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Remember that an “equipotential surface” is a surface on which U is a constant. The vector
~g will be normal to any such surface, thus U defines the local horizontal. For Earth, the
sea surface is an equipotential surface (apart from the effects of wind and currents), and the
equipotential surface which defines sea level is called the geoid.

1 Review

We have defined reference states for the gravity field and the potential based on the approximate
shape and rotation of a planet. We noted that we can set UR(pole) = UR(equator)) to calculate
the actual surface, r0 that corresponds to the potential for a rotating ellipsoid (UR) that we
have seen previously:

UR(r0, λ) = −GM
r0

+
GMa2J2

2r3
0

(3 sin2 λ− 1)− 1

2
Ω2r2

0 cos2 λ (1)

where

r0 = a

[
1 +

(2f − f 2)

(1− f)2
sin2 λ

]−1/2

(2)

(See Turcotte and Schubert, pg. 202-203 for derivation). f is the flattening and as we saw it is
given by f = a−c

a
or alternatively by f = 3J2

2
+ a3Ω2

2GM
. Note that for most planets, r0 is almost a

spherical surface, and so f << 1; for Earth f ≈ 1/300. As f << 1, r0 is often approximated as

r0 ≈ a
(
1− fsin2λ

)
(3)
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This follows from equation (2) if one expands (2) in powers of f and keeps only the linear terms.

2 The Geoid

Equation (2) is the expression for the reference ellipsoid surface, sometimes referred to as the
reference spheroid or (confusingly!) even the reference geoid. Observed departures of the actual
geoid from the reference geoid are called “geoid anomalies.” The anomaly in the potential of
the gravity field, measured on the reference geoid, ∆U can be directly related to the geoid
anomaly, ∆N (i.e. the physical difference in height of the actual geoid and the reference geoid).
∆N is also called the geoid height and is measured in meters. The potential anomaly is defined
by

∆U = Umo − Uo (4)

where Umo is the measured potential at the location of the reference geoid, and Uo is the
reference value of the potential (defined for an ellipsoid by equation (1) above). The potential
Uo is measured on the actual, or measured, geoid, as shown in the Figure below. It can be seen
that Uo, Umo and ∆N are related by

U0 = U(r0 + ∆N) ≈ Umo +
∂UR
∂rr0

∆N (5)

where we have used a Taylor Series expansion since ∆N << r0.

The radial derivative of the potential is the acceleration due to gravity so we can define a
reference gravity field, gR, (the acceleration due to gravity on the reference geoid) such that

gR =

(
∂UR
∂r

)
r=ro

(6)

Hence

∆U = Umo − Uo = −gR∆N, (7)

and the geoid anomaly ∆N is

∆N = −∆U

gR
(8)
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Figure 1:

Note that a local mass excess produces an outwarp of gravity equipotentials and therefore a
positive ∆N , and a negative ∆U . (Remember that Uo is negative from equation 1, so a negative
∆U means that Umo is larger in magnitude but negative in sign as expected for a positive mass
anomaly.)

3 Free Air Correction

If we make a gravity measurement at various elevations, we are at different distances from the
center of mass of the Earth and so g changes. We can correct for this effect. Suppose we make
a gravity measurement at a particular position on the surface of the Earth. To calculate the
gravity anomaly we would first subtract out the reference gravity field, gR, (which has a latitude
dependence) evaluated on the reference geoid which is at r0 (equation (2)). We can calculate
the effect of elevation in the following way. To zeroth order we have

g =
GM

r2
(9)

so the effect of changing distance from the center of a spherical earth is:

dg

dr
= −2

GM

r3
= −2

g

r
(10)
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For small changes in r (c.f., the radius of the planet) the anomaly caused by elevation is
approximated by:

∆gh = −2h

r0

gR (11)

where we have used dg
dr
≈ ∆gh

h
, and g = gR at r = ro. Gravity is reduced by an amount |∆gh|, for

positive elevation (ı.e., above sea level). If we add ∆gh to our measurement we have corrected
for the effect of elevation. The correction, ∆gh, is called the free-air correction and a gravity
anomaly defined by

∆gfa = gobs − gR + ∆gh (12)

is called a free-air gravity anomaly.

Free air corrections on Earth are typically very small, e.g., Mount Everest has a height of 8848
m, and so the free air correction at the top of Mt. Everest is ≈ 0.2% of gravity on the reference
ellipsoid. However, even though they are small, it is important to take account of them since
we are interested in deviations from the reference gravity field.

4 The effect of topography on gravity – Bouguer anomaly

Mass anomalies associated with topography give rise to surface gravity anomalies. The effect
of general topography must be treated numerically (sometimes called a terrain correction) by
performing the integral equation we saw earlier in the course:

~g = G

∫
ρ(r′)(~r − ~r′)
|~r − ~r′|3

dv′ (13)

If the topography is slowly varying (i.e., it has a shallow slope) we can derive an approximate
expression for the gravitational effect due to topography.

Consider a cylindrical disc of material of radius R and thickness h. An observer is located a
distance b above the upper surface of the disc. The density in the disc is assumed to be a
function of depth, so ρ = ρ(z)

Because of the symmetry of the disc we know that the net gravitational attraction will be
vertically downwards (gz). We consider the contribution δgz to gz due to a cylindrical ring of
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Figure 2:

radius r and thickness dr inside the disc at a depth z. The volume of the ring is 2πrdrdz so
the mass of the ring is 2πrdrdzρ(z). The observer is a distance b+ z from the center of the ring
and so is a distance of (r2 + (z + b)2)1/2 from a segment of the ring. To get the mathematical
expression for δgz we divide the ring into segments.

The volume of a segment, δV , is rdφdrdz. The volume of the whole ring is therefore
∫ 2π

0
rdrdzdφ =

2πrdrdz. The gravitational attraction of the segment at the observer a distance (r2+(z+b)2)1/2

away is

G

r2 + (z + b)2
ρ(z)δV =

G

r2 + (z + b)2
r dφdrdzρ(z)

This points directly towards the segment from the observer. The contribution to the vertical
component of g (i.e., δgz) is found by multiplying by cos θ, where

cos θ =
z + b

[r2 + (z + b)2]1/2

The total contribution of the ring, δgz, is found by summing up all the contributions of the
segments in the ring which is equivalent to integration over φ from 0 to 2π. Putting all these
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bits together gives

δgz =

2π∫
0

G

r2 + (z + b)2
rdrdzρ(z) cos θdφ

=
2πGrρ(z)drdz

r2 + (z + b)2

z + b

[r2 + (z + b)2]1/2

(Note that the angle θ is the same for all segments of the ring so θ doesn’t depend upon φ.)

To get the total gravitational attraction of the disc we sum up the contributions of all the rings
– this is accomplished by integrating the expression for δgz over r (from r = 0 to R) and over
z (from z = 0 to h):

gz = 2πG

h∫
0

R∫
0

ρ(z) r (z + b)

[r2 + (z + b)2]3/2
drdz

= 2πG

h∫
0

ρ(z)(z + b)


R∫

0

r

[r2 + (z + b)2]3/2
dr

 dz

Integrating with respect to r gives

gz = 2πG

h∫
0

ρ(z)

[
1− z + b

[R2 + (z + b)2]1/2

]
dz

In the limit that the disc is very broad (i.e., R→∞) we have a slab of topography of thickness
h. This is a good approximation if the topography has a gentle (low) gradient. In this case,

gz ' 2πG

h∫
0

ρ(z) dz (14)
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If topography has a height h and a (constant) density ρc its contribution to g is

∆g = 2πGρch (15)

This is called the Bouguer correction. It corrects gravity measurements for the effect of mass
excess or deficit due to topography.

We can now make a further correction to our free air anomaly (∆gfa) for the effect of topography
using the Bouguer correction.

∆gB = ∆gfa − 2πGρch (16)

∆gB is called a Bouguer gravity anomaly.
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