Publications

Found 1473 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Greene AR, Garcia MO, Wise S, Kuga M, Ito G, Robinson JE. 2009. Submarine Tholeiitic Volcanism (ca. 3.6 to 4.9 Ma) West of Kaena Ridge, Hawaiian Islands: Implications of Low Magma Productivity in the Evolution of the Hawaiian Plume. AGU Fall Meeting Abstracts. 1:07.
Mantelli E., Camporeale C., Ridolfi L.. 2015. Supraglacial channel inception: Modeling and processes. WATER RESOURCES RESEARCH. 51:7044-7063.
Fegyveresi JM, Alley RB, Muto A, Orsi A\"ısJ, Spencer MK. 2018. Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. The Cryosphere. 12:325.
Fegyveresi JM, Alley RB, Muto A, Orsi AJ, Spencer MK. 2018. Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. The Cryosphere. 12:325.
Landais A, Casado M, Prie F, Magand O, Arnaud L, Ekaykin A, Petit J-R, Picard G, Fily M, Minster B et al.. 2017. Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data. Comptes Rendus Geoscience. 349:139–150.
Landais A, Casado M, Prie F, Magand O, Arnaud L, Ekaykin A, Petit J-R, Picard G, Fily M, Orsi AJ et al.. 2017. Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data. Comptes Rendus Geoscience. 349:139–150.
Yang J-W, Han Y, Orsi A\"ısJ, Kim S-J, Han H, Ryu Y, Jang Y, Moon J, Choi T, Hur SDo et al.. 2018. Surface temperature in twentieth century at the Styx Glacier, northern Victoria Land, Antarctica, from borehole thermometry. Geophysical Research Letters. 45:9834–9842.
Yang J-W, Han Y, Orsi AJ, Kim S-J, Han H, Ryu Y, Jang Y, Moon J, Choi T, Hur SDo et al.. 2018. Surface temperature in twentieth century at the Styx Glacier, northern Victoria Land, Antarctica, from borehole thermometry. Geophysical Research Letters. 45:9834–9842.
Kennedy BM, Wadsworth FB, Vasseur J, C. Schipper I, Jellinek A.M, von Aulock FW, Hess K-U, J. Russell K, Lavallee Y, Nichols ARL et al.. 2016. Surface tension driven processes densify and retain permeability in magma and lava. EARTH AND PLANETARY SCIENCE LETTERS. 433:116-124.
Blaine FA, Hart C.J.R, Jenkins S. 2016. Surficial Geochemical Exploration Data for British Columbia Porphyry Copper Deposits. Geoscience BC Report 2016-15.
Hart, JR C, Jenkins S. 2017. Surficial Geochemical Map Packages for British Columbia Porphyry Systems. Summary of Activities 2016, Report 2017-1. :159–164.
Jackson J.M, Allen S.E, Carmack E.C, McLaughlin F.A. 2010. Suspended particles in the Canada Basin from optical and bottle data, 2003-2008. OCEAN SCIENCE. 6:799-813.
HERTOGEN J, Wise S, MICHOT J. Submitted. the Sveconorwegian belt in Vest Agder (SW Norway).
Fang Z, Modzelewski H, van Leeuwen T, Lai T, Juneja H, Peters B, Herrmann FJ. 2013. Swift FWI.
T
Wise S, Liégeois J-P, Black R. 1987. Tadhak alkaline ring-complex (Mali): existence of U Pb isochrons and “Dupal” signature 270 Ma ago. Earth and planetary science letters. 82:316–322.
Lenardic A., Jellinek A.M. 2009. Tails of two plume types in one mantle. GEOLOGY. 37:127-130.
Haris A, Platt R. 2021. A Targeted Approach to Confounder Selection for High-Dimensional Data.
J Viruete E, Contreras F, Joubert M, Urien P, Stein G, Wise S, Pérez-Estaún A. 2007. Tectónica y geoqu{ímica de la Formación Amina: registro del arco isla Caribeño primitivo en la Cordillera Central, República Dominicana. Bolet{ín geológico y minero. 118:221–242.
Cutts JA, Zagorevski A, McNicoll VJ, Carr SD. 2012. Tectono-stratigraphic setting of the Moreton’s Harbour Group and its implications for the evolution of the Laurentian margin: Notre Dame Bay, Newfoundland. Canadian Journal of Earth Sciences. 49:111-127.
Simon JI, DePaolo DJ, Wise S, Renne PR, Mundil R. 2008. The temporal evolution of Hf and Nd isotopes of rhyolites from the Long Valley Caldera System. AGU Fall Meeting Abstracts. 1:2168.
Frey FA, Wise S. 1995. Temporal evolution of the Kerguelen plume: Geochemical evidence from 38 to 82 Ma lavas forming the Ninetyeast Ridge. Contributions to Mineralogy and Petrology. 121:12–28.
Frey FA, Wise S. 1996. Temporal evolution of the Kerguelen plume: geochemical evidence from 38 to 82 Ma lavas forming the Ninetyeast Ridge. Oceanographic Literature Review. 10:1013.
Frey FA, Wise S. 1996. Temporal evolution of the Kerguelen plume: Geochemical evidence from approximate to 38 to 82 Ma lavas forming the Ninetyeast ridge-Reply. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY. 124:104–110.
Frey FA, Weis D. 1995. Temporal evolution of the Kerguelen plume: Geochemical evidence from 38 to 82 Ma lavas forming the Ninetyeast Ridge. Contributions to Mineralogy and Petrology.
Frey FA, Wise S, Yang H-J, Nicolaysen K, Leyrit H, Giret A. 2000. Temporal geochemical trends in Kerguelen Archipelago basalts: evidence for decreasing magma supply from the Kerguelen plume. Chemical Geology. 164:61–80.

Pages