − sin θ and f varies
from 1 to −1 as θ varies from 0 to π, i.e., df = − sin θdθ so

π∫
0

sin3 θ dθ = −
−1∫
1

sin2 θ df = −
−1∫
1

(1− cos2 θ) df (6)

= −
−1∫
1

(1− f 2) df (7)

= −
[
f − f 3

3

]−1

1

=
4

3
(8)

Finally, we have

C =
8π

3

a∫
0

ρ(r)r4 dr (9)

Thus the moment of inertia tells us something about the density distribution within the planet.
However, unless we have other a priori information about the planet (such as the mean density,
the planet’s size, ..) there are many different density distributions that can give us the measured
value of C. This is because C is proportional to the integral of the product ρ(r) and r4.
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Suppose that a planet has a uniform density, ρ, then

C =
8π

3
ρ

a∫
0

r4 dr =
8π

15
ρa5 (10)

The quantity that is used is usually not C but C/Ma2 which is a dimensionless number (M is
the mass of the planet), known as the “moment of inertia factor”. Now

M =
4

3
πa3ρ (11)

So for a uniform density planet

C

Ma2
=

8π

15
ρa5

3

4πa3ρ

1

a2
=

2

5
= 0.4 (12)

If the density is greater near the center of the planet we find that C/Ma2 < 0.4. For example
C/Ma2 for the Earth is .3308.

1.3 Principal moments of inertia for general planetary bodies

On a rotationally distorted Earth we have A = B (because of the symmetry about the rotation
axis) but now A 6= C. For a more general planet A 6= B 6= C. Mars is a good example of such
a planet – it is ellipsoidal due to rotation, but the mass distribution is not even symmetrical
about the rotation axis due to the large excess mass associated with the Tharsis rise.

How might we measure C? A straightforward, but tedious, calculation allows J2 to be cast
in terms of the principal moments of inertia of the body (the details are on page 199–200 of
Turcotte and Schubert - note how to calculate ”A”). We find that

J2 =
C − A
Ma2

(13)

This equation allows us to estimate C −A because J2 is measured. For the Earth the gravita-
tional attractions of the Sun and the Moon, acting on the equatorial bulge, cause a precession
of the axis of rotation. From the rate of precession we can find the “dynamical ellipticity”, H,
which is given by

H =
C − A
C

(14)
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H is estimated to be 1/305.51 and by combining equations we have, for the Earth:

C =
J2
H
Ma2 = .3308Ma2
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