Forward Modeling of Magnetic Fields

From last time we had:
(1)

$$
\Phi_{m}(p)=\frac{\mu_{0}}{4 \pi} \int_{R} \tilde{M}_{0} \nabla_{Q}\left(\frac{1}{r}\right) d v<\begin{aligned}
& \text { scarcer pot der } \\
& \text { to magneticin }
\end{aligned}
$$

and \bar{B} can be obtained from $\bar{B}=-\nabla Q_{m}$.
\Rightarrow Thus for a generalized Meegnetizn distribution we can compute Φ_{m} and \bar{B}

Special Case: Forward Modeling for regions or constant ρ and M If \bar{M} is constant, then (1) can be written as

$$
\begin{align*}
& Q_{m}(p)=-\frac{\mu_{0}}{4 \pi} \bar{M}_{0} \bar{\nabla}_{p} \int_{R} \frac{1}{r} d v \tag{2}\\
& \text { suite } \bar{V}_{Q}\left(\frac{1}{r}\right)=-\bar{V}_{p}\left(\frac{1}{r}\right) \text { spice }
\end{align*}
$$

$$
\begin{aligned}
& \nabla_{V}\left(\frac{1}{r}\right)=\frac{\bar{r}_{Q P}}{r^{3}}=\frac{\bar{r}_{p}-\bar{r}_{Q}}{r^{3}} \\
& \stackrel{\nabla}{V}_{Q}\left(\frac{1}{r}\right)=\frac{\bar{r}_{P Q}}{r^{3}}=\frac{\bar{r}_{Q}-\bar{r}_{P}}{r^{3}}
\end{aligned}
$$

We showed previously that the gravitational potential for a volume l body of constant density is gwen by

$$
Q_{g}(p)=G \int_{R} \frac{\rho}{r} d V=G \rho \int_{R} \frac{1}{r} d V
$$

$$
\begin{equation*}
\Rightarrow \text { So } \int_{R} \frac{1}{r} d v=\frac{Q_{g}}{G \rho} \tag{3}
\end{equation*}
$$

Substituting (3) into (2) gives

$$
Q_{m}=\frac{-\mu_{0}}{4 \pi} \bar{M}_{\cdot} \vec{\nabla}_{p}\left(\frac{Q_{g}}{\rho G}\right)=-\frac{\mu_{0} M}{4 \pi \rho G}\left(\hat{m} \cdot \vec{\nabla}_{p} \Phi_{g}\right)
$$

where $\vec{M}=M \widehat{M}$
${ }^{2}$ unit vector in \bar{M} direction
But since $\bar{\nabla} \varphi_{9}=\stackrel{\rightharpoonup}{9}$

$$
\begin{equation*}
\Rightarrow Q_{m}=\frac{-\mu_{0} M}{4 \pi \rho^{G}} \hat{m} \cdot \vec{g} \tag{4}
\end{equation*}
$$

This known as Poisson's relation.
\Rightarrow Thus if $\Delta \varphi$ is constant, Q_{m} can be calculated from the gravity field.
typically it is the densites anomales in a region that is or interest.

ALSO: this allows us to conepute psendo-grooity maps from magnetic maps. This can be useful in interpreting Magnetite dceta for geologic structure.

Example te 1 :
Magnetic field or a Uniformly Magnetized Sphere

- Sphere, radius a
- constceut densities ρ, and
$\forall \bar{M}$
- constant magnates' ${ }^{n}, \bar{M}$

$$
\begin{aligned}
\bar{g} & =\frac{-G(\text { mass sphere })}{r^{2}} \hat{r} \\
& =-\frac{4}{3} \pi a^{3} \rho G \frac{\hat{r}}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{M}=\frac{-\mu_{0} M}{4 \pi \rho G} \hat{m_{0}} \hat{g} \\
&=\frac{-\mu_{0} M}{4 \pi \rho G}\left(\frac{-4}{3} \pi a^{3} \rho \gamma\right) \hat{m} \cdot \hat{r} \\
& \text { should be } G \\
&=\frac{\mu_{0}}{4 \pi}\left(\frac{4}{3} \pi a^{3} M\right) \hat{M} \cdot \frac{\hat{r}}{r^{2}}
\end{aligned}
$$

and substitute $\vec{m}=\frac{4}{3} \pi a^{3} \vec{M}$
magnetic dipole
$\downarrow_{\text {magnates }}$
centered@center
or sphere
so $\quad Q_{m}=\frac{\mu_{0}}{4 \pi} \frac{\vec{m} \cdot \hat{r}}{r^{2}}$
so a uniformly magnetized sphere has the same magnetic field outside the body as a point dipole@ the center of the sphere.

Analogs with gravity (is due to uniform density sphere \equiv to rat due ko paint mass@ center)

Pemcerk: Dote that measuring the field due to a uniformly. magnetized sphere allows us to determine only the
i) centre or the sphere (dipole location)
ii) strength of the dipole, $\frac{4}{3} \pi a^{3} M$
we con't uniquely deternuñ a, or M without more information.
The same non-uniquess problem aries wi gravity deere.
Example \#2: Magnetic Field due to a cuniforinly magnetized lager
surfecice \qquad

M

$$
\stackrel{g}{g}=2 \pi G \rho t \hat{z}
$$

$$
\begin{array}{r}
\downarrow \downarrow \downarrow \rho I t . \\
Q_{m}=\frac{-\mu_{0}}{4 \pi \rho G} M \cdot \stackrel{\rightharpoonup}{g} \tag{6}\\
\Rightarrow Q_{m}=-\frac{\mu_{0}}{2} t M
\end{array}
$$

$$
\text { Suppose } \bar{M}=M \hat{z} \text { (vertical). }
$$

$$
Q_{m}=\frac{-\mu_{0}}{4 \pi \rho G} M_{M} \cdot \vec{g}=\frac{-\mu_{B}}{4 \pi \rho G} 2 \pi G \rho t \hat{z}_{0}(M \hat{z})
$$

\leftarrow magnetic potential is constant.

Thus $\sqrt{B}=-\nabla Q_{m}=0$
Hence the magnetic field or a uniformly magnetized slab is zero. Hence we cannot detect such a structure from magnetic field measurements.

As we will see later, the same conclusion holds for a uniformly magnetized spenerical.

$\longrightarrow \stackrel{B}{B}_{\text {outside-me.shele }}=0$.
This is known as Runcom's theorem.
Runcorn used this, together with ecenly observations of the Moon's magnetic field (that indicated $\vec{B} \approx 0$) to argue that the following too hypotheses could not be distinguished:

1) The Moon does not currently have a global (core demamo) field, and has never had one
2) The Moon does not currently have a global Rid but had one carly in its history that resulted in a uniformly magnetized crustal shell.

The important point is that non-zero magnetic field measurements at or above a planet's surface indicate magnetization contrasts laterdly.

