Chapter 14

Thunderstorms

Thunderstorms are among the most violent and difficult-to-predict weather elements. Yet, thunderstorms can be studied. They can be probed with radar and aircraft, and simulated in a laboratory or by computer. They form in the air, and must obey the laws of fluid mechanics and thermodynamics.

Thunderstorms are also beautiful and majestic. In thunderstorms, aesthetics and science merge, making them fascinating to study and chase.

Thunderstorm characteristics, formation, and forecasting are covered in this chapter. The next chapter covers thunderstorm hazards including hail, gust fronts, lightning, and tornadoes.

Thunderstorm Characteristics

Thunderstorms are convective clouds with large vertical extent, often with tops near the tropopause and bases near the top of the boundary layer. Their official name is cumulonimbus (see the Clouds Chapter), for which the abbreviation is Cb. On weather maps the symbol \mathcal{F} represents thunderstorms, with a dot \bullet, asterisk \ast, or triangle Δ drawn just above the top of the symbol to indicate rain, snow, or hail, respectively. For severe thunderstorms, the symbol is \mathcal{F}.

Figure 14.1
Thunderstorm.
Chapter 14: Thunderstorms

Appearance

A mature thunderstorm cloud looks like a mushroom or anvil with a relatively large-diameter flat top. The simplest thunderstorm (see Figs. 14.1 & 14.2) has a nearly vertical stem of diameter roughly equal to its depth (of order 10 to 15 km). The large top is called the anvil, anvil cloud, or thunderhead, and has the official name incus (Latin for anvil). The anvil extends furthest in a direction as blown by the upper-tropospheric winds.

If the thunderstorm top is just starting to spread out into an anvil and does not yet have a fibrous or streaky appearance, then you identify the cloud as cumulonimbus calvus (see the Clouds Chapter). For a storm with a larger anvil that looks strongly glaciated (i.e., has a fibrous appearance associated with ice-crystal clouds), then you would call the cloud a cumulonimbus capillatus.

Within the stem of a mature thunderstorm is the cloudy main updraft tower topped by an updraft bubble (Fig. 14.2b). When this rising air hits the tropopause, it spreads to make the anvil. Also in the stem is a downdraft with precipitation. When the downdraft air hits the ground it spreads out, the leading edge of which is called the gust front. When viewed from the ground under the storm, the main updraft often has a darker cloud base, while the rainy region often looks not as dark and does not have a well-defined cloud base.

Not all cumulonimbus clouds have lightning and thunder. Such storms are technically not thunderstorms. However, in this book we will use the word thunderstorm to mean any cumulonimbus cloud, regardless of whether it has lightning.

More complex thunderstorms can have one or more updraft and downdraft regions. The most severe, long-lasting, less-frequent thunderstorms are supercell thunderstorms (Figs. 14.3 & 14.4).

Clouds Associated with Thunderstorms

Sometimes you can see other clouds attached to thunderstorms, such as a funnel, wall, mammatus, arc, shelf, flanking line, scud, pileus, dome, and beaver tail (Fig. 14.4). Not all thunderstorms have all these associated clouds.

Arc clouds (official name arcus, Fig. 14.2b) or shelf clouds form near the ground in boundary-layer air that is forced upward by undercutting cold air flowing out from the thunderstorm. These cloud bands mark the leading edge of gust-front outflow from the rear-flank downdraft (Fig. 14.4), usually associated with the flanking line. Often the undersides of arc clouds are dark and turbulent-looking, while their tops are smooth. Not all gust fronts have arc clouds, particularly if the displaced air is dry. See the Thunderstorm Hazards chapter.
The **beaver tail** (Fig. 14.4) is a smooth, flat, narrow, low-altitude cloud that extends along the boundary between the inflow of warm moist air to the thunderstorm and the cold air from the rain-induced **forward flank downdraft (FFD)**.

A **dome of overshooting** clouds sometimes forms above the anvil top, above the region of strongest updraft. This is caused by the inertia of the upward moving air in the main updraft, which overshoots above its neutrally buoyant **equilibrium level (EL)**. Storms that have **overshooting tops** are often more violent and turbulent.

The **flanking line** is a band of cumuliform clouds that increase from the medium-size **cumulus mediocris (Cu med)** furthest from the storm to the taller **cumulus congestus (Cu con)** close to the **main updraft**. Cumulus congestus are also informally called **towering cumulus (TCu)**. The flanking line forms along and above the gust front, which marks the leading edge of colder outflow air from the **rear-flank downdraft (RFD)**.

If humid layers of environmental air exist above rapidly rising cumulus towers, then **pileus** clouds can form as the environmental air is pushed up and out of the way of the rising cumulus clouds. Pileus are often very short lived because the rising cloud tower that caused it often keeps rising through the pileus and obliterates it.

The most violent thunderstorms are called **supercell** storms (Figs. 14.3 & 14.4), and usually have a quasi-steady rotating updraft (called a **mesocyclone**). The main thunderstorm updraft in supercells sometimes has curved, helical **cloud striations** (grooves or ridges) on its outside similar to threads of a screw (Fig. 14.4a). Supercells can produce intense **tornadoes** (violently rotating columns of air), which can appear out of the bottom of an isolated cylindrical lowering of the cloud base called a **wall cloud**. The portion of the tornado made visible by cloud droplets is called the **funnel cloud**, which is the name given to tornadoes not touching the ground. Tornadoes are covered in the next chapter. Most thunderstorms are not supercell storms, and most supercell storms do not have tornadoes.

Attached to the base of the wall cloud is sometimes a short, horizontal cloud called a **tail cloud**, which points towards the **forward flank precipitation area**. Ragged cloud fragments called **scud (cumulus fractus)** often form near the tip of the tail cloud and are drawn quickly into the tail and the wall cloud by strong winds.

The wall cloud and tornado are usually near the boundary between cold downdraft air and the low-level warm moist inflow air, under a somewhat **rain-free cloud base**. In mesocyclone storms, you can see the wall cloud rotate by eye, while rotation...
of the larger-diameter supercell is slower and is apparent only in time-lapse movies. Non-rotating wall clouds also occur with non-rotating thunderstorms (i.e., non-supercell storms).

The **rain** portion of a thunderstorm is often downwind of the main updraft, in the forward portion of the storm. Cloud edges and boundaries are often not distinguishable in the rain region. Although thunderstorms are rare in cold weather, when they occur they can cause very heavy snowfall instead of rain. Further downwind of the heavy rain area is a region of **virga**, where the precipitation (rain or snow) evaporates before reaching the ground.

Mammatus clouds look like sacks or protuberances hanging from the bottom of layered clouds, and are sometimes found on the underside of thunderstorm anvils (Fig. 14.5). No correlation exists between the presence of mammatus clouds and the intensity of thunderstorms (i.e., hail, tornadoes, etc.). Not all thunderstorms have mammatus clouds.

One of many theories for mammatus clouds is that the thunderstorm updraft pumps air into the anvil with slightly cooler virtual temperature than environmental air. This anvil air is statically unstable, so the cold air begins sinking as upside-down thermals. Because these sinking air parcels are laden with cloud droplets or ice crystals, the air warms at only the moist adiabatic rate. Thus, evaporation of some of the water helps keep the mammatus clouds cooler than their environment, and the liquid water loading of the remaining droplets contributes to cooler virtual temperatures, so they keep sinking.

In an environment with weak wind shear, the **anvil cloud** in weak thunderstorms can be symmetrical, looking like a mushroom cap (Fig. 14.1). However, for larger, longer lasting thunderstorms in the presence of strong winds aloft, the ice crystals brought up by the main updraft will spread out asymmetrically (Fig. 14.2) in an anvil that can be 100 km wide (crosswind) and 300 km long (downwind).

If you want to chase and photograph isolated storms in N. America, the best place to be is well to the side of the storm’s path. As most storms move northeast in N. America, this corresponds to your being southeast of the thunderstorm. This location is relatively safe with good views of the storm and the tornado (see “On Doing Science • Be Safe”).

For non-chasers overtaken by a storm, the sequence of events they see is: cirrus anvil clouds, mammatus clouds (if any), gust front (& arc cloud, if any), rain, hail (if any), tornado (if any), and rapid clearing with sometimes a rainbow during daytime.

Cells & Evolution

The fundamental structural unit of a thunderstorm is a **thunderstorm cell**, which is of order 10
km in diameter and 10 km thickness (i.e., its aspect ratio = depth/width = 1). Its evolution has three stages: (1) towering-cumulus; (2) mature; and (3) dissipation, as sketched in Fig. 14.6. This life cycle of an individual cell lasts about 30 to 60 min.

The towering cumulus stage consists of only updraft in a rapidly growing cumulus congestus tower. It has no anvil, no downdrafts, and no precipitation. It is drawing warm humid boundary-layer air into the base of the storm, to serve as fuel. As this air rises the water vapor condenses and releases latent heat, which adds buoyancy to power the storm.

In the mature stage (Fig. 14.7), the thunderstorm has an anvil, both updrafts and downdrafts, and heavy precipitation of large-size drops. This often is the most violent time during the storm, with possible lightning, strong turbulence and winds. The precipitation brings cooler air downward as a downburst, which hits the ground and spreads out. In the absence of wind shear, two factors conspire to limit the lifetime of the storm (Fig. 14.6): (1) the storm runs out of fuel as it consumes nearby boundary-layer air; and (2) the colder outflow air chokes off access to adjacent warm boundary-layer air.

In the dissipating stage, the storm consists of downdrafts, precipitation, and a large glaciated (containing ice crystals) anvil. The storm rains itself out, and the precipitation rate diminishes. The violent aspects of the storm are also diminishing. With no updraft, it is not bringing in more fuel for the storm, and thus the storm dies.

The last frame in Fig. 14.6 shows the anvil-debris stage, which is not one of the official stages listed in severe-weather references. In this stage all that remains of the former thunderstorm is the anvil and associated virga, which contains many ice crystals that fall and evaporate slowly. No precipitation reaches the ground. The anvil remnant is not very turbulent, and drifts downwind as a thick cirrostratus or altostratus cloud as it gradually disappears.

Meanwhile, the cold outflow air spreading on the ground from the former storm might encounter fresh boundary-layer air, which it lifts along its leading edge (gust front) to possibly trigger a new thunderstorm (labeled “Cu con 2” in the last frame of Fig. 14.6). This process is called storm propagation, where the first storm (the “mother”) triggers a daughter storm. This daughter storm can go through the full thunderstorm life cycle if conditions are right, and trigger a granddaughter storm, and so forth.

Some thunderstorms contain many cells that are in different stages of their evolution. Other storms have special characteristics that allow the cell to be maintained for much longer than an hour. The types of thunderstorms are described next.

Figure 14.6

Phases of thunderstorm cell evolution. Light grey shading represents clouds, medium grey is pre-storm boundary layer (ABL) of warm humid air that serves as fuel for the storm. Dark shading is colder outflow air. Diagonal white lines represent precipitation. Arrows show air motion. Cu con = cumulus congestus.

ON DOING SCIENCE • Be Safe

In any scientific or engineering work, determine the possible hazards to you and others before you undertake any action. If you are unable to increase the safety, then consider alternative actions that are safer. If no action is relatively safe, then cancel that project.

For example, chasing thunderstorms can be very hazardous. Weather conditions (heavy rainfall, poor visibility, strong winds, hail, lightning, and tornadoes) can be hazardous. Also, you could have poor road conditions and a limited ability to maneuver to get out of harm’s way in many places.

Your safety and the safety of other drivers and pedestrians must always be your first concern when storm chasing. Some storm-chase guidelines are provided in a series of “On Doing Science” boxes later in this chapter and continuing into the next chapter.

(continues in later pages)
Types of thunderstorm organization include:

- basic storms
 - single cell (airmass)
 - multicell
 - orographic
- mesoscale convective systems (MCS)
 - squall line
 - bow echo
 - mesoscale convective complex (MCC)
 - mesoscale convective vortex (MCV)
- supercells
 - classic (CL)
 - low precipitation (LP)
 - high precipitation (HP)

Basic Storms

Single-cell Thunderstorms. An airmass thunderstorm (Figs. 14.1, 14.2 & 14.7) is often a single-cell thunderstorm with evolution very similar to Fig. 14.6. It can form in the middle of a warm humid airmass, usually in late afternoon. Satellite images of airmass thunderstorms show that several often exist at the same time, all with somewhat symmetric anvils, and scattered within the airmass analogous to mushrooms in a meadow. These storms can be triggered by thermals of rising warm air (heated at the Earth’s surface) that happen to be buoyant enough to break through the capping inversion at the boundary-layer top.

The lifetime of airmass thunderstorms are about the same as that of an individual cell (30 to 60 minutes), but they can spawn daughter storms as sketched in Fig. 14.6. Each can produce a short-duration (15 minutes) rain shower of moderate to heavy intensity that covers an area of roughly 5 - 10 km radius. Airmass thunderstorms that produce short-duration severe weather (heavy precipitation, strong winds, lightning, etc.) during the mature stage are called pulse storms.

Multicell Thunderstorms. Most thunderstorms in North America are multicell storms (Fig. 14.8). Within a single cloud mass that by eye looks like a thunderstorm, a weather radar can see many (2 to 5) separate cells (Fig. 14.9) by their precipitation cores and their winds. In a multicell storm, the different cells are often in different stages of their life cycle. Given weak to moderate wind shear in the environment, the downburst and gust front from one of the mature cells (cell 2 in Fig. 14.8) can trigger new adjacent cells (namely, cells 3 and 4).

In central North America where warm humid boundary-layer winds often blow from the southeast in the pre-storm environment, new cells often
form on the south flank of the storm (closest to the fuel supply), while the northeastward-moving mature cells decay as their fuel supply is diminished (Fig. 14.10). The resulting multicell thunderstorm appears to move to the right of the steering-level winds (normal or average winds in the bottom 6 km of the troposphere), even though individual cells within the storm move in the direction of the normal steering-level winds (Fig. 14.10).

Orographic Thunderstorms. Single or multicell storms triggered by mountains or hills are called **orographic thunderstorms.** With the proper environmental wind shear (Fig. 14.11), low-altitude upslope winds can continuously supply humid boundary-layer air. If the upper-level winds are from the opposite direction (e.g., from the west in Fig. 14.11), then these storms can remain stationary over a mountain watershed for many hours, funneling heavy rains into canyons, and causing devastating **flash floods.** One example is the Big Thompson Canyon flood in the Colorado Rockies, which killed 139 people in 1976 (see the discussion in the Thunderstorm Hazards chapter).

Sometimes if winds are right, thunderstorms are triggered over the mountains, but then are blown away to other locations. For example, orographic thunderstorms triggered over Colorado and Wyoming in late afternoon can move eastward during the evening, to hit the USA Midwest (e.g., Wisconsin) between midnight and sunrise.
Mesoscale Convective Systems

Another type of multicell-storm organization is a mesoscale convective system (MCS). This often has a narrow line of thunderstorms with heavy precipitation, followed by additional scattered thunderstorm cells (Figs. 14.12 & 14.13). The anvils from all these thunderstorms often merge into a single, large stratiform cloud shield that trails behind. This trailing stratiform region has widespread light to moderate precipitation that contributes about 1/3 of the total MCS rainfall.

These systems can be triggered by the terrain (many form just east of the Rocky Mountains), by synoptic systems (such as cold fronts), or by the gust fronts from a smaller number of thunderstorms. To survive, they need large convective instability and large wind shear over a deep layer of the environment. MCSs are responsible for 30 to 70% of precipitation over central N. America during the warm season. Some MCSs reach their peak intensity about midnight.

Ice crystals falling from the trailing stratiform clouds melt or partially sublime, and the resulting rain then continues to partially evaporate on the way down. This produces a broad region of chilled air (due to latent heats of melting, sublimation, and evaporation) that descends to the ground and accumulates as a cold-air pool at the surface. The extra weight of the cold air produces a mesoscale high pressure (meso-high) at the surface in this region (Fig. 14.14).

Meanwhile, warm humid boundary-layer air ahead of the MCS is drawn into the storm by the combined effects of buoyancy and wind shear. This air rises within the imbedded thunderstorm cells, and releases latent heat as the water vapor condenses. The resulting heating produces a layer of relatively warm air at mid and upper levels in the MCS (Fig. 14.14). The top of the anvil is cooled by IR radiation to space.
The resulting sandwich of relatively warmer and cooler layers causes a mesoscale low-pressure region (a meso-low) at mid altitudes (Fig. 14.14) and high pressure aloft (see solved example). The horizontal pressure-gradient force at mid altitudes causes air to converge horizontally. The thunderstorm updraft partially blocks mid-altitude inflow from the front of the storm, so the majority of inflow is from the rear. This is called a rear inflow jet (RIJ).

As the RIJ approaches the core of the MCS, it derechos

Large damaging straight-line winds are called
derechos (see a later Focus Box).

Solved Example

Plot MCS thermodynamics:
(a) Assume a standard atmosphere in the environment outside the MCS, and calculate $P_{std.atm.}$ vs. z.
(b) Inside the MCS, assume the temperature T_{MCS} differs from the $T_{std.atm.}$ by:
-12 K for $9 < z \leq 11$ km due to rad. cooling at anvil top;
+8 K for $4 \leq z \leq 9$ km due to latent heating in cloud;
-12 K for $0 \leq z \leq 2$ km in the cold pool of air;
0 K elsewhere. Use $P_{sfc} = 101.8$ kPa in the MCS.
Plot $\Delta T = T_{MCS} - T_{std.atm.}$ vs. z.
(c) Calculate P_{MCS} vs. z in the MCS.
(d) Plot pressure difference $\Delta P = P_{MCS} - P_{std.atm.}$ vs. z.

Solution:
Given: T and P data listed above within MCS, and std. atm. in the environment outside the MCS.
Find & plot: ΔT (K) vs. z (km); and ΔP (kPa) vs. z (km)

Method:
(a) In a spreadsheet, use standard-atmosphere eq. (1.16) to find $T_{std.atm.}$ vs. z, assuming $H = z$.
(Continues in next column.)
Squall Line. One type of MCS is a **squall line**, where a linear triggering mechanism such as a cold front, dry line or gust front causes many neighboring thunderstorms to merge into a long narrow line (Figs. 8.26 & 14.15). Squall lines can be many hundreds (even a thousand) kilometers long, but are usually only 15 to 400 km wide. They can persist for several hours to several days if continuously triggered by the advancing front. Heavy thunderstorm precipitation falls immediately behind the cold front at the surface, and sometimes has weaker stratiform precipitation behind it. Squall line storms can also have prodigious lightning, hail, damaging winds and tornadoes (although the tornadoes tend to be weaker than supercell-thunderstorm tornadoes).

Fig. 14.16 illustrates flow characteristics in a vertical cross section perpendicular to the squall-line axis. Environmental wind shear along the advancing cold front allows the thunderstorms to persist in the mature stage for the lifetime of the squall line. Cold, dry air descends from the west in the cold air mass from behind the squall line. This cold descent is enhanced by cool downburst air in the precipitation region. Both effects help advance the leading edge of the cold front at the ground. Warm, humid boundary-layer air blowing from the east ahead of the front is lifted by the undercutting denser cold advancing air, thereby continuously feeding the main updraft that moves with the advancing front.

A well defined arc or shelf cloud often exists along the leading edge of the cold front, associated with violent straight-line winds. If the gust front from the downburst advances eastward faster than the cold front, then a second line of thunderstorms may be triggered along the gust front in advance of the cold front or the squall line might separate from the front.

Bow Echo. For MCSs with strong buoyancy in the updraft air and moderate to strong wind shear in the bottom 2 to 3 km of the environment, the cold pool becomes deeper and colder, and rear-inflow-jet (RIJ) wind speeds can become stronger. The RIJ pushes forward the center portion of the squall line, causing it to horizontally bend into a shape called a **bow echo** (Fig. 14.17). Bow-echo lines are 20 to 200 km long (i.e., smaller than most other MCSs) and are often more severe than normal MCSs.

Vorticity caused by wind shear along the advancing cold pool causes counter-rotating vortices at each end of the bow-echo line. These are called **line-end vortices** or **bookend vortices** (Fig. 14.17), which rotate like an eggbeater to accelerate the RIJ and focus it into a narrower stream. For bow echoes lasting longer than about 3 h, Coriolis force enhances the northern cyclonic vortex in the
Northern Hemisphere and diminishes the southern anticyclonic vortex, causing the bow echo to become asymmetric later in its evolution.

Strong straight-line winds near the ground from a bow echo can damage buildings and trees similar to an EF2 tornado (see the “Tornado” section later in this chapter for a description of tornado damage scales). If a sequence of bow echoes causes wind damage along a 400 km path or greater and lasts about 3 hours or more, with wind speeds ≥ 26 m/s with gusts ≥ 33 m/s, then the damaging wind event is called a *derecho* (see Focus Box 3 pages later).

Mesoscale Convective Complex (MCC). If the size of the MCS cloud shield of merged anvils is large (diameter ≥ 350 km), has an overall elliptical or circular shape, and lasts 6 to 12 h, then it is called a *mesoscale convective complex* (MCC). An additional requirement to be classified as an MCC is that the top of the cloud shield, as seen in IR satellite images, must have a cold brightness-temperature ≤ –33°C. Within this cold cloud shield must be a smaller region (diameter ≥ 250 km) of higher, colder cloud top with brightness temperature ≤ –53°C.

MCCs can produce heavy rain over large areas, with the most intense rain usually happening first. MCCs are most often observed at night over a statically stable boundary layer, which means that the fuel for these storms often comes from the warm humid air stored in the residual boundary layer from the day before. They can be triggered by: weak warm frontal zones, weak mid-tropospheric short waves, and are often associated with low-level jets of wind.

Solved Example

Estimate the speed of the rear inflow jet (RIJ) wind that is drawn into the MCS mid-tropospheric low-pressure region, for the previous solved example. The MCS has horizontal radius of 175 km, and is located in Oklahoma (latitude 35°N).

Solution

Given: \[\Delta P = -0.5 \text{ kPa} \] at height \(z = 2 \text{ km} \), from previous solved example.

\(R = 175 \text{ km} \) = radius of meso-low in mid-troposphere, latitude \(\phi = 35°N \)

Find: \(M_{RIJ} = ? \text{ m/s} \)

Assume the RIJ is geostrophic \((M_{RIJ} = U_g) \). To use eq. (10.26a) for the geostrophic wind, we need: \(\Delta P/\Delta y \), \(\rho \) and \(f_c \).

Consider the region just south of the low center.

\[\Delta P/\Delta y = (-0.5 \text{ kPa})/(175 \text{ km}) = -0.00286 \text{ kPa/km} \]

Assuming std. atmosphere. Use Table 1-5 at 2 km \(\rho = 1.0 \text{ kg·m}^{-3} \).

Use eq. 10.16 to find the Coriolis parameter:

\[f_c = (1.458 \times 10^{-4} \text{ s}^{-1}) \sin(35°) = 0.836 \times 10^{-4} \text{ s}^{-1} \]

Combine these data in eq. (10.26a):

\[U_g = -[(1.0 \text{ kg·m}^{-3})(0.836 \times 10^{-4} \text{ s}^{-1})]^2(-0.00286 \text{ Pa/m}) \]

\[= 34.2 \text{ m/s} \]

Thus,

\[M_{RIJ} = U_g = 34.2 \text{ m/s} \]

Check: Units OK. Magnitude reasonable. Sign OK.

Discussion: This implies a RIJ from the west, in the region just south of the mid-tropospheric meso-low center. If this RIJ descends down to the surface due to the influence of precipitation cooling, it could cause damaging straight-line wind gusts that exceed the threshold to be classified as a derecho.

One caution: the geostrophic wind assumes steady state. In a rapidly intensifying MCS, steady-state might not be the best assumption. If the wind were accelerating, then it could have an ageostrophic component pointing towards the low center.
Mesoscale Convective Vortex (MCV). Between midnight and sunrise, as the static stability of the boundary layer increases, the thunderstorms within MCSs often weaken and die. Thunderstorms are more difficult to trigger then, because cold nocturnal boundary-layer air resists rising. Also, above the nocturnal layer is a thin residual layer that has only a small capacity to hold the fuel supply of warm humid air from the previous day’s mixed layer. As the MCS rains itself out, all that is left by the next morning are mid-level stratiform clouds.

However, the mid-tropospheric mesoscale low-pressure region (Fig. 14.14) in the MCS has existed for about half a day by this time, and has developed cyclonic rotation around it due to Coriolis force. This mesoscale rotation is often visible (by satellite) in the mid-level (former MCS) stratiform clouds, and is called a mesoscale convective vortex (MCV). The stable boundary layer beneath the MCV reduces surface drag, allowing the rotation to persist for many more hours around the weak low.

Although these weakly rotating systems are not violent and often don’t have a circulation at the surface, they can be tracked by satellite during the morning and early afternoon as they drift eastward. They are significant because they can enhance new thunderstorm formation via weak convergence and upward motion. Thus, by evening the dying MCV can change into a new MCS.

Supercell Thunderstorms

A violent thunderstorm having a rotating updraft and persisting for hours is called a supercell storm (Figs. 14.3 & 14.4). Its downdraft and surface features (Fig 14.18, a duplicate of Fig. 14.4b) are organized in a way to trigger new thunderstorms nearby along a flanking line, and then to entrain these incipient updrafts (cumulus congestus clouds) into the main supercell updraft to give it renewed strength. The main, persistent, rotating updraft, or mesocyclone, is 3 to 10 km in diameter, and can extend throughout the whole depth of the thunderstorm.

Supercell storms are responsible for the most violent tornadoes (EF3 - EF5, as defined in the next chapter) and hail, and can have damaging straight-line winds and intense rain showers causing flash floods. To support supercells, the pre-storm environment must have a deep layer of convectively unstable air, and strong wind shear in the bottom 6 km of the troposphere.

Although supercells can have a wide range of characteristics, they are classified into three categories: low-precipitation (LP) storms, medium precipitation or classic (CL) supercells, and high-precipitation (HP) storms. Storms that fall between these categories are called hybrid storms.
Classic Supercells. Figures 14.3 and 14.4 show characteristics of a classic supercell. One way to understand how supercells work is to follow air parcels and hydrometeors (precipitation particles) as they flow through the storm.

Warm humid boundary-layer air flowing in from the southeast (Fig. 14.19) rises in the main supercell updraft, and tiny cloud droplets form once the air is above its LCL. So much water vapor condenses that large amounts of latent heat are released, causing large buoyancy and strong updrafts (often ≥ 50 m/s). Cloud droplets are carried upward so quickly in the updraft that there is not yet time for larger precipitation particles to form. Hence, the updraft, while visible by eye as a solid cloud, appears only as a weak echo region (WER) on radar PPI scans because there are no large hydrometeors. This region is also known as an echo-free vault (Fig. 14.19).

As the air reaches the top of the troposphere, it encounters stronger winds, which blows these air parcels and their cloud particles downwind (to the northeast in Fig. 14.19). Since the whole storm generally moves with the mean wind averaged over the bottom 6 km of troposphere (to the northeast in Fig. 14.19), this means that the air parcels in the top part of the storm are flowing to the storm's forward flank. This differs from MCSs, where the updraft air tilts back toward the storm's trailing (rear) flank.

While rising, the air-parcel temperature drops to below freezing, and eventually below –40°C near the top of the thunderstorm (similar to Fig. 14.7), at which point all hydrometeors are frozen. Various microphysical processes (cold-cloud Bergeron process, collision, aggregation, etc.) cause larger-size hydrometeors to form and precipitate out. The larger, heavier hydrometeors (hail, graupel) fall out soonest, adjacent to the updraft (to the north in Fig. 14.19). Medium size hydrometeors are blown by the upper-level winds farther downwind (northeast), and fall out next. Lighter hydrometeors fall more slowly, and are blown farther downwind and fall in a larger area.

In summer, all of these ice particles (except for some of the hail) melts while falling, and reaches the ground as rain. The greatest precipitation rate is close to the updraft, with precipitation rates diminishing farther away. The very smallest ice particles have such a slow fall velocity that they have a long residence time in the top of the troposphere, and are blown downwind to become the anvil cloud.

Meanwhile, the falling precipitation drags air with it and causes it to cool by evaporation (as will be explained in more detail in the next chapter). This causes a downdraft of air called the forward flank downdraft (FFD, see Fig. 14.18). When this cold air hits the ground, it spreads out. The leading edge of

Solved Example

If a Doppler radar were located near the words “10 km” in the bottom right corner of Fig. 14.18, then sketch the resulting color patterns on the Doppler PPI wind display for near-surface winds.

Solution:

Given: Near-surface winds from Fig. 14.18 are copied below, with radar located southeast of the storm center.

Find: Sketch the Doppler wind display.

Assume sufficient number-density of insects to allow Doppler radar returns even in rain-free areas.

Hatched grey corresponds to red colors, for winds away from the radar. Plain grey corresponds to blues and greens, for winds toward the radar. White is the zero isodop line. Darker shading near the "T" is to suggest a tornado vortex signature.

Check: Compares well with info in Chapter 8.

Discussion: Fig. 14.19 already shows the radar reflectivity display. By interpreting the reflectivity and Doppler info together, you can create in your mind a coherent picture of the storm.

The gust fronts show up clearly in the Doppler display. The tornado-vortex signature in the Doppler display and the hook echo in the reflectivity display both suggest the presence of a tornado.

Finally, real thunderstorms are imbedded in an environment that is not usually calm, so there would also be red and blue colors outside of the regions sketched here.
Chapter 14: Thunderstorms

The spreading cold air is called the (forward-flank) gust front, and is often indicated with cold-frontal symbols. This gust front helps to deflect the boundary-layer air upward into the main updraft, and can create a beaver-tail cloud, as described earlier.

Due to rotation of the whole updraft (the origin of rotation will be discussed later), the precipitation region is often swept counterclockwise around the updraft for N. Hemisphere supercells. This creates a characteristic curve of the precipitation region that is seen on weather radar as a hook echo around the echo-free vault (Fig. 14.19).

In the S. Hemisphere (and for a small portion of N. Hemisphere supercells — see Fig. 14.63), the updrafts rotate clockwise. These supercells can still produce hook echoes, but with the hook projecting in a direction different than that sketched in Fig. 14.19.

The supercell storm is so tightly organized that it acts as an obstacle to fast winds in the upper troposphere. When these ambient winds from the west or southwest hit the supercell, some are deflected downward, creating the rear-flank downdraft (RFD). As the dry upper-tropospheric air moves down adjacent to the cloudy updraft, it entrains some cloud droplets, which quickly evaporate and cool the air. This negative buoyancy enhances the RFD such that when the air hits the ground it spreads out, the leading edge of which is a (rear-flank) gust front.

When warm, humid boundary-layer air flowing into the storm hits the rear-flank gust front, it is forced upward and triggers a line of cumulus-cloud growth called the flanking line of clouds. The inflow and circulation around the supercell draws these new cumulus congestus clouds into the main updraft, as previously described. At the cusp of the two gust fronts, there is low surface pressure under the updraft. This meso-low (see Table 10-6) and the associated gust fronts look like mesoscale versions of synoptic-scale cyclones, and are the surface manifestation of the mesocyclone.

Strong tornadoes are most likely to form in one of two locations in a supercell. One is under the largest cumulus congestus clouds just as they are being entrained into the main updraft, due to the rotation between the RFD and the updraft. These form under the rain-free cloud-base portion of the supercell, and are often easy to view and chase. The other location is under the main updraft at the cusp where the two gust fronts meet, due to rotation from the parent mesocyclone. Tornadoes are discussed in more detail in the next chapter.

Focus • Derecho

A derecho is a hazardous event of very strong straight-line (non-tornadic) horizontal winds (≥ 26 m/s) often causing widespread (≥ 400 km length) damage at the surface. It is associated with clusters of downbursts of air from a single moving mesoscale convective system (MCS), which causes localized destruction that sweeps through the event area during several hours to over a day. Within the event area, the wind intensity and damage can be variable.

The word “derecho” is based on a Spanish word for “straight-ahead” or “direct”. Derechos occur in the prairies east of the Rocky Mountains (see Fig. below), and were first reported over a century ago. Although derechos can occur during any month, they are most frequent in April through August, with peak frequencies during May and July. Peak wind speeds over 65 m/s have been rarely observed.

In the USA, an average of 21 derechos occur each year, killing 9 and injuring 145 people annually. Most of the deaths are people in cars and boats, while most of the injuries are people in mobile homes and cars. Derechos can blow down trees, destroy mobile homes, and damage other structures and cars.

Figure 14.a

Derecho climatology.

Low Precipitation Supercells (Fig. 14.20). In drier regions of North America just east of the Rocky Mountains, LCLs are much higher above ground. However, mountains or dry lines can cause sufficient lift to trigger high-base supercell storms. Also, if strong environmental wind shear causes a strongly tilted updraft, then incipient precipitation particles are blown downwind away from the rich supply of smaller supercooled cloud droplets in the updraft, and thus can’t grow large by collection/accrretion. Most of the hydrometeors that form in these storms evaporate before reaching the ground; hence the name **low-precipitation (LP)** supercells.

With fewer surrounding low clouds to block the view, LP storms often look spectacular. You can often see the updraft, and can see evidence of its rotation due to cloud striations, curved inflow bands and possibly a rotating wall cloud. If present, the beaver tail is easily visible. Although rainfall is only light to moderate, LP storms can produce great amounts of large-diameter hail. Those LP supercells having exceptionally strong updrafts produce anvils that look like a mushroom cloud from a nuclear bomb explosion.

High Precipitation Supercells (Fig. 14.21). In very warm humid locations such as southeastern North America, some supercell storms can produce widespread heavy precipitation. These are known as **high-precipitation (HP)** supercells. Precipitation falls from most of the cloud-base areas, often filling both the FFD and the RFD. So much rain falls upstream in the rear-flank region of the storm that the main mesocyclone is sometimes found downstream (forward) of the main precipitation region.

Some storms have curved inflow bands and cloud striations on the updraft that you can see from a distance. Also, the smooth-looking beaver-tail clouds are most common for HP storms, near the forward-flank gust front. Much more of the surrounding sky is filled with low and mid-level clouds, which together with low visibilities makes it difficult to get good views of this storm.

As this type of storm matures, the heavy-rain region of the hook echo can completely wrap around the updraft vault region. Storm chasers call this region the **bear’s cage**, because of the high danger associated with tornadoes and lightning, while being surrounded by walls of torrential rain and hail with poor visibility and hazardous driving/chasing conditions.

Now that we are finished covering the descriptive appearance and types of thunderstorms, the next five sections examine the meteorological conditions needed to form a thunderstorm.
Chapter 14 Thunderstorms

Thunderstorm Formation

Convective Conditions
Four environmental (pre-storm) conditions are needed to form the strong moist convection that is a severe thunderstorm:
1) high humidity in the boundary layer,
2) nonlocal conditional instability,
3) strong wind shear,
4) a trigger mechanism to cause lifting of atmospheric boundary-layer air.

Fig. 14.22 illustrates these conditions. Meteorologists look for these conditions in the pre-storm environment to help forecast thunderstorms. We will examine each of these conditions in separate sections. But first, we define key convective altitudes that we will use in the subsequent sections to better understand thunderstorm behavior.

Key Altitudes
The existence and strength of thunderstorms depends partially on layering and stability in the pre-storm environment. Thus, you must first obtain an atmospheric sounding from a rawinsonde balloon launch, numerical-model forecast, aircraft, dropsonde, satellite, or other source. Morning or early afternoon are good sounding times, well before the thunderstorm forms (i.e., pre-storm). The environmental sounding data usually includes temperature (T), dew-point temperature (T_d), and wind...
speed (M) and direction (α) at various heights (z) or pressures (P).

Plot the environmental sounding on a thermo diagram such as the Emagram of Fig. 14.23, being sure to connect the data points with straight lines. Fig. 14.24 shows a typical pre-storm (early afternoon) sounding, where T is plotted as black-filled circles connected with a thick black solid line, and T_d is plotted as white-filled circles connected with a thick black dashed line. The mixed layer (ML; i.e., the daytime turbulently well-mixed boundary layer), capping inversion, and tropopause are identified in Fig. 14.24 using the methods in Chapter 5.

During the day, the sun heats the ground. The hot ground heats the air and evaporates soil moisture into the air. Air near the surface becomes statically unstable, allowing air parcels from the surface-layer (bottom of the ML) to rise. If we assume each rising air parcel does not mix with the environment, then its temperature decreases dry adiabatically with height initially, and its mixing ratio is constant.

Fig. 14.25 shows how this process looks on a thermo diagram. The parcel temperature starts near the ground from the solid black circle and initially follows a dry adiabat (thin black solid line with arrow). The dew point starts near the ground from the open circle and follows the isohume (thin black dotted line with arrow).

Typically, the rising parcel hits the statically stable layer at the top of the mixed layer, and stops rising without making a thunderstorm. This temperature-inversion height z_i represents the average mixed-layer (ML) top, and is found on a thermo diagram where the dry adiabat of the rising parcel first crosses the environmental sounding (Fig. 14.25). In pressure coordinates, use symbol P_i to represent the ML top.

If the air parcel were to rise a short distance above z_i, it would find itself cooler than the surrounding environment, and its negative buoyancy would cause it sink back down into the mixed layer. On many such days, no thunderstorms ever form, because of this strong lid on top of the mixed layer.

But suppose some external trigger mechanism (described later) forces the air to rise past the boundary-layer top z_i in spite of the negative buoyancy. The rising air parcel continues cooling until it becomes saturated. On a thermo diagram, this saturation point is the lifting condensation level (LCL), where the dry adiabat first crosses the isohume for the rising parcel.

As the trigger mechanism continues to push the reluctant air parcel above the lifting condensation level (LCL), clouds form and latent heat is added to the air. The temperature of the rising cloudy air parcel now follows a moist adiabat (black dashed line)

Figure 14.25
Afternoon pre-storm environmental air from near the surface (indicated with the circles), is hypothetically lifted as an air parcel to the top of the thermo diagram. Identified are the average mixed-layer height (z_i), the lifting condensation level (LCL), the level of free convection (LFC), and the equilibrium level (EL).

FOCUS • Cap vs. Capping Inversion

The strongly stable layer at the top of the daytime boundary layer (i.e., at the top of the mixed layer) is called the “capping inversion,” as sketched in the figure below (a modification of Fig. 14.25).

The region near the top of the mixed layer where the rising air parcel is colder than the environment is called the “cap.” It is this region between z_i and the LFC that opposes or inhibits the rise of the air parcel, and which must be overcome by the external forcing mechanism. See the section later in this chapter on “Triggering vs. Convective Inhibition” for more details.

Figure 14.b
Emagram with idealized pre-storm environmental sounding (thick solid line). Circles and lines with arrows show the rise of an air parcel from near the surface.
CHAPTEr 14 THUNDERSTORMS

Even so, this cloudy parcel is still colder than the ambient environment at its own height, and still resists rising due to its negative buoyancy.

If the ambient sounding is conducive to thunderstorm development, as is sketched in Fig. 14.25, and if the trigger mechanism pushes the air parcel sufficiently high, then the cloudy air parcel will reach an altitude where it is again warmer than the environment. This altitude is called the level of free convection (LFC). On a thermo diagram, it is where the moist adiabat of the rising air parcel crosses back to the warm side of the environmental sounding.

Above the LFC, the air parcel can rise and accelerate under its own buoyancy, while still following the moist adiabat. This positive buoyancy gives the thunderstorm its energy, and if large enough can cause violent updrafts.

Eventually, the rising parcel reaches an altitude where it becomes colder than the environment (Fig. 14.25), and no longer feels an upward buoyancy force. This altitude is called the equilibrium level (EL) or the limit of convection (LOC). Often, the EL is near (or just above) the tropopause (Fig. 14.24), because the strong static stability of the stratosphere impedes further air-parcel rise.

Thus, thunderstorm cloud-base is at the LCL, and thunderstorm anvil top is at the EL (Fig. 14.26). In very strong thunderstorms, the rising air parcels are so fast that the inertia of the air in this updraft causes an overshooting dome above the EL before sinking back to the EL. The most severe thunderstorms have tops that can penetrate up to 5 km above the tropopause, due to a combination of the EL being above the tropopause (as in Fig. 14.26) and inertial overshoot above the EL.

In the bottom portion of the region between the LFC and the EL, the environment is conditionally unstable, as defined in Chapter 5. Recall that this means the environment is statically stable if the air already there is unsaturated, but is unstable if the environment is saturated (cloudy). On a thermo diagram, this is revealed by an environmental lapse rate between the dry- and moist-adiabatic lapse rates.

However, it is not the environmental air between the LFC and EL that becomes saturated and forms the thunderstorm. Instead, it is air rising above the LFC from lower altitudes (from the boundary layer) that forms the thunderstorm. Hence, this process is a nonlocal conditional instability (NCI).

Frequently the LCL is below \(z_i \). This allows fair-weather cumulus clouds (cumulus humilis) to form in the top of the atmospheric boundary layer (see the solved example at left). But a trigger mechanism is still needed to force this cloud-topped mixed-layer air up to the LFC to initiate a thunderstorm.
In many situations, no LFC (and also no EL) exists for an air parcel that is made to rise from the surface. Namely, the saturated air parcel never becomes warmer than the environmental sounding (such as Fig. 14.27). Such soundings are NOT conducive to thunderstorms.

High humidity in the ABL

One of the four conditions needed to form convective storms such as thunderstorms is high humidity in the atmospheric boundary layer (ABL). Thunderstorms draw in pre-storm ABL air, which rises and cools in the thunderstorm updraft. As water vapor condenses, it releases latent heat, which is the main energy source for the storm (see the solved example). Thus, the ABL is the fuel tank for the storm. Warmer moister boundary layers favor more-intense thunderstorms (assuming all other factors are constant, such as the environmental sounding, wind shear, trigger, etc.).

The dew-point temperature T_d in the ABL is a good measure of the low-altitude humidity. High dew points also imply high air temperature, because $T \geq T_d$ always (Chapter 4). Thus, larger dew points indicate a warmer moister ABL, implying that copious amounts of sensible and latent heat are available. Thunderstorms in regions with $T_d \geq 16^\circ$C can have heavy precipitation, and those in regions with $T_d \geq 21^\circ$C can have greater severity.

Solved Example

How much energy does an air-mass thunderstorm release? Assume it draws in atmospheric boundary layer (ABL, or BL) air of $T_d = 21^\circ$C & depth $\Delta z_{BL} = 1$ km (corresponding roughly to $\Delta P_{BL} = 10$ kPa), and that all water vapor condenses. Approximate the cloud by a cylinder of radius $R = 5$ km and depth $\Delta z = 10$ km with base at $P = 90$ kPa & top at $P = 20$ kPa.

Solution

Given: $R = 5$ km, $\Delta z = 10$ km, $T_d = 21^\circ$C, $\Delta z_{BL} = 1$ km, $\Delta P_{BL} = 10$ kPa, $\Delta P_{storm} = 90 - 20 = 70$ kPa

Find: $\Delta Q_E = ?$ (J)

Use eq. (3.3) with $L_v = 2.5 \times 10^6$ J/kg, and eq. (4.3)

$$\Delta Q_E = L_v \cdot \Delta m_{water} = L_v \cdot r \cdot \Delta m_{air}$$

(a)

where $r = 0.016$ kg$_{water}$/kg$_{air}$ from thermo diagram.

But eq. (1.8) $\Delta P = \Delta F/A$ and eq. (1.24) $\Delta F = \Delta m \cdot g$ give:

$$\Delta m_{air} = \Delta P \cdot A/g$$

(b)

where $A = \text{surface area} = \pi R^2$.

For a cylinder of air within the ABL, but of the same radius as the thunderstorm, use eq. (b), then (a):

$$\Delta m_{air} = (10 \text{ kPa}) \cdot \pi \cdot (5000 \text{ m})^2 / (9.8 \text{ m/s}^2) = 8 \times 10^8 \text{ kg}_{air}$$

$$\Delta Q_E = (2.5 \times 10^6 \text{ J/kg})(0.016 \text{ kg}_{water/kg}_{air})(8 \times 10^8 \text{ kg}_{air}) = 3.2 \times 10^{15} \text{ J}$$

Given the depth of the thunderstorm (filled with air from the ABL) compared to the depth of the ABL, we find that $\Delta P_{storm} = 7 \Delta P_{BL}$ (see Figure).

Thus, $\Delta Q_{E storm} = 7 \Delta Q_{E BL}$

$$\Delta Q_{E storm} = 2.24 \times 10^{16} \text{ J}$$

Check: Physics OK. Units OK. Values approximate.

Discussion: A one-megaton nuclear bomb releases about 4×10^{15} J of heat. This hypothetical thunderstorm has the power of 5.6 one-megaton bombs.

Actual heat released in a small thunderstorm is about 1% of the answer calculated above. Reasons include: $T_d < 21^\circ$C; storm entrains non-ABL air; and not all of the available water vapor condenses. However, supercells continually draw in fresh ABL air, and can release more heat than the answer above. Energy released differs from energy available (CAPE). For another energy estimate, see the “Heavy Rain” section of the next chapter.
On weather maps, lines of equal dew-point temperature are called **isodrosotherms** (recall Table 1-6). Fig. 14.28 shows an example, where the isodrosotherms are useful for identifying regions having warm humid boundary layers.

Most of the weather maps in this chapter and the next chapter are from a severe weather case on 24 May 2006. These case-study maps are meant to give one example, and do not show average or climatological conditions. The actual severe weather that occurred for this case is described at the end of this chapter, just before the Summary.

An alternative moisture variable is **mixing ratio**, r. Large mixing-ratio values are possible only if the air is warm (because warm air can hold more water vapor at saturation), and indicate greater energy available for thunderstorms. For example, Fig. 14.29 shows **isohumes** of mixing ratio.

Wet-bulb temperature T_w, **wet-bulb potential temperature** θ_w, **equivalent potential temperature** θ_e, or **liquid-water potential temperature** θ_l also indicate moisture. Recall from Normand’s rule in Chapter 4 that the wet-bulb potential temperature corresponds to the moist adiabat that passes through the LCL on a thermo diagram. Also in Chapter 4 is a graph relating θ_w to θ_e.

For afternoon thunderstorms in the USA, pre-storm boundary layers most frequently have wet-bulb potential temperatures in the $\theta_w = 20$ to $28^\circ C$ range (or θ_e in the 334 to 372 K range, see example in Fig. 14.30). For supercell thunderstorms, the boundary-layer average is about $\theta_w = 24^\circ C$ (or $\theta_e = 351$ K), with some particularly severe storms (strong tornadoes or large hail) having $\theta_w \geq 27^\circ C$ (or $\theta_e \geq 366$ K).
Precipitable water gives the total water content in a column of air from the ground to the top of the atmosphere (see example in Fig. 14.31). It does not account for additional water advected into the storm by the inflow winds, and thus is not a good measure of the total amount of water vapor that can condense and release energy.

Mean-layer lifting condensation level (ML-LCL) is the average of the LCL altitudes for all air parcels starting at heights within the bottom 1 km of atmosphere (i.e., = boundary layer). Lower ML-LCL values indicate greater ABL moisture, and favor stronger storms (Figs. 14.32 & 14.33).

Figure 14.31
Similar to previous figure, but for precipitable water in cm.

Figure 14.32
Similar to previous figure, but for mean-layer lifting condensation level (ML-LCL) heights in km above ground level. Lower ML-LCL heights (suggesting more intense storms) are shaded.

Figure 14.33
Statistical relationship between storm category (as labeled along the horizontal lines) and the mean-layer lifting condensation level (ML-LCL). A marginal supercell is one with weak (< 20 m/s) or short-duration (< 30 min) cyclonic shear. EF is the Enhanced Fujita scale tornado intensity. Thick line is median (50 percentile) of about 500 observed thunderstorms in the central USA. Dark grey spans 25 through 75 percentiles (i.e., the interquartile range), and light grey spans 10 through 90 percentiles. Lower ML-LCL values generally correspond to greater storm intensities. Caution: There is significant overlap of ML-LCLs for all storm categories, implying that ML-LCL cannot sharply discriminate between storm severities.

See the Focus box on the next page to learn about the median, interquartile range, and percentiles.
FOCUS • Median, Quartiles, Percentiles

Median, quartiles, and percentiles are statistical ways to summarize the location and spread of experimental data. They are a robust form of data reduction, where hundreds or thousands of data are represented by several summary statistics.

First, sort your data from the smallest to largest values. This is easy to do on a computer. Each data point now has a rank associated with it, such as 1st (smallest value), 2nd, 3rd, ..., nth (largest value). Let \(x_{(r)} \) = the value of the \(r \)th ranked data point.

The middle-ranked data point [i.e., at \(r = (1/2) \cdot (n+1) \)] is called the median, and the data value \(x \) of this middle data point is the median value \(q_{0.5} \). Namely, \(q_{0.5} = x_{(1/2) \cdot (n+1)} \) for \(n \) is odd.

If \(n \) is an even number, there is no data point exactly in the middle, so use the average of the 2 closest points: \(q_{0.5} = 0.5 \cdot (x_{(n/2)} + x_{(n/2+1)}) \) for \(n \) is even.

The median is a measure of the location or center of the data.

The data point with a rank closest to \(r = (1/4) \cdot n \) is the lower quartile point:

\[
q_{0.25} = x_{(1/4) \cdot (n+1)}
\]

The data point with a rank closest to \(r = (3/4) \cdot n \) is the upper quartile point:

\[
q_{0.75} = x_{(3/4) \cdot (n+1)}
\]

These last 2 equations work well if \(n \) is large (≥100, see below). The interquartile range (IQR) is defined as \(IQR = q_{0.75} - q_{0.25} \), and is a measure of the spread of the data. (See the solved example nearby.)

Generically, the variable \(q_p \) represents any quantile, namely the value of the ranked data point having a value that exceeds portion \(p \) of all data points. We already looked at \(p = 1/4, 1/2, \) and \(3/4 \). We could also divide large data sets into hundredths, giving percentiles. The lower quartile is the same as the 25th percentile, the median is the 50th percentile, and the upper quartile is the 75th percentile.

These non-parametric statistics are robust (usually give a reasonable answer regardless of the actual distribution of data) and resistant (are not overly influenced by outlier data points). For comparison, the mean and standard deviation are NOT robust nor resistant. Thus, for experimental data, you should use the median and IQR.

To find quartiles for a small data set, split the ranked data in half, and look at the lower and upper halves separately.

Lower half of data: If \(n \) is odd, consider those data points ranked less than or equal to the median point. For \(n \) is even, consider points with values less than the median value. For this subset of data, find its median, using the same tricks as in the previous paragraph. The resulting data point is the lower quartile.

Upper half of data: For \(n \) is odd, consider those data points ranked greater than or equal to the original median point. For \(n \) is even, use the points with values greater than the median value. The median point in this data subset gives the upper quartile.

Solved Example (§)

Suppose the \(z_{LCL} \) (km) values for 9 supercells (with EF0-EF1 tornadoes) are:

\[1.5, 0.8, 1.4, 1.8, 8.2, 1.0, 0.7, 0.5, 1.2 \]

Find the median and interquartile range. Compare with the mean and standard deviation.

Solution:

Given: data set listed above.

Find: \(q_{0.25} \) = ? km, \(IQR = ? \) km,

\[
\text{Mean}_{z_{LCL}} = ? \text{ km}, \quad \sigma_{z_{LCL}} = ? \text{ km}
\]

First sort the data in ascending order:

Values (\(z_{LCL} \)): 0.5, 0.7, 0.8, 1.0, 1.2, 1.4, 1.5, 1.8, 8.2

Rank (\(r \)): 1 2 3 4 5 6 7 8 9

Middle: ^

Thus, the median point is the 5th ranked point in the data set, and corresponding value of that data point is

\[
\text{median} = q_{0.5} = z_{LCL(r=5)} = 1.2 \text{ km}
\]

Because this is a small data set, use the special method at the bottom of the Focus box to find the quartiles.

Lower half:

Values: 0.5, 0.7, 0.8, 1.0, 1.2

Subrank: 1 2 3 4 5

Middle: ^

Thus, the lower quartile value is \(q_{0.25} = 0.8 \) km.

Upper half:

Values: 1.2, 1.4, 1.5, 1.8, 8.2

Subrank: 1 2 3 4 5

Middle: ^

Thus, the upper quartile value is \(q_{0.75} = 1.5 \) km.

The \(IQR = q_{0.75} - q_{0.25} = (1.5 \text{ km} - 0.8 \text{ km}) = 0.7 \text{ km} \)

Using a spreadsheet to find the mean and standard deviation:

\[
\text{Mean}_{z_{LCL}} = 1.9 \text{ km}, \quad \sigma_{z_{LCL}} = 2.4 \text{ km}
\]

Check: Values reasonable. Units OK.

Discussion: The original data set has one “wild” \(z_{LCL} \) value: 8.2 km. This is the outlier, because it lies so far from most of the other data points.

As a result, the mean value (1.9 km) is not representative of any of the data points; namely, the center of the majority of data points is not at 1.9 km. Thus, the mean is not robust. Also, if you were to remove that one outlier point, and recalculate the mean, you would get a significantly different value (1.1 km). Hence, the mean is not resistant. Similar problems occur with the standard deviation.

However, the median value (1.2 km) is nicely centered on the majority of points. Also, if you were to remove the one outlier point, the median value would change only slightly to a value of 1.1 km. Hence, it is robust and resistant. Similarly, the IQR is robust and resistant.
The second requirement for convective-storm formation is instability in the pre-storm sounding. **Nonlocal conditional instability** (NCI) occurs when warm humid atmospheric boundary layer (ABL) air is capped by a temperature inversion, above which is relatively cold air. The cold air aloft provides an environment that gives more buoyancy to the warm updraft air from below, allowing stronger thunderstorms. The “nonlocal” aspect arises because air from below the cap becomes unstable above the cap. The “condition” is that the ABL air must first be lifted past the cap (i.e., past its LCL and LFC) for the instability to be realized.

The capping inversion traps the warm humid air near the ground, allowing sensible and latent heat energy to build up during the day as the sun heats the ground and causes evaporation. Without this cap, smaller cumulus clouds can withdraw the warm humid air from the boundary layer, leaving insufficient fuel for thunderstorms. Thus, the cap is important — it prevents the fuel from leaking out.

CAPE

Tremendous energy is released in thunderstorms, causing strong updrafts. A measure of the amount of energy available to create such motion is the **Convective Available Potential Energy** (CAPE). CAPE is proportional to the shaded area in Fig 14.34; namely, the area between LFC and EL altitudes that is between the environmental sounding and the moist adiabat of the rising air parcel.

At these heights, the air parcel is warmer than the environment, so positive buoyant forces tend to accelerate the parcel upward. Recall from Chapter 5 that the buoyant force per unit mass is $F/m = [g] [T_{vp} - T_{ve}] / T_{ve}$, where $|g|$ is the magnitude of gravitational acceleration (9.8 m/s2), T_{vp} is the parcel virtual temperature, and T_{ve} is environmental virtual temperature at the same altitude as the parcel.

Energy (work) is force times distance. Thus, the incremental buoyant energy per unit mass ($\Delta E/m$) associated with the rise of an air parcel across some small increment of distance Δz is $\Delta E/m = (F/m) \cdot \Delta z$, or:

$$\frac{\Delta E}{m} \equiv \Delta z \cdot |g| \cdot \frac{T_{vp} - T_{ve}}{T_{ve}}$$ (14.1)

Recall from Chapter 1 that virtual temperature includes the effects of both water vapor and liquid water. Water vapor is less dense than air ($T_v > T$), thus increasing the buoyant energy. Liquid- and
solid-water hydrometeors (cloud droplets, rain, and snow) falling at their terminal velocity are heavier than air \((T_v < T) \), thus decreasing the upward buoyant energy. Both are important for thunderstorms, but are often difficult to determine.

Instead, you can use the approximation \(T_v \approx T \), which gives:

\[
\Delta E \approx \Delta z \left(\frac{T_p - T_e}{T_e} \right) \cdot \frac{m}{g} \cdot \Delta T \cdot \Delta z \tag{14.2}
\]

where \(T_p \) is air-parcel temperature and \(T_e \) is environmental temperature. This increment of energy is proportional to the area inside the rectangle plotted in Fig. 14.35. The width of the shaded rectangle is the parcel–environment temperature difference, and the height is \(\Delta z \).

The total energy is proportional to the total shaded area in Fig. 14.35. Thus, the total convective available potential energy is proportional to the sum of all the incremental rectangles that fill the shaded area:

\[
\text{CAPE} \equiv |g| \sum \frac{(T_p - T_e) \cdot \Delta z}{T_e} \cdot \Delta z \tag{14.3}
\]

or

\[
\text{CAPE} \equiv |g| \sum_{LFC} \frac{EL \cdot \Delta z}{LFC} \cdot \Delta z \tag{14.4}
\]

The units of CAPE are J/kg. These units are equivalent to m\(^2\)s\(^{-2}\); namely, velocity squared. The temperature in the denominator of eqs. (14.3 & 14.4) must be in Kelvin. Both numerator temperatures must have the same units: either Kelvin or °C.

The shape of the CAPE area is usually not simple, so calculating the area is not trivial. At severe-weather forecast centers, computers calculate CAPE automatically based on the pre-storm sounding. By hand, you can use a simple graphical method by first plotting the sounding and the surface-parcel rise on a thermo diagram, and then using whatever height and temperature increments are plotted on the background diagram to define “bricks” or “tiles”, each of known size.

Namely, instead of using long narrow rectangles, each of different width, as sketched in Fig. 14.35, you can cover the complex shaded area with smaller, non-overlapping tiles, each of equal but arbitrary size \(\Delta z \) by \(\Delta T \) (such as \(\Delta T = 5^\circ \text{C} \) and \(\Delta z = 1 \text{ km} \), see Fig. 14.36). Count the number of tiles, and multiply the result by the area of each tile \((\Delta T \Delta z = 5^\circ \text{C} \cdot \text{km}) \) in this example). When tiling the CAPE area, try to compensate for small areas that are missed by the
tiles by allowing some of the other tiles to extend slightly beyond the boundaries of the desired shaded area by roughly an equal area (e.g., see the solved example). Smaller-size tiles (such as $\Delta T = 1 ^\circ C$ and $\Delta z = 0.2$ km) give a more accurate answer (and are recommended), but are more tedious to count.

On many thermo diagrams such as the emagram of T vs. $\ln(P)$ used here, the height contours and isotherms are not perpendicular; hence, the rectangles look like trapezoids (see the solved example that employed Fig. 14.36). Regardless of the actual area within each trapezoid in the plotted graph, each trapezoid represents a contribution of ΔT by Δz toward the total CAPE area.

To replace heights with pressures in the equation for CAPE, use the hypsometric equation from Chapter 1, which yields:

$$CAPE = \mathcal{R}_d \sum_{LFC} (P_{top} - P_{bottom}) \ln \left(\frac{P_{bottom}}{P_{top}} \right)$$ \hspace{1cm} (14.5)

where $\mathcal{R}_d = 287.053$ J K$^{-1}$ kg$^{-1}$ is the gas constant for dry air, P_{bottom} and P_{top} are the bottom and top pressures of the incremental rectangle, and the sum is still over all the rectangles needed to tile the shaded CAPE area on the sounding (Fig. 14.37). Again, the temperature difference in eq. (14.5) in $^\circ C$ is equal to the same value in Kelvin.

All of the CAPE figures up until now have followed a rising air parcel that was assumed to have started from near the surface. This is called Surface-Based CAPE (SBCAPE), which is often a good method for the mid-afternoon pre-storm soundings that have been shown so far.

Solved Example

For the sounding in Fig 14.36, estimate the CAPE.

Solution

Given: Fig 14.36.

Find: $\text{CAPE} = ?$ J/kg

Each tile has size $\Delta T = 5 ^\circ C$ by $\Delta z = 1000$ m. The area of each tile is 5000 $^\circ C \cdot m$, and there are 10 tiles. The total area is:

$$\text{Area} = 10 \times 5000 \ ^\circ C \cdot m = 50,000 \ \text{K} \cdot \text{m},$$

(where I took advantage of $\Delta T (^\circ C) = \Delta T (K)$).

By eye, the average T_e in the CAPE region is about $-25 ^\circ C = 248$ K. Use eq. (14.3):

$$\text{CAPE} = \left[\frac{9.8 \text{ m/s}^2}{248 \text{ K}} \right] \times (50,000 \ \text{K} \cdot \text{m}) = 1976 \text{ m}^2/\text{s}^2 = 1976 \text{ J/kg}.$$

Check: Units OK. Physics OK. Figure OK.

Discussion: This is a moderate value of CAPE that could support supercell storms with tornadoes.

Solved Example

For the sounding in Fig. 14.37, estimate the CAPE using pressure rather than height increments.

Solution:

Given: Fig. 14.37.

Find: $\text{CAPE} = ?$ J/kg

Use eq. (14.5):

$$\text{CAPE} = \left[287 \text{ J/(K} \cdot \text{kg}) \right] \cdot \left\{ \begin{array}{l}
[-30 ^\circ C - (-40 ^\circ C)] \cdot \ln(30 \text{kPa}/25 \text{kPa}) + \\
[-24 ^\circ C - (-33 ^\circ C)] \cdot \ln(35 \text{kPa}/30 \text{kPa}) + \\
[-17 ^\circ C - (-27 ^\circ C)] \cdot \ln(40 \text{kPa}/35 \text{kPa}) + \\
[-12 ^\circ C - (-20 ^\circ C)] \cdot \ln(45 \text{kPa}/40 \text{kPa}) + \\
[-7 ^\circ C - (-13 ^\circ C)] \cdot \ln(50 \text{kPa}/45 \text{kPa}) + \\
[-2 ^\circ C - (-6 ^\circ C)] \cdot \ln(55 \text{kPa}/50 \text{kPa}) \end{array} \right\}$$

$$\text{CAPE} = \left[287 \text{ J/(K} \cdot \text{kg}) \right] \cdot 6.53 \text{ K} = 1874 \text{ J/kg}.$$

Check: Physics OK. Units OK.

Discussion: Theoretically, we should get exactly the same answer as we found in the previous solved example. Considering the coarseness of the boxes that I used in both solved examples, I am happy that the answers are as close as they are. I found the height-tiling method easier than the pressure-tiling method.
CAPE values vary greatly with location and time. By finding the CAPE for many locations in a region (by using rawinsonde observations, or by using forecast soundings from numerical weather prediction models), you can write the CAPE values on a weather map and then draw isopleths connecting lines of equal CAPE, such as shown in Fig. 14.38.

Other parcel-origin assumptions work better in other situations. If the pre-storm sounding is from earlier in the morning, then the forecast max surface temperature for that afternoon (along with the dew point forecast for that time) is a better choice for the rising air-parcel initial conditions (Fig. 14.39). This is also a type of SBCAPE.

Another way is to average the conditions in the bottom 1 km (roughly 10 kPa) of the environmental sounding to better estimate ABL conditions. Thus, the initial conditions for the rising air parcel represents the mean layer (ML) conditions, or the mixed-layer (ML) conditions (Fig. 14.40). CAPE calculated this way is called Mean Layer CAPE (MLCAPE).

Fig. 14.41 shows a case-study example of MLCAPE.
Early studies of thunderstorm occurrence vs. MLCAPE lead to forecast guidelines such as shown in Table 14-1. However, MLCAPE is not a sharp discriminator of thunderstorm intensity, as shown by the large overlap of storm categories in Fig. 14.42.

Yet another way is to calculate many different CAPEs for air parcels that start from every height in the bottom 30 kPa of the pre-storm environmental sounding, and then select the one that gives the greatest CAPE values. This is called the Most Unstable CAPE (MUCAPE). This method works even if thunderstorm updrafts are triggered by an elevated source, and also works for pre-storm soundings from any time of day. Although it is too tedious to compute these multiple CAPEs by hand, it is easily automated on a computer (Figs. 14.43 & 14.44). MUCAPE is always ≥ SBCAPE.

Table 14-1. Thunderstorm (CB) intensity guide.

<table>
<thead>
<tr>
<th>MLCAPE (J/kg)</th>
<th>Stability Description</th>
<th>Thunderstorm Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 300</td>
<td>mostly stable</td>
<td>little or none</td>
</tr>
<tr>
<td>300 - 1000</td>
<td>marginally unstable</td>
<td>weak CB</td>
</tr>
<tr>
<td>1000 - 2500</td>
<td>moderately unstable</td>
<td>moderate CB likely; severe CB possible</td>
</tr>
<tr>
<td>2500 - 3500</td>
<td>very unstable</td>
<td>severe CB likely, possible tornado</td>
</tr>
<tr>
<td>3500 & greater</td>
<td>extremely unstable</td>
<td>severe CB, tornadoes likely</td>
</tr>
</tbody>
</table>

Figure 14.42
Statistics of thunderstorm intensity vs. MLCAPE, based on several hundred paired soundings and thunderstorms in central N. America. Dark line is median (50 percentile); dark shading spans the interquartile range (25 to 75 percentiles); light shading spans the 10 to 90 percentile range.

Figure 14.43
Weather map similar to Fig. 14.38 over the USA, but for most-unstable CAPE (MUCAPE) in J/kg.

Solved Example
Assume a thunderstorm forms at the dot in Fig. 14.43, where MUCAPE ≈ 2700 J/kg. Estimate the possible intensity of this storm. Discuss the uncertainty.

Solution
Given: MUCAPE ≈ 2,700 J/kg at the dot (•) in Fig. 14.43, located in southern Illinois.
Find: Possible storm intensity. Discuss uncertainty.

Use Fig. 14.44 to estimate intensity. For MUCAPE of 2,700 J/kg, the median line is about half way between “supercell with weak tornado (EF0-EF1),” and “supercell with significant tornado (EF2-EF5).” So we might predict a supercell with an EF1 - EF2 tornado.

Discussion: Although there is some uncertainty in picking the MUCAPE value from Fig. 14.43, there is even greater uncertainty in Fig 14.44. Namely, within the interquartile range (dark shading) based on hundreds of past storms used to make this figure, there could easily be a supercell with no tornado, or a supercell with a significant tornado. There is even a chance of a non-supercell thunderstorm.

Thus, MUCAPE is not capable of sharply distinguishing thunderstorm intensity.
The shape of the CAPE area gives some information about the storm. To aid shape interpretation, a normalized CAPE (nCAPE) is defined as

\[n\text{CAPE} = \frac{\text{CAPE}}{z_{EL} - z_{LFC}} \]

where \(z_{EL} \) is height of the equilibrium level, \(z_{LFC} \) is height of the level of free convection, and the units of nCAPE are m·s\(^{-2}\) or J/(kg·m). Tall, thin CAPE areas (i.e., nCAPE ≤ 0.1 m·s\(^{-2}\)) often suggest heavy precipitation, but unlikely tornadoes. Short, wide CAPE area (i.e., nCAPE ≥ 0.3 m·s\(^{-2}\)) in the mid to lower part of the sounding can result in thunderstorms with strong, low-altitude updrafts, which cause vertical stretching of the air, intensification of rotation, and greater chance of tornadoes. See Fig. 14.45.

A word of caution. CAPE gives only an estimate of the strength of a thunderstorm if one indeed forms. It is a necessary condition, but not a sufficient condition. To form a thunderstorm, there must also be a process that triggers it. Often no thunderstorms form, even in locations having large CAPE. If thunderstorms are triggered, then larger CAPE indicates greater instability, stronger updrafts, and a chance for more violent thunderstorms. It is a useful, but not perfect, forecast tool, as evident by the lack of sharpness in the statistics (Figs. 14.42, & 14.44).

Updraft Velocity

You can also use CAPE to estimate the updraft speed in thunderstorms. Define the kinetic energy per unit mass for updrafts as \(KE/m = 0.5w^2 \), where \(w \) is the updraft speed. If all of the potential energy were converted into kinetic energy, then \(KE/m = \text{CAPE} \). If there were no frictional drag and no mixing of the air parcel as it rises, then the updraft velocity at the EL would be:

\[w_{\text{max}} = \sqrt{2 \cdot \text{CAPE}} \]

However, studies of actual thunderstorm updrafts suggest that the most likely max updraft speed is

\[w_{\text{max likely}} = \frac{w_{\text{max}}}{2} \]

The inertia of the rising air can cause the updraft-top to overshoot above the EL. This is called penetrative convection, and is observed in satellite pictures and by eye as a turret or dome of cloud that temporarily overshoots into the lower stratosphere from the top of the thunderstorm anvil. As stated before, such domes give a good clue to storm spotters that the thunderstorm is probably violent, and has strong updrafts. Such strong updrafts are felt as severe or extreme turbulence by aircraft.

Solved Example

For the sounding in Fig. 14.36 (CAPE = 1976 J/kg) find thunderstorm intensity, normalized CAPE, max updraft velocity, and likely updraft velocity.

Solution

Given: Fig. 14.36, with CAPE = 1976 J/kg
Find: Intensity = ?, nCAPE = ? m·s\(^{-2}\), \(w_{\text{max}} \) & \(w_{\text{max likely}} \) = ? m/s

a) From Table 14-1, moderate thunderstorms.

b) By eye using Fig. 14.36, the bottom and top of the CAPE region are \(z_{LFC} = 4.2 \text{ km}, \) and \(z_{EL} = 9.6 \text{ km}. \)

Use eq. (14.6):

\[n\text{CAPE} = \frac{1976 \text{ J/kg}}{9600 - 4200 \text{ m}} = 0.37 \text{ m/s}^2. \]

c) Use eq. (14.7):

\[w_{\text{max}} = \sqrt{2 \cdot (1976 \text{ m}^2/\text{s})}^{1/2} = w_{\text{max}} = 63 \text{ m/s}. \]

d) Use eq (14.8):

\[w_{\text{max likely}} = \frac{63 \text{ m/s}}{2} = 31 \text{ m/s}. \]

Check: Units OK. Physics OK. Figure OK.

Discussion: Because the LFC is at such a high altitude, the CAPE area is somewhat short and fat, as indicated by the small value of nCAPE. Thus, strong low-altitude updrafts and tornadoes are possible. This thunderstorm has violent updrafts, which is why aircraft would avoid flying through it.
WIND SHEAR IN THE ENVIRONMENT

Wind shear, the change of horizontal wind speed and/or direction with height, is the third requirement for thunderstorm formation. The wind shear across a layer of air is the vector difference between the winds at the top of the layer and winds at the bottom (Fig. 14.46), divided by layer thickness Δz. Shear has units of (1/s).

Using geometry, shear can be expressed via its components as:

\[
\frac{\Delta U}{\Delta z} = \frac{U_2 - U_1}{z_2 - z_1} \quad (14.9)
\]

or

\[
\frac{\Delta V}{\Delta z} = \frac{V_2 - V_1}{z_2 - z_1} \quad (14.10)
\]

Shear Magnitude = \[\frac{(\Delta U)^2 + (\Delta V)^2}{\Delta z}\] \[\text{(14.11a)}\]

Shear Direction:

\[
\alpha_{\text{shear}} = 90^\circ - \frac{360^\circ}{C} \arctan \left(\frac{\Delta V}{\Delta U} \right) + \alpha_0 \quad (14.11b)
\]

where subscript 2 is the layer top, and subscript 1 is layer bottom. Eq. (1.2) was used to find the direction \(\alpha\) of the shear vector, but with \(\Delta U\) in place of \(U\), and \(\Delta V\) in place of \(V\). \(\alpha_0 = 180^\circ\) if \(\Delta U > 0\), but is zero otherwise. \(C\) is the angular rotation in a circle (360\(^\circ\) or \(2\pi\) radians, depending on the output from “arctan”).

For thunderstorm forecasting, meteorologists look at shear across many layers at different heights in the atmosphere. To make this easier, you can use layers of equal thickness, such as \(\Delta z = 1\) km. Namely, look at the shear across the bottom layer from \(z = 0\) to \(z = 1\) km, and the shear across the next layer from \(z = 1\) to \(z = 2\) km, and so forth.

When studying shear across layers of equal thickness, meteorologists often use the vector wind difference \((\Delta U, \Delta V)\) as a surrogate measure of vector wind shear. We will use this surrogate here. This surrogate, and its corresponding wind-difference magnitude

\[
\Delta M = \left((\Delta U)^2 + (\Delta V)^2 \right)^{1/2} \quad (14.12)
\]

has units of wind speed (m/s).

Low-altitude wind shear in the storm environment favors long-lasting, intense thunderstorms. With shear, the boundary-layer winds move relative to the storm, and can continuously feed fuel into the storm (Fig. 14.47). Another way to picture this process is that wind shear causes the storm to move away from locations of depleted boundary layers into locations with warm, humid boundary layers.

Solved Example

Given a horizontal wind of \((U, V) = (1, 2)\) m/s at 2 km altitude, and a wind of \((5, –3)\) m/s at 3 km, what are the wind-difference & shear magnitudes & direction?

Solution:

Given: \((U, V) = (1, 2)\) m/s at \(z = 2\) km

\((U, V) = (5, –3)\) m/s at \(z = 3\) km

Find: \(\Delta M = ?\) (m/s), \(\alpha = ?\) (°)

Shear Magnitude = \(\frac{\Delta M}{\Delta z}\) = \(0.0064\) s\(^{-1}\)

Check: Units OK. Magnitude & direction agree with figure.

Discussion: There is both speed shear and directional shear in this example. It always helps to draw a figure, to check your answer.
The storm behaves similar to an upright vacuum cleaner, sucking up fresh boundary layer air as it moves, and leaving behind an exhaust of colder air that is more stable.

Without any shear, the whole environment including the thunderstorm and the boundary layer would move en masse. For this situation the storm consumes the limited fuel supply of boundary-layer air in the neighborhood under it, and then dies after 15 minutes to one hour (Fig. 14.6) after no fuel remains nearby.

Shear can also control the directions that thunderstorms move. As will be shown later, a clockwise turning wind shear vector can create a dynamic vertical pressure gradient that favors thunderstorms that move to the right of the mean steering-level wind direction.

Low-altitude shear can also generate mesocyclones, where the whole thunderstorm rotates. Mesocyclones are often a precursor to strong tornadoes, and are discussed in detail in the next chapter. Strong shear also enhances MCSs such as bow-echo thunderstorms. Thus, there are many ways that upper-air wind (winds above the surface) and wind shear are important to thunderstorms.

Hodograph Basics

One way to plot upper-air wind vs. height is to draw wind symbols along the side of a thermo diagram (Fig. 14.48). Recall from Chapter 10 that wind direction is from the tail end (with the feathers) toward the other end of the shaft, and more barbs (feathers or pennants) indicate greater speed. The tip of the arrow is at the altitude of that wind.

Another way to plot winds is to collapse all the wind vectors from different heights into a single polar graph, which is called a hodograph. For example, Fig. 14.49 shows winds at 1 km altitude blowing from the southeast at 15 m/s, winds at 3 km altitude blowing from the south at 25 m/s, and winds at 5 km altitude blowing from the southwest at 35 m/s. Both directional shear and speed shear exist.
If you project those wind vectors onto a single plane, you will get a graph that looks like the bottom of Fig. 14.49. Next, draw a dot at the end of each projected vector (Fig. 14.50a), and connect the dots with straight lines, going sequentially from the lowest to the highest altitude. Label the altitudes above ground level (AGL) next to each dot.

Plot the resulting dots and connecting lines on polar graph paper, but omit the vectors (because they are implied by the positions of the dots). The result is called a hodograph (Fig. 14.50b). Fig. 14.51 is a large blank hodograph that you can copy and use for plotting your own wind profiles. Coordinates in this graph are given by radial lines for wind direction, and circles are wind speed.

Figure 14.50
(a) Using the projected vectors from the previous figure, draw dots at the end of each vector, and connect with straight lines. When that line and dots are plotted on polar graph paper (b), the result is a hodograph.

Solved Example

Use the table of winds below to plot a hodograph.

<table>
<thead>
<tr>
<th>z (km)</th>
<th>dir. (°)</th>
<th>M (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>170</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>190</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>240</td>
<td>30</td>
</tr>
</tbody>
</table>

Solution

Plot these points on a copy of Fig. 14.51, and connect with straight lines. Label each point with its altitude.

Check: The wind at 6 km, for example, is from the west southwest (240°), implying that the tip of the wind vector would be pointing toward the east northeast. This agrees with the location of the 6 km dot.

Discussion: This profile shows both speed and directional shear. Also, these winds veer (turn clockwise) with increasing altitude. From the thermal wind discussion in Chapter 11, recall that veering winds are associated with warm-air advection, which is useful for bringing warmer air into a thunderstorm.
Figure 14.51
Blank hodograph for you to copy and use. Compass angles are from direction winds are from. Speed-circle labels can be changed for different units or larger values, if needed.
Notice that the compass angles labeled on the blank hodograph appear to be backwards. This is not a mistake. The reason is that winds are specified by where they come from. For example, the wind at 1 km altitude is from the southeast; namely, from a compass direction of 135° (Fig. 14.50). The south wind at 3 km is from 180°, and the southwest wind at 5 km is from 235°. Using the “from” direction and the wind speed to specify a point on the hodograph, the result is a hodograph that implies wind vectors pointing from the origin to the correct directions.

Often you need to use the U and V wind components to determine thunderstorm characteristics. You could calculate these using eqs. (1.3) and (1.4) from Chapter 1. Alternately, you can pick them off from the coordinates of the hodograph. As demonstrated in Fig. 14.52, for any hodograph point, use a straight-edge to draw a horizontal line from that point to the ordinate to determine V, and draw a vertical line from the point to the abscissa to get U.

Solved Example

For the hodograph of Fig. 14.52, find the (U, V) Cartesian coordinate for each of the 3 data points.

Solution

Given: Hodograph Fig. 14.52 with data points at $z = 1$, 3, and 5 km.

Find: $(U, V) = ?$ (m/s) for each point.

Hint: The hodograph has the U velocities labeled at both top and bottom to make it easier to draw perfectly vertical lines thru any data point. For the same reason, V velocities are labeled at both left and right.

Method: Draw horizontal and vertical lines through each data point, and then pick off the U and V values by eye. Results:

For $z = 1$ km: $U = -11$ m/s, $V = 11$ m/s
For $z = 3$ km: $U = 0$ m/s, $V = 25$ m/s
For $z = 5$ km: $U = 25$ m/s, $V = 25$ m/s

Check: Signs and magnitudes are consistent with directions and speeds.

Discussion: Be careful to use the proper units. The legend in the Fig. 14.52 caption tells us the units for wind speed.

CAUTION: Different agencies use different units (m/s, knots, miles/h, km/h) and sometimes forget to state the units in the hodograph legend or caption.
Using Hodographs

Wind and wind-shear between the surface and 6 km altitude affects the dynamics, evolution, and motion of many N. American thunderstorms. You can use a hodograph to determine key wind-related quantities, including the:

- local shear across a single layer of air
- mean wind-shear vector
- total shear magnitude
- mean wind vector (normal storm motion)
- right & left moving supercell motions
- storm-relative winds.

Shear Across a Single Layer

Local shear between winds at adjacent wind-reporting altitudes is easy to find using a hodograph. Comparing Figs. 14.46 with 14.50, you can see that the hodograph line segment between any two adjacent altitudes is equal to the local shear across that one layer. For example, the solid grey arrow in Fig. 14.53 (one of the line segments of the hodograph) shows the local shear across the 4 to 5 km layer.

Mean Wind Shear Vector

The mean wind-shear vector across multiple layers of air of equal thickness is the vector sum of the local shear vectors (i.e., all the hodograph line segments for those layers), divided by the number of layers spanned. Namely, it is a vector drawn from the bottom-altitude wind point to the top-altitude wind point (white arrow with grey border in Fig. 14.53), then divided by the number of layers to give the mean (solid black arrow). For Fig. 14.53, the mean 0 - 6 km shear vector is 5 m/s from the west southwest. This graphical method is easy to use.

To find the same mean wind-shear vector mathematically, use the U and V components for the wind at z = 0, and also for the wind at z = 6 km. The mean shear (subscript ms) vector coordinates (ΔU, ΔV)ms for the 0 to 6 km layer is given by:

\[
\Delta U_{ms} = (U_{6km} - U_{0km}) / 6 \quad \text{(14.13)}
\]

\[
\Delta V_{ms} = (V_{6km} - V_{0km}) / 6 \quad \text{(14.14)}
\]

You can use these coordinates to plot the mean wind vector on a hodograph. Find the magnitude of this mean shear vector using eq. (14.15), and the direction using eq. (14.16). Namely:

\[
\Delta M_{ms} = \left(\Delta U_{ms}^2 + \Delta V_{ms}^2 \right)^{1/2} \quad (14.15)
\]

\[
\alpha_{ms} = 90° - \arctan \left(\frac{\Delta V_{ms}}{\Delta U_{ms}} \right) + \alpha_o \quad (14.16)
\]
where $C = 360^\circ$ or 2π radians (depending on the units returned by your calculator or spreadsheet), and $\alpha_o = 180^\circ$ if $\Delta U_{mg} > 0$, but is zero otherwise. As before, these wind-difference values are surrogates for the true shear.

Total Shear Magnitude

The **total shear magnitude** (TSM) across many layers, such as between 0 to 6 km, is the algebraic sum of the lengths of the individual line segments in the hodograph. For a simple graphic method that gives a good estimate of TSM, conceptually lay flat the grey line from Fig. 14.54 without stretching or shrinking any of the line segments. The length of the resulting straight line (black line in Fig. 14.54) indicates the total shear magnitude. For this example, the total shear magnitude is roughly 45 m/s, comparing the length of the black line to the wind-speed circles in the graph. Again, wind difference is used as a surrogate for shear.

To find the total shear magnitude mathematically, sum over all the individual layer shear magnitudes (assuming layers of equal thickness):

$$TSM = \sum_{i=1}^{n} \left[(U_i - U_{i-1})^2 + (V_i - V_{i-1})^2 \right]^{1/2} \quad \text{(14.17)}$$

where n is the total number of layers, and subscripts i and $i-1$ indicate top and bottom of the ith layer. For the Fig. 14.54 example, $n = 6$, and each layer is 1 km thick.

Although two different environments might have the same total wind shear (TSM), the distribution of that shear with height determines the types of storms possible. For example, Fig. 14.55 shows two hodographs with exactly the same total shear magnitude. But that shear distributed differently with depth z for each line.

Solved Example (§)

Mathematically calculate the total shear magnitude for the hodograph of Fig. 14.53 (i.e., using data table from the solved example 4 pages ago).

Solution

Given: The data table from 4 pages ago, copied below.

<table>
<thead>
<tr>
<th>z</th>
<th>α</th>
<th>M</th>
<th>U</th>
<th>V</th>
<th>ΔU</th>
<th>ΔV</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>240</td>
<td>30</td>
<td>26.0</td>
<td>15.0</td>
<td>13.1</td>
<td>-0.3</td>
<td>13.1</td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>20</td>
<td>12.9</td>
<td>15.3</td>
<td>10.3</td>
<td>0.5</td>
<td>10.3</td>
</tr>
<tr>
<td>4</td>
<td>190</td>
<td>15</td>
<td>2.6</td>
<td>14.8</td>
<td>12.8</td>
<td>4.9</td>
<td>5.2</td>
</tr>
<tr>
<td>3</td>
<td>170</td>
<td>13</td>
<td>-2.3</td>
<td>14.8</td>
<td>2.7</td>
<td>4.1</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>10</td>
<td>-5.0</td>
<td>8.7</td>
<td>-1.2</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
<td>5</td>
<td>-3.8</td>
<td>3.2</td>
<td>-3.8</td>
<td>3.2</td>
<td>5.0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>Sum=TSM= 44.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check: Units OK.

Discussion: The graphical estimate of 45 m/s by eye from Figure 14.54 was very close to the calculated value here.
magnitude, but the solid line has most of that shear in the bottom 3 km (as seen by the spacing between height (z) points along the hodograph), favoring **squall lines** and **bow echoes**. The dashed line has evenly distributed shear through the bottom 6 km, favoring **supercells**. Fig. 14.56 verifies that greater TSM values support supercells.

Mean Environmental Wind (Normal Storm Motion)

Airmass thunderstorms often translate in the direction and speed of the **mean environmental wind** vector in the bottom 6 km of the atmosphere. These are sometimes called **steering-level winds** or **normal winds**. To find the 0 to 6 km mean wind (i.e., NOT the shear) first picture the wind vectors associated with each point on the hodograph (Fig. 14.57). Next, vector sum all these winds by moving them tail to head, as shown in Fig. 14.58).

Finally, divide the vector sum by the number of wind points to find the **mean wind vector**, as indicated with the “X”. [CAUTION: As you can see in Fig. 14.58, the 6 layers of air are bounded by 7 wind-vector points, not forgetting the zero wind at the ground. Thus, the vector sum in Fig. 14.58 must be divided by 7, not by 6.] For this example, the mean wind (i.e., the location of the “X”) is from about 203° at 11 m/s. An arrow from the origin to the “X” gives the forecast **normal motion for thunderstorms**.

An easier way to approximate this mean wind vector without doing a vector addition is to estimate (by eye) the center of mass of the area enclosed by the original hodograph (shaded black in Fig. 14.59;
Not the area enclosed by the re-positioned vectors of Fig. 14.58. Namely, if you were to: (1) trace that area onto a piece of cardboard, (2) cut it out, & (3) balance it on your finger tip, then the balance point (shown by the “X” in Fig. 14.59) marks the center of mass. “X” indicates the normal motion of thunderstorms, and is easy to estimate graphically using this center-of-mass estimate.

To mathematically calculate the mean wind (indicated with overbars) in the bottom 6 km of the atmosphere, first convert the vectors from speed and direction to their Cartesian components. Then sum the U velocities at all equally-spaced heights, and separately sum all the V velocities, and divide those sums by the number of velocity heights to get the components (\bar{U}, \bar{V}) of the mean wind.

$$\bar{U} = \frac{1}{N} \sum_{j=0}^{N} U_j \quad \text{(14.18)}$$

$$\bar{V} = \frac{1}{N} \sum_{j=0}^{N} V_j \quad \text{(14.19)}$$

where N is the number of wind levels (not the number of shear layers), and j is the altitude index. For winds every 1 km from $z = 0$ to $z = 6$ km, then $N = 7$.

[Caution: Don’t confuse the mean wind with the mean shear.] Then, use eqs. (1.1) and (1.2) [similar to eqs. (14.15 & 14.16), but for mean wind instead of mean shear] to convert from Cartesian coordinates to mean speed and direction $(\bar{M}, \bar{\alpha})$.

In summary the normal motion of thunderstorms is (\bar{U}, \bar{V}), or equivalently $(\bar{M}, \bar{\alpha})$. This corresponds to the center-of-mass “X” estimate of Fig. 14.59.

Solved Example

Mathematically calculate the mean wind components, magnitude, and direction for the hodograph of Fig. 14.57 (i.e., using data table from the solved example about 5 pages ago).

Solution:

Given: The data table from 5 pages ago, copied below.

<table>
<thead>
<tr>
<th>z (km)</th>
<th>Direction (°)</th>
<th>M (m/s)</th>
<th>U (m/s)</th>
<th>V (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>240</td>
<td>30</td>
<td>26.0</td>
<td>15.0</td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>20</td>
<td>12.9</td>
<td>15.3</td>
</tr>
<tr>
<td>4</td>
<td>190</td>
<td>15</td>
<td>2.6</td>
<td>14.8</td>
</tr>
<tr>
<td>3</td>
<td>170</td>
<td>13</td>
<td>-2.3</td>
<td>12.8</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>10</td>
<td>-5.0</td>
<td>8.7</td>
</tr>
<tr>
<td>1</td>
<td>130</td>
<td>5</td>
<td>-3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Mean wind components (m/s) = **4.3 10.0**

Mean wind magnitude (m/s) = **10.9**

Mean wind direction (°) = **203.5**

Check: Units OK. Magnitudes and signs reasonable.

Discussion: The graphical estimate of mean wind speed 11 m/s and direction 203° by eye from Figs. 14.58 and 14.59 were very close to the calculated values here. Namely, expect normal thunderstorms to move from the south southwest at about 10.9 m/s in this environment. Thus, the center-of-mass estimate by eye saves a lot of time and gives a reasonable answer.

ON DOING SCIENCE • Be Safe (part 2)

Charles Doswell’s web page recommends storm-chase guidelines, which I paraphrase here:

The #1 Threat: Being on the Highways
1. Avoid chasing alone.
2. Be very alert to standing water on the roads.
3. Avoid chasing in cities if at all possible.
4. Don’t speed.
5. Pull fully off the road when you park.
6. Use your turn signals.
7. Slow down in poor visibility (rain; blowing dust).
8. Plan where to get fuel; don’t let your tank get low.
9. Avoid unpaved roads (very slippery when wet).
10. Make your vehicle visible to other vehicles.

(continues in the next chapter)
Supercell Storm Motion

Supercell thunderstorms have rotating updrafts, and to get that rotation they need sufficient environmental wind shear. The environmental total shear magnitude typically must be \(TSM \geq 25 \text{ m/s} \) and be distributed relatively evenly across the lower troposphere (from the surface to 6 km) to support supercells. Total shear magnitudes less than 15 m/s often are too small for supercells. In between those two shears, thunderstorms may or may not evolve into supercells.

One reason that strong shear promotes supercells is that horizontal vorticity associated with vertical shear of the horizontal wind in the environment can be tilted into vertical vorticity by the strong convective updraft of a thunderstorm (Fig. 14.60). This causes counter-rotating vortices (mesocyclones) on the left and right sides of the updraft. These two mesocyclones are deep (fill the troposphere) and have diameters roughly equal to the tropospheric depth. One is cyclonic; the other is anticyclonic.

Sometimes supercell thunderstorms split into two separate storms: right-moving and left-moving supercells. Namely, the cyclonic and anticyclonic mesocyclones support their own supercells, and move right and left of the “normal” motion as would have been expected from the mean steering-level wind.

Bunker’s Internal Dynamics (ID) method to forecast the movement of these right and left-moving supercells is:

1. Find the 0 to 6 km mean wind (see “X” in Fig. 14.61), using methods already described. This would give normal motion for thunderstorms. But supercells are not normal.
2. Find the 0.25 to 5.75 km layer shear vector (approximated by the 0 to 6 km layer shear, shown with the white arrow in Fig. 14.61).
3. Through the mean wind point (X), draw a line (black line in Fig. 14.61) perpendicular to the 0 to 6 km shear vector.
4. On the line, mark 2 points (white in black circles): one 7.5 m/s to the right and the other 7.5 m/s to the left of the “X”.
5. The point that is right (clockwise) from the mean wind “X” gives the average motion forecast for the right (R) moving storm.
6. The point that is left (counter-clockwise) from the mean wind “X” gives the average forecast motion of the left (L) moving storm.

Not all storms follow this simple rule, but most supercell motions are within a 5 m/s radius of error around the R and L points indicated here. For the example in Fig. 14.61, motion of the right-moving supercell is 8 m/s from 246°, and the left mover is 17 m/s from 182°.
Only for straight hodographs (Fig. 14.62a) are the right and left-moving supercells expected to exist simultaneously with roughly equal strength (Fig. 14.63a). Hodographs that curve clockwise (Fig. 14.62b) with increasing height favor right-moving supercell thunderstorms (Fig. 14.63b). For this situation, the left-moving storm often dissipates, leaving only a right-moving supercell.

Hodographs that curve counterclockwise (Fig. 14.62c) favor left-moving supercells (Fig. 14.63c), with the right-moving storm often dissipating. In the plains/prairies of North America, most hodographs curve clockwise (as in Figs. 14.61 and 14.62b), resulting in right-moving supercell thunderstorms that are about ten times more abundant than left-moving storms. The opposite is true in the S. Hemisphere for midlatitude thunderstorms.

In summary, supercell thunderstorms often do not move in the same direction as the mean environmental (steering-level) wind, and do not move at the mean wind speed. The methods that were discussed here are useful to forecast movement of storms that haven’t formed yet. However, once storms form, you can more accurately estimate their motion by tracking them on radar or satellite. Regardless of the amounts of shear, CAPE, and moisture in the pre-storm environment, thunderstorms won’t form unless there is a trigger mechanism. Triggers are discussed in the next main section (after the Bulk Richardson Number subsection).

Figure 14.62
Shapes of hodograph that favor right and left-moving supercell thunderstorms: (a) straight hodograph; (b) hodograph showing clockwise curvature with increasing height; (c) hodograph showing counter-clockwise curvature with increasing height.

Figure 14.63
Sketch of sequence of radar reflectivity echoes over time (left to right) for: (a) symmetric supercell split; (b) dominant right-moving supercells; and (c) dominant left-moving supercells. Note the different orientation of the hook echo in the left-moving supercell. The steering-level wind is the “normal” wind.
Solved Example

Given the wind profile in the table below:

<table>
<thead>
<tr>
<th>(z) (km)</th>
<th>dir. (°)</th>
<th>speed (m/s)</th>
<th>(z) (km)</th>
<th>dir. (°)</th>
<th>speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
<td>15</td>
<td>4</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>160</td>
<td>8</td>
<td>5</td>
<td>270</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>210</td>
<td>5</td>
<td>6</td>
<td>270</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>260</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Plot the hodograph;
(b) Graphically find the mean wind-shear vector for the 0 to 6 km layer;
(c) Graphically find the total shear magnitude.
(d) Does this hodograph favor bow echoes or supercells? Why?
(e) Graphically find the 0 to 6 km mean wind.
(f) Graphically find the motions for the right and left-moving supercell thunderstorms.
(g) Which is favored: right or left-moving supercell thunderstorms? Why?

Solution

(a) Plot the hodograph (see curved black line below):

(b) The 0 to 6 km shear vector is shown with the white arrow. Dividing by 6 gives a mean layer shear (black arrow) of about 7 m/s from the west northwest.

(c) The total shear magnitude, shown at the bottom of the hodograph above, is about 42 m/s.

(d) Supercells are favored, because shear is evenly distributed throughout the bottom 6 km of atmosphere. Also, the total shear magnitude is greater than 25 m/s, as required for supercells.

(e) The answer is a vector, drawn from the origin to the “X” (see hodograph in next column). Namely, the mean wind is from about 250° at 10 m/s. Vector method roughly agrees with center-of-mass method, done by eye.

(Continues in next column.)

Thus, for normal thunderstorms (and for the first supercell, before it splits into right and left-moving supercells) forecast them to move from the west southwest at about 10 m/s. For both this example and Fig. 14.59, the center-of-mass method gives a better estimate if we look at the hodograph area between \(z = 0.5 \) and 5.5 km.

(f) Bunker’s Internal Dynamics method is shown graphically on the hodograph below. The left supercell (L) is forecast to move at 16 m/s from 229°, and the right supercell (R) at 8 m/s from 298°.

(g) Left-moving supercells are favored, because the hodograph curves counterclockwise with increasing height. This storm moves faster than the mean wind (i.e., faster than the “normal” thunderstorm steering-level wind).

Discussion: This hodograph shows veering winds (winds turning clockwise with increasing altitude), implying warm-air advection according to the thermal-wind relationship. Even though the wind vectors veer clockwise, the hodograph curvature is counterclockwise (implying dominant left-moving supercell storms), so be careful not to confuse these two characteristics.

Winds alone are not sufficient to forecast whether thunderstorms will occur. Other key ingredients are instability and abundant moisture, as previously discussed. Also needed is sufficient lifting by a trigger mechanism to overcome the capping inversion.
Bulk Richardson Number

Thunderstorm type depends both on the amounts of instability and wind shear in the pre-storm environmental sounding. The bulk Richardson number (BRN) is the ratio of nonlocal instability (i.e., the CAPE) in the mid to upper part of the troposphere to shear (ΔM) in the lower half of the troposphere:

$$BRN = \frac{\text{CAPE}}{0.5(\Delta M)^2} \quad \cdot (14.20)$$

Table 14-2 summarizes the utility of the BRN. The BRN is dimensionless, because the units of CAPE (J/kg) are the same as (m^2/s^2) (see Appendix A).

In the denominator, the shear magnitude (ΔM) is given by:

$$\Delta M = \left[(\Delta U)^2 + (\Delta V)^2 \right]^{1/2} \quad \cdot (14.21)$$

where

$$\Delta U = \bar{U} - U_{SL} \quad (14.22a)$$

$$\Delta V = \bar{V} - V_{SL} \quad (14.22b)$$

Eqs. (14.22) are the shear components between the mean wind (\bar{U}, \bar{V}) in the 0 to 6 km layer, and the surface-layer winds (U_{SL}, V_{SL}) estimated as an average over the bottom 0.5 km of the atmosphere. Fig. 14.64 shows how to estimate this shear magnitude from a hodograph.

Solved Example

For the previous solved example, assume the associated CAPE = 3000 J/kg. (a) Find the BRN shear. (b) Find the BRN. (c) Are tornadic supercells likely?

Solution

Given: $\text{CAPE} = 3000 \text{ J/kg}$

hodograph = previous solved example

Find: BRN shear = ? m^2/s^2

BRN = ? (dimensionless)

Yes/no: thunderstorms? supercells? tornadoes?

(a) On the hodograph from the previous solved example, put the tail of a vector (solid black arrow) a quarter of the way from the $z = 0$ point to the $z = 1$ point on the hodograph. Put the arrowhead on the “X” mean wind. Then measure the vector’s length (see dashed arrow), which is about $\Delta M = 18 \text{ m/s}$.

Then use eq. (14.23):

$$\text{BRN shear} = 0.5 \cdot (18 \text{ m/s})^2 = 162 \text{ m}^2/\text{s}^2$$

(b) Use eq. (14.20):

$$\text{BRN} = \frac{(3000 \text{ m}^2/\text{s}^2)}{(162 \text{ m}^2/\text{s}^2)} = 18.5$$

(c) Assume $\text{CAPE} = \text{MLCAPE}$. Then from Table 14-1: **Severe thunderstorms likely, possible tornado.**

Next, use Table 14-2: Thunderstorm type = **supercell**.

Finally, use Table 14-3: **Tornadoes are likely.**
The denominator of the BRN, known as the bulk-Richardson-number shear (BRN Shear), is

$$BRN\ Shear = 0.5 \cdot (\Delta M)^2$$ \(\text{(14.23)}\)

which has units of \(\text{m}^2/\text{s}^2\). BRN shear can help indicate which supercells might be tornadic (see Table 14-3). Although BRN shear is statistically sharper in its ability to discriminate between thunderstorms and tornadoes of different severity, there is still significant overlap in thunderstorm/tornado categories as was found by verification against several hundred thunderstorms in central N. America (Fig. 14.65).

A case study weather map of BRN shear is analyzed in Fig. 14.66. As before, you should NOT use BRN shear alone as an indicator of tornado likelihood, because additional conditions must also be satisfied in order to allow tornadic thunderstorms to form. Some of these other conditions are instability, and a trigger mechanism.

TRIGGERING VS. CONVECTIVE INHIBITION

The fourth environmental requirement for thunderstorm formation is a trigger mechanism to cause the initial lifting of the air parcels. Although the capping inversion is needed to allow the fuel supply to build up (a good thing for thunderstorms), this cap also inhibits thunderstorm formation (a bad thing). So the duty of the external trigger mechanism is to lift the reluctant air parcel from \(z_i\) to the LFC. Once triggered, thunderstorms develop their own circulations that continue to tap the boundary-layer air.

The amount of external forcing required to trigger a thunderstorm depends on the strength of the cap that opposes such triggering. One measure of cap strength is convective inhibition energy.
Convective Inhibition (CIN)

Between the mixed-layer top z_i and the level of free convection LFC, an air parcel lifted from the surface is colder than the environment. Therefore, it is negatively buoyant, and does not want to rise. If forced by a trigger mechanism to rise above z_i, then the trigger process must do work against the buoyant forces within this cap region.

The total amount of work needed is proportional to the area shaded in Fig. 14.67. This work per unit mass is called the **Convective Inhibition (CIN)**. The equation for CIN is identical to the equation for CAPE, except for the limits of the sum. Another difference is that CIN values are negative. CIN has units of J/kg.

For the afternoon sounding of Fig. 14.67, CIN corresponds to the area between z_i and LFC. For a morning sounding, a forecast of the afternoon’s high temperature provides the starting point for the rising air parcel, where z_i is the corresponding forecast for mixed-layer top (Fig. 14.68). Thus, for both Figs. 14.67 and 14.68, you can use:

$$\text{CIN} = \sum_{z_i}^{LFC} \left| \frac{|g|}{T_{ve}} (T_{vp} - T_{ve}) \right| \Delta z$$ \hspace{1cm} \text{(14.24)}$$

where T_v is virtual temperature, subscripts p and e indicate the air parcel and the environment, $|g| = 9.8 \text{ m/s}^{-2}$ is the magnitude of gravitational acceleration, and Δz is a height increment. Otherwise, CIN is usually found by summing between the surface ($z = 0$) and the LFC (Fig. 14.69).

$$\text{CIN} = \sum_{z=0}^{LFC} \left| \frac{|g|}{T_{ve}} (T_{vp} - T_{ve}) \right| \Delta z$$ \hspace{1cm} \text{(14.25)}$$
CHAPTEr 14 THUNDERSTORMS

As before, if the virtual temperature is not known or is difficult to estimate, then often storm forecasters will use T_v in place of T' in eq. (14.24) to get a rough estimate of CIN:

$$CIN = \sum_{z_i} \left(\frac{LFC}{T_e} (T_p - T_e) \Delta z \right)$$

although this can cause errors as large as 35 J/kg in the CIN value. Similar approximations can be made for eq. (14.25). Also, a mean-layer CIN (ML CIN) can be used, where the starting air parcel is based on average conditions in the bottom 1 km of air.

CIN is what prevents, delays, or inhibits formation of thunderstorms. Larger magnitudes of CIN (as in Fig. 14.69) are less likely to be overcome by trigger mechanisms, and are more effective at preventing thunderstorm formation. CIN magnitudes (Table 14-4) smaller than about 60 J/kg are usually small enough to allow deep convection to form if triggered, but large enough to trap heat and humidity in the boundary layer prior to triggering, to serve as the thunderstorm fuel. CIN is the cap that must be broken to enable thunderstorm growth.

Storms that form in the presence of large CIN are less likely to spawn tornadoes. However, large CIN can sometimes be circumvented if an elevated trigger mechanism forces air-parcel ascent starting well above the surface.

The area on a thermo diagram representing CIN is easily integrated by computer, and is often reported with the plotted sounding. [CAUTION: the magnitude of CIN is reported (i.e., as a positive value).] CIN magnitudes from many sounding stations can be plotted on a weather map and analyzed, as in Fig. 14.70. To estimate CIN by hand, you can use the same tiling method as was done for CAPE (see the Solved Example at left).

Table 14-4. Convective Inhibition (CIN)

<table>
<thead>
<tr>
<th>CIN Value (J/kg)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>No cap. Allows weak convection.</td>
</tr>
<tr>
<td>0 to –20</td>
<td>Weak cap. Triggering easy. Air-mass thunderstorms possible.</td>
</tr>
<tr>
<td>–20 to –60</td>
<td>Moderate cap. Best conditions for CB. Enables fuel build-up in boundary layer. Allows most trigger mechanisms to initiate storm.</td>
</tr>
<tr>
<td>–60 to –100</td>
<td>Strong cap. Difficult to break. Need exceptionally strong trigger.</td>
</tr>
<tr>
<td>< –100</td>
<td>Intense cap. CB triggering unlikely.</td>
</tr>
</tbody>
</table>

As before, if the virtual temperature is not known or is difficult to estimate, then often storm forecasters will use T in place of T_v in eq. (14.24) to get a rough estimate of CIN:

$$CIN = \sum_{z_i} \left(\frac{LFC}{T_e} (T_p - T_e) \Delta z \right)$$

Solved Example

Estimate the convective inhibition (CIN) value for the sounding of Fig. 14.25. Are thunderstorms likely?

Solution

Given: Sounding of Fig. 14.25, as zoomed below.

Find: $CIN = ? J/kg.$

Cover the CIN area with small tiles of size $\Delta z = 500 m$ and $\Delta T = -2^\circ C$ (where the negative sign indicates the rising parcel is colder than the environmental sounding). Each tile has area $\Delta T \Delta z = -1,000$ Km. I count 12 tiles, so the total area is $-12,000$. Also, by eye the average environmental temperature in the CIN region is about $T_e = 12^\circ C = 285$ K.

Use eq. (14.26):

$$CIN = \sum_{z_i} \left(\frac{LFC}{T_e} (T_p - T_e) \Delta z \right)$$

$$CIN = -12,000 K \cdot m$$

From Table 14-4, **thunderstorms are unlikely**.

Figure 14.70

Weather map similar to Fig. 14.38 over USA, but for magnitude of mean-layer convective inhibition energy (ML CIN) in J/kg.

Check:

By eye, the CIN area of Fig. 14.25 is about 1/5 the size of the CAPE area. Indeed, the answer above has about 1/5 the magnitude of CAPE (1976 J/kg), as found in previous solved exercises. Units OK too.

Discussion: The negative CIN implies that work must be done ON the air to force it to rise through this region, as opposed to the positive CAPE values which imply that work is done BY the rising air.

Table 14-4. Convective Inhibition (CIN)

<table>
<thead>
<tr>
<th>CIN Value (J/kg)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>No cap. Allows weak convection.</td>
</tr>
<tr>
<td>0 to –20</td>
<td>Weak cap. Triggering easy. Air-mass thunderstorms possible.</td>
</tr>
<tr>
<td>–20 to –60</td>
<td>Moderate cap. Best conditions for CB. Enables fuel build-up in boundary layer. Allows most trigger mechanisms to initiate storm.</td>
</tr>
<tr>
<td>–60 to –100</td>
<td>Strong cap. Difficult to break. Need exceptionally strong trigger.</td>
</tr>
<tr>
<td>< –100</td>
<td>Intense cap. CB triggering unlikely.</td>
</tr>
</tbody>
</table>
Thunderstorms are more likely for smaller values of the difference $\Delta z_{cap} = z_{LFC} - z_{LCL}$, which is the nonlocally stable region at the bottom of the storm. Namely, a thinner cap on top of the ABL might allow thunderstorms to be more easily triggered.

Trigger Mechanisms

Any external process that forces the boundary-layer air parcels to rise through the statically stable cap can be a trigger. Triggers include:

- Boundaries between airmasses:
 - synoptic fronts,
 - dry lines,
 - sea-breeze fronts,
 - gust fronts from other thunderstorms;
- Other triggers:
 - mountains,
 - atmospheric buoyancy waves,
 - localized regions of excess surface heating.

If one airmass is denser than an adjacent airmass, then any convergence of air toward the dividing line between the airmasses (called an **airmass boundary**) will force the less-dense air to rise over the denser air. For example, advancing cold air can drive under the warmer, ambient boundary-layer air, forcing the warm air upward through the stable layer at z_i (Fig. 14.71).

Cold fronts and **warm fronts** are synoptically-forced examples of airmass boundaries. Upper-level synoptic fronts (with no signature on a surface weather map) can also cause lifting and trigger thunderstorms. Fig. 14.72 shows the frontal analysis for the 24 May 2006 case study that has been presented in many of the preceding sections. These frontal zones could trigger thunderstorms.

Sea-breeze (see the Local Wind chapter) or **lake-breeze fronts** create a similar density discontinuity on the mesoscale at the boundary between the cool marine air and the warmer continental air during daytime, and can also trigger convection. If a cold **downburst** from a thunderstorm hits the ground and spreads out, the leading edge is a **gust front** of cooler, denser air that can trigger other thunderstorms (via the propagation mechanism already discussed). The **dry line** separating warm dry air from warm humid air is also an airmass boundary (Figs. 14.71 & 14.72), because dry air is more dense than humid air at the same temperature (see definition of virtual temperature in Chapter 1).

These airmass boundaries are so crucial for triggering thunderstorms that meteorologist devote much effort to identifying their presence. Lines of thunderstorms can form along them. Synoptic-scale fronts and dry lines are often evident from weather-map analyses and satellite images. Sea-breeze fronts and gust fronts can be seen by radar as convergence.
lines in the Doppler wind field, and as lines of weakly enhanced reflectivity due to high concentrations of insects (converging there with the wind) or a line of small cumulus clouds. When two or more airmass boundaries meet or cross, the chance of triggering thunderstorms is greater such as over Illinois and Texas in the case-study example of Fig. 14.72.

Horizontal winds hitting a mountain slope can be forced upward (Fig. 14.73), and can trigger orographic thunderstorms. Once triggered by the mountains, the storms can persist or propagate (trigger daughter storms via their gust fronts) as they are blown away from the mountains by the steering-level winds.

Sometimes when the air flows over mountains or is pushed out of the way by an advancing cold front, vertical oscillations called buoyancy waves or gravity waves (Fig. 14.74) can be generated in the air (see the Local Winds chapter). If the lift in the updraft portion of a wave is sufficient to bring air parcels to their LFC, then thunderstorms can be triggered by these waves.

Another trigger is possible if the air near the ground is warmed sufficiently by its contact with the sun-heated Earth. The air may become warm enough to rise as a thermal through the cap and reach the LFC under its own buoyancy. The temperature needed for this to happen is called the convective temperature, and is found as follows (Fig. 14.75):

1. Plot the environmental sounding and the surface dew-point temperature.
2. From T_d, follow the isohume up until it hits the sounding. This altitude is called the convective condensation level (CCL).
3. Follow the dry adiabat back to the surface to give the convective temperature needed.

You should forecast airmass thunderstorms to start when the surface air temperature is forecast to reach the convective temperature, assuming the environmental sounding above the boundary layer does not change much during the day. Namely, determine if the forecast high temperature for the day will exceed the convective temperature.

Often several triggering mechanisms work in tandem to create favored locations for thunderstorm development. For example, a jet streak may move across North America, producing upward motion under its left exit region and thereby reducing the strength of the cap as it passes (see the “Layer Method for Static Stability” section in Chapter 5). If the jet streak crosses a region with large values of CAPE at the same time as the surface temperature reaches its maximum value, then the combination of these processes may lead to thunderstorm development.
Finally, a word of caution. As with each of the other requirements for a thunderstorm, triggering (lift) by itself is insufficient to create thunderstorms. Also needed are the instability, abundant moisture, and wind shear. To forecast thunderstorms you must forecast all four of the key ingredients. That is why thunderstorm forecasting is so difficult.

THUNDERSTORM FORECASTING

Forecasting thunderstorms is not easy. Thunderstorms are very nonlinear (i.e., they grow explosively), and are extremely dependent on initial conditions such as triggering, shear, and static stability. Individual storms are relatively short lived (15 to 30 min), and are constantly changing in intensity and movement during their lifetimes. Intense thunderstorms also modify their environment, making the relationships between pre-storm environments and storm evolution even more challenging to apply.

Much appears to depend on random chance, since we are unable to observe the atmosphere to the precision needed to describe it fully. Will a boundary-layer thermal or an airmass boundary happen to be strong enough to be the first to break through the capping inversion? Will a previous thunderstorm create a strong-enough downburst to trigger a new thunderstorm?
chapters 14 thunderstorms

Chapter 14: Thunderstorms

A thunderstorm with its gust front? Will high clouds happen to move over a region, shading the ground and thereby reducing the instability?

Tornadoes, hail, heavy rain, lightning, and strong straight-line wind events may or may not occur, and also vary in intensity, track, and duration within the constraints of the parent thunderstorm. Thunderstorms interact in complex ways with other existing thunderstorms and with the environment and terrain, and can trigger new thunderstorms.

Luckily, most thunderstorms over land have a very marked diurnal cycle, because atmospheric instability is strongly modulated by heating of the ground by the sun. Thunderstorms usually form in mid to late afternoon, are most frequent around sunset, and often dissipate during the night. As sketched in Fig. 14.76, the reason is that the greatest accumulation of heat (and moisture) in the boundary layer occurs not at noon, but about a half hour before sunset.

There are notable exceptions to this daily cycle. For example, thunderstorms can be triggered by the Rocky Mountains in late afternoon, and then propagate eastward all night to hit the Midwest USA with the greatest frequency around midnight to early morning.

Outlooks, Watches & Warnings

A thunderstorm is defined as “severe” in the USA if it has one or more of the following:

- tornadoes
- damaging winds (and any winds ≥ 25 m/s)
- hail with diameter ≥ 1.9 cm

Severe weather (thunderstorm caused or not) also includes heavy rain that could cause flash flooding. All thunderstorms have lightning, by definition, so lightning is not included in the list of severe weather elements even though it kills more people than tornadoes, hail, or winds.

In the USA, severe convective weather forecasting is broken into three time spans: outlook, watch, and warning. These are defined as follows:

- **outlook**: 6 to 72 h forecast guidance for broad regions. Types:
 - **convective outlooks**: very technical
 - **public severe weather outlooks**: plain language

- **watch**: 0.5 to 6 h forecast that severe weather is favorable within specific regions called **watch boxes**. Watch types include:
 - **severe thunderstorm watch**
 - (includes tornadoes)
 - **tornado watch**

Figure 14.76
(a) Simplification of daily (diurnal) cycle of upward net radiation \(F^* \), which combines solar heating during the day and infrared cooling all the time, for summer over land. Grey arrows represent direction of net flux at the surface. (b) Accumulated (sensible plus latent) heats \(Q_A \) in the boundary layer. During summer, days are longer than nights, allowing accumulated heat to increase from day to day. Dash line thunderstorm threshold schematically represents the net effect of all the complex thunderstorm-genesis processes reviewed in this chapter. Grey shading shows that thunderstorms are most likely to form around sunset, plus and minus several hours.

Figure 14.77
Map of tornado (light grey), flood (medium grey), and severe thunderstorm (black) warnings associated with the 24 May 2006 case study in the USA. The shaded boxes indicate which counties were warned. State abbreviations are: IL = Illinois, MO = Missouri, IA = Iowa, IN = Indiana, WI = Wisconsin.
• **warning:** 0 to 1 h forecast that severe weather is already occurring and heading your way. Warned are specific towns, counties, transportation corridors, and small regions called warning boxes.

Warning types include:

- **severe thunderstorm warning**
- **tornado warning**

Forecast methods for **warnings** are mostly **nowcasts**. Namely, wait until the severe weather is already occurring as observed by human spotters or radar signatures, or find other evidence indicating that severe weather is imminent. Then anticipate its movement in the next few minutes, and warn the towns that are in the path.

These warnings are delivered by activating civil-defense warning sirens and weather-radio alert messages, by notifying the news media, and by talking with local emergency planners, police and fire agencies. Although the warnings are the most useful because of the details about what, where, and when (Fig 14.77), they are also the shortest term forecasts, giving people only a few minutes to seek shelter. The safest tornado and outflow wind shelters are underground in a basement or a ditch, or in a specially designed reinforced-concrete above-ground **safe room**.

Methods for forecasting **watches** are essentially the methods described earlier in this chapter. Namely, short term (0 to 24 h) numerical weather prediction (NWP) model output, soundings from rawinsondes and satellites, and mesoscale analyses of surface weather-station data are analyzed. These analyses focus on the four elements needed for thunderstorm formation later in the day: high humidity in the boundary layer; nonlocal conditional instability; strong wind shear; and a trigger mechanism to cause the initial lifting. The indices and parameters described earlier in this chapter speed the interpretation of the raw data. To handle some of the uncertainty in thunderstorm behavior, probabilistic severe weather forecasts are produced using ensemble methods (see the NWP Chapter).

Nonetheless, watches are somewhat vague, with no ability to indicate which specific towns will be hit and exactly when they will be threatened (the Focus box has an example of a tornado watch and the associated watch box graphic). People in the watch area can continue their normal activities, but should listen to weather reports and/or watch the sky in case storms form nearby. Watches also help local officials prepare for events through changes in staffing of emergency-management and rescue organizations (fire departments, ambulance services, hospitals, police), and deploying storm spotters.

Focus • A Tornado Watch (WW)

Urgent - immediate broadcast requested

Tornado watch number 387

NWS Storm Prediction Center, Norman OK

245 PM CDT Wed May 24 2006

The NWS Storm Prediction Center has issued a tornado watch for portions of Eastern Iowa Central into northeast Illinois Far east central Missouri Effective this Wednesday afternoon and evening from 245 PM until 1000 PM CDT.

Tornadoes...Hail to 3 inches in diameter...Thunderstorm wind gusts to 70 mph...And dangerous lightning are possible in these areas.

The tornado watch area is approximately along and 75 statute miles east and west of a line from 30 miles east northeast of Dubuque Iowa to 25 miles southwest of Salem Illinois [see Fig. below]. For a complete depiction of the watch see the associated watch outline update (WOUS64 KWNS WOU7).

Remember...A tornado watch means conditions are favorable for tornadoes & severe thunderstorms in & close to the watch area. Persons in these areas should be on the lookout for threatening weather conditions & listen for later statements and possible warnings.

Other watch info...Continue...WW 385...WW 386...

Discussion...50+ knot westerly mid level jet will spread across far southern Iowa/northern Missouri through the evening and increase shear atop moderate instability already in place across WW. Supercells and organized multicell clusters/lines are expected to evolve and shift from west to east through the mid evening. Large hail could become quite large with stronger cores...With additional isolated tornado threat accompanying more persistent supercells through the evening. Wind damage is also likely.

Aviation...Tornadoes and a few severe thunderstorms with hail surface and aloft to 3 inches. Extreme turbulence and surface wind gusts to 60 knots. A few cumulonimbi with maximum tops to 50,000 ft. Mean storm motion vector from 260° at 25 knots.

[Courtesy of the Storm Prediction Center, US National Weather Service, NOAA.]

Figure 14.c

Example of a tornado watch box.
The **convective outlooks** include a general statement about the level of risk that severe weather will occur in broad regions spanning roughly 350 x 350 km, many hours or days into the future. These risk levels are:

- **Slight** (SLGT): well-organized severe thunderstorms are expected in small numbers and/or low coverage. Specifically: 5 to 29 reports of hail ≥ 2.5 cm, and/or 3 to 5 tornadoes, and/or 5 to 29 wind events.

- **Moderate** (MDT): a greater concentration of severe thunderstorms, and in most situations, greater magnitude of severe weather. Details: ≥ 30 reports of hail ≥ 2.5 cm, or 6 to 19 tornadoes, or numerous wind events (30 that might be associated with a squall line, bow echo or derecho).

- **High** (HIGH): a major severe-weather outbreak is expected, with great coverage of severe weather and enhanced likelihood of extreme weather (i.e., violent tornadoes or extreme convective wind events over a large area). Details: ≥ 20 tornadoes with at least two rated ≥ EF3, or an extreme derecho causing ≥ 50 widespread high wind events with numerous higher winds (≥ 35 m/s) and structural damage reports.

Stability Indices for Thunderstorms

As you have already seen, meteorologists have devised a wide variety of indices and parameters to help forecast thunderstorm existence, strength, and type. Table 14-5 summarizes indices that were discussed in earlier in this chapter as well as indices from the next chapter. Many of these indices integrate over large portions of the environmental sounding or hodograph, and are automatically calculated by computer programs for display next to the computer-plotted sounding.

Because no single index has proved to be the best, new indices are devised, modified, and tested every year. Some day a single best index might be found.

The use of indices to aid severe weather forecasting has a long tradition. Many older indices were devised for calculation by hand, so they use data at a few key altitudes, rather than integrating over the whole sounding. Table 14-6 lists some of the older indices, and Table 14-7 give the associated forecast guidelines.

Table 14-8 compares the values of the different indices with respect to the forecasted weather elements. Beware that this table is highly simplified, and that the boundaries between different severity of storm are not as sharp as the table suggests. Nonetheless, you can use it as a rough guide for interpreting the index values that are often printed with plotted soundings or weather maps.
Table 14-6. Definition of some older thunderstorm stability indices. Notation:

- $T = \text{environmental temperature (°C)}$
- $Td = \text{environmental dew-point temperature (°C)}$
- $T_{p_{s->e}} = \text{final temperature of an air parcel that started with average conditions at height } s$, which rose to ending height e following dry adiabat up to LCL, and moist adiabat above.
- $M = \text{wind speed (m/s)}$
- $\alpha = \text{wind direction (degrees)}$
- Subscripts give pressure altitude.

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Full Name</th>
<th>Values & Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K or KI</td>
<td>K Index</td>
<td>$K = T_{85kPa} + Td_{85kPa} + Td_{70kPa} - T_{70kPa} - T_{50kPa}$</td>
</tr>
<tr>
<td>LI</td>
<td>Lifted Index</td>
<td>$LI = T_{50kPa} - T_{p_{95->50kPa}}$</td>
</tr>
<tr>
<td>SSI</td>
<td>Sho-walter Stability Index</td>
<td>$SSI = T_{50kPa} - T_{p_{85->50kPa}}$</td>
</tr>
</tbody>
</table>
| SWEAT | Severe Weather Threat Index | SWEAT = 12Td_{85kPa} + 20(TT - 49) + 4M_{85kPa} + 2M_{50kPa} + 125\{0.2 + \sin(\alpha_{50kPa} - \alpha_{85kPa})\}$ where TT = total totals index.
| TT | Total Totals Index | $TT = T_{85kPa} + Td_{85kPa} - 2T_{50kPa}$ |

Table 14-7. Interpretation of older thunderstorm stability indices. Notation: CB = thunderstorm.

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Full Name</th>
<th>Values & Interpretation</th>
</tr>
</thead>
</table>
| K or KI | K Index | < 20 CB unlikely
20 to 30 Chance of scattered CB
30 to 40 Many CB; heavy rain
> 40 CB; very heavy rain |
| LI | Lifted Index | > 2 CB unlikely
0 to 2 CB only if strong trigger
3 to 0 Weak CB possible
6 to -3 Moderate CB probable
< -6 Severe CB likely |
| SSI | Sho-walter Stability Index | > 3 CB unlikely
1 to 3 Weak showers possible
3 to 0 Severe CB possible
6 to -4 Severe CB probable
< -6 Severe CB likely |
| SWEAT | Severe Weather Threat Index | < 300 CB unlikely
300-400 Chance isolated severe CB
400-500 Severe CB likely; & tornado possible
500-800 Severe CB & tornado likely |
| TT | Total Totals Index | < 45 CB unlikely
45 to 50 Scattered CB possible
50 to 55 CB likely; some severe
55 to 60 Severe CB likely; tornado |

Table 14-8. Approximate relationship between storm indices and storm intensity.

<table>
<thead>
<tr>
<th>Index</th>
<th>No CB</th>
<th>Ordinary CB</th>
<th>Marginal Supercell</th>
<th>Supercell, no tornado</th>
<th>Supercell & EF0-EF1</th>
<th>Supercell & EF2-EF5</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRN</td>
<td>150</td>
<td>70</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>m2/s2</td>
</tr>
<tr>
<td>BRN Shear</td>
<td>7</td>
<td>30</td>
<td>45</td>
<td>55</td>
<td>70</td>
<td></td>
<td>J/kg</td>
</tr>
<tr>
<td>CAPE (ML)</td>
<td>950</td>
<td>2205</td>
<td>1460</td>
<td>1835</td>
<td>2152</td>
<td></td>
<td>J/kg</td>
</tr>
<tr>
<td>CAPE (MU)</td>
<td>1750</td>
<td>1500</td>
<td>1950</td>
<td>2150</td>
<td>2850</td>
<td></td>
<td>J/kg</td>
</tr>
<tr>
<td>CIN</td>
<td>18</td>
<td>35</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>EHI (ML 0-1km)</td>
<td>0.1</td>
<td>0.5</td>
<td>0.8</td>
<td>1.4</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>LCL (ML)</td>
<td>1.75</td>
<td>1.47</td>
<td>1.34</td>
<td>1.18</td>
<td>1.00</td>
<td></td>
<td>km</td>
</tr>
<tr>
<td>LI</td>
<td>+1.5</td>
<td>-1.5</td>
<td>-4.5</td>
<td>-7.5</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>SCP</td>
<td>0</td>
<td>1.1</td>
<td>3.5</td>
<td>5.9</td>
<td>11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear (0-6km)</td>
<td>8</td>
<td>15</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
<td>m/s</td>
</tr>
<tr>
<td>SRH (0-1km)</td>
<td>20</td>
<td>70</td>
<td>115</td>
<td>155</td>
<td>231</td>
<td></td>
<td>m2/s2</td>
</tr>
<tr>
<td>SRH-effective</td>
<td>16</td>
<td>60</td>
<td>117</td>
<td>166</td>
<td>239</td>
<td></td>
<td>m2/s2</td>
</tr>
<tr>
<td>SSI</td>
<td>+4.5</td>
<td>+1.5</td>
<td>-4.5</td>
<td>-7.5</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>STP</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.9</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEAT</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>42</td>
<td>47</td>
<td>52</td>
<td>57</td>
<td>62</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>
Storm Case Study

Throughout this chapter and the next chapter are examples of weather maps for the severe storm event of 24 May 2006. These maps presented indices and trigger locations that could be used to help forecast severe weather. The weather maps were created by the US National Weather Service and served over the internet in real time on that day, giving up-to-date weather information to meteorologists, public officials, storm chasers, radio and TV stations, and the general public.

On that day, warm humid air from the Gulf of Mexico was streaming northward into the Mississippi Valley, reaching as far north as the Midwest USA. This provided fuel in the boundary layer, ahead of a cold front that was located from Illinois to Texas. An additional trigger was a west-Texas dry line that merged with the cold front. Cold dry air aloft from the west contributed to the instability of the soundings, and wind shear near Illinois enabled supercells to form.

The US Storm Prediction Center anticipated that severe weather would form that afternoon, and issued a series of watches and warnings that successfully covered the severe weather area. Most of the severe weather was expected to occur that day in the Midwest, although there was also a chance of storms in Texas near the dry line.

Fig. 14.78 shows a radar snapshot of the squall line that moved across the Midwest USA at 22 UTC (5 PM local daylight time). Fig. 14.79 shows a map of the resulting storm reports, which included:

- 6 tornado reports
- 97 damaging wind reports & 1 wind >32 m/s
- 84 hail reports + 3 reports of hail > 5 cm diam.

A total of 187 reports of severe weather were compiled for this storm case. This was a typical severe weather day.

Now that we are finished with the sections on the formation conditions and characteristics of thunderstorms we will proceed into the next chapter on Thunderstorm Hazards. These include heavy rain, hail, downbursts of wind, gust fronts, lightning, thunder, and tornadoes.

SUMMARY

Thunderstorms (cumulonimbus) are violent convective clouds that fill the depth of the troposphere. Thunderstorms look like mushrooms or anvils. The most violent thunderstorms are called supercells, in which the whole thunderstorm rotates as a...
mesocyclone. Other storm organizations include air-mass thunderstorms, multicell storms, orographic storms, mesoscale convective systems, squall lines, and bow echoes.

Four conditions are needed to form thunderstorms: high humidity; instability; wind shear, and a trigger to cause lifting. Thermodynamic diagrams and hodographs are used to determine the moisture availability, static stability and shear. A variety of stability and shear indices have been devised to aid thunderstorm forecasting. Trigger mechanisms are often mountains or airmass boundaries such as synoptic fronts, dry lines, sea-breeze fronts, and gust fronts, such as determined from weather radar, satellite, and surface weather analyses.

Thunderstorms are like gigantic engines that convert fuel (moist air) into motion and precipitation via the process of condensation and latent heat release. Once triggered, thunderstorms can often sustain themselves within a favorable environment for 15 minutes to several hours. They are most frequent in the late afternoon and evening over land. The explosive growth of thunderstorms, relatively small diameters, and sensitivity to initial conditions make it difficult to forecast thunderstorms.

Threads

Thunderstorms form in air that has conditionally unstable static stability (Chapter 5), with tops rising to the tropopause (Chapter 1). Solar radiation (Chapter 2) during the day adds heat (Chapter 3) to the boundary layer (Chapter 18), and evaporates water (Chapter 4) from the surface. This warm, humid boundary-layer air serves as the fuel for thunderstorms, which can be triggered by fronts from cyclones (Chapter 13), and by drylines (Chapter 12). Once formed, thunderstorms are steered by mid- and upper-tropospheric winds that make up the jet stream (Chapter 11) in the global circulation.

With fine-enough grid spacing, thunderstorm clouds and winds can be predicted numerically (Chapter 20) by computer. Hurricane (Chapter 16) spiral bands and eye wall consist of lines of thunderstorms. Thunderstorms can transport air pollutants (Chapter 19) vertically from the boundary layer and deposit them higher in the troposphere and lower stratosphere, and thunderstorm rain can scrub out some of the pollutants. Changes in global patterns of aerosol concentrations might alter thunderstorm formation. Climate change (Chapter 21) might alter the atmospheric stability, thereby changing the frequency of thunderstorms.

EXERCISES

Numerical Problems

N1. Plot the pressure difference \(\Delta P = P_{MCS} - P_{std. atm} \) vs. height within a mesoscale convective system (MCS), given the temperature differences \(\Delta T = T_{MCS} - T_{std.atm} \) below. Also plot the given temperature difference vs. height. The surface pressure \(P_{MCS sfc} \) under the MCS is also given below. For the standard atmosphere (std. atm.), assume the surface pressure is 101.325 kPa. Use a vertical resolution of \(\Delta z = 250 \) m.

<table>
<thead>
<tr>
<th>Exercise Part</th>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta T) (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0 \leq z < 2) (km)</td>
<td>–10</td>
<td>–8</td>
<td>–13</td>
<td>–15</td>
</tr>
<tr>
<td>(2 \leq z < 4) (km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(4 \leq z < 9) (km)</td>
<td>+6.5</td>
<td>+5</td>
<td>+10</td>
<td>+9</td>
</tr>
<tr>
<td>(9 \leq z < 11) (km)</td>
<td>–10</td>
<td>–7.7</td>
<td>–15</td>
<td>–13</td>
</tr>
<tr>
<td>(11 \leq z \leq 12) (km)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_{MCS sfc}) (kPa)</td>
<td>101.8</td>
<td>101.7</td>
<td>101.9</td>
<td>102.05</td>
</tr>
</tbody>
</table>

N2. Using your answer for \(\Delta P \) at 2 km altitude from the previous exercise, calculate the rear-inflow jet (RIJ) speed into the mid-tropospheric meso-low within an MCS. Assume the RIJ is geostrophic, for a latitude of 40°N. Assume the MCS has a horizontal radius (km) of:

a. 80 b. 100 c. 120 d. 140 e. 160

f. 180 g. 200 h. 220 i. 240 j. 260

N3. Given the following sounding. Plot it on a thermo diagram (use a skew-T, unless your instructor specifies a different one). Find the mixed-layer height, tropopause height, lifting condensation level, level of free convection, and equilibrium level, for an air parcel rising from the surface. Use a surface \(P = 100 \) kPa dew-point temperature (°C) of:

a. 22 b. 21 c. 20 d. 19 e. 18 f. 17 g. 16

h. 15 i. 14 j. 13 k. 12 l. 11 m. 10 n. 9

o. 8 p. 7 q. 6 r. 5 s. 4

Sounding:

<table>
<thead>
<tr>
<th>P (kPa)</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>–45</td>
</tr>
<tr>
<td>25</td>
<td>–45</td>
</tr>
<tr>
<td>30</td>
<td>–40</td>
</tr>
<tr>
<td>40</td>
<td>–30</td>
</tr>
<tr>
<td>50</td>
<td>–19</td>
</tr>
<tr>
<td>70</td>
<td>+5</td>
</tr>
<tr>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>88</td>
<td>21</td>
</tr>
<tr>
<td>92</td>
<td>21</td>
</tr>
<tr>
<td>98</td>
<td>26</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>
N4. Using the result from the previous exercise, forecast the intensity (i.e., category) of thunderstorm and possibly tornadoes that are likely, given the lifting condensation level you found.

N5. Find the median and interquartile range for the following data sets:
 a. 6 3 9 7 2 1 6 0 8
 b. 8 5 9 8 1 1 3 2 6 8 4 9 7 0
 c. 3 5 2 7 9 4 7 7
 d. 9 6 8 0 9 1 3 2 9 7 8
 e. 5 8 2 2 1 6 4 3 7 9
 f. 4 5 6 7 8 9 0 1 2 3
 g. 1 2 3 4 5 6 7 8 9
 h. 9 8 7 6 5 4 3 2 1
 i. 0 0 0 0 3 6 8 3 4 8 9 0 6

N6. Find the mean and standard deviation for the data set from the previous exercise.

N7. For the sounding from exercise N3, find the value of surface-based CAPE, using:
 (1) the height \((z)\) tiling method.
 (2) the pressure \((P)\) tiling method.
Assume \(T_v = T\). Also, on the plotted sounding, shade or color the CAPE area.

N8. Start with the sounding from exercise N3. Assume that the forecast high temperature for the day is 2°C warmer than the surface temperature from the sounding. Find the value of surface-based CAPE. Assume \(T_v = T\).

N9. For the sounding from exercise N3, find the value of mean-layer CAPE. Assume \(T_v = T\). For the air parcel that you conceptually lift, assume its initial temperature equals the average temperature in the bottom 1 km of the sounding, and its initial dew-point is the average dew-point temperature in the bottom 1 km of the sounding (assuming that the mixing ratio is constant with height in this 1 km mixed layer).

N10. Using the result from the previous exercise, forecast the intensity of thunderstorms and possibly tornadoes that are likely, and indicate the uncertainty (i.e., the range of possible storm intensities) in this forecast, given the MLCAPE you found.

N11. Forecast the thunderstorm and/or tornado intensity, and indicate the uncertainty (i.e., the range of possible storm intensities) in this forecast, given a ML CAPE (J/kg) value of:
 a. 1000 b. 1250 c. 1500 d. 1750 e. 2000
 f. 2250 g. 2500 h. 2750 i. 3000 j. 3250
 k. 3500 l. 3750 m. 4000 n. 4250 n. 4500

N12. Given the sounding from exercise N3, except with a surface temperature of \(T = 24°C\) at \(P = 100\) kPa. Assume the surface dew point from exercise N3 defines a mixing ratio that is uniform in the bottom 2 layers of the sounding.
Find the most unstable CAPE considering air parcels that start their rise from just the bottom two levels of the sounding (i.e., for air parcels that start at \(P = 100\) and 98 kPa). Assume \(T_v = T\).

N13. Using the result from the previous exercise, forecast the intensity (i.e., category) of thunderstorm and possibly tornadoes that are likely, given the MUCAPE you found, and indicate the uncertainty (i.e., the range of possible storm intensities) in this forecast.

N14. Forecast the thunderstorm and/or tornado intensity, and indicate the uncertainty (i.e., the range of possible storm intensities) in this forecast, given a MUCAPE (J/kg) value of:
 a. 1000 b. 1250 c. 1500 d. 1750 e. 2000
 f. 2250 g. 2500 h. 2750 i. 3000 j. 3250
 k. 3500 l. 3750 m. 4000 n. 4250 n. 4500

N15. Using the SBCAPE you found in exercise N7, and the sounding and key altitudes from exercise N3, find the value of normalized CAPE, indicate of the CAPE is tall thin or short wide, and suggest whether thunderstorms would favor heavy precipitation or tornadoes.

N16. Estimate the max likely updraft speed in a thunderstorm, given a SB CAPE (J/kg) value of:
 a. 1000 b. 1250 c. 1500 d. 1750 e. 2000
 f. 2250 g. 2500 h. 2750 i. 3000 j. 3250
 k. 3500 l. 3750 m. 4000 n. 500 n. 750

N17. Given a wind of \((U, V) = (10, 5)\) m/s at \(z = 1\) km. Find the wind difference magnitude, shear direction, and shear magnitude between \(z = 1\) and 2 km, given winds at 2 km of \((U, V)\) (m/s) of:
 a. (20, –3) b. (25, –15) c. (30, 0) d. (25, 5)
 e. (10, 15) f. (5, 20) g. (–15, 15) h. (–5, 0)
 i. (–20, –30) j. (–5, 8) k. (–10, –10) l. (0, 0)

N18. Plot the following wind sounding data on a hodograph. (Make copies of the blank hodograph from Fig. 14.51 to use for all the hodograph exercises.)
<table>
<thead>
<tr>
<th>Exercise</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>z (km)</td>
<td>In each cell: wind direction (°), speed (m/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>calm</td>
<td>100, 5</td>
<td>120, 8</td>
<td>150, 10</td>
</tr>
<tr>
<td>1</td>
<td>120, 5</td>
<td>120, 10</td>
<td>150, 5</td>
<td>180, 5</td>
</tr>
<tr>
<td>2</td>
<td>150, 8</td>
<td>160, 15</td>
<td>210, 5</td>
<td>240, 5</td>
</tr>
<tr>
<td>3</td>
<td>180, 12</td>
<td>220, 25</td>
<td>240, 10</td>
<td>260, 10</td>
</tr>
<tr>
<td>4</td>
<td>210, 15</td>
<td>240, 30</td>
<td>250, 15</td>
<td>260, 20</td>
</tr>
<tr>
<td>5</td>
<td>240, 25</td>
<td>250, 33</td>
<td>258, 25</td>
<td>250, 30</td>
</tr>
<tr>
<td>6</td>
<td>260, 40</td>
<td>250, 33</td>
<td>260, 35</td>
<td>240, 40</td>
</tr>
</tbody>
</table>

N19. On your plotted hodograph from the previous exercise, draw wind vectors from the origin to each wind data point. Discuss the relationship between these wind vectors and the original hodograph that connected just the tips of all the vectors.

N20. Using your hodograph plot from exercise N18, use the hodograph (not equations) to find the \((U, V)\) components (m/s) at each altitude in the sounding.

N21. Graphically, using your hodograph plot from exercise N18, plot the local shear vector (m/s) across the \(z = 2\) to 3 km layer.

N22. Same as the previous exercise, except solve for the local shear vector (m/s) mathematically.

N23. Graphically, using your hodograph plot from exercise N18, plot the 0 to 6 km mean shear vector (m/s).

N24. Same as exercise N23, except solve for the 0 to 6 km mean shear vector (m/s) mathematically.

N25. Using your hodograph plot from exercise N18, graphically find the 0 to 6 km total shear magnitude (m/s). Also, predict the likely thunderstorm and possibly tornado intensity based on this parameter, and indicate the uncertainty (i.e., the range of possible storm intensities) in this forecast.

N26(§). Same as the previous exercise, except solve for the 0 to 6 km total shear magnitude (m/s) mathematically. Also, predict the likely thunderstorm and possibly tornado intensity based on this parameter, and indicate the uncertainty (i.e., the range of possible storm intensities) in this forecast.

N27. Predict the thunderstorm and possibly tornado intensity based on the following total shear magnitude (m/s) across the 0 to 6 km layer, and indicate the uncertainty (i.e., the range of possible storm intensities) in this forecast.

N28. Graphically, using your hodograph plot from exercise N18, find the mean environmental wind direction (°) and speed (m/s), for normal storm motion.

N29(§). Same as the previous exercise, except solve mathematically for the mean environmental wind direction (°) and speed (m/s), for normal storm motion.

N30. Given the hodograph shape from exercise N18, indicate whether right or left-moving supercells would dominate. Also, starting with the “normal storm motion” from exercise N28 (based on hodograph from exercise N18), use the Internal Dynamics method on your hodograph to graphically estimate the movement (i.e., direction and speed) of

1. Right-moving supercell thunderstorms
2. Left-moving supercell thunderstorms

N31. Using your result from exercise N28 for normal storm motion (based on exercise N18), and assuming \(\text{CAPE} = 2750 \text{ J/kg}\):

1. calculate the shear \(\Delta M\) (m/s) between the mean (0-6 km) environment winds and the average winds at \(z = 0.5\) km.
2. calculate the bulk Richardson number shear (BRN shear) in \(\text{m}^2/\text{s}^2\).
3. calculate the bulk Richardson number (BRN).
4. forecast the thunderstorm likelihood, thunderstorm type, and tornado intensity.

N32. Given the following value of bulk Richardson number, determine the likely thunderstorm type:

<table>
<thead>
<tr>
<th>a. 7</th>
<th>b. 12</th>
<th>c. 17</th>
<th>d. 22</th>
<th>e. 27</th>
<th>f. 32</th>
<th>g. 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>h. 42</td>
<td>i. 47</td>
<td>j. 52</td>
<td>k. 57</td>
<td>l. 62</td>
<td>m. 67</td>
<td>n. 72</td>
</tr>
</tbody>
</table>

N33. Given the following value of bulk Richardson number (BRN) \(\text{shear} (\text{m}^2/\text{s}^2)\), determine the likely thunderstorm and tornado intensity:

<table>
<thead>
<tr>
<th>a. 5</th>
<th>b. 10</th>
<th>c. 20</th>
<th>d. 30</th>
<th>e. 40</th>
<th>f. 45</th>
<th>g. 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>h. 55</td>
<td>i. 60</td>
<td>j. 65</td>
<td>k. 70</td>
<td>l. 75</td>
<td>m. 80</td>
<td>n. 90</td>
</tr>
</tbody>
</table>

N34. Given the sounding from exercise N3, calculate the value of the convective inhibition (CIN) in \(\text{J/kg}\) for an air parcel lifted from the surface. Assume \(T_v = T\). Also, shade or color the CIN area on the plotted sounding.

N35. Given your answer to the previous exercise, interpret the strength of the cap and how it affects thunderstorm triggering.
N36. Calculate the mean-layer CIN using the sounding from exercise N3. Temperatures in the bottom 10 kPa of atmosphere are as plotted from the sounding, and assume that the mixing ratio is constant over this layer and equal to the mixing ratio that corresponds to the surface dew point.

N37. For the sounding from exercise N3:
1. To what altitude must a surface air parcel be lifted by an air mass boundary or a mountain, to trigger thunderstorms?
2. To what temperature must the surface air be heated in order to convectively trigger thunderstorms (i.e., find the convective temperature), and what is the value of the convective condensation level?

N38. What values of K index, Lifted Index, Showalter Stability Index, SWEAT Index, and Total-totals Index would you anticipate for the following intensity of thunderstorm (CB)?
- a. no CB
- b. ordinary CB
- c. marginal supercell
- d. supercell with no tornado
- e. supercell with EF0 - EF1 tornado
- f. supercell with EF2 - EF5 tornado

N39. What value of the Bulk Richardson Number, BRN-Shear, ML CAPE, MU CAPE, CIN, Energy Helicity Index, Lifting Condensation Level, Supercell Composite Parameter, 0-6 km Shear, Storm-Relative Helicity, effective Storm-Relative Helicity, and Significant Tornado Parameter would you anticipate for the following intensity of thunderstorm (CB)?
- a. no CB
- b. ordinary CB
- c. marginal supercell
- d. supercell with no tornado
- e. supercell with EF0 - EF1 tornado
- f. supercell with EF2 - EF5 tornado

Understanding & Critical Evaluation
U1. Identify as many thunderstorm features as you can, from the photo below. (Image “wea00106” courtesy of NOAA photo library.

U2. Why does a thunderstorm have a flat (anvil or mushroom) top, instead of a rounded top such as cumulus congestus clouds? (Ignore the overshooting dome for this question.)

U3. Almost all clouds associated with thunderstorms are caused by the lifting of air. List each of these clouds, and give their lifting mechanisms.

U4. Circle the stations in the weather map below that are reporting thunderstorms. (Image courtesy of the Storm Prediction Center, NWS, NOAA.)

U5. Consider Figs. 14.4a & b. If you were a storm chaser, and were off to the side of the storm as indicated below, sketch which components of the storm and associated clouds would be visible (i.e., could be seen if you had taken a photo). Label the key cloud features in your sketch. Assume you are in the following direction from the storm:
- a. northeast
- b. southwest
- c. northwest
For example, Fig. 14.4a shows the sketch for the view from southeast of the storm.
U6. Consider Fig. 14.4b. If a Doppler radar were located near the words in that figure given below, then sketch the resulting color patterns on the Doppler PPI wind display for near-surface winds.
 e. “Gust Front” f. “Beaver Tail”
 g. “Outflow Boundary Layer Winds” h. “Inflow Boundary Layer Winds”
 i. “Main Updraft” j. “Storm Movement”
 k. “Forward Flank Downdraft”

U7. Can a thunderstorm exist without one or more cells? Explain.

U8. For each thunderstorm type or organization, explain which triggered mechanism(s) would have most likely initiated it.

U9. For each thunderstorm type or organization, explain how the phenomenon would differ if there had been no wind shear.

U10. What is a derecho, and what causes it? Also, if strong straight-line winds can cause damage similar to that from a weak tornado, what are all the ways that you could use to determine (after the fact) if a damaged building was caused by a tornado or derecho?

U11. Summarize the different types of supercells, and list their characteristics and differences. Explain what factors cause a supercell to be of a specific type, and where you would most likely find it.

U12. In a thunderstorm, there is often one or more updrafts interspersed with one or more downdrafts. Namely, up- and down-drafts are often adjacent. Do these adjacent up- and down-drafts interfere or support each other? Explain.

U13. List the 4 conditions needed for thunderstorm formation. Then, consider a case where one of the conditions is missing, and explain why thunderstorms would be unlikely, and what would form instead (if anything). Do this for each of the 4 conditions separately.

U14. If thunderstorms normally occur at your town, explain how the 4 conditions needed for thunderstorm formation are satisfied for your region. Namely, where does the humid air usually come from, what conditions contribute to shear, what trigger mechanisms dominate in your region, etc.

U15. If thunderstorms are rare in your region, identify which one or more of the 4 conditions for thunderstorms is NOT satisfied, and also discuss how the other conditions are satisfied for your region.

U16. If the cap inhibits thermals from rising, why is it considered a good thing for thunderstorms?

U17. If your national weather service were to make only one upper-air (rawinsonde) sounding per day, when would you want it to happen, in order to be most useful for your thunderstorm forecasts?

U18. In the section on convective conditions and key altitudes, one thermo diagram was presented with the LCL above \(z_i \) (the mixed layer top), while the solved example showed a different situation with the LCL below \(z_i \). Both are frequently observed, and both can be associated with thunderstorms. Is it possible to have an environment favorable for thunderstorms if:
 a. \(z_i \) is above the LFC
 b. \(z_i \) is above the tropopause
 c. LCL is at the Earth’s surface
 d. LFC is at the Earth’s surface
 e. LCL is above the LFC

U19. The tops of thunderstorms are often near the tropopause.
 a. Why is that?
 b. Why are thunderstorm tops usually NOT exactly at the tropopause.

U20. Based on tropopause info from earlier chapters, how would you expect thunderstorm depth to vary with:
 a. latitude
 b. season

U21. Environments favorable for thunderstorms are said to be “unstable” or “convective”. Implicit in such a statement is that we are talking about nonlocal instabilities. For the sounding in Fig. 14.25, use techniques you learned in earlier chapters to determine the layer stability of each of the layers in the environmental sounding. Contrast this with the concept of nonlocal conditional instability, and discuss.

U22. By eye, estimate the temperature and dew point values at each of the data points plotted in Fig. 14.24. Then use this same data to re-plot the sounding on your own:
 a. skew-T diagram
 b. tephigram
 c. Stüve diagram
 d. theta-z diagram.
 e. emagram
After you have produced this plot, then determine graphically the locations (i.e., pressures) of \(z_p \), LCL, LPC, EL, and the tropopause. Compare these values with the locations from Fig. 14.25, and discuss any differences.

U23. Same as the previous exercise, but for the sounding given in the solved example after Fig. 14.26.

U24. Fig. 14.22 shows schematically the information that is in Fig. 14.25. Explain how these two figures relate to each other.

U25. Consider Fig. 14.22. Why is the following environmental condition conducive to severe thunderstorms?
 a. cold air near the top of the troposphere
 b. dry air near the middle of the troposphere
 c. a stable cap at the top of the boundary layer
 d. a warm humid boundary layer
 e. wind shear
 f. strong winds aloft.
(Hint, consider info from the whole chapter, not just the section on convective conditions.)

U26. Fig. 14.26 shows a nonlocally conditionally unstable environment up to the EL, yet the sounding in the top of that region (i.e., between the tropopause and the EL) is locally statically stable. Explain how that region can be both stable and unstable at the same time.

U27. How much energy does an airmass thunderstorm release (express your answer in units of megatons of TNT equivalent)? Assume all the water vapor condenses. Approximate the cloud by a cylinder of radius 5 km, with base at \(P = 90 \) kPa and top at \(P = 30 \) kPa. The ABL air has depth 1 km, and dew-point temperature (°C) of:
 a. 17 b. 16 c. 15 d. 14 e. 13 f. 12 g. 11
 h. 18 i. 19 j. 20 k. 22 l. 23 m. 24 n. 25

U28. Why do thunderstorms have (nearly) flat bases? (Hint, what determines the height of cloud base in a convective cloud?)

U29. Compare the different ways to present information about “high humidity in the boundary layer”, such as the different weather maps shown in that section. What are the advantages and disadvantages of each?

Normally, meteorologists need use only one of the humidity metrics to get the info they need on moisture availability. Which one moisture variable would you recommend using, and why?

U30. Look up the definitions of the residual layer and nocturnal stable layer from the atmospheric boundary layer chapter. Consider atmospheric conditions (temperature, humidity) in the residual layer, relative to the conditions in the mixed layer from the afternoon before. Use this information to explain why strong thunderstorms are possible at night, even after the near-surface air temperature has cooled significantly.

U31. Often statistical data is presented on a box-and-whisker diagram, such as sketched below.

For example, the data such as in Fig. 14.33 is often presented in the journal literature as shown below (where the max and min values are not shown for this illustration, but are often given in the literature).

Create box-and-whisker diagrams, using data in this textbook for:
 a. ML CAPE
U32. Look at a blank thermo diagram. At colder temperatures, the moist adiabats don’t deviate far from the dry adiabats. Use this characteristic to help explain why CAPE is smaller for colder environments, and thus why strong thunderstorms are less likely.

U33. Thunderstorms are much more prevalent in the tropics than near the poles. Use all the info from this chapter to help explain this. Also relate it to info in other chapters, such as: radiation, global circulation, boundary layers etc.

U34. If you were given a file of ASCII text data of temperature and dew point vs. height in a sounding, show schematically (i.e., with a flow chart) a computer program that you could write to compute the CAPE. Don’t actually write the program, just show the main steps, procedures, and/or data structures that you would use. (Hint: the method in Fig. 14.35 might be easier than the method in Fig. 14.36, especially for very small ∆z.)
 a. Do this based on eq. (14.2) [gives an approximate answer]
 b. Do this based on eq. (14.1) [this is more accurate]

U35. Describe all the factors in a plotted sounding that could contribute to larger CAPE values.

U36. Compare and contrast the different parcel-origin methods for computing CAPE (SB, forecast SB, ML, and MU). Recommend which methods would be best for different situations.

U37. Derive eq. (14.5) from eq. (14.4) by using the hypsometric equation. Show your steps.

U38. Critically analyze eq. (14.6). Discuss the behavior of the equation as the height difference between the LFC and EL approaches zero.

U39. a. Can thunderstorms fully utilize all the CAPE?
 b. What are limitations on use of the CAPE equations?
 c. Why might vertical velocity in thunderstorms be not as great as that given by eq. (14.8)?

U40. a. Is wind shear a vector or scalar quantity? Why?
 b. Is it possible to have non-zero shear between two altitudes where the winds have the same speed? Explain.

U41. Suppose that Fig. 14.47 gives the winds relative to the ground. Redraw that figure showing the storm-relative winds instead. Also, explain why storm-relative winds are important for thunderstorm dynamics.

U42. On a hodograph, why is it important to list the altitude of the winds next to each wind data point?

U43. Draw a hodograph showing an environment where winds ____ with height. a. veer b. back

U44. On blank hodographs such as Fig. 14.51, why are the printed wind directions 180° out of phase with the normal compass directions?

U45. In Fig. 14.52, notice that the dark vertical and horizontal lines don’t look straight. This is an optical illusion caused by the background circles of the hodograph. In fact, they are straight, as you can see by tilting the page so you are looking almost edge-on, sighting down each line. Based in this info, discuss why you should never draw the vertical or horizontal lines by eye, when trying to determine U and V components of wind.

U46. Three different types (i.e., ways of measuring) of shear vectors are shown in Fig. 14.53. Explain and contrast them.

U47. Create a table listing all the different types of shear that are discussed in this chapter, and add a column to the table that indicates what thunderstorm characteristics can be estimated from each shear type.

U48. A thunderstorm index or parameter is useful only if it can discriminate between different storm types or intensities. Using Fig. 14.56, critically evaluate the utility of TSM in estimating storm and tornado intensity.

U49. Explain the difference between the mean shear vector (as in Fig. 14.53) and the mean wind vector (as in Fig. 14.58), and discuss their significance.

U50. In Fig. 14.59, the mean wind is estimated as the center of mass of the shaded area. Is the actual mean wind exactly at the center of mass of the shaded area, or only close? [Hint, to help think about this
to exist. These seems contradictory. Explain how it might be possible.

U58. Fig. 14.75 shows a way to estimate T_{needed} for convection, given T and T_d from a sounding earlier in the day. Although this is an easy method, it has a major flaw. Critically discuss this method. (Hint: what was assumed in order to use this method?)

U59. Step back from the details of thunderstorms, and look at the big picture. After the thunderstorm has occurred, some precipitation has fallen out, and there has been net heating of the air. Explain how these two processes affect the overall stability and entropy (in the sense of randomness) in the troposphere.

U60. Re-draw Fig. 14.76, but for a winter case over mid-latitude land where nocturnal cooling is longer duration than daytime heating, and for which the total accumulated heating during the day (because the sun is lower in the sky) is less than the accumulated cooling at night. Use you resulting figure to discuss the likelihood of thunderstorms in winter.

U61. Recall from other chapters that the ocean has a much large heat capacity than land, and thus has less temperature change during day and night. Re-draw Fig. 14.76 for a location at a tropical ocean, and discuss how the resulting figure relates to thunderstorm occurrence there.

U62. Some of the older stability indices in Table 14-6 are very similar in basis to some of the newer indices in Table 14-5, as described throughout this chapter. The main differences are often that the old indices consider meteorological conditions at just a few levels, whereas the newer indices integrate (sum) over many levels. Create a table matching as many old indices to as many new indices as possible.

U63. Based on what you learned so far, which subsets of indices from Table 14-8 would you prefer to utilize in your own storm forecasting efforts, to forecast:

a. hail
b. heavy rain
c. lots of lightning
d. tornadoes
e. strong straight-line winds
f. downbursts

Justify your choices.
Web-Enhanced Questions

W1. Search the web for (and print the best examples of) photographs of:
 a. airmass thunderstorms
 b. multicell thunderstorms
 c. orographic thunderstorms
 d. squall-line thunderstorms
 e. supercell thunderstorms
 (i) classic
 (ii) low precipitation
 (iii) high precipitation
 f. mammatus clouds
 g. wall clouds
 h. beaver tail clouds
 i. flanking lines
 j. tail cloud

(Hint: search on “storm stock images photographs”.)
Discuss the features of your resulting image(s) with respect to information you learned in this chapter.

W2. Search the web for (and print the best examples of) radar reflectivity images of:
 a. airmass thunderstorms
 b. multicell thunderstorms
 c. squall line thunderstorms
 d. mesoscale convective systems
 e. bow echoes

Discuss the features of your resulting image(s) with respect to information you learned in this chapter.

W3. Same as the previous question, but for radar Doppler velocity images.

W4. Search the web for (and print the best examples of) satellite images of:
 a. airmass thunderstorms
 b. multicell thunderstorms
 c. squall line thunderstorms
 d. mesoscale convective systems
 e. dry lines

Do this for visible, IR, and water vapor channels.
Discuss the features of your resulting image(s) with respect to information you learned in this chapter.

W5. Search the web for plotted soundings. In particular, find web sites that also list the values of key stability indices and key altitudes along with the sounding. From this site, get a sounding for a location in the pre-storm environment toward which thunderstorms are moving. Print the sounding and the stability indices, and use the sounding and indices to discuss the likelihood and severity of thunderstorms. (Hint: To find a region where thunderstorms are likely, first search the web for a weather radar image showing where the thunderstorms are. Alternately, find via web search the regions where the weather service has issued thunderstorm watches.)

W6. Search the web for plotted hodographs. (Hint: Some sites plot hodographs along with plotted soundings, while others have separate hodograph plots.) Find a web site that also shows key wind-shear parameters associated with the hodograph, and perhaps also gives expected storm motion and/or storm-relative winds. Do this for a location into which thunderstorms are moving (see hint from previous exercise). Print and discuss the results.

W7. Search the web for (and print the best examples of) real-time weather-map analyses or forecasts (from numerical models) showing plotted fields of the four conditions needed for convective storm formation. (Hint, you might find these 4 conditions on 4 separate maps, so you should print and discuss all 4 maps.) Discuss.

W8. Search the web for maps showing real-time thunderstorm and tornado watches. Print and discuss the results. If you also did the previous exercise, then discuss the amount of agreement of the watch areas with the regions that satisfy the conditions for thunderstorms.

W9. Search the web for tutorials on thunderstorms. (Hints: some elementary tutorials are at the “university of Illinois online meteorology guide” site. More advanced tutorials are at the “ucar meted” site. Much miscellaneous info is at the “wikipedia” site.) After reading the tutorial, print and discuss one new aspect of thunderstorms that wasn’t in this textbook, but which you find interesting and/or important.

W10. Search the web for newer thunderstorm indices that are not already discussed in this chapter. Summarize and print key information (e.g., definitions for, equations governing, advantages compared to older indices) for one of these new indices, and if possible show a real-time map of the values of this index.

W11. Search the web for a recent sounding close to your present location. Get and print this sounding data in text form. Then manually plot the temperatures and dew points on a thermo diagram, and plot the winds on a hodograph. Manually calculate a few key thunderstorm indices, and make your own forecast about whether thunderstorms are likely.

W12. Same as the previous exercise, but for a sounding just ahead of a severe thunderstorm location.
W13. Search the web for a “storm spotter glossary”, and list 10 new thunderstorm-related terms and their definitions that were not discussed in this chapter, but which you feel are important. Justify your choice of terms.

W14. Search the web for (and print the best example of) new research that is being done on thunderstorms or any of the topics discussed in this chapter.

W15. Search the web for (and print and discuss) 4 components that storm spotters look for, to gauge the type of thunderstorm and its development.

W16. Search the web for explanations of the difference between “storm chasers” and “storm spotters”.

W17. Search the web to find which agency or agencies within your own country are responsible for making the national forecasts of severe thunderstorms. Print their web address, along with basic information about their mission and location. Also, find and print a list of qualifications they want in new meteorologists that they hire.

W18. From what web site can you get current weather watches and warnings for thunderstorms and tornadoes, for:

a. USA
b. Canada
c. Europe
d. Japan
e. China
f. Australia
g. Other country specified by your instructor?

Synthesis Questions

S1. Suppose that thunderstorms were typically 30 km deep. How would the weather and general circulation differ, if at all?

S2. If there were no thunderstorms on Earth, how would the global circulation be different, if at all?

S3. Draw a supercell diagram similar to Fig. 14.4b, but for mid-latitudes in the southern hemisphere.

S4. Why do thunderstorms have flat, anvil-shaped tops, while cumulus congestus do not? Both reach their equilibrium level.

S5. Suppose that N. Hemisphere mid-latitude thunderstorms exist in an environment that usually has the same lower-tropospheric geographic arrangement of heat and humidity relative to the storm as our real atmosphere, but for which the winds aloft are from the east. How would thunderstorms differ, if at all?

S7. In multicell storms, new cells usually form on the south side of the storm complex, closest to the supply of warm humid boundary-layer air. What changes in the environment or the thunderstorm might allow new cells to form on the north side of the storm? Assume N. Hemisphere.

S8. If orographic thunderstorms need the mountain-triggered lifting to be initiated, why can the storms persist after being blown away from the mountain?

S9. What if there were no mountain ranges on Earth? How would thunderstorm frequency, location, and characteristics be different, if at all? How would it change the local weather at your location, if at all?

S10. Suppose a 100 km diameter circular region of warm humid boundary layer air existed, surrounding by much colder air. If the cold air all around the circle started advancing toward the center of the circle and thunderstorms were triggered along this circular cold front, then describe the evolution of the thunderstorms.

S11. In Fig. 14.14 showing a vertical slice through a mesoscale convective system, the arrows show winds being drawn in toward low pressure in the mid troposphere, and other arrows blowing outward from high-pressure in the upper troposphere. Explain how this could happen, because normally we would expect winds to circulate around highs and lows due to Coriolis force, and not to converge or diverge (assuming no frictional drag because we are not in the boundary layer).

S12. Could a classic supercell change into a low-precipitation or a high-precipitation supercell? Explain what factors might cause this, and how the storm would evolve.

S13. Suppose there was never a cap on the atmospheric boundary layer. Explain how thunderstorms would differ from those in our real atmosphere, if at all.

S14. Start with the sounding in Fig. 14.24. Modify the dew point in the mid troposphere to create a new sounding that would support a layer of altocumulus castellanus (accus) clouds.

S15. Suppose that thunderstorm downdrafts could never penetrate downward through the cap at the
top of the boundary layer. Explain how thunderstorms would differ, if at all?

S16. Suppose that shading of the ground by clouds would cause the Earth's surface to get warmer, not cooler during daytime. How would thunderstorms and climate differ, if at all?

S17. Suppose the atmospheric sounding over your town showed conditions nearly, but not quite, favorable for the existence of thunderstorms. If you could cause the surface energy balance over land to be partitioned differently between sensible and latent heat, how would you partition it in order to generate a thunderstorm? Note that given a fixed input of energy from the sun, increasing either the temperature or the humidity would decrease the other variable.

S18. Suppose that latent heat of condensation cools the air instead of warms it. What would be the characteristics of thunderstorms?

S19. In the discussion of rising air parcels in a nonlocally conditionally unstable environment, we assumed that the surrounding environment was not changing. But if there are many air parcels rising in a thunderstorm updraft, then there must be compensating subsidence in the environment that advects downward the temperature and moisture layers. How would this alter our description of the evolution of thunderstorms?

S20. Under what conditions would the median of a distribution exactly equal the mean? Under what conditions would half the interquartile range exactly equal the standard deviation?

S21. Consider Fig. 14.34. Suppose that when the air parcel is above its LFC, that it entrains environmental air at such a high rate that the air parcel follows a thermodynamic path that is exactly half way between the environment and the moist adiabats that passes through it at each height during its rise. Sketch the resulting path on a copy of Fig. 14.34, and discuss how thunderstorms would differ, if at all.

S22. Consider Fig. 14.34. Suppose that there is no frictional drag affecting the rising air parcel. All of the CAPE would lead to kinetic energy of the updraft. Once the air parcel reaches its EL, inertia would cause it to continue to rise (i.e., overshoot) until its negative potential energy (by being colder than the environment) balanced the initial kinetic energy. Assuming an isothermal sounding above the tropopause in that figure, determine exactly how high the overshooting air parcel would rise. Also, discuss whether such behavior is likely in real thunderstorms.

S23. Suppose that no wind shear existed in the environment. How would thunderstorms differ, if at all?

S24. Suppose that the wind profile of Fig. 14.53 (based on the wind data tabulated in a solved example a couple pages earlier) corresponded to the same environment as the thermodynamic sounding data in Fig. 14.24. Draw “phase-space” plots as follows:
 a. T vs. U
 b. T vs. V
 c. T vs. M
 d. T_d vs. U
 e. T_d vs. V
 f. T_d vs. M
 g. T vs. T_d
(Hint: “phase-space” plots are explained in the Numerical Weather Prediction chapter as a way to help analyze the chaos of nonlinear-dynamics systems.) Also, speculate on whether phase-diagram plots of real thunderstorm environments could be used to help forecast different types of thunderstorms.

S25. Suppose that no wind shear existed in the environment. How would thunderstorms differ, if at all?

S26. Suppose that the hodograph of Fig. 14.62b were everywhere below the origin of the hodograph. How would thunderstorms differ, if at all?

S27. Suppose that right-moving supercells altered the environment so that it favored left-moving supercells, and left-moving supercells altered the environment to favor right movers. How would thunderstorms differ, if at all?

S28. Suggest 3 or more thunderstorm trigger mechanisms beyond what was already discussed in this chapter.

S29. Suppose that the “cold cloud” process for creating large cloud hydrometeors did not exist. Would thunderstorms exist? If so, what would be their characteristics?

S30. Suppose that accurate thunderstorm (including hail, lightning, and tornado) warnings could be issued 2 days in advance. How would society and commerce change, if at all.