
Spherical Harmonic Descriptions of Global Fields

1 Motivation

Here we will look at functions defined on a sphere. In Cartesian coordinates we saw that the
solution

V (x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
A(~k) e−2π|k|(z−z0) e2πi

~k·~x d2~k (1)

is not only the solution to Laplace’s equation (physics and math) due to internal sources, but
is a general way in which other spatially varying quantities can be represented (i.e., ones that
don’t necessarily satisfy Laplace’s equation; math, but not physics). This because for any
constant z, the solution is just a Fourier transform, so it is like representing the variable in
terms of a sum (integral in the limit) of linearly independent functions – the eimφ (in linear
algebra these are referred to as basis functions).

The spherical geometry equivalent of equation (1) / Fourier transforms / Fourier series that
we used for cartesian problems are spherical harmonic expansions. Before looking at a more
general solution, let’s first consider a field V, that varies only as a function of latitude, λ, (or
equivalently colatitude, θ = 90◦ − λ). On a given spherical surface we can write

V (θ) =
∞∑
l=0

AlPl(cosθ) (2)

Note the similar form of this equation to a Fourier series, except that the sines and cosines
have been replaced by the functions Pl. These are known as Legendre polynomials, and they
are functions of cos θ. We’ll see what they look like later.

2 More general spherical harmonic description

We’ll now show that equation (2) is in fact a solution to Laplace’s equation in spherical coor-
dinates. In fact, it’s a solution in a special case: one in which there is no variation of the field
with longitude. We’ll look at the most general form of the solution.

∇2Ψ = 0 (3)
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In spherical polar coordinates

∇2Ψ =
1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂φ2
(4)

(r, θ, φ) are radius, colatitude and longitude. As in the cartesian case we use the technique of
separation of variables to come up with 3 ODE’s in r, θ, φ respectively:

Ψ(r, θ, φ) = R(r) Θ(θ) Φ(φ) (5)

r2
d2R

dr2
+ 2r

dR

dr
+ uR = 0 (6)

d2Φ

dφ2
+ v2Φ = 0 (7)

sin2 θ
d2Θ

dθ2
+ sin θ cos θ

dΘ

dθ
−
(
u sin2 θ + v2

)
Θ = 0 (8)

where u and v are separation constants. The first two equations are not too bad to solve,
the third involves several tricks and some algebra. We’ll bypass all of this and just quote the
solutions:

2.1 First: the radial solution

Rl(r) = alr
l + blr

−(l+1) (9)

The radial part of the solution (analogous to the z component in cartesian geometry) has
solutions that require that the separation constant in equation (6), u = −l(l+ 1), where l is an
integer. There are solutions that grow as rl as r increases, and ones that decrease as r−(l+1).
Recall that this is similar to our exponentially growing or decaying solutions in z (e±2π|k|z). l is
analogous to the wavenumber (|k|): it is known as the spherical harmonic degree. We will see
that unlike wavenumber it is dimensionless.

Note: (1) often n is used instead of l.
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2.2 Second: the longitudinal solution

Φ(φ) = c1e
imφ + c2e

−imφ (10)

where m>0. If we let −∞ < m <∞ we can write this more compactly:

Φ(φ) = c3e
imφ (11)

Our separation constant, v, from equation (7), has to equal an integer m. The solutions in
longitude, φ, are sines and cosines. m is a bit like the cartesian wavenumber in the x or y
direction – kx or ky – except it is dimensionless. It is usually referred to as the spherical
harmonic order.

2.3 Third: the latitudinal (colatitude) solution

Θl,m(θ) = c4P
m
l (cos θ) (12)

Pm
l (cos θ) are known as “Associated Legendre Functions” of (spherical harmonic) degree, l and

order, m. WHAT are these? See Section 4

3 Solution to Laplace’s Eqn in Spherical Coordinates

The general solution to Laplace’s equation in spherical coordinates is

Ψ =
∞∑
l=0

l∑
m=0

[
r−(l+1) (Cm

l cos(mφ) + Sml sin(mφ)) + rl (Gm
l cos(mφ) +Hm

l sin(mφ))
]
Pm
l (cos θ)(13)

where we have written the solution in longitude as sines and cosines explicitly. You’ll see it
written either as e±imφ or as sines and cosines.

While this equation looks pretty nasty, if you compare it with the eqn that we came up with
for a cartesian geometry, you’ll notice that terms like sin(mφ)Pm

l (cos θ) are basically “shape

functions” in latitude and longitude, just like the term ei(ux+vy) (or e2πi
~k·~x) is a shape function

in x and y.
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Just like in the cartesian case, the solution is much simpler if sources are above, or below a
spherical shell of radius, Ra (usually the radius of the planet). Internal sources can only have
solutions with radial terms that go as r−(l+1), since terms in rl → ∞ as r → ∞. i.e., the
coefficients al = 0 in equation (9).

So the more general solution to Laplace’s equation for the gravitational potential on or above
the surface of a planet, radius Ra, is (Ψ = Ψ(r, θ, φ)) :

Ψ = Ra

∞∑
l=0

l∑
m=0

(
Ra

r

)l+1

[Clmcos(mφ) + Slmsin(mφ)]Pm
l (cosθ) (14)

The use of the factor “Ra” outside the summation is convenient and a typical convention in
gravity and magnetic spherical harmonic expansions. It sets up the dimensions of the problem
such that when we write the spherical harmonic expansions for gravity and magnetics (the
gradient of the potential), the spherical coefficients have units of gravity (e.g., mgal) or magnetic
field (e.g., µT ) respectively. Ra is often written just as a.

4 Associated Legendre Functions, Legendre Polynomials

We can get some insight into Pm
l by considering solutions to Laplace’s equation that are sym-

metric about a rotation axis: e.g., no variation in longitude. When this is the case, all the m
terms except m = 0 in equation (14) vanish and so Pm

l = 0,m 6= 0. We write

Ψ = Ra

∞∑
l=0

(
Ra

r

)l+1

AlPl(cos θ) (15)

where Pl = P 0
l and Al = C0

l . This is just like equation (2) but with the r dependence included.

Pl are the Legendre polynomials. They are polynomials in cos(θ). The first few Legendre
polynomials are given by:

P0(cos θ) = 1 (16)

P1(cos θ) = cos θ (17)

P2(cos θ) =
1

2
(3 cos2 θ − 1) (18)
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P3(cos θ) =
cos θ

2
(5 cos2 θ − 3) (19)

These functions are progressively wigglier (as l, the spherical harmonic degree, increases) func-
tions of the colatitude θ. We can choose the coefficients, Al, so that the sum can approximate
very accurately any observed dependence of V on θ. Even-l terms are symmetric about the
equator, odd-l terms are antisymmetric about the equator.

WHERE do the Pl come from? What are they physically?

Think of the gravitational potential at a point P , that has position ~r due to a point mass at ~r1.

V =
−GM
|~r − ~r1|

(20)

But the distance between the mass, m and the observer at point P is

|~r − ~r1| =
(
r2 + r21 − 2rr1 cos γ

)1/2
(21)

where γ is the angle between the vectors ~r and ~r1. Using the cosine rule (a2 = b2+c2−2bc cos γ):

1

|~r − ~r1|
=

1

r

(
1− 2

r1
r

cos γ +
(r1
r

)2)−1/2
(22)

The last part of this is a series expansion in r, r1 and cos γ, and in fact

(
1− 2xµ+ x2

)−1/2
=
∞∑
l=0

xlPl(µ) (23)

In our case µ = cos γ and x = r1/r. So the Legendre polynomials result from the series
expansion of 1

|~r−~r1| , and are a natural way to express the gravitational potential due to a point
mass. Usually of course they are not the simplest way to calculate V ; however you can now
see how this formulation is useful for the more general case of representing the gravitational
potential due to an arbitrarily complicated density distribution.
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5 Back to the more general solution to Laplace’s equa-

tion for internal sources

Ψ = Ra

∞∑
l=0

l∑
m=0

(
Ra

r

)l+1

[Clmcos(mφ) + Slmsin(mφ)]Pm
l (cosθ) (24)

So we have a solution that depends on longitude as well as on colatitude.

• The Pm
l are calculated using a “recurrence relation”. You don’t need to know how to do

this in this class, and you probably will never need to write this piece of code as there
are plenty out there. The main thing to check should you need to use this is what the
maximum spherical harmonic degree and order the code will work up to. There are often
numerical problems for l, m beyond about 200. (This is not an issue for us!).

• The terms Pm
l e
±imφ are known as the surface harmonics. This is just like the cartesian

case where the ei
~k·~x are surface harmonics.

• The terms Pm
l e
±imφr−(l+1) or Pm

l e
±imφrl are known as solid harmonics.

• The Pm
l are orthogonal – there are several different ways of normalizing them and unfor-

tunately different ones are used in gravity and magnetics.

• Because the Pm
l are orthogonal then we can calculate the spherical harmonic coefficients,

with a procedure similar to the one we would use in cartesian geometry to calcuate Fourier
coefficients: Measure the function at some radius, rmeas, multiply this by Pm

l cos(mφ),
and integrate over the surface of the sphere to get Cm

l . Similarly for Sml . Later in the
class we will talk more about estimation procedures for determining spherical harmonic
coefficients.

• Once you have the spherical harmonic coefficents, the expression for your
function is just a series. You can evaluate your function at any (r, θ, φ). This is
the beauty of a spherical harmonic representation. All you need are a set of coefficients and
a (generic) spherical harmonic expansion code and you can evaluate any field anywhere.
Forexample, you can make global map, or say predict the gravity of magnetic field along
the track of a future satellite, and compare it with data when they are measured.
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• In practice we sum over a finite number of spherical harmonic degrees, so 0 ≤ l ≤ lmax.
lmax is usually determined by the shortest wavelengths that we can, or expect to, resolve
in our data. A good approximation is that a process with a wavelength of λ on a sphere
of radius R (e.g., a gravity field described on the surface of a planet) has an equivalent
spherical harmonic degree given by

l =
2πR

λ
(25)

Notice that l is dimensionless. (The actual relationship that this comes from is called
“Jean’s rule” and strictly speaking is (l+ 1

2
) = 2πR

λ
, but for unless you are looking at very

small l the approximation above in equation (25) is fine.)

Example: the Magellan spacecraft orbiting Venus had a typical altitude of 300 km in its
circular orbit. We might expect to resolve features in the gravity field at the surface on
the order of the spacecraft altitude, perhaps a little less – say 200km. So

lmax =
2πRV enus

λmin
=

2π(6051.9)

200
= 180 (26)

Thus spherical harmonic models for the gravity field of Venus out to degree and order
180 are reasonable representations of the global gravity field.

• The term r−(l+1) is the upward /downward continuation term, the analog of e−2π|k|z from
our cartesian solution. As in the cartesian solution, terms with higher spherical harmonic
degree (i.e., shorter wavelength as seen from equation (25) are attenuated more quickly
with increasing radius (increasing height), and amplified more quickly in downward con-
tinuation.
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