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20  Numerical Weather
   PredictioN  (NWP)

 Most weather forecasts are made by computer, 
and some of these forecasts are further enhanced 
by humans.  Computers can keep track of myriad 
complex nonlinear interactions among winds, tem-
perature, and moisture at thousands of locations 
and altitudes around the world — an impossible 
task for humans.  Also, data observation, collection, 
analysis, display and dissemination are mostly au-
tomated.  
 Fig. 20.1 shows an automated forecast.  Produced 
by computer, this meteogram (graph of weather vs. 
time for one location) is easier for non-meteorologists 
to interpret than weather maps.  But to produce such 
forecasts, the equations describing the atmosphere 
must first be solved.   
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Figure 20.1
Two-day weather forecast for Jackson, Mississippi USA, plot-
ted as a meteogram (time series), based on initial conditions 
observed at 12 UTC on 31 Oct 2015.  (a) Temperature & dew-
point (°F), (b) winds, (c) humidity, precipitation, cloud-cover, (d) 
rainfall amounts, (e) thunderstorm likelihood, (f) probability of 
precipitation > 0.25 inch.  Produced by US NWS.
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Scientific BaSiS of forecaSting

the equations of Motion
 Numerical weather forecasts are made by solv-
ing Eulerian equations for U, V, W, T, rT, ρ and P.  
 From the Forces & Winds chapter are forecast 
equations for the three wind components (U, V, W) 
(modified from eqs. 10.23a & b, and eq. 10.59):
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 From the Heat Budgets chapter is a forecast equa-
tion for temperature T (modified from eq. 3.51):
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 From the Water Vapor chapter is a forecast equa-
tion (4.44) for total-water mixing ratio rT in the air:
     

(20.5)
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 From the Forces & Winds chapter is the continu-
ity equation (10.60) to forecast air density ρ: (20.6)
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 For pressure P, use the equation of state (ideal gas 
law) from Chapter 1 (eq. 1.23):
    

P Td v= ℜρ· ·
 (20.7)

info  •  alternative Vertical coordinate

 Eqs. (20.1-20.7) use z as a vertical coordinate, where 
z is height above mean sea level.  But local terrain ele-
vations can be higher than sea level.  The atmosphere 
does not exist underground; thus, it makes no sense 
to solve the meteorological equations of motion at 
heights below ground level.
 To avoid this problem, define a terrain-follow-
ing coordinate  σ  (sigma).  One definition for σ is 
based on the hydrostatic pressure Pref(z) at any height 
z relative to the hydrostatic pressure difference be-
tween the earth’s surface (Pref bottom) and a fixed pres-
sure (Pref top) representing the top of the atmosphere:

      
σ =

−
−

P z P

P P
ref ref top

ref bottom ref top

( )

Pref bottom varies in the horizontal due to terrain eleva-
tion (see Fig. 20.A) and varies in space and time due 
to changing surface weather patterns (high- and low-
pressure centers).  The new vertical coordinate σ var-
ies from 1 at the earth’s surface to 0 at the top of the 
domain.
 The figure below shows how this sigma coor-
dinate varies over a mountain.  hybrid coordi-
nates (Fig. 20.5) are ones that are terrain following 
near the ground, but constant pressure aloft.
 If σ is used as a vertical coordinate, then (U, V) 
are defined as winds along a σ surface.  The vertical 
advection term in eq. (20.1) changes from W·∆U/∆z to  
· ·∆ /∆σ σU , where sigma dot is analogous to a verti-

cal velocity, but in sigma coordinates.  Similar chang-
es must be made to most of the terms in the equations 
of motion, which can be numerically solved within 
the domain of 0 ≤ σ ≤ 1. 

     
Figure 20.a. 
Vertical cross section through the atmosphere (white) and 
earth (black).  White numbers represent surface air pressure 
at the weather stations shown by the grey dots.  For the 
equation above, Pref bottom = 70 kPa at the mountain top, 
which differs from Pref bottom = 90 kPa in the valley.

 Although sigma coordinates avoid the problem of 
coordinates that go underground, they create prob-
lems for advection calculations due to small differ-
ences between large terms.  To reduce this problem, 
stair-step terrain-following coordinates have been 
devised — known as eta coordinates (η).
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 In these seven equations: fc is Coriolis parameter, 
P’ is the deviation of pressure from its hydrostatic 
value, θvp and θve are virtual potential temperatures 
of the air parcel and the surrounding environment, 
Tve is virtual temperature of the environment, |g| = 
9.8 m s–2 is the magnitude of gravitational accelera-
tion, Γd = 9.8 K km–1 is the dry adiabatic lapse rate, 
F*z rad is net radiative flux, Lv ≈ 2.5x106 J kg–1 is the 
latent heat of vaporization, Cp ≈ 1004 J·kg–1·K–1 is the 
specific heat of air at constant pressure, ∆rcondensing 
is the increase in liquid-water mixing ratio associ-
ated with water vapor that is condensing, ρL ≈ 1000 
kg·m–3 and ρd are the densities of liquid water and 
dry air, Pr is precipitation rate (m s–1) of water ac-
cumulation in a rain gauge at any height z, ℜd = 287 
J·kg–1·K–1 is the gas constant for dry air, and Tv is the 
virtual temperature.  For more details, see the chap-
ters cited with those equations.  
 Notice the similarities in eqs. (20.1 - 20.6).  All 
have a tendency term (rate of change with time) 
on the left.  All have advection as the first 3 terms 
on the right.  Eqs. (20.1 - 20.5) include a turbulence 
flux divergence term on the right.  The other terms 
describe the special forcings that apply to individ-
ual variables.  Sometimes the hydrostatic equation 
(Chapter 1, eq. 1.25b) is also included in the set of 
forecast equations:
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to serve as a reference state for the definition of 
P’ = P – Pref , as used in eq. (20.3).
 Equations (20.1) - (20.7) are the equations of mo-
tion.  They are also known as the primitive equa-
tions, because they forecast fundamental (primi-
tive) variables rather than derived variables such as 
vorticity.  The first six equations are budget equa-
tions, because they forecast how variables change 
in response to inputs and outputs.  Namely, the first 
three equations describe momentum conserva-
tion per unit mass of air.  Eqs. (20.4 - 20.5) describe 
heat conservation and moisture conservation 
per unit mass of air.  Eq. (20.6) describes mass con-
servation. 
 The first six equations are prognostic (i.e., fore-
cast the change with time), and the seventh (the ideal 
gas law) is diagnostic (not a function of time).  The 
third equation includes non-hydrostatic process-
es, the fourth equation includes diabatic processes 
(non-adiabatic heating), and the sixth equation in-
cludes compressible processes.
 These equations of motion are nonlinear, be-
cause many of the terms in these equations consist of 
products of two or more dependent variables. Also, 
they are coupled equations, because each equation 
contains variables that are forecast or diagnosed 

info  •  alternative Horizontal coord.

Spherical coordinates  
 For the Cartesian coordinates used in eqs. (20.1-
20.8), the coordinate axes are straight lines.  However, 
on Earth we prefer to define x to follow the Earth’s 
curvature toward the East, and define y to follow the 
Earth’s curvature toward the North.  If U and V are 
defined as velocities along these spherical coordi-
nates, then add the following terms to the right side 
of the horizontal momentum equations (20.1-20.3):
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where Ro ≈ 6371 km is the average Earth radius, ϕ is 
latitude, and Ω = 0.7292x10–4 s–1 is Earth’s rotation rate.  
The terms containing Ro are called the curvature 
terms.  The terms in square brackets are small com-
ponents of Coriolis force (see the INFO Box “Coriolis 
Force in 3-D” from the  Forces & Winds chapter).

map Factors 
 Suppose we pick (x, y) to represent horizontal co-
ordinates on a map projection, such as shown in the 
INFO Box on the next page.  Let (U, V) be the hori-
zontal components of winds in these (x, y) directions.  
[Vertical velocity W applies unchanged in the z (up) 
direction.]  One reason why meteorologists use such 
map projections is to avoid singularities, such as near 
the Earth’s poles where meridians converge.  
 The equations of motion can be rewritten for any 
map projection.  For example, eq. (20.1) can be written 
for a polar stereographic projection as: 
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where [Cor] is a 3-D Coriolis term, and the map fac-
tors (m) are:
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  m x R Lx o= /( · )    ,    m y R Ly o= /( · )  ,

where  L Ro o= +·[ sin( )]1 φ  , Ro ≈ 6371 km is the aver-
age Earth radius, ϕ is latitude, and ϕo is the reference 
latitude for the map projection (see INFO Box).  
 Thus, the equation has extra terms, and many of 
the terms are scaled by a map factor.  Eqs. (20.2 - 20.6) 
have similar changes when cast on a map projection.
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Sample application (§)
 Plot the given coordinates: (a) on a lat-lon grid, and 
(b) on a polar stereographic grid with ϕo = 60°.  

Find the answer

Given: Latitudes (ϕ) & longitudes (λ) of N. America

Each column holds [ϕ(°) λ(°)].  λ is positive eastward

50 -125
40 -125
23 -110
24 -110
30 -115
32 -114
22 -106
20 -106
7 -80
9 -78
4 -76
0 -80
 
0 -48
10 -63
12 -73

9 -76
11 -84
15 -84
15 -88
22 -87
22 -90
18 -91
18 -96
22 -98
27 -97
30 -85
28 -83
25 -81
26 -80
30 -82
35 -76

38 -77
46 -65
43 -66
46 -60
45 -65
50 -65
50 -60
53 -56
48 -59
47 -52
53 -56
60 -65
58 -68
64 -78
52 -79
53 -83

55 -82
58 -95
68 -82
70 -140
73 -157
65 -168
58 -158
53 -170
60 -146
60 -140
50 -125
 

0 -90
0 90

0 0
0 180 

0 -45
0 135
 
0 45
0 -135

0 0
0 10
0 20
0 30
0 etc.
0 350
0 360

Hint:  In Excel, copy these numbers into 2 long columns: the 
first for latitudes and the second for longitudes.  Leave blank 
rows in Excel corresponding to the blank lines in the table, to 
create discontinuous plotted lines.

(a) lat-lon grid:
To save space,
only the portion
of the grid near
North America
is plotted.
      Fig. 20.B1.  

(b) Polar Stereographic grid:
Hint: In Excel, don’t forget to convert from (°) to (radians). 
To demonstrate the Excel calculation for the first coor-
dinate (near Vancouver):   ϕ = 50° , λ = –125° :
 L = (6371 km)·[1 + sin(60°·π/180°)]  =  11,888 km. 
 r = (11888 km)·tan[0.5·(90°– 50°)·π/180°]  =  4327 km 
   x = (4327 km)·cos(–125°·π/180°) =  – 2482 km  
 y = (4327 km)·sin(–125°·π/180°) =  – 3545 km  
That point is circled on the maps above and below:

Fig. 20.B2 

info  •  Map Projections

 A map displays the 3-D Earth’s surface on a 2-D 
plane.  On maps you can also: (1) create perpendicu-
lar (x, y) coordinates; and (2) rewrite the equations of 
motion within these map coordinates.  You can then 
solve these eqs. to make numerical weather forecasts.
 Create a map by projecting the spherical Earth on 
to a plane (stereographic projection), a cylinder 
(mercator projection), or a cone (lambert projec-
tion), where the cylinder and cone can be “unrolled” 
after the projection to give a flat map.  Although other 
map projections are possible, the 3 listed above are 
conformal, meaning that the angle between two 
intersecting curves on the Earth is equal to the angle 
between the same curves on the map.  
 For stereographic projections, if the projector is at 
the North or South Pole, then the result is a polar 
stereographic projection (Fig. 20.C).  For any lati-
tude (ϕ) longitude (λ, positive eastward) coordinates 
on Earth, the corresponding (x, y) map coordinates 
are:  x  =  r · cos(λ)    ,    y = r · sin(λ)   (F20.1)

   r = L·tan[0.5·(90° – ϕ )]  ,  L = Ro·[1+sin(ϕo)]   (F20.2)

Ro = 6371 km = Earth’s radius, and ϕo is the latitude 
intersected by the projection plane.  The Fig. below 
has ϕo = 60°, but often ϕo = 90° is used instead.

Fig. 20.c.  Polar stereographic map projection.
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from one or more of the other equations.  Hence, all 
7 equations must be solved together.  
 Unfortunately, no one has yet succeeded in solv-
ing the full governing equations analytically.  An 
analytical solution is itself an algebraic equa-
tion or number that can be applied at every loca-
tion in the atmosphere.  For example, the equation 
y2 + 2xy = 8x2  has an analytical solution  y = 2x, 
which allows you to find y at any location x.

approximate Solutions
 To get around this difficulty of no analytical so-
lution, three alternatives are used.  One is to find 
an exact analytical solution to a simplified (approxi-
mate) version of the governing equations.  A second 
is to conceive a simplified physical model, for which 
exact equations can be solved.  The third is to find an 
approximate numerical solution to the full gov-
erning equations (the focus of this chapter).
 (1) An atmospheric example of the first method is 
the geostrophic wind, which is an exact solution to 
a highly simplified equation of motion.  This is the 
case of steady-state (equilibrium) winds above the 
boundary layer where friction can be neglected, and 
for regions where the isobars are nearly straight.
 (2) Early numerical weather prediction 
(NWP) efforts used the 2nd method, because of the 
limited power of early computers.  Rossby derived  
simplified equations by modeling the atmosphere as 
if it were one layer of water surrounding the Earth.  
Charney, von Neumann, and others extended this 
work and wrote a program for a one-layer baro-
tropic atmosphere (Fig. 20.2a) for the ENIAC com-
puter in 1950.  These earliest programs forecasted 
only vorticity and geopotential height at 50 kPa.
 (3) Modern NWP uses the third method.  Here, 
the full primitive equations are solved using fi-
nite-difference approximations for full baroclinic 
scenarios (Fig. 20.2b), but only at discrete locations 
called grid points.  Usually these grid points are at 
regularly-spaced intervals on a map, rather than at 
each city or town.

Dynamics, Physics and numerics
 If computers had infinite power, then we could: 
forecast the movement of every air molecule, fore-
cast the growth of each snowflake and cloud droplet, 
precisely describe each turbulent eddy, consider at-
mospheric interaction with each tree leaf and blade 
of grass, diagnose the absorption of radiation for 
an infinite number of infinitesimally fine spectral 
bands, account for every change in terrain elevation, 
and could even include the movement and activities 
of each human as they affect the atmosphere.  But it 
might be a few years before we can do that.  At pres-

Figure 20.2
(a) Barotropic idealization, based on the standard atmosphere 
from Chapter 1.   (b) Baroclinic example, based on data from the 
General Circulation chapter.

info  •  Barotropic vs. Baroclinic

 In a barotropic atmosphere (Fig. 20.2a), the 
isobars (lines of equal pressure) do not cross the 
isopycnics (lines of equal density).  This would 
occur for a situation where there are no variations of 
temperature in the horizontal.  Hence, there could be 
no thermal-wind effect.  
 In a baroclinic atmosphere (Fig. 20.2b), isobars 
can cross isopycnics.  Horizontal temperature gra-
dients contribute to the tilt of the isopycnics.  These 
temperature gradients also cause changing horizon-
tal pressure gradients with increasing altitude, ac-
cording to the thermal-wind effect.  
  The real atmosphere is baroclinic, due to differ-
ential heating by the sun (see the General Circula-
tion chapter).  In a baroclinic atmosphere, potential 
energy associated with temperature gradients can be 
converted into the kinetic energy of winds.
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ent, we must make compromises to our description 
of the atmosphere.   
 Numerics:  The main compromise is the process 
of discretization, where:  
(1) we split the continuum of space into a finite num-

ber of small volumes called grid cells (Fig. 20.3a), 
within which we forecast average conditions;  

(2) we approximate the smooth progression of time 
with finite time steps; and  

(3) we replace the elegant equations of motion with 
numerical approximations.  

These topics are generically known as numerics, as 
will be discussed in detail later.  Numerics also in-
clude the domain being forecast, the mapping and 
coordinate systems, and the representation of data. 
 The word “dynamics” refers to the governing 
equations. It applies to only the resolved portions 
of motions, thermodynamic states, and moisture 
states (Fig. 20.3b) for the particular discretization 
used.  A variable or process is said to be resolved 
if it can be represented by the average state within 
a grid cell.  The dynamics described by eqs. (20.1 - 
20.7) depend on sums, differences, and products of 
these resolved grid-cell average values.  
 The word “physics” refers to other processes 
(Fig. 20.3c and Table 20-1) that:
(1) are not forecast by the equations of motion, or 
(2) are not well understood even though their effects 

can be measured, or 
(3) involve motions or particles that are too small to 

resolve (called subgrid scale), or
(4) have components that are too numerous (e.g., in-

dividual cloud droplets or radiation bands), or 
(5) are too complicated to compute in finite time.  
However, unresolved processes can combine to pro-
duce resolved forecast effects.  Because we cannot 
neglect them, we parameterize them instead.  
 A parameterization is a physical or statistical 
approximation to a physical process by one or more 
known terms or factors.  Parameterization rules are 
given in an “A SCIENTIFIC PERSPECTIVE” box in 
the Atmos. Boundary Layer chapter.  In NWP, the 
“knowns” are the resolved state variables in the grid 
cells, and any imposed boundary conditions such 
as solar radiation, surface topography, land use, ice 
coverage, etc.  Empirically estimated factors called 
parameters tie the knowns to the approximated 
physics.   

Figure 20.3
(a) The forecast domain (the portion of atmosphere we wish 
to forecast) is split into discrete grid cells, such as the shaded 
one.  The 3-D grid cells are relatively thin, with sizes on the 
order of 10s m in the vertical, and 10s km in the horizontal. 
(b) Enlargement of the shaded grid cell, illustrating one dy-
namics process (advection in the x-direction).  Namely, the 
resolved U wind is blowing in hot, fast, humid air from the up-
wind neighboring grid cell, and is blowing out colder, slower, 
drier air into the downwind neighboring cell.  Simultaneously, 
advection could be occurring by the V and W components of 
wind (not shown).  Not shown are other resolved forcings, such 
as Coriolis and pressure-gradient forces.
(c) Further enlargement, illustrating physics such as turbulence, radiation, and precipitation.  Turbulence is causing a net heat flux 
into the left side of the grid cell in this example, even though the turbulence has no net wind (i.e., the wind-gust arrows moving air into 
the grid cell are balanced by gusts moving the same amount of air out of the grid cell).  Two of the many radiation bands are shown, 
where infrared (IR) wavelengths in the 2.0 to 2.5 µm “window” band shine through the grid cell, while wavelengths in the 2.5 to 2.7 
band are absorbed by water vapor and carbon dioxide (see the Satellites & Radar chapter), causing warming in the grid cell.  Some 
liquid water is falling into the top of the grid cell from the cell above, but even more is falling out the bottom into the grid cell below, 
suggesting a removal of water and net latent heating due to condensation.
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 Because parameterizations are only approxima-
tions, no single parameterization is perfectly cor-
rect.  Different scientists might propose different pa-
rameterizations for the same physical phenomenon.  
Different parameterizations might perform better 
for different weather situations. 

Models
 The computer code that incorporates one partic-
ular set of dynamical equations, numerical approxi-
mations, and physical parameterizations is called a 
numerical model or NWP model.  People devel-
oping these extremely large sets of computer code 
are called modelers.  It typically takes teams of 
modelers (meteorologists, physicists, chemists, and 
computer scientists) several years to develop a new 
numerical weather model.
 Different forecast centers develop different nu-
merical models containing different dynamics, 
physics and numerics.  These models are given 
names and acronyms, such as the Weather Research 
and Forecasting (WrF) model, the Global Environ-
mental Multiscale (gem) model, or the Global Fore-
cast System (gFS).  Different models usually give 
slightly different forecasts.  

table 20-1.  Some physics parameterizations in NWP.

Process approximation methods
Cloud 
Coverage

• Subgrid-scale cloud coverage as a 
function of resolved relative humidity.  
Affects the radiation budget.

Precipitation
& Cloud
Microphysics

Considers conversions between wa-
ter vapor, cloud ice, snow, cloud water, 
rain water, and graupel + hail.  Affects 
large-scale condensation, latent heat-
ing, and precipitation based on resolved 
supersaturation.  Methods: 
• bulk (assumes a size distribution of 
hydrometeors); or 
• bin (separate forecasts for each sub-
range of hydrometeor sizes).

Deep 
Convection

• Approximations for cumuliform 
clouds (including thunderstorms) that 
are narrower than grid-cell width but 
which span many grid layers in the ver-
tical (i.e., are unresolved in the horizon-
tal but resolved in the vertical), as func-
tion of moisture, stability and winds.  
Affects vertical mixing, precipitation, 
latent heating, & cloud coverage.

Radiation • Impose solar radiation based on 
Earth’s orbit and solar emissions.  In-
clude absorption, scattering, and re-
flection from clouds, aerosols and the 
surface.
• Divide IR radiation spectrum into 
small number of wide wavelength 
bands, and track up- and down-welling 
radiation in each band as absorbed and 
emitted from/to each grid layer.
Affects heating of air & Earth’s surface.

Turbulence Subgrid turbulence intensity as func-
tion of resolved winds and buoyancy.  
Fluxes of heat, moisture, momentum 
as function of turbulence and resolved 
temperature, water, & winds. Methods:
• local down-gradient eddy diffusivity;
• higher-order local closure; or
• nonlocal (transilient turb.) mixing.

Atmospheric 
Boundary 
Layer (ABL)

Vertical profiles of temperature, humid-
ity, and wind as a function of resolved 
state and turbulence, based on forecasts 
of ABL depth.  Methods:  • bulk; 
• similarity theory.

Surface • Use albedo, roughness, etc. from sta-
tistical average of varied land use.
• Snow cover, vegetation greenness, etc. 
based on resolved heat & water budget.

Sub-surface 
heat & water

• Use climatological average. Or fore-
cast heat conduction & water flow in 
rivers, lakes, glaciers, subsurface, etc.

Mountain-
wave Drag

• Vertical momentum flux as function 
of resolved topography, winds and stat-
ic stability.

Sample application
 Suppose subgrid-scale cloud coverage C is param-
eterized by

 C = 0    for RH ≤ RHo  
 C = [(RH – RHo) / (1 – RHo)]2  for RHo ≤ RH < 1  
 C = 1    for RH ≥ 1  

RH is the grid-cell average relative humidity.  Param-
eter RHo ≈ 0.8 for low and high clouds, and RHo ≈ 0.65 
for mid-level cloud.  Plot parameterized cloud cover-
age vs. resolved relative humidity.  

Find the answer
Given:  info above
Find:  C  vs.  RH  

Spreadsheet solution is
graphed at right  Grey 
curve: mid-level clouds.  
Black curve: low and 
high clouds.

check:  Coverage bounded between clear & overcast.
exposition: Partial cloud coverage is important for 
computing how much radiation reaches the ground.
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griD PointS 

 Define the size of a grid cell in the three Carte-
sian directions as ∆X, ∆Y, and ∆Z (Fig. 20.6A).  Typical 
values are ∆X = ∆Y = one to hundreds of kilometers, 
while ∆Z = one to hundreds of meters.  Small-size 
grid cells give fine-resolution (or high-resolu-
tion) forecasts, and large-size cells give coarse-res-
olution (or low-resolution) forecasts.  
 Because we forecast only the average condition of 
weather variables at each grid cell, we can represent 
these average values as being physically located at 
a grid point (Fig. 20.6A) in each cell.  The distance 
between grid points is the same as the grid-cell size: 
∆X, ∆Y, ∆Z.  More closely spaced grid points have fin-
er resolution (see a later INFO Box on Resolution). 
 Finer resolution requires more grid cells to span 
your forecast domain.  Each cell requires a certain 
number of numerical calculations to make the fore-
cast.  Thus, more cells require more total calcula-
tions.  Hence, finer resolution forecasts take longer 
to compute, but often give more accurate forecasts.  
 Thus, your choice of domain and grid size is a 
compromise between forecast timeliness and ac-
curacy, based on the computer power available.  As 
computer power has improved over the past 6 de-
cades, so have weather-forecast resolution and skill 
(see INFO Box on Moore’s Law and Forecast Skill).  
Skill is the forecast improvement relative to some 
reference such as climatology.

nested and Variable grids
 Alternatives exist to the domain-size vs. resolu-
tion trade off.  In the horizontal, use a fast-running 
coarse-grid over a large domain to span large-scale 
weather systems, and nest inside that a smaller-hor-
izontal-domain finer-mesh grid (Fig. 20.4a).  Such 
nested grids reduce overall run time while captur-
ing finer-scale features where they are needed most.  
Typically, the fine mesh has a horizontal grid size 
(∆X) of 1/3 of the coarse-mesh grid size, although ra-
tios of 1/5 have sometimes been used.  Nesting can 
continue with successively finer nests. The author’s 
research team has run nested grids with grid sizes 
∆X = 108, 36, 12, 4, 1.33, and 0.44 km.  
 Nested grids can employ one-way nesting, 
where the coarse grid is solved first, and its output is 
applied as time-varying boundary conditions to the 
finer grid.  For two-way nesting, both grids are 
solved together, and features from each grid are fed 
into the other at each time step.  Two-way nesting of-
ten gives better forecasts, but are more complicated 
to implement.  

info  •  Moore’s Law & forecast Skill

 Gordon E. Moore co-founded the integrated-
circuit (computer-chip) manufacturer Intel.  In 1965 
he reported that the maximum number of transistors 
that were able to be inexpensively manufactured on 
integrated circuits had doubled every year.  He pre-
dicted that this trend would continue for another de-
cade.  
 Since 1970, the rate slowed to about a doubling ev-
ery two years.  This trend, known as moore’s law, 
has continued for over 4 decades. 

Fig. 20.d.  Moore’s Law and forecast skill vs. time.

Figure 20.4
Horizontally nested grids.   (a) Discrete meshes (shown as grid 
cells).   (b) Variable mesh (shown as grid points).
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 An alternative to discrete nested grids in the hor-
izontal is a variable-mesh grid (Fig. 20.4b), which 
uses smoothly varying grid spacings.  Again, the 
finer mesh is positioned over the region of interest. 
 In the vertical, fine resolution (i.e., small ∆Z) is 
needed near the Earth’s surface and in the boundary 
layer, because of important small-scale motions and 
strong vertical gradients.  To reduce the computa-
tion time, coarse resolution (i.e., larger ∆Z) is accept-
able higher above the surface — in the stratosphere 
and upper troposphere.  Variable mesh vertical grids 
(i.e., smoothly changing ∆Z values) are often used 
for this reason (Fig. 20.5).  For models using pres-
sure or sigma as a vertical coordinate, ∆P or ∆σ var-
ies smoothly with height.  As an alternative, some 
NWP models use discrete vertical nests.   

Staggered grids
 You could represent all the cell-average variables 
at the same grid point, as in Fig. 20.6A (called an A-
Grid).  But this has some undesirable characteristics: 
wavy motions do not disperse properly, some wave 
energy gets stuck in the grid, and some weather 
variables oscillate about their true value.
 Instead, grid points are often arranged in a stag-
gered grid arrangement within the cell, with dif-
ferent variables being represented by points at dif-
ferent locations in the grid (Fig. 20.6 Grids B - E).  
Staggered Grid D has many of the same problems 
as unstaggered Grid A.  Grids B and C have fewer 
problems.    

Figure 20.6 (in right column)
Akio Arakawa (1972) identified 5 grid arrangements.  Grid A 
is an unstaggered grid (where all variables are at the same grid 
point).  All the others are staggered grids.  Only 2 dimensions 
are shown for grid E, which is a rotated version of Grid B.  Grids 
C and D differ in their locations of the U and V winds.

Figure 20.5
Illustration of variable grid increments (∆Z) in the vertical.
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finite-Difference equationS

 Here we see how to find discrete numerical ap-
proximations to the equations of motion (20.1 - 20.7) 
as applied to grid cells.

notation
 Cells are identified by a set of indices (i, j, k) that 
indicate their (x, y, z) positions within the domain.  
Fig. 20.7 shows a two-dimensional example.  By us-
ing these indices as subscripts, we can specify any 
variable at any grid-point location.  For example, T3,2 
is the temperature in the center of the shaded grid 
cell, at x-location i = 3 , and y-location j = 2.  For a 3-D 
grid, you can use 3 indices or subscripts.

[CAUTION:  Throughout this book, we have used ratios 
of differences (such as ∆T/∆x) instead of derivatives (∂T/∂x) 
to represent the local slope or local gradient of a variable.  
While this allowed us to avoid calculus, it causes problems 
in this chapter because ∆x now has two conflicting mean-
ings:  (1) ∆x is an infinitesimal increment of distance, such 
as used to find the local slope of a curve at point i in Fig. 
20.8.   (2) ∆X is a finite distance between grid points, such 
as between points i and i+1 in Fig. 20.8.  
 To artificially discriminate between these two mean-
ings, we will use lower-case “x” in ∆x to represent an in-
finitesimal distance increment, and upper-case “X” in ∆X 
to represent a finite distance between grid points.]  

approximations to Spatial gradients
 The equations of motion (20.1 - 20.6) contain 
many terms involving local gradients, such as the 
horizontal temperature gradient ∆T/∆x.  So to solve 
these equations, we need a way to approximate the 
local gradients as a function of things that we know 
— e.g., values of T at the discrete grid points.  
 But when the local gradient of an analytical vari-
able is represented at one grid point as a function of 
its values at other grid points, the result is an infinite 
sum of terms — each term of greater power of ∆X or 
∆t.  This is a taylor series (see the HIGHER MATH 
box).  The most important terms in the series are the 
first ones — the ones of lowest power of ∆X (said to 
be of lowest order).  
 However, the higher-order terms do slightly 
improve the accuracy.  For practical reasons, the 
numerical forecast can consider only the first few 
terms from the Taylor series.  Such a series is said 
to be truncated; namely, the highest-order terms 
are cut from the calculation.  For example, a second-
order approximation to T’ (= ∆T/∆x) has an error of 
about ±T’/6, while a third-order approximation has 
an error of about ±T’/24.  

Figure 20.7
Arrangement and indexing of grid cells for a 2-dimensional C-
Grid.  Each variable in the shaded cell has indices i = 3, j = 2.  
For variables located at grid-cell edges, some models use whole-
index numbering, as shown by the grey numbers.  Other models 
use half indices, as in Fig. 20.9.

Figure 20.8
The slope (thin unbroken black line) of the temperature (T) curve 
(thick black line) at grid point i is represented by ∆T/∆x.  The 
lower-case “x” is used in ∆x to represent an infinitesimally 
small increment of distance, while upper-case “X” is used in ∆X 
to indicate the spacing between grid points (black dots), where i 
is a grid-point index.  Thin dashed and dotted lines are various 
finite-difference approximations to the slope at i.  
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 Different approximations to the local gradients 
have different truncation errors.  Such approxi-
mations can be applied to the local gradient of any 
weather variable — the illustrations below focus on 
temperature (T) gradients.  Assuming a mean wind 
from the west, an upwind first-order difference 
approximation is:

                 
∆
∆

( )
∆

T
x

T T
Xi

i i≈
− −1  (20.9)

which applies at grid point i.  But first-order ap-
proximations to the gradient (shown by slope of the 
dashed line in Fig. 20.8) can have large errors rela-
tive to the actual gradient (shown by the slope of the 
thin black line).  

 A centered second-order difference gives a 
better approximation to the gradient at i:
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as sketched by the dotted line in Fig. 20.8.  

 An even-better centered fourth-order differ-
ence for the gradient at i is:
     (20.11)
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as shown by the thin solid line in Fig. 20.8.  
 Use similar equations for gradients of other vari-
ables (U, V, W, rT, ρ).  Orders higher than fourth-or-
der are also used in some numerical models.    

HigHer MatH  •  taylor Series

 The equations of motion have terms such as 
U·∂T/∂x.  We can use a Taylor series to approximate de-
rivative ∂T/∂x as a function of discrete grid-point val-
ues.  [Notation: use T’ for ∂T/∂x, use T’’ for ∂2T/∂x2.]
 Any analytic function such as temperature vs. 
distance T(x) can be expanded into an infinite series 
called a taylor series if the derivatives (T’, T’’, etc.) 
are well behaved near x.  To find the value of T at 
(x + ∆X), where ∆X is a small finite distance from x, 
use a Taylor series of the form:
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 Apply the Taylor series to grid points (Fig. 20.8), 
where the spatial position is indicated by an index i:
     (20.BA2)
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Similarly, by using –∆X in the Taylor expansion, you 
can estimate T upwind, at grid index i–1:     (20.BA3)
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 For practical reasons, truncate the series to a fi-
nite number of terms.  The more terms you keep, the 
smaller the truncation error.  The lowest power of 
the ∆X term not used defines the order of the trunca-
tion.  Higher-order truncations have less error.

• For a simple upwind difference (with poor, first-
order error in ∆X), solve eq (20.BA3) for T’:

    T
T T

X
O Xi

i i'
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∆
(∆ )=

−
+−1  (20.BA4)

where the last term indicates the truncation error.  
This T’ value gives the dashed-line slope in Fig. 20.8.

• For a centered difference (with moderate, second-
order error in ∆X), subtract eq. (20.BA3) from (20.BA2) 
and solve the result for T’:
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This T’ value gives the dotted-line slope in Fig. 20.8.

• For an even-better, 4th-order, centered difference,
use:     (20.BA6)
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which is a slightly better fit to the true slope at i.  
 In this chapter, we use ∆T/∆x in place of T’.  Hence, 
the bullets above give approximations to ∆T/∆x.

Sample application
Find ∆T/∆x at grid point i in Fig. 20.8 using 1, 2, & 4th 
order gradients, for a horizontal grid spacing of 5 km.

Find the answer
Given: Ti–2 = 22, Ti–1 = 24, Ti = 25, Ti+1 = 22, Ti+2 = 21°C
 from the data points in Fig. 20.8.   ∆X = 5 km.
Find:  ∆T/∆x = ?  °C km–1 

For Upwind 1st-order Difference, use eq. (20.9):
 ∆T/∆x  ≈  (25 – 24°C)/(5 km)  =  0.2 °c km–1 
 
For Centered 2nd-order Difference, use eq. (20.10):
 ∆T/∆x  ≈  (22 – 24°C) /[2·(5 km)]  =  –0.2 °c km–1 

For Centered 4th-order Difference, use eq. (20.11):
 ∆T/∆x  ≈ [8·(22–24°C) – (21–22°C)]/[12·(5 km)]  
  ≈ [ (–16 + 1)°C] /(60 km)  =    –0.25 °c km–1 

check:  Units OK.  Agrees with lines in Fig. 20.8.
exposition:  Higher-order differences are better ap-
proximations, but none give the true slope exactly. 
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grid computation rules
 For mathematical and physical consistency, the 
grid computation rules at left must be obeyed when 
making calculations with grid-point values.  Rule 3 
is handy because you can use it to “move” values 
to locations where you can then multiply by other 
variables while obeying Rule 1.  
 For example, consider the temperature forecast 
equation (20.4) for grid point (i = 3, j = 2), for the C-
grid in Fig. 20.9.  The first term on the right side of eq. 
(20.4) is temperature advection in the x-direction.  If 
we choose to use second-order difference eq. (20.10) 
at location (i,j) = (3,2), we have a mismatch because we 
do not have wind at that same location. Rule 1 says 
we can not multiply the wind times the T gradient.  
 However, we can use Rule 3 to average the U-
winds from the right and left of the temperature 
point, knowing that this average applies halfway be-
tween the two U points.  The average thus spatially 
coincides with the temperature gradient, so we can 
multiply the two factors together.  
 For that one grid point (i,j) = (3,2), the result is:
     (20.12)
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where the ½ grid index numbering method was 
used for values at the edges of the grid cell (Fig. 20.9).  
The parentheses hold the average U, and the square 
brackets hold the centered second-order difference 
approximation for the local T gradient.
 Similarly, for any grid point (i,j), the result is:
     (20.13)
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The spatial arrangement of all grid points used in 
any calculation is called a stencil.  Fig. 20.9 shows 
the stencil for eq. (20.13).  Different grid arrange-
ments (Grids A - E) and different approximation or-
ders will result in different stencils.  
 Significantly, the forecast for any one grid point 
(such as i,j) depends on the values at other nearby 
grid points [such as (i–1,j) , (i–½,j) ,  (i+½,j) , (i+1,j) ].  
In turn, forecasts at each of these points depends on 
values at their neighbors.  This interconnectivity is 
summarized as NWP Corollary 1, at left.
 For grid points near the edges of the domain, spe-
cial stencils using one-sided difference approxima-
tions must be used, to avoid referencing grid points 
that don’t exist because they are outside of the do-
main.  Alternately, a halo of ghost-cell grid points 
outside the forecast domain can be specified using 
values found from a larger coarser domain or from 
imposed boundary conditions (Bcs; i.e., the state 
of the air along the edges of the forecast domain).  

Figure 20.9
Sketch of a two-dimensional C grid.  Consider the computa-
tion of temperature advection by the U wind, as contributes to 
the temperature tendency at the one grid point centered in the 
shaded cell.  The grid points needed to make that calculation are 
outlined with the dotted line, and their arrangement is called a 
stencil.

Sample application
What is the warming rate at grid point (i=3, j=2) in Fig. 
20.9 due to temperature advection in the x-direction, 
given T2,2 = 22°C, T3,2 = 23°C, T4,2 = 24°C, U2½,2 = –5  m 
s–1, U3½,2 = –7 m s–1, ∆X = 10 km?

Find the answer
Given:  T and U values above.  ∆X = 10 km
Find:  ∆T/∆t = –U·∆T/∆x  =  ? °C h–1 .

Use eq. (20.12):
 ∆T/∆t ≈ –0.5·(–7–5 m s–1) · [ 0.5·(24 – 22°C)/(104m) ] 
    ≈ (6 m s–1) · [ 1°C/(104m) ] · (3600 s h–1) = 2.16 °c h–1

check:  Units OK.  Sign OK.  Magnitude OK.
exposition:  Winds are advecting in warmer air from 
the East, causing advective warming.

NWP corollary 1:  The forecast at any one point is 
affected by ALL other points in the forecast domain.

grid computation rules
(1) When multiplying or dividing any two variables, both 
of those variables must be at the same point in space.  The 
result applies at that same point.

(2) When adding, averaging, or subtracting any two vari-
ables, if both those variables are at the same point in space, 
then the result applies at the same point.

(3) However, when adding, averaging, or subtracting two 
variables at different locations in space, the sum, average, 
or difference applies at a physical location halfway be-
tween the locations of the original variables.  
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time Differencing
 The smooth flow of time implied by the left side 
of the equations of motion can be approximated by a 
sequence of discrete time steps, each of duration ∆t.  
For example, the temperature tendency term on the 
left side of eq. (20.4) can be written as a centered time 
difference: 
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 When combined with the right side of eq. (20.4), 
the result gives the temperature at some future time 
as a function of the temperatures and winds at ear-
lier times:
     (20.15)

     T t t T t t t3 2 3 2 2, ,( ) ( ) ·+ ∆ = − ∆ + ∆ [ ]RHS of eq. 20.4

Typical time-step durations ∆t are on the order of a 
few seconds to tens of minutes, depending on the 
grid size (see the section on numerical stability).  
 The equation above is a form of the leapfrog 
scheme.  It gets its name because the forecast starts 
from the previous time step (t–∆t) and leaps over the 
present step (t) to make a forecast for the future (t+∆t).  
Although it leaps over the present step, it utilizes the 
present conditions to determine the future condi-
tions.  Fig. 20.10 shows a sketch of this scheme.  
 The two leapfrog solutions (one starting at t–∆t 
and the other starting at t, illustrated above and be-
low the time line in Fig. 20.10) sometimes diverge 
from each other, and need to be occasionally aver-
aged together to yield a consistent forecast.  Without 
such averaging the solution would become unstable, 
and would numerically blow up (see next section).  
 There are other numerical solutions that work 
better than the leapfrog method.  One example is the 
runge-Kutta method, described in the INFO Box. 
 By combining eqs. (20.12 & 20.15), we get a tem-
perature forecast equation that includes only the U-
advection forcing:
     (20.16)
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where the subscript  t  at the very right indicates that 
all of the terms inside the curly brackets are evalu-
ated at time t.  So the future temperature (at t+∆t), 
depends on the current temperature and winds (at 
t) and on the past temperature (at t–∆t).  The concept 
of a stencil can be extended to include the 4-D ar-
rangement of locations and times needed to forecast 
one aspect of physics for any grid point. 
 Generalizing the previous equation, and recall-
ing NWP Corollary 1, we infer that:  the forecast ∆t 

Figure 20.10
Time line illustrating the “leapfrog” time-differencing scheme.

info  •  time Differencing Methods

 The prognostic equations of motion (20.1 - 20.6)  
can be written in a generic form: 

     ∆A/∆t = f[A, x, t] ,

where A = any dependent variable (e.g., U, V, W, T, 
etc.), f is a function that describes all the dynamics and 
physics of the equations of motion, and x represents 
all other independent variables (x, y, z) as indicated by 
grid-point indices (i, j, k).  Knowing present (at time t) 
and all past values at the grid points, how do we make 
a small time step ∆t into the future?

 One of the simplest methods is called the euler 
method (also known as the Euler-forward method): 
     A(t+∆t) = A(t) + ∆t · f[A(t), x, t]  

But this is only first-order accurate, and is never used 
because errors accumulate so quickly that the numer-
ical forecast often blows up (forecasts values of ± 
infinity) causing the computer to crash (premature 
termination due to computation errors).

 The leapfrog method was already given in the 
text, and is second-order accurate.  
   A(t+∆t) = A(t–∆t) + 2∆t · f[A(t), x, t]  

Higher-order accuracy has less error.

 Also popular is the fourth-order runge-
Kutta method, which has even less error, but re-
quires intermediate steps done in the order listed:

(1)   k1  =  f[ A(t) , x , t ]  

(2)   k2  =  f[ A(t)+½∆t·k1  ,  x  ,  t+½∆t ]  

(3)   k3  =  f[ A(t)+½∆t·k2  ,  x  ,  t+½∆t ]  

(4)   k4  =  f[ A(t)+∆t·k3  ,  x  ,  t+∆t ]  

(5)   A(t+∆t)  =  A(t)  +  (∆t/6)·[ k1 + 2k2 + 2k3 + k4 ]
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into the future of any one variable at one location 
can depend on the current state of ALL other vari-
ables at ALL other locations.  Thus, ALL other vari-
able at ALL other locations must be stepped forward 
the same one ∆t into the future, based on current 
values.  Only after they all have made this step can 
we proceed to the next step, to get to time t + 2∆t 
into the future.  This characteristic is summarized 
as NWP Corollary 2:

NWP corollary 2:  ALL variables at ALL grid points 
must march in step into the future*.   

*Some terms (e.g., for acoustic waves) and some parameterizations 
require very short time steps for numerical stability.  They can be 
programmed to take many “baby” steps for each “adult” time step ∆t 
in the model, to enable them to remain synchronized (holding hands) 
as they advance toward the future.

 To start the whole NWP, we need initial con-
ditions (ics).  These ICs are estimated by merging 
weather observations with past forecasts (see the 
Data Assimilation section).  ICs are often named 
by the synoptic time when most of the observa-
tions were made, such as the “00 UTC analysis”, the 
“00 UTC initialization”, or the “00 UTC model run”.  
Modern assimilation schemes can also incorporate 
asynoptic (off-hour) observations.

Discretized equations of Motion
 In summary, the physical equations of motion, 
which are essentially smooth analytical functions, 
must be discretized to work at grid points.  For ex-
ample, if we use leapfrog time differencing with 
second-order spatial differencing on a C-grid, the 
temperature forecast equation (20.4) becomes:
     (20.17)
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Sample application (§)
Given a 1-D array consisting of 10 grid points in the x-
direction with the following initial temperatures (°C):
Ti (t = 0) = 21.76   22.85   22.85   21.76   20.00   18.24   17.15   
17.15   18.24   20.00    for i = 1 to 10. 
Assume that the lateral boundaries are cyclic, so that 
this number sequence repeats outside this primary 
domain.  Grid spacing is 3 km and wind speed from 
the west is 10 m s–1.  For a 250 s time step, forecast the 
temperature at each point for the first 6 time steps, us-
ing leapfrog temporal and 4th-order centered spatial 
differences.

Find the answer
Given: ∆X = 3 km , ∆t = 250 s , U = 10 m s–1.  Initially:
i =     1          2          3          4          5          6          7         8          9        10

T = 21.76   22.85   22.85   21.76   20.00   18.24   17.15   17.15   18.24   20.00 

Find: Ti at t = 250 s, 500 s, etc. out to 1500 s  

We can use leapfrog for every time step except the first 
step, because for the first step we have no temperatures 
before time zero.  So I will use an Eulerian time differ-
ence for the first step.  The resulting eqs. are:
For 1st time step:

  T t t T t
t U
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For all other time steps:
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Solving these in a spreadsheet gives, the following, 
where each row is a new time step and each column is 
a different grid point:
t(s) [ i = 1        2         3         4        5         6         7         8        9        10   ]

0       [ 21.76  22.85  22.85  21.76  20.00   18.24  17.15  17.15  18.24  20.00 ]

250   [ 20.50  22.37  23.34  23.03  21.56  19.50  17.63  16.66  16.97  18.44 ]

500   [ 18.28  20.34  22.27  23.34  23.13  21.72  19.66  17.73  16.66  16.87 ]

750   [ 17.43  18.83  20.68  22.27  22.99  22.57  21.17  19.32  17.73  17.01 ]

1000 [ 16.66  17.46  19.22  21.29  22.86  23.34  22.54  20.78  18.71  17.14 ]

1250 [ 17.15  16.56  17.29  19.05   21.17  22.85  23.44  22.71  20.95  18.83 ]

1500 [ 18.67  17.34  17.02  17.84   19.49  21.33  22.66  22.98  22.16  20.51 ]

These are plotted as Fig. 20.11b, showing a temperature 
pattern that is advected by the wind toward the East.

check:  Units OK.  Fig. 20.11b looks reasonable
exposition:  The courant Number [∆t·U/∆x] is  
(250 s) · (10 m s–1) / (3000 m) = 0.833 (dimensionless).  
Since this number is less than 1, it says that the solu-
tion could be numerically stable (see the Numerical 
Error section).  
 The boxes in the table above show which numbers 
are used in the calculation.  For example, the tempera-
ture forecast at i = 4 and t = 1500 s used data from the 
grey boxes near it, based on leapfrog in time and 4th-
order centered in space.  For i = 4 and t = 250 s, the 
Euler forward time difference was used.  For i = 9 and 
t = 750 s, one of the grey boxes wrapped around, due to 
the cyclic boundary conditions.
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 Finite-difference equations that are used to fore-
cast winds and humidity are similar.  If we had used 
higher-order differencing, and included the curva-
ture terms and mapping factors, the result would 
have contained even more terms.   
 Although the equation above looks complicated, 
it is trivial for a digital computer to solve because 
it is just algebra.  Computing this equation takes a 
finite time — perhaps a few microseconds.  Similar 
computation time must be spent for all the other grid 
points in the domain.   These computations must be 
repeated for a succession of short time steps to reach 
forecast durations of several days.  Thus, for many 
grid points and many time steps, the total computer 
run-time accumulates and can take many minutes 
to several hours on powerful computers.  

nuMericaL errorS & inStaBiLity

 Causes of NWP errors include round-off error, 
truncation error, numerical instability, and dy-
namical instability.  Dynamical instability related 
to initial-condition errors will be discussed later in 
the section on chaos.  Additional errors not consid-
ered in this section are coding bugs, computer vi-
ruses, user errors, numerical or physical approxima-
tions, simplifications and parameterizations.  

round-off error
 round-off error exists because computers rep-
resent numbers by a limited number of binary bits 
(e.g., 32, 64, 128 bits).  As a result, some real decimal 
numbers can be only approximately represented in
the computer.  For example, a 32-bit computer can 
resolve real numbers that are different from each 
other by about 3x10–8 or greater.  Any finer differ-
ences are missed. 
 To demonstrate, I wrote a computer program to 
start with x = 0.0, and then repeatedly add 0.1 to x 
(printing x at each step) until it reaches x = 3.0, at 
which point I programmed it to stop.  When I used 
single precision (32-bits), my program never stopped.  
After 30 additions it had found x = 2.9999993, but 
since this was not exactly equal to 3.0, the program 
kept adding 0.1 in an infinite loop (i.e., ran forever).  
When I tried it again using double precision (64 bits) 
it also never stopped, getting only as close to 3.0 as 
x = 3.0000000000000013 .  
 Namely, the slight error between decimal and bi-
nary representations of a number can accumulate, or 
can cause unexpected outcomes of conditional tests 
(“if” statements).  Most modern computers use many 
bits to represent numbers.  Nonetheless, always con-
sider round-off errors when you write programs.  

info  •  early History of nWP

 The first equations of fluid mechanics were formu-
lated by Leonhard Euler in 1755, using the differential 
calculus invented by Isaac Newton in 1665, Gottfried 
Wilhelm Leibniz in 1675, and using partial deriva-
tives devised by Jean le Rond d’Alembert in 1746.  
 Terms for molecular viscosity were added by 
Claude-Louis Navier in 1827 and George Stokes in 
1845.  The equations describing fluid motion are of-
ten called the Navier-Stokes equations.  These 
primitive equations for fluid mechanics were refined 
by Herman von Helmholtz in 1888.  
 About a decade later Vilhelm Bjerknes in Norway 
suggested that these same equations could be used 
for the atmosphere.  He was a very strong proponent 
of using physics, rather than empirical rules, for mak-
ing weather forecasts.
 In 1922, Lewis Fry Richardson in England pub-
lished a book describing the first experimental nu-
merical weather forecast — which he made by solv-
ing the primitive equations with mechanical desk 
calculators.   His book was very highly regarded and 
well received as one of the first works that combined 
physics and dynamics in a thorough, interactive way. 
 It took him 6 weeks to make a 6 h forecast.  Unfor-
tunately, his forecast of surface pressure was off by 
an order of magnitude compared to the real weather.  
Because of the great care that Richardson took in pro-
ducing these forecasts, most of his peers concluded 
that NWP was not feasible.  This discouraged further 
work on NWP until two decades later.
 John von Neumann, a physicist at Princeton Uni-
versity’s Institute for Advanced Studies, and Vladimir 
Zworykin, an electronics scientist at RCA’s Princeton 
Laboratories and key inventor of television, proposed 
in 1945 to initiate NWP as a way to demonstrate the 
potential of the recently-invented electronic comput-
ers.  Their goal was to simulate the global circulation.  
During the first few years they could not agree on 
how to approach the problem.  
 Von Neumann formed a team of theoretical mete-
orologists including Carl-Gustav Rossby, Arnt Elias-
sen, Jule Charney, and George Platzman.  They real-
ized the need to simplify the full primitive equations 
in order to focus their limited computer power on the 
long waves of the global circulation.  So Charney and 
von Neumann developed a simple one-layer baro-
tropic model (conservation of absolute vorticity).
 Their first electronic computer, the ENIAC, filled a 
large room at Princeton, and used vacuum tubes that 
generated tremendous heat and frequently burned 
out.  The research team had to translate the differ-
ential equations into discrete form, write the code 
in machine language (FORTRAN and C had not yet 
been invented), decide how large a forecast domain 
was necessary, and do many preliminary calculations 
using slide rules and mechanical calculators.
 Their first ENIAC forecasts were made in March-
April 1950, for three weather case studies over North 
America.  This was the start of modern NWP. 
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truncation error
 truncation error was already discussed, and 
refers to the neglect (i.e., truncation) of higher-order 
terms in a Taylor series approximation to local gra-
dients.  If we retain more terms in the Taylor series, 
then the result is a higher-order solution that is more 
accurate, but which takes longer to run because 
there are more terms to compute.  If we truncate the 
series at lower order, the numerical solution is faster 
but less accurate.  In NWP, time and space difference 
schemes are chosen as a compromise between accu-
racy and speed.

numerical instability
 Numerical instability causes forecasts to blow 
up.  Namely, the numerical solution rapidly diverges 
from the true solution, can have incorrect sign, and 
can approach unphysical values (±∞).  Truncation er-
ror is one cause of numerical instability.
 Numerical instability can also occur if the wind 
speeds are large, the grid size is small, and the time 
step is too large.  For example, eq. (20.16) models 
advection by using temperature in neighboring 
grid cells.  But what happens if the wind speed is so 
strong that temperature from a more distant location 
in the real atmosphere (beyond the neighboring cell) 
can arrive during the time step ∆t?  Such a physical 
situation is not accounted for in the numerical ap-
proximation of eq. (20.16).  This can create numerical 
errors that amplify, causing the model to blow up 
(see Fig. 20.11).
 Such errors can be minimized by taking a small 
enough time step.  The specific requirement for sta-
bility of advection processes in one dimension is

    ∆ ≤ ∆
t

X
U

 •(20.18)

with similar requirements in the y and z direc-
tions.  This is known as the courant-Friedrichs-
lewy (cFl) stability criterion, or the courant 
condition.  When modelers use finer mesh grids 
with smaller ∆X values, they must also reduce ∆t to 
preserve numerical stability.  The combined effect 
greatly increases model run time on the computer.  
For example, if ∆X and ∆Y are reduced by half, then 

Figure 20.11  (at left)
Examples of numerical stability for advection, with ∆X = 3 km 
and U = 10 m s–1.  Thick black line is initial condition, and 
the forecast after each time step is shown as lighter grey, with 
the last (6th) step dotted.  A temperature signal of wavelength 
10·∆X is numerically stable for time steps ∆t of (a) 100 s and (b) 
250 s, but (c) = 450 s exceeds the CFL criterion, and the solution 
blows up (i.e., the wave amplitude increases without bound).   
(d) A 2·∆X wave does not advect at all (i.e., is unphysical).
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so must ∆t, thereby requiring 8 times as many com-
putations to complete the forecast.   
 For other physical processes such as diffusion 
and wave propagation, there are other requirements 
for numerical stability.  To preserve overall stabil-
ity in the model, one must satisfy the most stringent 
condition; that is, the one requiring the smallest 
time step.  Some high-resolution NWP models use 
time steps of ∆t = 5 s or less.  
 For advection, one way to avoid the time-step 
limitation above is to use a semi-lagrangian meth-
od.  This scheme uses the wind at each grid point to 
calculate a backward trajectory.  The backward 
trajectory indicates the source location for air blow-
ing into the grid cell of interest.  This source location 
need not be adjacent to the grid-cell of interest.  By 
carrying the values of meteorological variables from 
the source to the destination during the time step, 
advection can be successfully modeled (i.e., be nu-
merically stable) even for long time steps.    

info  •  resolution vs. grid Spacing

 Theoretically, the smallest horizontal wavelength 
you can resolve with data at discrete grid points is 
2·∆X.  However, the finite-difference equations that 
are used to describe advection and other dynamics 
in NWP models are unable to handle 2·∆X waves.  
Namely, these waves either do not advect at all (Fig. 
20.11d), or they are numerically unstable. 
 To avoid such unphysical behavior, small wave-
length waves are numerically filtered out of the mod-
el.  As a result, the smallest waves that are usually 
retained in NWP models are about 5 to 7·∆X.  
 Hence, the actual resolution (i.e., the smallest 
weather features that can be modeled) are about 7 
times the grid spacing.  Stated another way, if you 
know the size of the smallest weather system or ter-
rain-related flow that you want to be able to forecast, 
then you need to design your NWP model with hori-
zontal grid spacing ∆X smaller than 1/7 of that size.

Sample application
 What grid size, domain size, number of grid points, 
and time steps would you use for a numerical model 
of a hurricane, and how many computations would 
be needed to make a 3-day forecast?  How fast should 
your computer be?  [Hint: Use info from the Hurricane 
chapter.]

Find the answer
 This is an example of how you design an NWP 
system, including both the software and hardware. 
 Assume the smallest feature you want to resolve 
is a thunderstorm in the eyewall.  If tropical thunder-
storms are about 14 km in diameter, then you would 
want ∆X = (14 km)/7 = 2 km to horizontally resolve it.  
 Hurricanes can be 300 km in diameter.  To model 
the whole hurricane and a bit of its surrounding envi-
ronment, you might want a horizontal domain of 500 
km by 500 km.  This works out to (500 km / 2 km) = 
250 grid points in each of the x and y directions, giv-
ing (250)2 = 62,500 grid points in the horizontal.  If you 
want a model with 50 vertical levels, then you need 
(50) · (62,500) = 3,125,000 grid points total.
 If you want to be able to forecast hurricanes up 
through category 5 (wind speed > 69 m s–1), then de-
sign for a max wind of 80 m s–1.  The CFL criterion (eq. 
20.18) gives ∆t = (2000 m)/(80 m s–1)  =  25 s.   Thus, a 
3-day forecast would require (72 h) · (3600 s h–1) / (25 
s) = 10,368 time steps.
 The temperature forecast eq (20.17) has about 43 
arithmetic operations (adds, subtracts, multiplies, di-
vides).  We have 7 equations of motion, so this gives 
about (7 ·43 ≈) 300 operations.  You must do these op-
erations at each grid point for each time step, giving a 
total = 3,125,000 x 10,368 x 300 ≈ 1013 operations.  
 But we haven’t included the calculations for all the 
other physics (clouds, turbulence, precipitation, radia-
tion, etc.) that must be done at each grid point.   As 
a quick estimate, round up to 1015 floating-point 
(real-number) operations.  
 But you need to complete all these calculations 
quickly, in order to be useful as a forecast to warn peo-
ple to evacuate.  Suppose you design the model to fin-
ish within 3 h (=10,800 s) of computer run time.  Thus,  
your computer must be powerful enough to compute 
at the rate of (1015 operations)/(10,800 s) ≈ 1011 =  100 
giga flops (where 1 flops = 1 floating-point op-
eration per second).  

check:  Units OK.  Physics OK.
exposition:  The number of calculations needed to 
make a hurricane forecast is tremendous, and requires 
a powerful computer.  As computer power increases, 
NWP modelers strive for finer horizontal and vertical 
resolution spanning larger domains, and including 
more accurate (and complex) physics parameteriza-
tions.  
 Namely, NWP modelers always tend to fully use 
all the computer power available, and dream of even 
more powerful computers.

info  •  Lipschitz continuity

 A semi-Lagrangian numerical approach can be 
numerically stable if the velocity and advected vari-
ables A are limited in how fast they vary along the 
back trajectory path s.  Namely, a graph of A vs. s must 
not cross into the grey shaded cone of Fig. 20.E, for a
double cone centered anywhere along s. 
 This smoothness  requirement is called the lip-
schitz condition.  
In the example shown 
in Fig. 20.E, the curve 
at (1) is OK, but at (2) is 
bad because the curve 
crosses the grey cone.
         Fig. 20.e   
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tHe nuMericaL forecaSt ProceSS

 Weather forecasting is an initial value prob-
lem.  As shown in eq. (20.17), you must know the 
initial conditions on the right hand side in order 
to forecast the temperature at later times (t + ∆t).  
Thus, to make forecasts of real weather, you must 
start with observations of real weather.  
 Weather-observation platforms and instruments 
were already discussed in the Weather Reports 
chapter.  Data from these instruments are communi-
cated to central locations.  Government forecast cen-
ters use these weather data to make the forecasts. 
  There are three phases of this forecast process.  
First is pre-processing, where weather observations 
from various locations and times around the world 
are assimilated into a regular grid of initial condi-
tions known as an analysis.  Second is the actual 
computerized NWP forecast, where the finite-dif-
ference approximations of the equations of motion 
are iteratively stepped forward in time.  Finally, 
post-processing is performed to refine and correct 
the forecasts, and to produce additional secondary 
products tailored for specific users.   
 Fig. 20.12 shows a hypothetical forecast schedule, 
for a weather forecast initialized from 00 UTC syn-
optic observations.  First, it takes a few hours (time-
line A in Fig. 20.12) for all the data to be communi-
cated from around the world to the weather forecast 
center (WFC).  This step includes quality control, 
and rejection of suspected bad data.
 Next, the data assimilation programs run for a 
few hours (B) to create a gridded analysis field.  This 
is the optimum initial condition for the NWP mod-
el.  At this point, we are ready to start making the 
forecast, but the initial conditions are already 6 h old 
compared to the present weather.  
 So the first part of forecast (C) is spent trying to 
catch up to “present”.  This wasted initial forecast 
period is not lamented, because startup problems 
associated with the still-slightly-imbalanced initial 
conditions yield preliminary results that should be 
discarded anyway.  Forecasts that occur AFTER the 
weather has already happened are known as hind-
casts, as shown by the shaded area in Fig. 20.12.
 The computer continues advancing the forecast 
(C) by taking small time steps.  As the NWP forecast 
reaches key times, such as 6, 12, 18, and 24 (=00) UTC, 
the forecast fields are saved for post-processing and 
display (F).  lead time is how much the forecast 
is ahead of real time.  For example, for coarse-mesh 
model (C), weather-map products (F) that are pro-
duced for a valid time of 18 UTC appear with a lead 
time of about 8 h before 18 UTC actually happens, in 
this hypothetical illustration.

Figure 20.12
Hypothetical forecast schedule, for a 00 UTC initialization.  
A: wait for weather observations to arrive.  
B: data assimilation to produce the analysis (ICs).
C: coarse-mesh forecast.  
D: fine-mesh forecast, initialized from 00 UTC. 
E: fine-mesh forecast initialized from coarse forecast at 12 h.
F: postprocessing and creation of products (e.g., weather maps).

a Scientific PerSPectiVe •  Math-
ematics

 “To have to translate one’s verbal statement into 
mathematical formulae compels one to scrutinize 
the ideas therein expressed.  Next the possession of 
formulae makes it much easier to deduce the con-
sequences.  In this way absurd implications, which 
might have passed unnoticed in a verbal statement, 
are brought clearly into view & stimulate one to 
amend the formula.  
 Mathematical expressions have, however, their 
special tendencies to pervert thought: the definite-
ness may be spurious, existing in the equation but 
not in the phenomena to be described; and the brev-
ity may be due to the omission of the more important 
things, simply because they cannot be mathematized.  
Against these faults we must constantly be on our 
guard.”
     – L.F. Richardson, 1919
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 Fig. 20.12 shows a coarse-mesh model (C) that 
takes 3 h of computation for each 24 h of forecast, 
as indicated by the slope of line (C).  A finer-mesh 
model might take longer to run (with gentler slope).  
Model (D) takes 18 h to make a 24 h forecast, and if 
initialized from the 00 UTC initial conditions, might 
never catch up to the real weather during Day 1.  
Hence, it would be useless as a forecast — it would 
never escape from the hindcast domain.  
 But for one-way nesting, a fine-mesh forecast (E) 
could be initialized from the 12 UTC coarse-mesh 
forecast.  This is analogous to a multi-stage rocket, 
where the coarse mesh (C) blasts the forecast from 
the past to the future, and then the finer-mesh (E) 
can remain in the future even though E has the same 
slope as D.  
 NWP meteorologists always have the need for 
speed.  Faster computers allow most phases of the 
forecast process to run faster, allowing finer-resolu-
tion forecasts over larger domains with more accu-
racy and greater lead time.  Speed-up can also be 
achieved computationally by making the dynamics 
and physics subroutines run faster, by utilizing more 
processor cores, and by utilizing special computer 
chips such as graphics Processing units (gPus).  
However, tremendous speed-up of a few subroutines 
might cause only a small speed-up in the overall run 
time of the NWP model, as explained by amdahl’s 
law (see INFO Box).   
 The actual duration of phases (A) through (F) 
vary with the numerical forecast center, depending 
on their data-assimilation method, model numerics, 
domain size, grid resolution, and computer power.  
Details of the forecast phases are explained next.

Balanced Mass and flow fields
 Over the past few decades it was learned by hard 
experience that numerical models give bad forecasts 
if they are initialized with the raw observed data.  
One reason is that the in-situ observation network 
has large gaps, such as over the oceans and in much 
of the Southern Hemisphere.  Also, while there are 
many observations at the surface, there are fewer in-
situ observations aloft.  Remote sensors on satellites 
do not observe many of the needed dynamic vari-
ables (U, V, W, T, rT, ρ) directly, and have very poor 
vertical resolution.  Observations can also contain 
errors, and local flow around mountains or trees can 
cause observations that are not representative of the 
larger-scale flow.
 The net effect of such gaps, errors, and inconsis-
tencies is that the numerical representation of this 
initial condition is imbalanced.  By imbalanced, 
we mean that the observed winds disagree with the 
theoretical winds, where theoretical winds such as 

info  •  amdahl’s Law

 Computer architect Gene Amdahl described the 
overall speedup factor SALL of a computer program 
as a function of the speedup Si of individual subrou-
tines, where Pi is the portion of the total computation  
done by subroutine i:

      S P SALL i i=  ∑ −
( / )

1

and where ΣPi = 1.  
 Special programs called profilers can find how 
much time it takes to run each component of an NWP 
model, such as for the implementation of the WRF 
model shown below.    

       
 Fig. 20.F. Portion of total run time of the 
 WRF model for some of the major components.
 “incorp. tend.” = incorporation of tendencies.
 “diff.” = diffusion.  
 “uvw advect.” = advection of U, V, and W wind 
  components.  
 “microphysics” = hydrometeor parameterizations.
 “cu” = parameterizations for convective clouds.
 “ABL & sfc.” = boundary layer and surface 
  parameterizations.

 For example, if graphics-processing units 
(gPus) speed-up the microphysics 20 times and 
speedup scalar advection by 1.8 times (i.e., an 80% 
speedup), and the remaining  60.6% of WRF has no 
speedup, then overall:

  SALL = [0.163/20 + 0.231/1.8 + 0.606/1]–1 = 1.35 

Namely, even though the microphysics portion of the 
model is sped up 2000%, the overall speedup of WRF 
is 35% in this hypothetical example.
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the geostrophic wind are based on temperature and 
pressure fields via atmospheric dynamics.
 Balanced and imbalanced flows can be illustrat-
ed with a pond of water.  Suppose initially the wa-
ter-level is everywhere level, and the water currents 
and waves are zero (Fig. 20.13a).  This flow system 
is balanced, because with a level pond surface we 
indeed expect no currents or waves.  Next, add extra 
water to the center of the pond (Fig. 20.13b).  This 
mass field (i.e., the distribution of water mass in 
the pond) is not balanced with the flow field (i.e., 
the motions or circulations within the pond, which 
for Fig. 20.13b are assumed to be zero).  This imbal-
ance causes waves and currents to form (Fig. 20.13c), 
which help to redistribute mass.  These transient 
waves and currents decay, leaving the pond in a new 
balanced state (i.e., level water surface, no waves, no 
currents), but with slightly greater water depth.
 Consider what happens to a numerical model of 
the pond if observation errors are incorporated into 
the initial conditions.  Suppose that the water level 
in the center of the numerical pond is erroneously 
“observed” to be 1 m higher than the level every-
where else (Fig. 20.13b).  Namely, the “true” initial 
conditions might be like Fig. 20.13a, but observation 
errors might cause the “modeled” initial conditions 
to be like Fig. 20.13b.  
 A well-designed numerical model of a pond 
would simulate the dynamical behavior of an actual 
pond.  Hence, the modeled pond would respond 
as in Figs. 20.13c & d, even though the actual pond 
would remain motionless as in Fig. 20.13a.
 The transient waves and currents are an artifact 
of the poor initial conditions in the model, and are 
not representative of the true flow in the real pond.  
Hence, the forecast results are not to be trusted dur-
ing the first few minutes of the forecast period while 
the model is adjusting itself to a balanced state.
 Numerical forecasts of the atmosphere have the 
same problem, but on a longer time scale than a 
pond.  Namely, the first 0.5 to 3  hours of a weather 
forecast are relatively useless while the model adjusts 
to imbalances in the initial conditions (see the Data 
Assimilation section).  During this startup period, 
simulated atmospheric waves are bouncing around 
in the model, both vertically and horizontally.
 After the first 3 to 12 h of forecast, the dynam-
ics are fairly well balanced, and give essentially the 
same forecast as if the fields were balanced from the 
start.  However, spurious waves in the model might 
also cause unjustified rejection of good data during 
data assimilation (see next subsection).
 Also, the erroneous waves can generate errone-
ous clouds that cause erroneous precipitation, etc. 
The net result could be an unrealistic loss of water 
from the model that could reduce the chance of fu-
ture cloud formation and precipitation.  Change of 

Figure 20.13
Demonstration of a dynamic system becoming balanced.  (a) 
Balanced initial state of a pond of water (shaded grey), with no 
waves and no currents.  (b) Extra water added in center of pond, 
causing the water-mass  distribution to not be in equilibrium 
with the waves and currents.  (c) Wave generation as the pond 
adjusts itself toward a new balanced state.  (d) Final balanced 
state with slightly higher water everywhere, but no waves and 
no currents.
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water content is just one of many irreversible pro-
cesses that can permanently harm the forecast.
 In summary, initialization problems cause a 
transient period of poor forecast quality, and can 
permanently degrade longer-term forecast skill or 
cause rejection of good data.  Hence, data-assimila-
tion methods to reduce startup imbalances, such as 
described next, are highly desirable.

Data assimilation and analysis
 The technique of incorporating observations into 
the model’s initial conditions is called data assimi-
lation.  Most assimilation techniques capitalize on 
the tendency of NWP models to create a balanced 
state during their forecasts.
 One can utilize the balanced state from a previ-
ous forecast as a first guess of the initial conditions 
for a new forecast.  When new weather observations 
are incorporated with the first guess, the result is 
called a weather analysis.  
 To illustrate the initialization process, suppose 
a forecast was started using initial conditions at 00 
UTC, and that a 6-hour forecast was produced, valid 
at 06 UTC.  This 06 UTC forecast could serve as the 
first guess for new initial conditions, into which the 
new 06 UTC weather observations could be incor-
porated.  The resulting 06 UTC analysis could then 
be used as the initial conditions to start the next 
forecast run.  The process could then be repeated for 
successive forecasts started every 6 h.  
 Although the analysis represents current or re-
cent-past weather (not a forecast), the analyzed field 
is usually not exactly equal to the raw observations 
because the analysis has been smoothed and par-
tially balanced.  Observations are used as follows.
 First, an automated initial screening of the raw 
data is performed.  During this quality control 
phase, some observations are rejected because they 
are unphysical (e.g., negative humidities), or they 
disagree with most of the surrounding observations.  
In locations of the world where the observation net-
work is especially dense, neighboring observations 
are averaged together to make a smaller number of 
statistically-robust observations. 
 When incorporating the remaining weather ob-
servations into the analysis, the raw data from vari-
ous sources are not treated equally.  Some sources 
have greater likelihood of errors, and are weighted 
less than those observations of higher quality.  Also, 
observations made slightly too early or too late, or 
made at a different altitude, are weighted less.  In 
some locations such as the tropics where Coriolis 
force and pressure-gradients are weak, more weight 
can be given to the winds than to the pressures.
 We focus on two data-assimilation methods here:  
optimum interpolation and variational.  Both are 

info  •  the Pacific Data Void

 One hazard of data assimilation is that the result-
ing analysis does not represent truth, because the 
analysis includes a previous forecast as a first guess.  
If the previous forecast was wrong, then the subse-
quent analysis is poor.  
 Even worse are situations where there are little 
or no observation data.  For data-sparse regions, the 
first-guess from the previous forecast dominates the 
“analysis”.  This means that future forecasts start 
from old forecasts, not from observations.  Forecast 
errors tend to accumulate and amplify, causing very 
poor forecast skill further downstream. 
 One such region is over the N.E. Pacific Ocean.  
From Fig. 9.23 in the Weather Reports & Map Analysis 
chapter, there are no rawinsonde observations (RAO-
Bs) in that region to provide data at the dynamically 
important mid-tropospheric altitudes.  Ships and 
buoys provide some surface data, and aircraft and 
satellites provide data near the tropopause, but there 
is a sparsity of data in the middle.  This is known as 
the Pacific data void.
 Poor forecast skill is indeed observed downstream 
of this data void, in British Columbia, Canada, and 
Washington and Oregon, USA.  The weather-forecast 
difficulty there is exacerbated by the complex terrain 
of mountains and shoreline.

info  •  giving a Weather Briefing

 NWP forecast maps make up an important part 
of most weather briefings, but they should not be the 
only part.  Bosart (2003), Snelling (1982), West (2011), 
and others recommend the following:

 Your discussion should answer 6 questions:
  • What has happened?
  • Why has it happened?

  • What is happening?
  • Why is it happening?

  • What will happen?
  • Why will it happen?

 Identify forecast issues throughout your briefing:
  • Difficult/tricky forecast details.
  • Significant/interesting weather.

 Go from the large-scale to the smaller scales.
 Verify your previous forecast.
 Encourage questions, discussion, and debate.

 For the past and current weather portions of the 
briefing, show satellite images/animations, radar im-
ages/animations, soundings, and weather analyses.
 Speak clearly, concisely, loudly, and with confi-
dence.  No forecast is perfect, but do the best you can.  

Your audience will appreciate your sincerity.
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objective analysis methods in the sense that they 
are calculated by computer based on equations, in 
contrast to a “subjective analysis” by a human (such 
as was demonstrated in the Map Analysis chapter).   

objective optimum interpolation
 Let σo be the standard deviation of raw-observa-
tion errors from a sensor such as a rawinsonde (Ta-
ble 20-2).  Larger σ indicates larger errors.  
 Let σf be the standard deviation of errors associ-
ated with the first guess from a previous forecast.  
These are also known as background errors.  Gen-
erally, error increases with increasing forecast range.  
For example, some global  NWP models have the fol-
lowing errors for geopotential height Z of the 50-kPa 
isobaric surface:

    σZf a t= ·  (20.19)

where a ≈ 11 m day–1 and t is forecast time range.  
Namely, a first guess from a 2-day forecast is less 
accurate (has greater error) than a first guess from a 
1-day forecast.
 An optimum interpolation analysis weights 
the first guess F and the observation O according to 
their errors to produce an analysis field A: 
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where A, F, O , and σ all apply to the same one 
weather element, such as pressure, temperature, or 
wind. If the observation has larger errors than the 
first guess, then the analysis weights the observa-
tion less and the first-guess more.  
 The equation above can be used to define a cost 
function  J:
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where the optimum analysis from eq. (20.20) gives 
the minimum cost for eq. (20.21).  
 Optimum interpolation is “local” in the sense 
that it considers only the observations near a grid 
point when producing an analysis for that point.  
Optimum interpolation is not perfect, leaving some 
imbalances that cause atmospheric gravity waves to 
form in the subsequent forecast.   A normal-mode 
initialization modifies the analysis further by re-
moving the characteristics that might excite gravity 
waves.    

table 20-2.  
Standard deviation σo of observation errors.

Sensor type σo

Wind errors in the lower troposphere:
 Surface stations and ship obs
 Drifting buoy
 Rawinsonde, wind profiler
 Aircraft and satellite

(m s–1)
3 to 4
5 to 6

0.5 to 2.7
3

Pressure errors:
 Surface weather stations & Rawinsonde
 Ship and drifting buoy
 S. Hemisphere manual analysis

(kPa)
0.1
0.2
0.4

geopotential height errors:
 Surface weather stations
 Ship and drifting buoy
 S. Hemisphere manual analysis
 Rawinsonde

(m)
7
14
32

13 to 26

temperature errors:
 ASOS surface automatic weather stn.
 Rawinsonde upper-air obs at z < 15 km
  at altitudes near 30 km

(°C)
0.5 to 1.0

0.5
< 1.5

humidity errors:
 ASOS surface weather stations: Td (°C)
 Rawinsonde in lower troposph. RH (%)
  near tropopause:  RH (%)

0.6 to 4.4
5
15

Sample application
 A drifting buoy observes a wind of M = 10 m s–1, 
while the first guess for the same location gives an 8 
m s–1 wind with 2 m s–1 likely error.  Find the analysis 
wind speed.

Find the answer
Given: MO = 10 m s–1,   MF = 8 m s–1,   σf = 2 m s–1

Find:  MA = ? m s–1   

Use Table 20-2 for Wind Errors: Drifting buoy:
   σo = 6 m s–1  

Use eq. (20.20) for wind speed M:
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   = (8 m s–1)·(36/40) + (10 m s–1)·(4/40)  =  8.2 m s–1  

check:  Units OK.  Physics OK.
exposition:  Because the drifting buoy has such a 
large error, it is given very little weight in producing 
the analysis.  If it had been given equal weight as the 
first guess, then the average of the two would have 
been 9 m s–1.  It might seem disconcerting to devalue a 
real observation compared to the artificial value of the 
first guess, but it is needed to avoid startup problems.
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Variational data assimilation
 Another scheme, called variational analysis, 
attempts to match secondary characteristics calcu-
lated from the analysis field to observations so as to 
minimize the cost function.  For example, the radia-
tion emitted by air of the analyzed temperature is 
compared to radiance measured by satellite, allow-
ing corrections to be made to the temperature analy-
sis as appropriate.
 Eq. (20.21) can be modified to utilize such second-
ary observations:
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where H is an operator that converts from the analy-
sis variable A to the secondary observed variable Y, 
and σyo is the standard deviation of observation er-
rors for variable Y.  The “best” analysis A is the one 
that minimizes the value of the cost function J.  This 
minimum can be found by an iterative approach, or 
by trial and error.
 For example, suppose a satellite radiometer looks 
toward Paris, and measures the upwelling radiance 
L for an infrared wavelength λ corresponding to the 
water-vapor channel of Fig. 8.8 in the Satellites & Ra-
dar chapter.  This channel has the strongest returns 
at about 8 km altitude.  For this example, Y is the 
measured radiance L.  H(A) is the Planck blackbody 
radiance function (eq. 8.1), and A is the analysis tem-
perature at 8 km over Paris.  To find the best analysis: 
guess different values of A, calculate the associated 
cost function values, and iterate towards the value of 
A that yields the lowest value of cost function.
 The variational approach allows you to consider 
all worldwide observations at the same time — a 
method called 3dVar.  To do this, the first-guess (F), 
analysis (A), and observation (O) factors in eq. (20.22) 
must be replaced by vectors (arrays of numbers) con-
taining all grid points in the whole 3-D model do-
main, and all observations worldwide made at the 
analysis time.  Also, the first-guess and observation 
error variances must be replaced by covariance ma-
trices.  Although the resulting matrix-equation ver-
sion of (20.22) contains millions of elements, large 
computers can iterate towards a “best” analysis. 
 An extension is 4dVar, where the additional di-
mension is time.  This allows off-time observations 
to be incorporated into the variational analysis.  
4DVar is even more computationally expensive than 
3DVar.  Although the role of any analysis method is 
to create the initial conditions for an NWP forecast, 
often it takes more computer time and power to cre-
ate the optimum initial conditions than to run the 
subsequent numerical forecast. 

Sample application
 The water vapor channel of a satellite observes a 
radiance of 1.53 W·m–2·µm–1·sr–1 over Paris.  On aver-
age, this channel has an error standard deviation of 
0.05 W·m–2·µm–1·sr–1.  Output from a previous NWP 
run gives a temperature of –35°C at altitude 8 km over 
Paris, which we can use as a balanced first guess for 
the new analysis.  This forecast has an error standard 
deviation of 1°C.  The upper troposphere over Paris is 
very humid.  For your analysis, find the “best” esti-
mate of the temperature at 8 km over Paris.

Find the answer
Given:  Lo = 1.53 W·m–2·µm–1·sr–1 ,   TF = –35°C at 8 km
 σLo = 0.05 W·m–2·µm–1·sr–1 ,  σTf  =   1°C ,  water-
 vapor channel:  λ = 6.7 µm from the Satellites & 
Radar chapter with peak weighting function at z ≈ 8 
 km.  High humidity implies blackbody emissions.
Find:  TA = ? °C  at 8 km altitude over Paris.

Use eq. (20.22), & use Planck’s Law eq. 8.1 for H(TA) 
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with c1B = 1.191043x108 W·m–2·µm4·sr–1 and c2 = 14387.75 
µm K from near eq. (8.1) in The Satellites & Radar chap-
ter.  [Hint: don’t forget to convert TA in Kelvin to use 
in Planck’s Law.]
 Calculate J(TA) for various values of TA.  I will start 
with a std. atmosphere guess of TA = –37°C at 8 km.
 J = 0.5 · { [(–35°C)–(–37°C)]2/(1°C)2  + 
            (1/(0.05u)2 ·[1.53u – (8822u/(exp(9.09926) – 1)) ]2 }
 J = 0.5 ·{ 4 + 118.4 }  =  61.2 (dimensionless)  
where u are units of  W·m–2·µm–1·sr–1.  
 Repeating the calculation in a spreadsheet for other 
values of TA in the range of –37 to –25°C gives:  

  
The best analysis is at minimum cost J, near TA= –30°c 

check:  Units OK.  TA value reasonable.  
exposition:  The satellite radiance corresponds to a 
brightness temperature of –25°C.  An error propagation 
calculation (see Appendix A) for eq. (8.1) shows that 
a radiance error of σLo = 0.05 W·m–2·µm–1·sr–1 corre-
sponds to a brightness-temperature error of 1°C.  Thus, 
both the first guess and the observed radiance have 
the same effective error, giving TA equally weighted 
between the satellite value –25°C and the first-guess 
value –35°C. Try different error values in the spread-
sheet to see how TA varies between –35 & –25°C.
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forecast
 The next phase of the forecast process is the run-
ning of the NWP models.  Recall that weather con-
sists of the superposition of many different scales of 
motion (Table 10-6), from small turbulent eddies to 
large Rossby waves.  Different NWP models focus 
on different time and spatial scales (Table 20-3).
 Unfortunately, the forecast quality of the smaller 
scales deteriorates much more rapidly than that for 
the larger scales.  For example, cloud forecasts might 
be good out to 2 to 12 hours, frontal forecasts might 
be good out to 12 to 36 hours, while the Rossby-wave 
forecasts might be useful out to several days.  Fig. 
20.14 indicates the ranges of horizontal scales over 
which the forecast is reasonably skillful.
 Don’t be deceived when you look at a weather 
forecast, because all scales are superimposed on the 
weather map regardless of the forecast duration.  
Thus, when studying a 5 day forecast, you should 
try to ignore the small features on the weather map 
such as thunderstorms or frontal positions.  Even 
though they exist on the map, they are probably 
wrong.  Only the positions of the major ridges and 
troughs in the jet stream might possess any forecast 
skill at this forecast duration.  Maps in the next sec-
tion illustrate such deterioration of small scales.  

case Study: 22-25 feb 1994
 Figures 20.15 show the weather valid at 00 UTC 
on 24 February 1994.  Fig. 20.15a gives the verify-
ing analysis; namely, a smoothed fit to the actual 
weather measured at 00 UTC on 24 Feb 1994.

Figure 20.15a
Analysis of 85 kPa temperature and mean-sea-level pressure, 
valid 00 UTC 24 Feb 94.  (Courtesy of ECMWF.)

table 20-3.  Hierarchy of operational numerical weath-
er prediction (NWP) models.

Forecast type Fcst. duration
& (Fcst. cycle)

domain
& (∆X)

nowcasts 0 to 3 h  
(re-run every few 
minutes)

local: town, 
county
(100s of m)

short-range 3 h to 3 days 
(re-run every few 
hours) 

regional: state, 
national, conti-
nental
(1 to 5 km)

medium-range 3 to 7 days 
(re-run daily)

continental to
 global
(5 to 25 km)

long-range 7 days to 1 month
(re-run daily or 
weekly)

global
(25 to 100 km)

seasonal 1 to 12 months 
(re-run monthly)

global
(100 to 500 km)

GCM* 1 to 1000 years 
[non-operational 
(not run routine-
ly); focus instead 
on case studies & 
hypothetical sce-
narios.]

global
(100 to 500 km)

* GCM  = Global Climate Model   -or-  General Circulation Model. 

Figure 20.14
Range of horizontal scales having reasonable forecast skill (shad-
ed) for various forecast durations.  [from the European Centre 
for Medium Range Weather Forecasts (ECMWF), 1999]
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 Figs. 20.15b-e give the weather forecasts valid for the same time, but initialized 1.5, 3.5, 5.5, and 7.5 days 
earlier.  For example, Fig. 20.15b was initialized with weather observations from 12 UTC on 22 Feb 94, and the 
resulting 1.5 day forecast valid at 00 UTC on 24 Feb 94 is shown in the figure.  Fig. 20.15c was initialized from 
12 UTC on 20 Feb 94, and the resulting 3.5 day forecast is shown in the figure.  Thus, each succeeding figure is 
the result of a longer-range forecast, which started with earlier observations, but ended at the same time.

Figure 20.15b
1.5-day forecast, valid 00 UTC 24 Feb 94, started from initial-
ization data at 12 UTC on 22 Feb 94.  (From ECMWF.)

Figure 20.15c
3.5-day forecast, valid 00 UTC 24 Feb 94, started from initial-
ization data at 12 UTC on 20 Feb 94.  (From ECMWF.)

Figure 20.15d
5.5-day forecast, valid 00 UTC 24 Feb 94, started from initial-
ization data at 12 UTC on 18 Feb 94.  (From ECMWF.)

Figure 20.15e
7.5-day forecast, valid 00 UTC 24 Feb 94, started from initial-
ization data at 12 UTC on 16 Feb 94.  (From ECMWF.)
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 Solid isobars are MSL pressure in mb (1000 mb 
= 100 kPa), plotted every 5 mb.  Dashed isotherms 
are 85-kPa temperatures, plotted every 2.5°C, with 
the 0°C line darker.  The map domain covers eastern 
North America, and is centered on Lake Ontario.
 These figures demonstrate the inconsistency of 
forecasts started at different times with different 
initial conditions.  Such inconsistency is inherent in 
all forecasts, and illustrates the limits of predictabil-
ity.  The analysis (Fig. 20.15a) shows a low centered 
near Detroit, Michigan, with a cold front extending 
southwest toward Arkansas.  The 1.5-day forecast 
(Fig. 20.15b) is reasonably close, but the 3.5-day fore-
cast (Fig. 20.15c) shows the low too far south and the 
cold front too far west.  The 5.5 and 7.5-day forecasts 
(Fig. 20.15d & e) show improper locations for the 
fronts and lows, but the larger scales are good.

Post-processing
 After the dynamical computer model has com-
pleted its forecast, additional post-processing 
computations can be made with the saved output.  
Postprocessing can include:
 • forecast refinement to correct biases,
 • calculation of secondary weather variables,
 • drawing of weather maps and other graphics,
 • compression into databases & climatologies, &
 • verification (see the Forecast Quality section).

Forecast refinement
 Forecasts often contain biases (systematic errors; 
see Appendix A), due to:  the NWP model formula-
tion; the initial conditions used; and characteristics 
of different locales.  For example, towns might be 
located in valleys or near coastlines.  These are land-
scape features that can modify the local weather, but 
which might not be captured by a coarse-mesh nu-
merical model.  A number of automated statistical 
techniques (e.g., linear regression, Kalman filter-
ing) can be applied as post-processing to reduce the 
biases and to tune the model output toward the cli-
matologically-expected or observed local weather.  
 Two classical statistical methods are the Perfect 
Prog method (PPm) and model output Statis-
tics (moS).  Both methods use a best-fit statistical 
regression (see INFO boxes) to relate input fields 
(predictors) to different output fields (predic-
tands).  An example of a predictand is surface tem-
perature at a weather station, while predictors for it 
might include values interpolated from the nearest 
NWP grid points.  PPM uses observations as predic-
tors to determine regression coefficients, while MOS 
uses model forecast fields.  Once the regression coef-
ficients are found, both methods then use the model 
forecast fields as the predictors to find the surface-
temperature forecast for that weather station.

info  •  Kalman filter (Kf)

 Rudolf Kalman suggested a method that we can 
modify to estimate the bias x in tomorrow’s forecast. 
It uses the observed bias y in today’s forecast, and  
also uses yesterday’s estimate for today’s bias xold:

    x x y xold old= + −( )β ·  

The Kalman gain  β  depends on ratio  r = σ2
PL/σ2

NWP , 
where σ2

PL is the “predictability-limit” error variance 
associated with the chaotic nature of a “perfect” 
weather-forecast model, and σ2

NWP is the error vari-
ance of the operational NWP model.  If those error 
variances are steady, then β = 0.5·[(r2+4r)1/2 – r].  The 
e-folding response time (days) is τ = –1/[ln(1–β)].
 Midlatitude weather is more variable and less pre-
dictable in winter.  As a result, useful values are:
• Winter:      r ≈ 0.06 ,   β = 0.217 ,   τ = 4 days.
• Summer:   r ≈ 0.02 ,   β = 0.132 ,   τ = 7 days.
This Fig. shows 
a noisy input y
(thin line) and 
KF responses x
(thicker lines)
for different 
values of the
ratio r.  The 
KF adapts to 
changes, and 
is recursive.
       Fig. 20.g 

info  •  Linear regression

 Suppose that y represents a weather element 
observed at a weather station.  Let x be the corre-
sponding forecast by a NWP model.  Over many 
days, you might accumulate many (N) data points 
(xi, yi) of forecasts and corresponding observations, 
where i is the data-point index.  
 If you anticipate that the relationship between x 
and y is linear, then that relationship can be described 
by:
    y  =  ao  +  a1 ·x  

where ao is an unknown bias (called the intercept), 
and a1 is an unknown trend (called the slope).  
 The best-fit (in the least-squared error sense) 
coefficients are:

    a
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 Best fit regressions are found using multi-year 
sets of predictors and predictands.  The parameters 
of the resulting best fit regression equations are held 
constant during their subsequent usage.
 The PPM method has the advantage that it does 
not depend on the particular forecast model, and 
can be used immediately after changing the forecast 
model.  The PPM produces best predictand values 
only when the model produces perfect predictor 
forecasts, which is rare.  
 The MOS advantage is that any systematic model 
errors can be compensated by the statistical regres-
sion.  A disadvantage of MOS is that a multi-year set 
of model output must first be collected and statisti-
cally fit, before the resulting regression can be used 
for future forecasts.  Both MOS and PPM have a dis-
advantage that the statistical parameters are fixed.
 Alternative methods include the Kalman Filter 
(KF; see INFO box) and updateable moS, which 
continually refine their statistical parameters each 
day.  They share the advantage of MOS in that they 
use model output for the predictors.  They learn 
from their mistakes (i.e., are adaptive), and can au-
tomatically and quickly retune themselves after any 
changes in the numerical model or in the synoptic 
conditions.  They are recursive (tomorrow’s bias cor-
rection depends on today’s bias correction, not on 
many years of past data), which significantly reduc-
es the data-storage requirements.  A disadvantage is 
that the KF cannot capture rare, extreme events.  

calculation of Secondary Variables
 Fundamental output from the NWP forecast in-
clude winds, temperature, pressure or height, mix-
ing ratio, and precipitation.  Additional weather 
variables can be created for human forecasters, for 
the general public, and for specific industries such 
as agriculture, transportation, and utilities.  Some 
of these secondary variables (such as relative hu-
midity) can be calculated directly from the primary 
fields using their defining equations.  Other second-
ary variables (such as visibility) can be estimated 
statistically via regression.
 Secondary thermodynamic variables include: 
potential temperature, virtual potential tempera-
ture, liquid-water or equivalent potential tempera-
ture, wet-bulb temperature, near-surface (z = 2 m) 
temperature, surface skin temperature, surface heat 
fluxes, surface albedo, wind-chill temperature, static 
stability, short- and long-wave radiation, and vari-
ous storm-potential indices such as CAPE.
 Secondary moisture variables include: relative 
humidity, cloudiness (altitudes and coverage), pre-
cipitation type and amount, visibility, near-surface 
dew-point (z = 2 m), soil wetness, and snowfall. 

Sample application (§)
 Given the following set of past data (Tfcst vs. Tobs): 
(a) Find the best-fit straight line.  Namely, train MOS 
using linear regression (see INFO box). 
(b) If the NWP forecast for tomorrow is Tfcst = 15°C, 
then post-process it to estimate the bias-corrected T ? 

Find the answer
Given: The first 3 columns of data below.
Find:  ao = ? °C,  a1 = ? ,    Tfcst = ?  °C
(a) Train MOS using past data to find the coefficients.

i x=Tfcst y=Tobs x·y x2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

-11.4
-7.9
0.7
-2.7
-1.4
3.8
5.0
3.8
6.7
14.7
13.9
17.9
17.7
24.8
22.0
28.4
27.2
34.3
34.7
29.7
36.7

114.0
62.8
-4.0
10.9
2.8
0.0
10.1
15.2
40.0
117.5
139.1
214.3
247.8
397.0
396.4
568.0
599.5
822.0
902.7
831.1

1100.3

100
64
36
16
4
0
4
16
36
64
100
144
196
256
324
400
484
576
676
784
900

avg= 10.0 14.2 313.7 246.7

ao = (10 · 313.7 – 246.7 · 14.2) / (102 – 246.7) = 2.52 °c 
a1 = ( 10 · 14.2 – 313.7 ) / (102 – 246.7) =  1.17 (dim’less)

The original data points and the best-fit line are:

     
(b) Use MOS to correct the forecast:  T = ao + a1 · Tfcst .
 T = (2.52°C) + 1.17·(15°C)  =  20.1 °c.  

check:  Units OK.   Line fits data nicely.
exposition:  The predictor (x) and predictand (y) need 
not have the same units.  For example, MOS could be 
trained to use model forecasts of relative humidity (%) 
to estimate observed values of visibility (km).  
 If you draw a vertical line from each data point 
to the regressed line, then the length of each line is a 
measure of the error between the data and the regres-
sion.  Square each error value and sum them to give 
the total error.  Linear regression is a “best fit” in the 
sense of finding the “least squared error”. 
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 Secondary dynamic variables include stream-
lines, trajectories, absolute vorticity, potential 
vorticity, isentropic potential vorticity, dynamic 
tropopause height, vorticity advection, Richardson 
number, dynamic stability, near-surface winds (z = 
10 m), surface stress, surface roughness, mean-sea-
level pressure, and turbulence.
 While many of the above variables are computed 
at central numerical-computing facilities, additional 
computations can be made by separate organiza-
tions.  Local forecast offices of National Weather Ser-
vices can tailor the numerical guidance to produce 
local forecasts of maximum and minimum tempera-
ture, precipitation, cloudiness, and storm and flood 
warnings for the neighboring counties.
 Consulting firms, broadcast companies, utility 
companies, and airlines, for example, acquire the 
fundamental and secondary fields via data networks 
such as the internet.  From these fields they compute 
products such as computerized flight plans for air-
craft, crop indices and threats such as frost, hours 
of sunshine, and heating- or cooling-degree days for 
energy consumption.  
 Universities also acquire the primary and sec-
ondary output fields, to use for teaching and re-
search.  Some of the applications result in weather 
maps that are put back on the internet.

Weather maps and other graphics
 The fundamental and secondary variables that 
are output from the NWP and from forecast refine-
ment are arrays of numbers.  To make these data 
easier to use and interpret by humans, the numbers 
can be converted into weather-map graphics and an-
imations, meteograms (plots of a weather variable 
vs. time), sounding profiles, cross-sections, text fore-
casts, and other output forms.  Computation of these 
outputs can take hours, depending on the graphical 
complexity and the number of products, and thus 
cannot be neglected in the forecast schedule.  
 Some visualization programs for NWP output 
include: GrADS, Vis5D, MatLab, NCAR RIP, GEM-
PAK, unidata IDV, AWIPS, and NinJo.

compression into databases and clima-
tologies

 It is costly to save the terabytes of output pro-
duced by operational NWP models every day for 
every grid point, every level, and every time step.  
Instead, only key weather fields at RAOB mandato-
ry levels in the atmosphere are saved.  These WMO 
standard isobaric surfaces are: surface, 100, 92.5, 
85, 70, 50, 40, 30, 25, 20, 15, 10, 7, 5, 3, 2, & 1 kPa.  Output 
files can be converted from model-specific formats 
to standard formats (NetCDF, Vis5D, SQL, GRIB). 
Forecasts at key locations such as weather stations 
can be accumulated into growing climatologies.  

Sample application
    Given the following simplified MOS regression:

     Tmin  =  –295 + 0.4 · T15 + 0.25 · ∆TH + 0.6 · Td 

for daily minimum temperature (K) in winter at Madi-
son, Wisconsin, where T15 = observed surface tem-
perature (K) at 15 UTC, ∆TH = model forecast of 100-
85 kPa thickness (m), and Td = model fcst. dew point 
(K).  Predict Tmin given NWP model forecasts of: T15 = 
273 K, ∆TH = 1,200 m, and Td = 260 K.

Find the answer
Given: T15 = 273 K, ∆TH = 1,200 m, and Td = 260 K.
Find:  Tmin = ? K

Tmin  =  –295 + 0.4·(273) + 0.25·(1,200)+ 0.6·(260)
  = 270.2  ≈  –3°c.

check:  Units OK.  Physics OK.
exposition:  Chilly, but typical for winter in Madison.  
Note that MOS regressions can be made for any vari-
ables in any units.  Thus, (1) units might not be consis-
tent from term to term in the regression, but (2) you 
MUST use the same units for each variable as was used 
when the MOS regression was created.

info  •  Human contributions

 NWP forecasts are rarely perfect.  Thus, humans 
have the opportunity to improve the forecasts. 
 By comparing the current model forecast to recent 
observations, you can discover biases early in the fore-
cast that you can use to correct future forecasts.  For 
example, if the NWP forecast for your location was 2 
°C too cold during the past few hours, perhaps it will 
continue to be 2 °C too cold in the next few hours.  Er-
rors in timing or position of fronts and cyclones early 
in the forecast can be extrapolated to anticipate what 
corrections are needed for wind and precipitation 
forecasts later.
 You can incorporate knowledge of local effects 
that might not be resolved by the model — such as 
the effects of local terrain, coastlines, land use, and 
urban centers.  You may have noticed that some NWP 
models do not perform well in certain weather pat-
terns, so you can anticipate similar errors when those 
same weather patterns happen in the future.  
 Humans can also tailor the weather forecasts to in-
dividual users and industries.  Examples are forecasts 
for road or rail transportation, aviation, shipping/
fishing/recreational boating, servicing of offshore 
oil platforms, electrical utility companies (including 
hydro and wind-energy), air-quality regulatory agen-
cies, avalanche forecast centers, flood and landslide 
prediction, forest-fire fighting, ski resorts, emergency 
services, etc.
 Humans are also rarely perfect.  Nonetheless, stud-
ies have shown that the best forecasts are achieved by 

a combination of NWP and human experience.
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nonLinear DynaMicS anD cHaoS

Predictability
 Recall that NWP is an initial-value problem, 
where these initial values are partially based on ob-
served weather conditions.  Unfortunately, the ob-
servations include instrumentation, sampling, and 
representativeness errors.  We have already exam-
ined how such errors cause startup problems due to 
imbalanced flow conditions.  How do these errors 
affect the long-range predictability? 
 Lorenz suggested that the equations of motion 
(which are nonlinear because they contain products 
of dependent variables, such as U and T in U·∆T/∆x) 
are sensitive to initial conditions.  Such sensitiv-
ity means that small differences in initial conditions 
can grow into large differences in the forecasts.  
 This is unfortunate.  Initial conditions will always 
have errors.  Thus our forecasts will always become 
less accurate with increasing forecast time.  Thus, 
there is a limit to the predictability of weather  
that is related to instability of the dynamics.
 A simple physical illustration of sensitive de-
pendence to initial conditions is a toy balloon.  
Inflate one with air and then let it go to fly around 
the room.  Repeat the experiment, being careful to 
inflate the balloon the same amount and to point it 
in the same direction.  You probably know from ex-
perience that the path and final destination of the 
balloon will differ greatly from flight to flight.  In 
spite of how simple a toy balloon seems, the dy-
namical equations describing its flight are extremely 
sensitive to initial conditions, making predictions of 
flight path virtually impossible. 

Lorenz Strange attractor
 Another illustration of sensitive dependence to 
initial conditions was suggested by Lorenz.  Sup-
pose we examine 2-D convection within a tank of 
water, where the bottom of the tank is heated (Fig. 
20.16).  The vertical temperature gradient from bot-
tom to top drives a circulation of the water, with 
warm fluid trying to rise.  The circulation can mod-
ify the temperature distribution within the tank.
 A very specialized, highly-simplified set of equa-
tions that approximates this flow is:
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a Scientific PerSPectiVe • Scientific 
revolutions

 In the late 1950s and early 1960s, Ed Lorenz was 
making numerical forecasts of convection to deter-
mine if statistical forecasts were better than NWP 
forecasts using the nonlinear dynamical equations.  
One day he re-ran a numerical forecast, but entered 
slightly different initial data.  He got a strikingly dif-
ferent answer.
 He was curious about this effect, and allowed 
himself to become sidetracked from his original in-
vestigations.  This lead to his description of chaos, 
discovery of a strange attractor, and realization of the 
sensitive dependence of some equations to initial con-
ditions.
 He published his results in 1963 (“Deterministic 
non-periodic flow”.  J. Atmos. Sci., 20, p 130-141).  From 
1963 to about 1975, this innovative paper was rarely 
cited by other scientists — a clue that it was not yet 
accepted by his colleagues.  However, between 1975 to 
1980, researchers were becoming increasingly aware 
of his work.  From 1980 to present, this paper has been 
cited on the order of 100 times per year.
 About a decade and a half elapsed before this new 
theory gained wide acceptance, which is typical of 
many paradigm shifts.  Namely, it takes about one 
human generation for a scientific revolution to ma-
ture, because typically the older scientists (who hold 
the power) are not willing to make the shift.  The sci-
entific revolution occurs when this group retires and 
younger scientists (with the newer ideas) take their 
place.

Figure 20.16
Tank of fluid (shaded), showing circulation C.  The vertical  M 
and horizontal L  distributions of temperature are also shown.
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where C gives the circulation (positive for clockwise, 
and greater magnitude for a more vigorous circula-
tion), L gives the left-right distribution of tempera-
ture (positive for warm water on the left), and M in-
dicates the amount of vertical mixing (0 for a linear 
temperature gradient, and positive when tempera-
ture is more uniformly mixed within the middle of 
the tank).  Each of these dependent variables is di-
mensionless.  Terms C·M and C·L are nonlinear.
 Fig. 20.17 shows forecasts of C and M vs. time, 
made with parameter values:

 σ = 10.0,  b = 8/3,  and r = 28

and initial conditions:

 C(0) = 13.0,   L(0) = 8.1,  and M(0) = 45.

Note that all three variables were forecast together, 
even though L was not plotted to reduce clutter.  
From Fig. 20.17 it is apparent that the circulation 
changes direction chaotically, as indicated by the 
change of sign of C.  Also, the amount of mixing in 
the interior of the tank increases and decreases, as 
indicated by chaotic fluctuations of M.  
 When one dependent variable is plotted against 
another, the result is a phase-space plot of the solu-
tion.  Because the Lorenz equations have three de-
pendent variables, the phase space is three-dimen-
sional.  Figs. 20.18 shows two-dimensional views of 
the solution, which looks like a butterfly.
 This solution exhibits several important char-
acteristics that are similar to the real atmosphere.  
First, it is irregular or chaotic, meaning that it is im-
possible to guess the solution in the future.  Second, 
the solution is bounded within a finite domain: 

 –20 < C < 20,      –30 < L < 30,      0 ≤ M < 50.

which implies that the solution will always remain 
physically reasonable.  Third, the solution (M vs. 
C) appears to flip back and forth between two fa-
vored regions, (i.e., the separate wings of the butter-
fly).  These wings tend to attract the solution toward 
them, but in a rather strange way.  
 Hence, they are called strange attractors.  
Fourth, the exact solution is very dependent on the 
initial conditions, as illustrated in the Sample Ap-
plications next.  Yet, the eventual solution remains 
attracted to the same butterfly. 
 The atmosphere has many more degrees of free-
dom (i.e., is more complex) than the simple Lorenz 
model.  So we anticipate that the atmosphere is in-
trinsically unpredictable due to its nonlinear 
chaotic nature. In other words, there is a limit to 
how well we can predict the weather.  

Figure 20.17
Time evolution of circulation C and mixing M.

Figure 20.18
“Butterfly” showing evolution of the solution to the Lorenz 
equations in phase space.  Solid dot indicates initial condition.
(a) M vs. C.  (b) L vs. C.

(a)

(b)
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Science graffiti

Sensitive dependence on initial conditions

“Does the flap of a butterfly’s wings in Brazil set off a 
tornado in Texas?” – E. Lorenz & P. Merilees, 1972.  

“Can a man sneezing in China cause a snow storm in 
New York? – George R. Stewart, 1941: Storm.

“Did the death of a prehistoric butterfly change the 
outcome of a US presidential election?” – Ray Brad-
bury, 1952, 1980, A Sound of Thunder.

Sample application (§)
 Solve the Lorenz equations for the parameters and 
initial conditions listed previously in this chapter.  Use 
a dimensionless time step of ∆t = 0.01, and forecast 
from t = 0 to t = 10.

Find the answer
Given: C(0) = 13.0,   L(0) = 8.1,  and M(0) = 45,
 and σ = 10.0,  b = 8/3,  and r = 28.
Find:   C(t) = ?,   L(t) = ?,   M(t) = ?

First,  rewrite eqs. (20.23) in the form of a forecast:

   
C t t C t t L t C t

L t T L t
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( ) ( ) ··[ ( )· ( ) · ( )]C t L t b M t−

 As an example, for the 1st step:
            C(0.01) = 13.0 + 0.01·[10.0·(8.1-13.0)]  =  12.51
Next, set this up on a spreadsheet, a portion of which 
is reproduced below.
  t        C              L               M  .
0.00  13.00          8.1           45.00
0.01  12.51         5.809        44.85
0.02  11.84         3.643        44.38
0.03  11.02         1.666        43.63
0.04  10.08        -0.07         42.65
0.05  9.069        -1.55          41.51
0.06  8.007        -2.76         40.26
0.07  6.931        -3.71         38.96
0.08  5.866        -4.44         37.67
0.09  4.836        -4.96         36.4
0.10  3.856        -5.32         35.19
Note that your answers might be different than these, 
due to different round-off errors and mathematical li-
braries on the spreadsheets.
 Plots.  These answers are already plotted in Figs. 
20.17 - 20.18.

check:  Units dimensionless.  Physics OK.
exposition:  The forecast equations above use an 
Euler time-differencing scheme, which is the least ac-
curate. Nevertheless, it illustrates the Lorenz attractor.

Sample application (§)
 Repeat the previous Sample Application, but for a 
slightly different initial condition:  M(0) = 44.

Find the answer
Given: C(0) = 13.0,   L(0) = 8.1,  and M(0) = 44,
 and σ = 10.0,  b = 8/3,  r = 28.
Find:   C(t) = ?,    L(t) = ?,    M(t) = ?

As in the previous Sample Application.

  

  
check:  Units OK.  Physics OK.
exposition:  These are quite different from Figs. 20.17 
& 20.18, demonstrating sensitive dependence to initial 
conditions. 

Science graffito

 “Computations indicate that a perfect model 
should produce:
• three-day forecasts ... which are generally good; 
• one-week forecasts ... which are occasionally good; 
• and two-week forecasts ... which, although not very 
good, may contain some useful information”  
  – E. Lorenz, 1993: The Essence of Chaos.  

  Univ. of Washington Press, Seattle.  227 pp. 
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ensemble forecasts
 Some forecast centers repeatedly forecast the 
same time period, but for different conditions.  These 
differences can be created by using different initial 
conditions, physical parameterizations, numerics, 
and/or NWP models.  Such a procedure yields an 
ensemble of forecasts, which reveal the sensitive 
dependence of weather forecasts on those different 
conditions.  Fig. 20.19 shows 10-day ensemble fore-
casts of 85-kPa temperature, precipitation, and 50-
kPa geopotential heights at Des Moines, Iowa, for the 
same case-study period as discussed previously.  
 The heavy dotted line in these figures shows the 
single forecast run made with the high-resolution 
model, starting from the “best” initial conditions.  
This is the “official” forecast  produced by ECMWF.  
The thick solid line starts from the same initial con-
ditions, but is made with a coarser grid resolution to 
save forecast time.  Note that the forecast changes 
substantially when the grid resolution changes. 
 The thin lines are forecasts from slightly differ-
ent initial conditions.  To save computer time, these 
multiple forecasts are also made with the lower 
grid-resolution.  The forecasts of temperature and 
geopotential height start out quite close, and diverge 
slowly during the first 3.5 days.  At that time (rough-
ly when the cyclone reaches Des Moines late 22 Feb 
94), the solution rapidly diverges, signaling a sudden 
loss in forecast skill that is never regained.
 The spread of the ensemble members informs 
you about the uncertainty of the forecast.  Unfor-
tunately, you have no way of knowing which of the 
ensemble members will be closest to reality.  
 By averaging all the ensemble members together, 
you can find an ensemble average forecast that is 
usually more skillful than any individual member.  
This is one of the strengths of ensemble forecasting.
 After several days into the forecast (Fig. 20.19), the 
ensemble forecasts seem chaotic.  Yet this chaotic so-
lution is bounded within a finite region — perhaps a 
“strange attractor” such as studied by Lorenz.
 Studies of chaos often focus on the eventual state 
of the solution, at times far from the initial condi-
tion.  At these long times, the dynamics have forgot-
ten the initial state.  Although this eventual state is 
somewhat useless as a weather forecast, it can pro-
vide some insight into the range of possible climatic 
conditions that are allowed by the dynamical equa-
tions in the model (i.e., the model’s climate).  
 Ensemble forecasts can also suggest which con-
ditions are unlikely — valuable information for 
some users.  For example, if none of the ensemble 
forecasts give temperatures below freezing on a par-
ticular day, then a categorical “no freeze” forecast 
could be made.  Better confidence in such forecasts 
is possible by calibrating the ensemble spread into a 
probabilistic forecast, discussed next.  

Figure 20.19
Ten-day ensemble forecasts for Des Moines, Iowa, starting from 
19 Feb 1994.   (a) Temperature (°C) at 85 kPa.  (b) Total precipi-
tation (mm).  (c) Geopotential height (km) of the 50 kPa surface.   
Thick solid line is a coarse-resolution forecast that was started 
from the analyzed initial conditions.  Thin lines are course-
resolution forecasts, each started from a slightly different initial 
condition created by adding a different small perturbation to the 
analysis.  The thick dotted line shows a single high-resolution 
forecast started from the analyzed initial conditions.  (Courtesy 
of ECMWF, 1999). 
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Probabilistic forecasts
 Due to the inherent unpredictability of the atmo-
sphere, we cannot confidently make deterministic 
forecasts such as “the temperature tomorrow at 
noon will be exactly 19.0°C”.  However, it is possible 
to routinely create probabilistic forecasts similar 
to “there is a 60% chance the temperature tomorrow 
at noon will be between 17°C and 21°C, and an 80% 
chance the it will be between 14 and 24°C.”
 Ensemble forecasts are increasingly used to cre-
ate probabilistic forecasts.  Various methods can be 
used to convert the distribution of ensemble mem-
bers into calibrated probabilistic forecasts, such as 
illustrated in Fig. 20.20.  
 The spread of the probability distribution (i.e., 
the uncertainty in the forecast) depends on the sea-
son (greater spread in winter), the location (greater 
spread downwind of data-void regions), the climate 
(greater spread in parts of the globe where weather 
is more variable), and on the accuracy of the NWP 
models.  A perfect forecast would have no spread.
 Often probability forecasts are given as a cumu-
lative probability CP that some threshold will be 
met.  In Fig. 20.20, the lowest solid line represents a 
cumulative probability of CP = 10% (there is a 10% 
chance that the observed temperature will be colder 
than this forecast temperature) and the highest solid 
black line is for CP = 90% (there is a 90% chance that 
the observation will be colder than this forecast).  
 For example, using Fig. 20.20 we could tell a farm-
er that there is 35% chance the low temperature will 
be below freezing (Tthreshold = 0°C) on 6 - 7 Jan 2011.    

forecaSt quaLity & Verification

 NWP forecasts can have both systematic error 
and random error (see Appendix A).  By making 
ensemble forecasts you can reduce random errors 
caused by the chaotic nature of the atmosphere.  By 
postprocessing each ensemble member using Model 
Output Statistics, you can reduce systematic errors 
(biases) before computing the ensemble average.  
After making these corrections, the forecast is still 
not perfect.  How good is the forecast?
 Verification is the process of determining the 
quality of a forecast.  Quality can be measured in 
different ways, using various statistical definitions.
 One of the least useful measures of quality is fore-
cast accuracy.  For example, in Vancouver, Canada, 
clouds are observed 327 days per year, on average.  
If I forecast clouds every day of the year, then my 
accuracy (= number of correct forecasts / total num-
ber of forecasts) will be 327/365 = 90% on the aver-
age.  Although this accuracy is quite high, it shows 
no skill.  To be skillful, I must beat climatology to 
successfully forecast which days will be cloudless.
 Skill measures forecast improvement above 
some reference such as the climatic average, persis-
tence, or a random guess.  On some days the forecast 
is better than others, so these measures of skill are 
usually averaged over a long time (months to years) 
and over a large area (such as all the grid points in 
the USA, Canada, Europe, or the world). 
 Methods to calculate verification scores and skills 
for various types of forecasts are presented next. 

continuous Variables 
 An example of a continuous variable is tempera-
ture, which varies over a wide range of values.  Oth-
er variables are bounded continuous.  For example, 
precipitation is bounded on one side — it cannot be 
less than zero.  Relative humidity is bounded on 
two sides — it cannot be below 0% nor greater than 
100%, but otherwise can vary smoothly in between.
 First, define the terms.  Let:
  A = initial analysis (based on observations)
  V = verifying analysis (based on later obs.)
  F = deterministic forecast
  C = climatological conditions
  n = number of grid points being averaged

 An anomaly is defined as the difference from 
climatology at any instant in time.  For example
  F – C =  predicted anomaly
  A – C = persistence anomaly
  V – C = verifying anomaly

Figure 20.20
Calibrated probabilistic forecast for the minimum temperature 
(Tmin °C) at Vancouver Airport (CYVR) for 2 to 17 Jan 2011.  
The thin white line surrounded by black is the median (50% of 
the observations should fall below this line, and 50% above).  
The black, dark grey, medium grey, and light grey regions span 
±10%, 20%, 30%, and 40% of cumulative probability around 
the median.  The dashed lines are ±49% around the median 
— namely, 98% of the time the observations should fall between 
the dashed lines.  The dots are the raw forecasts from each of the 
42 members of the North American Ensemble Forecast System. 
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 A tendency is the change with time:
  F – A = predicted tendency
  V – A = verifying tendency

 An error is the difference from the observations 
(i.e., from the verifying analysis):
  F – V = forecast error
  A – V = persistence error
The first error is used to measure forecast accuracy.  
Note that the persistence error is the negative of the 
verifying tendency.
 As defined earlier in this book, the overbar rep-
resents an average.  In this case, the average can be 
over n times, over n grid points, or both:

    X
n

Xk
k

n
=

=
∑1

1
 •(20.24)

where k is an arbitrary grid-point or time index, and 
X represents any variable.

mean error
 The simplest quality statistic is the mean error 
(me): 

      ME F V F V= − = −( )  •(20.25)

This statistic gives the mean bias (i.e., a mean dif-
ference) between the forecast and verification data.  
[CAUTION: For precipitation, sometimes the bias is 
given as a ratio  Precip.Bias = F V/ .]
 A persistence forecast is a forecast where 
we say the future weather will be the same as the 
current or initial weather (A) — namely, the initial 
weather will persist.  Persistence forecasts are excel-
lent for very short range forecasts (minutes), because 
the actual weather is unlikely to have changed very 
much during a short time interval.  The quality of 
persistence forecasts decreases exponentially with 
increasing lead time, and eventually becomes worse 
than climatology.  Analogous to mean forecast error, 
we can define a mean persistence error:

    ( )A V A V− = −   = mean persistence error (20.26)

Other persistence statistics can be defined analogous 
to the forecast statistics defined below, by replacing 
F with A.
 For forecast ME, positive errors at some grid 
points or times can cancel out negative errors at oth-
er grid points or times, causing ME to give a false 
impression of overall error.  
  

mean absolute error
A better alternative is the mean absolute error 
(mae):

       MAE F V= −  •(20.27)

Thus, both positive and negative errors contribute 
positively to this error measure.

mean Squared error and rmSe
 Another way to quantify error that is indepen-
dent of the sign of the error is by the mean squared 
error (mSe)

       MSE F V= −( )2   (20.28)

A similar mean squared error for climatology 
(MSEC) can be defined by replacing F with C in the 
equation above.  This allows a mean squared er-
ror skill score (mSeSS) to be defined as

   MSESS
MSE

MSEC
= −1  (20.29)

which equals 1 for a perfect forecast, and equals 
0 for a forecast that is no better than climatology.  
Negative skill score means the forecast is worse than 
climatology.
 The MSE is easily converted into a root mean 
square error (rmSe):

    RMSE F V= −( )2  •(20.30)

Figure 20.21
Maximum (winter) and minimum (summer) RMS error of 50-
kPa heights over the Northern Hemisphere, for forecast dura-
tions of 2, 4, and 6 days.  (a hypothetical case)
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This statistic not only includes contributions from 
each individual grid point or time, but it also in-
cludes any mean bias error.  
 RMSE increases with forecast duration (i.e., lead 
time, or forecast range).  It is also greater in winter 
than summer, because summer usually has more 
quiescent weather.  Fig. 20.21 shows the maximum 
(winter) and minimum (summer) RMS errors of the 
50 kPa heights in the Northern Hemisphere, for hy-
pothetical forecasts. 

correlation coefficient
 To discover how well the forecast and verifica-
tion vary together (e.g., hotter than average on the 
same days, colder than average on the same days), 
you can use the Pearson product-moment correla-
tion coefficient, r:

    r
F V

F V
= ' '

( ') · ( ')2 2
 •(20.31)

where

  F F F' = −    and   V V V' = −  (20.32)

The correlation coefficient is in the range –1 ≤ r ≤ 1.  
It varies from +1 when the forecast varies perfectly 
with the verification (e.g., forecast hot when verifi-
cation hot), to –1 for perfect opposite variation (e.g., 
forecast hot when verification cold), and is zero for 
no common variation.  

anomaly correlation
 anomaly correlations indicate whether the 
forecast (or persistence) is varying from climatol-
ogy in the same direction as the observations.  For 
example, if the forecast is for warmer-than-normal 
temperatures and the verification confirms that 
warmer-than-normal temperatures were observed, 
then there is a positive correlation between the fore-
cast and the weather.  At other grid points where the 
forecast is poor, there might be a negative correla-
tion.  When averaged over all grid points, one hopes 
that there are more positive than negative correla-
tions, giving a net positive correlation.
 By dividing the correlations by the standard de-
viations of forecast and verification anomalies, the 
result is normalized into an anomaly correlation 
coefficient.  This coefficient varies between 1 for a 
perfect forecast, to 0 for an awful forecast.  (Actually, 
for a really awful forecast the correlation can reach 
a minimum of –1, which indicates that the forecast 
is opposite to the weather.  Namely, the model fore-
casts warmer-than-average weather when colder 
weather actually occurs, and vice-versa.)  

Sample application (§)
 Given the following synthetic analysis (A), NWP 
forecast (F), verification (V), and climate (C) fields of 
50-kPa height (km).  Each field represents a weather 
map (North at top, East at right).

Analysis:
  5.3 5.3 5.3 5.4
  5.4 5.3 5.4 5.5
  5.5 5.4 5.5 5.6
  5.6 5.5 5.6 5.7
  5.7 5.6 5.7 5.7
Forecast:
  5.5 5.2 5.2 5.3
  5.6 5.4 5.3 5.4
  5.6 5.5 5.4 5.5
  5.7 5.6 5.5 5.6
  5.7 5.7 5.6 5.6
Verification:
  5.4 5.3 5.3 5.3
  5.5 5.4 5.3 5.4
  5.5 5.5 5.4 5.5
  5.6 5.6 5.5 5.6
  5.6 5.7 5.6 5.7
Climate:
  5.4 5.4 5.4 5.4
  5.4 5.4 5.4 5.4
  5.5 5.5 5.5 5.5
  5.6 5.6 5.6 5.6
  5.7 5.7 5.7 5.7

 Find the mean error of the forecast and of persis-
tence.  Find the forecast MAE and MSE.  Find MSEC 
and MSESS.  Find the correlation coefficient between 
the forecast and verification.  Find the RMS errors and 
the anomaly correlations for the forecast and persis-
tence.

Find the answer
Use eq. (20.25):  MEforecast =  0.01 km  =  10 m  
Use eq. (20.26):  MEpersistence  =  15 m  
Use eq. (20.27):  MAE  =  40 m  
Use eq. (20.28):  MSEforecast  = 0.004 km2  =  4000 m2   
Use eq. (20.28):  MSEC  =   0.0044 km2  =  4500 m2   
Use eq. (20.29):  MSESS = 1 – (4000/4500) =  0.11  
Use eq. (20.30):  RMSEforecast  =  63 m  
Use eq. (20.30):  RMSEpersistence  =  87 m  
Use eq. (20.31):  r = 0.92  (dimensionless)
Use eq. (20.33):  forecast anomaly correlation =  81.3% 
Use eq. (20.34):  persist. anomaly correlation =  7.7% 

check:  Units OK.  Physics OK.
exposition:  Analyze (i.e., draw height contour maps 
for) the analysis, forecast, verification, and climate 
fields.  The analysis shows a Rossby wave with ridge 
and trough, and the verification shows this wave mov-
ing east.  The forecast amplifies the wave too much.  
The climate field just shows the average of higher 
heights to the south and lower heights to the north, 
with all transient Rossby waves averaged out.  
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 The definitions of these coefficients are: 

 anomaly correlation coef. for the forecast =

 
( ) ( ) · ( ) ( )

( ) ( )

F C F C V C V C

F C F C

− − −  − − − 

− − −  − − − 
2 2

· ( ) ( )V C V C
 (20.33)

 anomaly correlation coef. for persistence = 

 
( ) ( ) · ( ) ( )

( ) ( )

A C A C V C V C

A C A C

− − −  − − − 

− − −  − − − 
2 2

· ( ) ( )V C V C
 (20.34)

 Fig. 20.22 compares hypothetical persistence 
and NWP-forecast anomaly correlations for 50-kPa 
geopotential height.  One measure of forecast skill 
is the vertical separation between the forecast and 
persistence curves in Fig. 20.22.  
 This figure shows that the forecast beats persis-
tence over the full 10 days of forecast.  Also, using 
60% correlation as an arbitrary measure of quality, 
we see that a “good” persistence forecast extends out 
to only about 2 days, while a “good” NWP forecast 
is obtained out to about 6 days, for this hypotheti-
cal case for 50 kPa geopotential heights.  For other 
weather elements such as precipitation or surface 
temperature, both solid curves decrease more rap-
idly toward climatology.   

Binary / categorical events
 A binary event is a yes/no event, such as snow 
or no snow.  Continuous variables can be converted 
into binary variables by using a threshold.  For ex-
ample, is the temperature below freezing (0°C) or 
not?  Does precipitation exceed 25 mm or not?
 A contingency table (Fig. 20.23a) has cells for 
each possible outcome of forecast and observation. 
“Hit” means the event was successfully forecast.  
“Miss” means it occurred but was not forecast.  
“False Alarm” means it was forecast but did not 
happen.  “Correct Rejection” means that the event 
was correctly forecast not to occur.   
 After making a series of categorical forecasts, the 
forecast outcomes can be counted into each cell of a 
contingency table.  Let a, b, c, d represent the counts 
of all occurrences as shown in Fig. 20.23b.  The total 
number of forecasts is n:

    n = a + b + c + d (20.35)

   

Figure 20.23
Contingency table for a binary (Yes/No) situation. “Yes” means 
the event occurred or was forecast to occur.  (a) Meaning of cells.  
(b) Counts of occurrences, where a + b + c + d = n.   (c) Expense 
matrix, where C = cost for taking protective action (i.e., for miti-
gating the loss), and L = loss due to an unmitigated event.

Figure 20.22
NWP forecast skill (thick line) of 50-kPa heights for a hypotheti-
cal forecast model.  A persistence forecast (thin line) is one where 
the weather is assumed not to change with time from the initial 
conditions.  A value of 100%  is a perfect forecast, while a value 
of 0 is no better than climatology (dotted line).  
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 The bias score B indicates over- or under-pre-
diction of the frequency of event occurrence:

    B
a b
a c

= +
+

 (20.36)

 The portion correct PC (also known as portion 
of forecasts correct PFC) is

    PC
a d

n
= +

 (20.37)

But perhaps a portion of PC could have been due to 
random-chance (dumb but lucky) forecasts.  Let E 
be this “random luck” portion, assuming that you 
made the same ratio of “YES” to “NO” forecasts:

   E
a b

n
a c

n
d b

n
d c

n
= +





+



 + +





+


· ·   (20.38)

We can now define the portion of correct forecasts 
that was actually skillful (i.e., not random chance), 
which is known as the heidke skill score (HSS):

    HSS
PC E

E
= −

−1
 (20.39)

 The hit rate H is the portion of actual occurrenc-
es (obs. = “YES”) that were successfully forecast:

    H
a

a c
=

+  •(20.40)

It is also known as the probability of detection 
POD.
  The false-alarm rate F is the portion of non-
occurrences (observation = “NO”) that were incor-
rectly forecast:

    F
b

b d
=

+  •(20.41)

Don’t confuse this with the false-alarm ratio FAR, 
which is the portion of “YES” forecasts that were 
wrong:
    FAR

b
a b

=
+

 (20.42)

 A true skill score TSS (also known as Peirce’s 
skill score PSS, and as hansen and Kuipers’ 
score) can be defined as

    TSS H F= −  (20.43)

which is a measure of how well you can discrimi-
nate between an event and a non-event, or a mea-
sure of how well you can detect an event.
 A critical success index CSI (also known as a 
threat score TS) is:

    CSI
a

a b c
=

+ +
 (20.44)

Sample application
 Given the following contingency table, calculate all 
the binary verification statistics.
    Observation
    Yes          No
Forecast  Yes:  90          50
    No   75         150

Find the answer:
Given:  a = 90 ,  b = 50 ,  c = 75 ,  d = 150
Find:  B, PC, HSS, H, F, FAR, TSS, CSI, GSS 

First, use eq. (20.35):  n = 90 + 50 + 75 + 150 = 365
So apparently we have daily observations for a year.

Use eq. (20.36):  B  =  (90 + 50) / (90 + 75)  =  0.85  
Use eq. (20.37):  PC  =  (90 + 150) / 365  =  0.66  
Use eq. (20.38):   
    E  =  [(90+50)·(90+75) + (150+50)·(150+75)]/(3652) 
    E  =   68100 / 133225  =  0.51  
Use eq. (20.39):  HSS  =  (0.66 – 0.51) / (1 – 0.51)  =  0.31 
Use eq. (20.40):  H  =  90 / (90 + 75)  =  0.55  
Use eq. (20.41):  F  =  50 / (50 + 150)  =  0.25 
Use eq. (20.42):  FAR  =  50 / (90 + 50)  =  0.36 
Use eq. (20.43):  TSS  =   0.55 – 0.25  =  0.30  
Use eq. (20.44):  CSI  =  90 / (90 + 50 + 75)  =  0.42 
Use eq. (20.45):  ar  =  [ (90+50)·(90+75)]/365  =  63.3 
Use eq. (20.46):  
     GSS  =  (90–63.3) / (90–63.3+50+75)  =  0.18 

check:  Values reasonable.  Most are dimensionless.
exposition:  No verification statistic can tell you 
whether the forecast was “good enough”.  That is a 
subjective decision to be made by the end user.  One 
way to evaluate “good enough” is via a cost/loss mod-
el (see next section).
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which is the portion of hits given that the event was 
forecast, or observed, or both. This is often used as a 
forecast-quality measure for rare events.  
 Suppose we consider the portion of hits that 
might have occurred by random chance  ar:

    a
a b a c

nr =
+ +( )·( )

 (20.45)

Then we can subtract this from the actual hit count 
to modify CSS into an equitable threat score ETS, 
also known as gilbert’s skill score GSS:

    GSS
a a

a a b c
r

r
= −

− + +
 (20.46)

which is also useful for rare events.
 For a perfect forecasts (where b = c = 0), the values 
of these scores are:  B = 1,  PC = 1,  HSS = 1, H = 1, F 
= 0, FAR = 0, TSS = 1, CSI = 1, GSS = 1.
 For totally wrong forecasts (where a = d = 0):  
B = 0 to ∞, PC = 0, HSS = negative, H = 0, F = 1, 
FAR = 1, TSS = –1, CSI = 0, GSS = negative. 

Probabilistic forecasts

Brier Skill Score
 For calibrated probability forecasts, a Brier skill 
score (BSS) can be defined relative to climatology 
as

  BSS

p o

o N o

k k
k

N

k
k

N

k
k

N
= −

−









 −


=

= =

∑

∑ ∑
1

2

1
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·
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






 •(20.47)

where pk is the forecast probability (0 ≤ pk ≤ 1) that 
the threshold will be exceeded (e.g., the probabil-
ity that the precipitation will exceed a precipitation 
threshold) for any one forecast k, and N is the num-
ber of forecasts.  The verifying observation ok = 1 if 
the observation exceeded the threshold, and is set to 
zero otherwise.  
 BSS = 0 for a forecast no better than climatology.  
BSS = 1 for a perfect deterministic forecast (i.e., the 
forecast is pk = 1 every time the event happens, and 
pk = 0 every time it does not).  For probabilistic fore-
casts, 0 ≤ BSS ≤ 1.  Larger BSS values are better.

reliability
 How reliable are the probability forecasts?  
Namely, when we forecast an event with a certain 
probability, is it observed with the same relative 
frequency?  To determine this, after you make each 
forecast, sort it into a forecast probability bin (j) of 
probability width ∆p, and keep a tally of the number 
of forecasts (nj) that fell in this bin, and count how 

Sample application (§)
 Given the table below of k = 1 to 31 forecasts of 
the probability pk that the temperature will be below 
threshold 20°C, and the verification ok = 1 if indeed the 
observed temperature was below the threshold.
 (a) Find the Brier skill score.   (b) For probability 
bins of width ∆p = 0.2, plot a reliability diagram, and 
find the reliability Brier skill score.

k pk ok BN j k pk ok BN j
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0.43
0.98
0.53
0.33
0.50
0.03
0.79
0.23
0.20
0.59
0.26
0.76
0.17
0.30
0.96

0
1
1
1
0
0
1
0
1
1
0
1
0
0
1

0.18
0.00
0.22
0.45
0.25
0.00
0.04
0.05
0.64
0.17
0.07
0.06
0.03
0.09
0.00

2
5
3
2
3
0
4
1
1
3
1
4
1
2
5

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0.89
0.13
0.92
0.86
0.90
0.83
0.00
1.00
0.69
0.36
0.56
0.46
0.63
0.10
0.40
0.73

1
0
1
1
1
0
0
1
0
0
1
0
0
0
1
1

0.01
0.02
0.01
0.02
0.01
0.69
0.00
0.00
0.48
0.13
0.19
0.21
0.40
0.01
0.36
0.07

4
1
5
4
5
4
0
5
3
2
3
2
3
1
2
4

Find the answer
Given:  The white portion of the table above.
Find:  BSS = ? , BSSreliability = ?, and plot reliability.

(a) Use eq. (20.47).  The grey-shaded column labeled BN 
shows each contribution to the numerator (pk – ok)2 in 
that eq.   The sum of BN = 4.86.  The sum of ok = 16.  
Thus, the eq is:  BSS = 1 – [4.86 / {16 ·(31–16)} ] = 0.98 

(b) There are J = 6 bins, with bin centers at pj = 0, 0.2, 
0.4, 0.6, 0.8, and 1.0.  (Note, the first and last bins are 
one-sided, half-width relative to the nominal “cen-
ter” value.)  I sorted the forecasts into bins using  j = 
round(pk/∆p, 0), giving the grey j columns above.
 For each j bin, I counted the number of forecasts nj 
falling in that bin, and I counted the portion of those 
forecasts that verified noj.  See table below:

j pj nj noj noj/nj num
0
1
2
3
4
5

0
0.2
0.4
0.6
0.8
1.0

2
6
6
6
6
5

0
1
2
3
5
5

0
0.17
0.33
0.50
0.83

1

0
0.04
0.16
0.36
0.04

0
The observed relative fre-
quency noj/nj plotted against
 pj is the reliability diagram :
 Use eq. (20.48).  The contribution to the numerator 
from each bin is in the num column above, which sums 
to 0.6 . Thus:  BSSreliability = 0.6/ {16 ·(31–16)}  =  0.0025  

check:  Small BSSreliability agrees with the reliability 
diagram where the curve nearly follows the diagonal.
exposition:  N = 31 is small, so these statistics are not 
very robust.  Large BSS suggests good probability fore-
casts.  Also, the forecasts are very reliable.
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many of the forecasts verified (noj, for which the cor-
responding observation satisfied the threshold).  
 For example, if you use bins of size ∆p = 0.1, then 
create a table such as:

  bin index  bin center fcst. prob. range nj noj  
 j = 0 pj = 0     0  ≤  pk  < 0.05 n0 no0 
 j = 1 pj = 0.1 0.05  ≤  pk  < 0.15 n1 no1 
 j = 2 pj = 0.2 0.15  ≤  pk  < 0.25 n2 no2 
 etc.  . . . . . . . . . . . .
 j = 9 pj = 0.9 0.85  ≤  pk  < 0.95 n9 no9 
   j = 10 = J pj = 1.0 0.95  ≤  pk  ≤ 1.0 n10 no10 

A plot of the observed relative frequency (noj/nj) on 
the ordinate vs. the corresponding forecast probabil-
ity bin center (pj) on the abscissa is called a reliabil-
ity diagram.  For perfect reliability, all the points 
should be on the 45° diagonal line.  
 A Brier skill score for relative reliability  
(BSSreliability) is:

    BSS

n p n

o
reliability

j j oj
j
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k
k

N
=
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 (20.48)

where BSSreliability = 0 for a perfect forecast.   

roc diagram
 A relative operating characteristic (roc) 
diagram shows how well a probabilistic forecast can 
discriminate between an event and a non-event.  
For example, an event could be heavy rain that causes 
flooding, or cold temperatures that cause crops to 
freeze.  The probabilistic forecast could come from 
an ensemble forecast, as illustrated next.
 Suppose that the individual NWP models of an 
N = 10 member ensemble made the following fore-
casts of 24-h accumulated rainfall R for Day 1:
   NWP model       R (mm)  NWP model  R (mm)
 Model 1 8 Model 6 4
 Model 2 10 Model 7 20
 Model 3 6 Model 8 9
 Model 4 12 Model 9 5
 Model 5 11 Model 10   7
 Consider a precipitation threshold of 10 mm.   
The ensemble above has 4 models that forecast 10 
mm or more, hence the forecast probability is p1 = 
4/N = 4/10 = 40%.  Supposed that 10 mm or more of 
precipitation was indeed observed, so the observa-
tion flag is set to one: o1 = 1.  
 On Day 2, three of the 10 models forecast 10 mm 
or more of precipitation, hence the forecast probabil-
ity is p2 = 3/10 = 30%.  On this day precipitation did 
NOT exceed 10 mm, so the observation flag is set 
to zero:  o2 = 0.   Similarly, for Day 3 suppose the 

forecast probability is p3 = 10%, but heavy rain was 
observed, so o3 = 1.   After making ensemble fore-
casts every day for a month, suppose the results are 
as listed in the left three columns of Table 20-4.
 An end user might need to make a decision to 
take action.  Based on various economic or political 
reasons, the user decides to use a probability thresh-
old of pthreshold = 40%; namely, if the ensemble model 
forecasts a 40% or greater chance of daily rain ex-
ceeding 10 mm, then the user will take action.  So 
we can set forecast flag f = 1 for each day that the 
ensemble predicted 40% or more probability, and f = 
0 for the other days.  These forecast flags are shown 
in Table 20-4 under the pthreshold = 40% column.
 Other users might have other decision thresh-
olds, so we can find the forecast flags for all the other 
probability thresholds, as given in Table 20-4.   For 
an N member ensemble, there are only (100/N) + 1 
discrete probabilities that are possible.  For our ex-
ample with N = 10 members, we can consider only 11 
different probability thresholds:  0% (when no mem-
bers exceed the rain threshold), 10% (when 1 out of 
the 10 members exceeds the threshold), 20% (etc.), . . 
. 90%, 100%.
 For each probability threshold, create a 2x2 con-
tingency table with the elements a, b, c, and d as 
shown in Fig. 20.23b.  For example, for any pair of 
observation and forecast flags (oj, fj) for Day j, use
 a = count of days with hits  (oj, fj) = (1, 1).
 b = count of days with false alarms  (oj, fj) = (0, 1).
 c = count of days with misses  (oj, fj) = (1, 0).
 d = count of days: correct rejection  (oj, fj) = (0, 0).
For our illustrative case, these contingency-table ele-
ments are shown near the bottom of Table 20-4.  
 Next, for each probability threshold, calculate the 
hit rate H = a/(a+c) and false alarm rate F = b/(b+d), 
as defined earlier in this chapter.  These are  shown 
in the last two rows of Table 20-4 for our example.  
When each (F, H) pair is plotted as a point on a graph, 
the result is called a roc diagram (Fig. 20.24).   

Figure 20.24
ROC diagram plots hit rate (H) vs. false-alarm rate (F) for a 
range of probability thresholds (pth).
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 The area A under a ROC curve (shaded in Fig. 
20.24) is a measure of the overall ability of the prob-
ability forecast to discriminate between events and 
non-events.  Larger area is better.  The dashed curve 
in Fig. 20.24 illustrates perfect discrimination, for 
which A = 1.  A random probability forecast with no 
ability to discriminate between events has a curve 
following the thick diagonal line, for which A = 0.5.  
Since this latter case represents no skill, a roc 
skill score SSROC can be defined as

    SSROC = (2·A) – 1 (20.49)

where SSROC = 1 for perfect skill, and SSROC = 0 for 
no discrimination skill.  
 Although a smooth curve is usually fit through 
the data points in a ROC diagram, we can nonethe-
less get a quick estimate of the area by summing the 
trapezoidal areas under each pair of data points.  For 
our illustration, A ≈ 0.84, giving  SSROC ≈ 0.68 .  

cost / Loss Decision Models
 Weather forecasts are often used to make deci-
sions.  For example, a frost event might cause L 
dollars of economic loss to a citrus crop in Florida.  
However, you could save the crop by deploying or-
chard fans and smudge pots, at a cost of C dollars.  
 Another example:  A hurricane or typhoon might 
sink a ship, causing L dollars of economic loss.  How-
ever, you could save the ship by going around the 
storm, but the longer route would cost C dollars in 
extra fuel and late-arrival fees.  
 No forecast is perfect.   Suppose the event is fore-
cast to happen.  If you decide to spend C to mitigate 
the loss by taking protective action, but the forecast 
was bad and the event did not happen, then you 
wasted C dollars.  Alternately, suppose the event is 
NOT forecast to happen, so you decide NOT to take 
protective action.  But the forecast was bad and the 
event actually happened, causing you to lose L dol-
lars.  How do you decide which action to take, in 
consideration of this forecast uncertainty?  

table 20-4.  Sample calculations for a ROC diagram.  Forecast flags f are shown under the probability thresholds.

Day o p (%)
Probability Threshold  pthreshold (%)

0 10 20 30 40 50 60 70 80 90 100
1 1 40 1 1 1 1 1 0 0 0 0 0 0
2 0 30 1 1 1 1 0 0 0 0 0 0 0
3 1 10 1 1 0 0 0 0 0 0 0 0 0
4 1 50 1 1 1 1 1 1 0 0 0 0 0
5 0 60 1 1 1 1 1 1 1 0 0 0 0
6 0 30 1 1 1 1 0 0 0 0 0 0 0
7 0 40 1 1 1 1 1 0 0 0 0 0 0
8 1 80 1 1 1 1 1 1 1 1 1 0 0
9 0 50 1 1 1 1 1 1 0 0 0 0 0
10 1 20 1 1 1 0 0 0 0 0 0 0 0
11 1 90 1 1 1 1 1 1 1 1 1 1 0
12 0 20 1 1 1 0 0 0 0 0 0 0 0
13 0 10 1 1 0 0 0 0 0 0 0 0 0
14 0 10 1 1 0 0 0 0 0 0 0 0 0
15 1 70 1 1 1 1 1 1 1 1 0 0 0
16 0 70 1 1 1 1 1 1 1 1 0 0 0
17 1 60 1 1 1 1 1 1 1 0 0 0 0
18 1 90 1 1 1 1 1 1 1 1 1 1 0
19 1 80 1 1 1 1 1 1 1 1 1 0 0
20 0 80 1 1 1 1 1 1 1 1 1 0 0
21 0 20 1 1 1 0 0 0 0 0 0 0 0
22 0 10 1 1 0 0 0 0 0 0 0 0 0
23 0 0 1 0 0 0 0 0 0 0 0 0 0
24 0 0 1 0 0 0 0 0 0 0 0 0 0
25 1 70 1 1 1 1 1 1 1 1 0 0 0
26 0 10 1 1 0 0 0 0 0 0 0 0 0
27 0 0 1 0 0 0 0 0 0 0 0 0 0
28 1 90 1 1 1 1 1 1 1 1 1 1 0
29 0 20 1 1 1 0 0 0 0 0 0 0 0
30 1 80 1 1 1 1 1 1 1 1 1 0 0

Contingency 
Table Values

a = 13 13 12 11 11 10 9 8 6 3 0
b = 17 14 10 7 5 4 3 2 1 0 0
c = 0 0 1 2 2 3 4 5 7 10 13
d = 0 3 7 10 12 13 14 15 16 17 17

Hit Rate: H = a/(a+c) = 1.00 1.00 0.92 0.85 0.85 0.77 0.69 0.62 0.46 0.23 0.00

False Alarm Rate: F=b/(b+d) 1.00 0.82 0.59 0.41 0.29 0.26 0.18 0.12 0.06 0.00 0.00
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 Suppose you did NOT have access to forecasts of 
future weather, but did have access to climatological 
records of past weather.  Let o be the climatologi-
cal (base-rate) frequency (0 ≤ o ≤ 1) that the event oc-
curred in the past, where o = 0 means it never hap-
pened, and o = 1 means it always happened.  
 Assume this same base rate will continue to oc-
cur with that frequency in the future.  If your C ≤ o·L, 
then it would be most economical to always miti-
gate, at cost C.  Otherwise, it would be cheaper to 
never mitigate, causing average losses of o·L.  The net 
result is that the expense based only on climate data 
is
    E C o Lclimate = min( , · )  (20.50)

 But you can possibly save money if you use weath-
er forecasts instead of climatology. The expected 
(i.e., average) expense associated with a sometimes-
incorrect deterministic forecast Eforecast is the sum of 
the cost of each contingency in Fig. 20.23c times the 
relative frequency that it occurs in Fig. 20.23b:

   E
a
n

C
b
n

C
c
n

Lforecast = + +  (20.51)

 This assumes that you take protective action (i.e., 
try to mitigate the loss) every time the event is fore-
cast to happen.  For some of the individual events 
the forecast might be bad, causing you to respond 
inappropriately (in hindsight).  But in the long run 
(over many events) your taking action every time 
the event is forecast will result in a minimum over-
all expense to you.
 If forecasts were perfect, then you would never 
have any losses because they would all be mitigat-
ed, and your costs would be minimal because you 
take protective action only when needed.  On aver-
age you would need to mitigate at the climatological 
frequency o, so the expenses expected with perfect 
forecasts are
             E o Cperfect = ·  (20.52)

 Combine these expenses to find the economic 
value V of deterministic forecasts relative to clima-
tology:

          V
E E

E E
climate forecast

climate perfect
=

−
−

 (20.53)

V is an economic skill score, where V = 1 for a per-
fect forecast, and V = 0 if the forecasts are no bet-
ter than using climatology.  V can be negative if the 
forecasts are worse than climatology, for which case 
your best course of action is to ignore the forecasts 
and choose a response based on the climatological 
data, as previously described.    

 Define a cost/loss ratio rCL as

    rCL  =  C / L  (20.54)

Different people and different industries have dif-
ferent protective costs and unmitigated losses.  So 
you should estimate your own cost/loss ratio for 
your own situation.
 The economic-value equation can be rewritten 
using hit rate H, false-alarm rate F, and the cost/loss 
ratio rCL:
     (20.55)

  V
r o F r o H r o oCL CL CL=

− −[ ]+ −[ ] −min( , ) · ·( ) ·( )·
m

1 1
iin( , ) ·r o o rCL CL−

 You can save even more money by using probabi-
listic forecasts.  If the probabilistic forecasts are per-
fectly calibrated (i.e., are reliable), then you should 
take protective action whenever the forecast prob-
ability p of the event exceeds your cost/loss ratio:

     p  >  rCL  (20.56)

The forecast probability of the event is the portion 
of cumulative probability that is beyond the event-
threshold condition.  For the frost example, it is the 
portion of the cumulative distribution of Fig. 20.20 
below a Tthreshold = 0°C.    

Sample application
 Given forecasts having the contingency table from 
the Sample Application 4 pages ago.  Protective cost is 
$75k to avoid a loss of $200k.  Climatological frequency 
of the event is 40%.  Find the value of the forecast.

Find the answer:
Given: a=90, b=50, c=75, d=150, C=$75k, L=$200k, o=0.4
Find:   Eclim = $?,   Efcst = $?,   Eperf = $?,   V = ?

Use eq. (20.50):   Eclim = min( $75k, 0.4·$200k) = $75k.
Use eq. (20.35): n = 90+50+75+150 = 365. 
Use eq. (20.51):
      Efcst =(90+50)·$75k/365 +  (75/365)·$200k = $70k
Use eq. (20.52):  Eperf = 0.4 · $75k  =  $30k.
Use eq. (20.53): V = ($75k – $70k)/($75k – $30k) = 0.11 

check:  Units are OK.  Values are consistent.
exposition:  The forecast is slightly more valuable 
than climatology.   
 rCL  =  $75k/$200k  =  0.375  from eq. (20.54).  
If you are lucky enough to receive probabilistic fore-
casts, then based on eq. (20.56) you should take protec-
tive action when p > 0.375 .
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reVieW

 The atmosphere is a fluid.  It obeys the laws of 
fluid mechanics, thermodynamics, and conserva-
tion of mass and water.  If we can solve these equa-
tions, then we can forecast the weather.
 Unfortunately, no one has yet found an analytical 
solution to these equations.  Instead, we can approx-
imate these continuous differential equations with 
finite-difference equations (i.e., algebra) that we can 
solve on a computer.  One approach is to divide the 
spatial domain into finite-size grid cells, and to fore-
cast the average conditions for a grid point within 
each cell. 
 If we know (or can approximate) the initial condi-
tion of each grid point by assimilating new observa-
tions into past forecasts, then we can make an itera-
tive forecast by taking finite-size time steps into the 
future.  To do this, all grid points must be marched 
together one step at a time.  
 Some aspects of atmospheric physics cause re-
solvable changes to the forecast, even though the 
grid resolution is not fine enough to resolve all the 
physical details.  Hence, physical processes such 
as turbulence, radiation, clouds, and precipitation 
must be parameterized as a simplified function of 
variables that can be resolved in the model (winds, 
temperature, etc.). 
 The finite-difference equations suffer from trun-
cation, round-off, numerical instability, and dynam-
ic instability errors.  Round-off errors are smaller 
when more bits are used to represent numbers in a 
computer.  Truncation errors are smaller when more 
of the higher-order terms are retained in Taylor-se-
ries approximations of derivatives.  Numerical in-
stability is reduced when the time step is sufficiently 
small relative to the grid size. Dynamic instability 
refers to the sensitive dependence of the forecast on 
initial conditions and model parameters.  Dynamic 
instability can be reduced with better weather anal-
yses, but it cannot be eliminated.  
 No numerical forecast is perfect.  For any specific 
location, forecasts might have a consistent bias or sys-
tematic error.  Most of these biases can be removed 
by using statistics such as model output statistics 
(MOS) to post-process the NWP output.  Random er-
rors associated with the chaotic nonlinear-dynamic 
nature of the atmosphere can be estimated and/or 
reduced by making multiple forecasts (called en-
semble forecasts) with different initial conditions or 
parameterizations.  The ensemble forecasts can be 
averaged to give a deterministic forecast, and they 
can be used to make probabilistic forecasts.
 Unfortunately, we have not discovered a way to 
reduce all errors.  Thus, forecast error usually in-

creases with increasing forecast time (i.e., how far 
into the future you forecast).  Often forecast skill is 
defined relative to some baseline or reference, such 
as climatology. Short-range (out to 3 days) forecasts 
show significant skill, while medium-range forecasts 
show modest skill out to about 10 days.  In addition 
to deterministic forecasts, NWP is increasingly used 
to make probabilistic forecasts.  Methods exist to 
verify deterministic, binary, and probabilistic fore-
casts.  
 The resulting forecasts can be analyzed and 
graphed to reveal cyclones, fronts, airmasses, and 
other weather systems.  Of all the tools (satellites, 
radar, weather balloons, etc.) that meteorologists use 
to forecast the weather, only NWP gives the future 
weather with a skill that is better than persistence. 
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HoMeWorK exerciSeS

Broaden Knowledge & comprehension
B1.  Search the web for info about each of the follow-
ing operational weather forecast centers.  Describe 
the full title, location, computers that they use, and 
models that they run.  Also answer any special ques-
tions indicated below for these forecast centers.
 a. CMC (and list the branches of CMC).
 b. NCEP (and list the centers that make up 
  NCEP)
 c. ECMWF
 d. FNMOC
 e. UK Met Office

B2.  Search the web for the government forecast 
centers in Germany, Japan, China, Australia, or any 
other country specified by your instructor.  Describe 
the NWP models they run.

B3.  Based on web searches for each of the numerical 
models listed below:
 a. Define the full title.
 b. At which centers or universities are they run?
 c. Find the max forecast duration for each run.
 d. Find the domain (i.e., world, N. Hem. N.
     America, Canada, Oklahoma, etc.).
 e. What is the finest horizontal grid resolution?
 f. How many model layers are in the vertical?
 g. Which type of grid arrangement (A, B, etc.) 
  is used?  
 h. What order spatial and time differencing 
  schemes are used?
  GEM
  NAM
  GFS
  AVN
  NOGAPS
  COAMPS
  ECMWF
  MC2
  UW-NMS
  MM5
  RAMS
  ARPS
  WRF-NMM
  WRF-ARW

B4.  Search the web for models in addition to those 
listed in the previous exercise, which are being run 
operationally.  Describe the basic characteristics of 
these models.

B5.  Search the web for a discussion of MOS.  What 
is it, and why is it useful to forecasting?

B6.  Find on the web different forecast models that 
produce precipitation forecasts for Vancouver, Can-
ada (or other city specified by your instructor).  Do 
this for as many models as possible that are valid 
at the same time and place.  Specify the date/time 
for your discussion.  Try to pick an interesting day 
when precipitation is starting or ending, or a storm 
is passing.  Compare the forecasts from the different 
models, and if possible search the web for observa-
tion data of precipitation against which to validate 
the forecasts.

B7.  At which web sites can you find forecast sea 
states (e.g., wave height, etc.)?

B8.  Based on results of a web search, discuss differ-
ent ways that ensemble forecasts can be presented 
via images and graphs.

B9.  What types of publicly available daily forecasts 
are being made by a university (not a government 
operational center) closest to your location? 

B10.  What are the broad categories of observation 
data that are used to create the analyses (the starting 
point for all forecasts). Hint, see the ECMWF data 
coverage web site, or similar sites from NCEP or the 
Japanese forecast agency.  

B11.  Search the web for verification scores for the na-
tional weather forecast center that forecasts for your 
location.  How have the scores changed by season, 
by year?  How do the anomaly correlation scores 
vary with forecast day, compared to the results from 
ECMWF shown in this chapter?

B12.  Find a web site that shows plots of the Lorenz 
“butterfly”, similar to Fig. 20.18.  Even better, search 
the web for a 3-D animation, showing how the solu-
tion chaotically shifts from wing to wing.

B13.  Search the web for other equations that have 
different strange attractors.  Discuss how the equa-
tions and attractors differ from those of Lorenz.

B14.  Examine from the web the forecast maps that 
are produced by various forecast centers.  Instead 
of looking at the quality of the forecasts, look at the 
quality of the weather map images that are served on 
the web.  Which forecast centers produce the maps 
that are most attractive?  Which are easiest to under-
stand?  Which are most useful?  What geographic 
map projections are used for your favorite maps?
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A5. Given the following temperature T values (°C) at 
the indicated grid-point indices (i) for ∆X = 10 km:
i:    1      2      3      4      5      6      7      8      9      10
T:  30    27    26    28    24    20    18     23    25    25
Find the gradient ∆T/∆x for upwind first-order dif-
ference, centered second-order difference, and cen-
tered fourth-order difference, at grid index i:
 a. 3     b. 4     c. 5     d. 6      e. 7      f. 8
 
A6. Same as the previous exercise, except find the 
advection term –U·∆T/∆x for a C grid with U values  
(m s–1) of: 
i:    1.5    2.5    3.5    4.5    5.5    6.5    7.5    8.5    9.5
U:    3       3       4        5      7       10     14     19     25

A7(§).  Suppose that an equation of motion in some 
strange universe has the form ∆U/∆t = U·t2/τo

3  
where constant τo = 1 min, and variable wind U = 1 
m s–1  initially (t = 0).  With time steps of ∆t = 1 min, 
use the (a) Euler method, (b) leapfrog method, and 
(c) fourth-order Runge-Kutta method to forecast the 
value of U at t = 5 min.   Compare your results to 
the analytical solution of U = Uo · exp[ (1/3)·(t/τo)3] 
where Uo = 1 m s–1 is the initial condition.  [Hint: for 
the leapfrog method, you will need to use the Euler 
forward method for the first step.]  Show your work 
and the results at each time step.

A8(§).  Given a 1-D array consisting of 12 grid points 
in the x-direction with the following initial tempera-
tures (°C).   Ti(t=0) = 
   20   24   20   16   20   24   20   16   20   24   20   16   20
for i = 1 to 12.   Assume that the lateral boundar-
ies are cyclic, so that the number sequence repeats 
outside this primary domain.  Grid spacing is 5 km, 
and wind speed is from the west at 10 m s–1.   Use 
the leapfrog time-step method (except for the first 
time step) and 4th-order spatial differencing. Make 
enough time steps to forecast out to t = 5000 s.   Use 
time steps of size ∆t (s) = 
 a. 100   b. 200  c. 300   d. 400   e. 500   f. 600
Plot the temperature graph at each time step, and 
comment on the numerical stability.  

A9.  Given the following pairs of [grid spacings (km), 
wind speeds (m s–1)], find the largest time step that 
satisfies the CFL criterion.
 a. [0.1, 50]   b. [0.2, 30]    c. [0.5, 75]    d. [1.0, 50]
 e. [2, 40]      f. [3, 80]        g. [5, 50]       h. [10, 100]   
  i. [15, 75]    j. [20, 20]      k. [33, 50]     m. [50, 75]   

A10.  A program has 3 subprograms that each take 1/3 
of the running time of the whole program.  If the first 
subprogram is sped up 10 times, the second subpro-
gram is sped up 40%, and the third one is sped up as 

B15.  Search the web for a meteogram of the weather 
forecast for your town (or for a town near you, or a 
town specified by the instructor).  What are the ad-
vantages and disadvantages of using meteograms 
to present weather forecasts, rather than weather 
maps?

B16.  Search the web for a summary of different op-
tions that are used for physics parameterizations in 
WRF, or other model selected by your instructor.

B17.  Search the web for images/photos of some of 
the earliest computers used in weather forecasting, 
such as the ENIAC computer.  Discuss how comput-
ers have changed.  

B18.  Find examples of probabilistic forecasts on the 
web.  Print a few examples and discuss.

B19.  Computational fluid dynamics (CFD) is the 
name for numerical methods used to solve fluid dy-
namics equations in engineering.  Search the web for 
images of CFD forecasts for the finest grid resolution 
that you can find.  What flow situation is it solving?  
What are the grid spacings and time steps?

apply
A1.  An NWP model has a bottom hydrostatic pres-
sure of 95 kPa over the mountains, and a top pres-
sure of 5 kPa.  Find the sigma coordinate value for a 
height where the pressure (kPa) is:
 a. 90   b. 85   c. 80    d. 75   e. 70   f. 65   g. 60   h. 55
 i. 50    j. 45    k. 40    m. 35    n. 30    o. 25   p 20

A2.  For a polar stereographic map projection with 
a reference latitude of 60°, find the (x, y) coordinates 
on the map that corresponds to  the lat & lon at:
 a. Montreal     b. Boston  c. New York City  
 d. Philadelphia   e. Baltimore   f. Washington DC   
 g. Atlanta h. Miami    i. Toronto    j. Chicago
 k. St. Louis   m. New Orleans   n. Minneapolis
 o. Kansas City   p. Oklahoma City   q. Dallas
 r. Denver     s. Phoenix    t. Vancouver
 u. Seattle     v. San Francisco   w. Los Angeles
 x. A location specified by your instructor   

A3.  For a polar stereographic map projection with a 
reference latitude of 90°, find the map factors mo, mx, 
and my for latitudes (°) of:
 a. 90   b. 85   c. 80    d. 75   e. 70   f. 65   g. 60   h. 55
 i. 50    j. 45    k. 40    m. 35    n. 30    o. 25   p 20

A4.  Estimate subgrid-scale cloud coverage of low 
and high clouds for a grid-average RH (%) of:
 a. 70    b. 75    c. 80    d. 85    e. 90    f. 95    g. 100
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indicated, what is the total speedup of the program? 
 a. 10%    b. 50%    c. 75%     d. 100%    e. 3 times
 f. 5 times    g. 10 times    h. 20 times    i. 50 times

A11.  A surface weather station reports a tempera-
ture of 20°C with an observation error of σT = 1°C.  
An NWP model forecasts temperature of 24°C at the 
same point.  For optimum interpolation, find the 
analysis temperature and the cost function if the 
NWP forecast error (°C) is
 a. 0.2     b. 0.4     c. 0.6    d. 0.8     e. 1.0     f. 1.2    
 g. 1.5     h. 2.0     i. 3        j. 4         k. 5

A12.  Suppose the first guess pressure in an opti-
mum interpolation is 100 kPa, with an error of 0.2 
kPa.   Find the analysis pressure if an observation of 
P = 102 kPa was observed by:
 a. surface weather station  b. ship
 c. Southern Hemisphere manual analysis

A13(§).  A surface weather station at P = 100 kPa re-
ports a dew-point temperature of Td = 10°C with an 
observation error of σTd = 3°C.  An NWP model fore-
casts a mixing ratio of r = 12 g kg–1 at the same point.  
For variational data assimilation, find the analysis 
mixing ratio (in g kg–1, and plot the variation of the 
cost function with mixing ratio) if the NWP mixing-
ratio forecast error (g kg–1) is:
 a. 0.1    b. 0.2    c. 0.4   d. 0.5   e. 0.7    f. 1.0
 g. 1.2   h. 1.5    i. 2     j. 2.5    k. 3    m.  4    n. 5
[Hint:  Use (4.15b) from the Water Vapor chapter as 
your “H” function to convert from r to Td.]

A14.  Using Fig. 20.14 estimate at what forecast range 
(days) do we lose the ability to forecast:
 a. tornadoes   b. hurricanes
 c. fronts    d. cyclones
 e. Rossby waves f.  thunderstorms
 g. Boras    h. lenticular clouds 

A15. Given the following pairs of x, y values.  Use 
linear regression to find the slope and intercept of 
the best-fit straight line.
  x=  1      2      3      4      5      6      7      8      9
 a. y= 0.1   0.4   0.2   0.6   0.3   0.3   0.5   0.8   0.7
 b. y=  2      4      7      7     10    12    16    14    18
 c. y=  7      9     12    12    15    17    21    19    23
 d. y=  –3   –1     2      2      5      7     11     9     13
 e. y=  10     7     9      8      6      3      3      3      2
 f. y= –20 –25 –30  –35  –40  –45  –50  –55  –60

A16.  Given the forecast bias input (y, thin line) in 
Fig. 20.G, plot the Kalman filter estimate x of tomor-
row’s bias for error variance ratios (r) of:
 a. 0.001   b. 0.002   c. 0.005    d. 0.01     e. 0.03
 f. 0.04    g. 0.05     h. 0.07     i. 0.08    j. 0.09   k. 0.1

A17.  Using the MOS regression from the Sample 
Application in this chapter, calculate the predictand 
if each of the predictors based on forecast-model 
output increased by 
 a. 1%  b. 2%.  c. 3%  d. 4%  e. 5%
 f. 6%.  g. 7%  h. 8%  i. 9%  j. 10%

A18.(§)  For the Lorenz equations, with the same pa-
rameters and initial conditions as used in this chap-
ter, reproduce the results similar to the first Sample 
Application, except for all 1000 time steps.  Also:
 a. Plot L and C on the same graph vs. time.
 b. Plot M vs. L         c. Plot L vs C.

A19.(§)  Given the following fields of 50-kPa height 
(km).  Find the:
 a. mean forecast error
 b. mean persistence error
 c. mean absolute forecast error
 d. mean squared forecast error
 e. mean squared climatology error
 f. mean squared forecast error skill score
 g. RMS forecast error
 h. correlation coefficient between forecast 
  and verification
 i. forecast anomaly correlation
 j. persistence anomaly correlation
 k. Draw height contours by hand for each field, 
  to show locations of ridges and troughs.
Each field (i.e., each weather map) below covers an 
area from North to South and West to East.
 Analysis:
  5.2 5.3 5.4 5.3
  5.3 5.4 5.5 5.4
  5.4 5.5 5.6 5.5
  5.5 5.6 5.7 5.6
  5.6 5.7 5.8 5.7
 Forecast:
  5.3 5.4 5.5 5.4
  5.5 5.4 5.5 5.6
  5.6 5.6 5.6 5.6
  5.8 5.7 5.6 5.7
  5.9 5.8 5.7 5.8
 Verification:
  5.3 5.3 5.3 5.4
  5.4 5.3 5.4 5.5
  5.5 5.4 5.5 5.5
  5.7 5.5 5.6 5.6
  5.8 5.7 5.6 5.6
 Climate:
  5.4 5.4 5.4 5.4
  5.4 5.4 5.4 5.4
  5.5 5.5 5.5 5.5
  5.6 5.6 5.6 5.6
  5.7 5.7 5.7 5.7
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 Data for calculations of a ROC diagram: 

(Ex a) (Ex b) (Ex c) (Ex d) (Ex a) (Ex b) (Ex c) (Ex d)
Day o p(%) p(%) p(%) p(%) Day o p(%) p(%) p(%) p(%)

1 1 50 10 100 0 16 0 60 30 20 40
2 0 20 0 0 10 17 1 70 60 60 50
3 1 20 30 90 20 18 1 90 70 60 60
4 1 60 40 90 30 19 1 80 80 60 70
5 0 50 30 0 40 20 0 70 70 30 80
6 0 20 40 0 50 21 0 10 80 30 90
7 0 30 50 10 60 22 0 10 90 30 100
8 1 90 80 80 70 23 0 0 0 40 10
9 0 40 70 10 80 24 0 0 10 40 20
10 1 30 100 80 90 25 1 80 40 50 30
11 1 100 100 70 100 26 0 0 30 40 40
12 0 10 0 10 0 27 0 0 40 0 50
13 0 0 0 20 10 28 1 100 70 50 60
14 0 10 10 20 20 29 0 10 60 0 70
15 1 80 40 70 30 30 1 90 10 50 0

evaluate & analyze
E1.  Use the meteogram of Fig. 20.1.
 a. After 20 Feb, when does the low pass closest 
  to Des Moines, Iowa?
 b. During which days does it rain, and which 
  does it snow?
 c. During which days is there cold-air 
  advection?
 d. Based on the wind direction, does the low 
  center pass north or south of Des Moines.
 e. After 20 Feb, when does the cold front pass 
  Des Moines?
 f. What is the total amount of precipitation that
   fell during the midweek storm?
 g. How does this forecast, which was initialized
  with data from 19 Feb, compare with the  
  actual observations (refer to a previous  
  chapter)?

E2(§). Reproduce the polar stereographic map from 
the Sample Application for map projections.  Then 
add:
 a.  Greenland     b. Europe    c. Asia   
  d. your location if in the N. Hemisphere.

E3.  If Moore’s law continues to hold, and if forecast 
skill continues to improve as it has in the past, then 
estimate the transistor count on an integrated cir-
cuit, and the skillful forecast period (days) for the 
year: a. 2010    b. 2015    c. 2020    d. 2025    e. 2030
Also, comment on what factors might cause errors 
in your estimate.

E4.  Speculate on the capability of weather forecast-
ing if digital computers had not been invented.

E5.  Critique the validity of a statement that “A vari-
able mesh grid is analogous to a number of discrete 
nested grids.”

A20.  Given the following contingency table, calcu-
late all the binary verification statistics.
      Observation
      Yes  No
 Forecast Yes: 150   65
    No:  50   100

A21.  Given forecasts having the contingency table 
of exercise N20.  Protective cost is $5k to avoid a loss 
of $50k.  Climatological frequency of the event is 
50%.  (a) Find the value of the forecast.  (b) If you 
can get probabilistic forecasts, then what probability 
would you want in order to decide to take protective 
action?

A22.  Given the table below of k = 1 to 20 forecasts 
of probability pk that 24-h accumulated precipitation 
will be above 25 mm, and the verification ok = 1 if the 
observed precipitation was indeed above this thresh-
old.  (a) Find the Brier skill score.   (b) For probability 
bins of width ∆p = 0.2, plot a reliability diagram, and 
(c) find the reliability Brier skill score.
 k  pk  ok    k  pk  ok  
 1  0.9  1    11  0.4  0
 2  0.85 1    12  0.35 0
 3  0.8  0    13  0.3  1
 4  0.75 1    14  0.25 0
 5  0.7  1    15  0.2  0
 6  0.65 1    16  0.15 1
 7  0.6  0    17  0.1  0
 8  0.55 1    18  0.05 0
 9  0.5  0    19  0.02 0
 10  0.45 1    20  0  0

A23. For any one part of this exercise (Ex a to Ex 
d) of this problem, a 10-member ensemble forecast 
system forecasts probabilities that 24-h accumulated 
rainfall will exceed 5 mm.  The observation flags (o) 
and forecast probabilities (p) are given in the table  
(in the next column) for a 30-day period.  Calculate 
the hit rate and false-alarm rate for the full range 
of allowed probability thresholds, and plot the re-
sult as a ROC diagram.  Also find the area under the 
ROC curve and find the ROC skill score.
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E6.  What procedure (i.e., what equations and how 
they are manipulated) would you use to create the 
4th-order centered difference of eq. (20.BA6).

E7.  If NWP Corollaries 1 and 2 did not exist, de-
scribe tricks that you could use to increase the speed 
of numerical weather forecasts.  

E8.  Write a finite-difference equation similar to eq. 
(20.13) for the shaded grid cell of Fig. 20.9, but for:
 a. vertical advection
 b. advection in the y-direction

E9.  Draw the stencil of grid points used for com-
puting horizontal advection, but for the ___ grid for 
2nd-order spatial differencing.
 a. A     b. B     c. D

E10.  If the atmosphere is balanced, and if observa-
tions of the atmosphere are perfectly accurate, why 
would numerical models of the atmosphere start out 
imbalanced?   

E11.  For the case study forecast of Figs. 20.15, first 
photocopy the figures.  Then, on each map
 a. Draw the likely location for fronts.
 b. Indicate the locations of low centers
 c. Comment on the forecast accuracy for fronts,  
    cyclones, and the large-scale flow for this case.

E12.  Suppose you are making weather forecasts for 
Pittsburgh, Pennsylvania, which is close to the in-
tersection of the 40°N parallel and 80°W meridian, 
shown by the intersection of latitude and longitude 
lines in Figs. 20.15 just south of Lake Erie.  During 
the 7.5 days prior to 00 UTC 24 Feb 94, your tempera-
ture forecasts for 00 UTC 24 Feb would likely change 
as you received newer updated forecast maps.
 What is your temperature forecast for 00 UTC 24 
Feb, if you made it ___ days in advance from the EC-
MWF forecast charts of Fig. 20.15?
 a. 7.5  b. 5.5  c. 3.5  d. 1.5
 e. and which forecast was closest to the actual  
  verifying analysis?

E13.(§)  Suppose the Lorenz equations were modi-
fied by assuming that C = L.  For the second two 
Lorenz equations, replace every C with L, and recal-
culate for the first 1000 time steps.
 a. Plot L and M vs. time on the same graph.
 b. Plot M vs. L.
Note that the solution converges to a steady-state so-
lution.  On the graph of M vs. L, this is called a fixed 
point.  This fixed point is an attractor, but not a 
strange attractor.

 c. Describe what type of physical circulation is  
  associated with this solution.

E14.  Experiment with the Lorenz equations on a 
spreadsheet.  Over what range of values of the pa-
rameters σ, b, and r, do the solutions still exhibit cha-
otic solutions similar to that shown in Fig. 20.18?

E15.  A pendulum swings with a regular oscilla-
tion.  
 a.  Plot the position of the pendulum vs. time.
 b.  Plot the velocity of the pendulum vs. time.
 c.  Plot the position vs. velocity.  This is a called 
a phase diagram according to chaos theory.  How 
does it differ from the phase diagram (i.e., the but-
terfly) of the Lorenz strange attractor?

E16.  Use the ensemble forecast for Des Moines in 
Fig. 20.19.  
 a. What 85-kPa temperature forecast, and with 
  what reliability, would you make for  
  forecast day:    1,   3,   5,   7,   and 9 ?
 b. Which temperature ranges would you be  
  confident to forecast would NOT occur, for 
  day:   1,   3,   5,   7,   and 9 ?
 c. In spite of the forecast uncertainty, are you  
  confident about the general trends in  
  temperature?
 d. Could you confidently forecast when rain is
  most likely?  If so, how much rain would  
  you predict?

E17.  Fit an exponential curve to the persistence data 
of Fig. 20.22.  What is the e-folding time?

E18.  In what order are weather maps presented in 
the weather briefing given by your favorite local TV 
meteorologist?  What are the advantages and dis-
advantages of this approach compared to the order 
suggested in this chapter?

Synthesize
S1.  Learn what an analog computer is, and how it 
differs from a digital computer.  If automated weath-
er forecasts were made with analog rather than digi-
tal computers, how would forecasts be different, if 
at all?

S2.  a. Suppose that there were no weather observa-
tions in the western half of N. America.  How would 
the forecast quality over Washington, DC, and Ot-
tawa, Canada, be different, if at all?  Given that na-
tional legislators live in those cities, speculate on 
the changes that they would require of the national 
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weather services in the USA and Canada in order to 
improve the forecasts.    
 b. Extending the discussion from part (a), suppose 
that weather observations are back to normal in N. 
America, but the seats of government were moved to 
Seattle and Vancouver.  Given what you know about 
the Pacific data void, speculate on the changes that 
they would require of the national weather services 
in the USA and Canada in order to improve the fore-
casts.  

S3.  How many grid points are needed to forecast 
over the whole world with roughly 1-m grid spac-
ing?  When do you anticipate computer power will 
have the capability to do such a forecast?  What, if 
any, are the advantages to such a forecast?

S4.  Design a grid arrangement different from that 
in Fig. 20.9, but which is more efficient (i.e., involves 
fewer calculations) or utilizes a smaller stencil.

S5.  a. Suppose one person developed and ran a 
NWP model that gave daily forecasts with twice the 
skill as those produced by any other NWP model 
run operationally around the world.  What power 
and wealth could that person accumulate, and how 
would they do it?  What would be the consequences, 
and who would suffer?
 b. Same question as part (a), but for one country 
rather than one person.

S6.  Look up the Runge-Kutta finite-difference meth-
od in a book or internet site on numerical methods.  
Find equations for a Runge-Kutta method that is 
higher order than fourth-order.  Can you implement 
this method on a computer spreadsheet?   Try it.

S7.  Suppose that there was not a CFL numerical sta-
bility criterion that restricted the time step that can 
be used for NWP.  How would NWP be different, if 
at all?  Even without a numerical stability criterion, 
would there be any other restrictions on the time 
step?  If so, discuss.

S8.  Speculate on the ability of national forecast cen-
ters to make timely weather forecasts if a computer 
hacker destroyed the internet and other world-wide 
data networks.   

S9.  If greater spread of ensemble members in an 
ensemble forecast means greater uncertainty, then 
is greater spread desirable or undesirable in an en-
semble forecast?  

S10.  Which would likely give more-accurate fore-
casts: a categorical model with very fine grid spac-
ing, or an average of ensemble runs where each en-
semble member has coarse grid spacing?  Why?

S11.  Same as the previous question, but specifically 
for over steep mountainous terrain.   Discuss.

S12.  Finite-difference equations are approximations 
to the full, differential equations that describe the 
real atmosphere.  However, such finite-difference 
equations can also be thought of as exact represen-
tations of a numerical atmosphere that behaves ac-
cording to different physics.  How is this numeri-
cal atmosphere different from the real atmosphere?  
How would physical laws differ for this numerical 
atmosphere, if at all?  When the NWP model runs 
for a long time, if it approaches steady state, is this 
state equal to the real climate or to the “model” cli-
mate?

S13.  Suppose that electricity did not exist.  How 
would you make numerical weather forecasts?  Also, 
how would you disseminate the results to custom-
ers?
  
S14.  How good must a numerical forecast be, to be 
good enough?  Should the quality and value of a 
weather forecast be determined by meteorologists, 
computer scientists, or end users?  Discuss.

S15.  Lorenz suggested that there is a limit to pre-
dictability.  Is that a “hard” limit, or might it be pos-
sible to make skillful forecasts beyond that limit?  
Discuss.

S16.  Comment on the interconnectivity of the atmo-
sphere, as expressed by NWP corollary 1.
    


