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1  atmospheric  Basics

	 Classical Newtonian physics can be used to de-
scribe atmospheric behavior.  Namely, air motions 
obey Newton’s laws of dynamics.  Heat satisfies the 
laws of thermodynamics.  Air mass and moisture 
are conserved.  When applied to a fluid such as air, 
these physical processes describe fluid mechanics.  
Meteorology is the study of the fluid mechanics, 
physics, and chemistry of Earth’s atmosphere.  
	 The atmosphere is a complex fluid system  — a 
system that generates the chaotic motions we call 
weather.  This complexity is caused by myriad in-
teractions between many physical processes acting 
at different locations.  For example, temperature 
differences create pressure differences that drive 
winds.  Winds move water vapor about.  Water va-
por condenses and releases heat, altering the tem-
perature differences.  Such feedbacks are nonlinear, 
and contribute to the complexity.
	 But the result of this chaos and complexity is a 
fascinating array of weather phenomena — phe-
nomena that are as inspiring in their beauty and 
power as they are a challenge to describe.  Thunder-
storms, cyclones, snow flakes, jet streams, rainbows.  
Such phenomena touch our lives by affecting how 
we dress, how we travel, what we can grow, where 
we live, and sometimes how we feel.
	 In spite of the complexity, much is known about 
atmospheric behavior.  This book presents some of 
what we know about the atmosphere, for use by sci-
entists and engineers. 

1.1. Introduction

	 In this book are five major components of me-
teorology:  (1) thermodynamics, (2) physical meteo-
rology, (3) observation and analysis, (4) dynamics, 
and (5) weather systems (cyclones, fronts, thunder-
storms).  Also covered are air-pollution dispersion, 
numerical weather prediction, and natural climate 
processes.
	 Starting into the thermodynamics topic now, 
the state of the air in the atmosphere is defined by 
its pressure, density, and temperature.  Changes of 
state associated with weather and climate are  small 
perturbations compared to the average (standard) 
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atmosphere. These changes are caused by well-de-
fined processes.
	 Equations and concepts in meteorology are simi-
lar to those in physics or engineering, although the 
jargon and conventions might look different when 
applied within an Earth framework.  For a review of 
basic science, see Appendix A. 

1.2. Meteorological Conventions 

	 Although the Earth is approximately spherical, 
you need not always use spherical coordinates.  For 
the weather at a point or in a small region such as a 
town, state, or province, you can use local right-hand 
Cartesian (rectangular) coordinates, as sketched 
in Fig. 1.1.  Usually, this coordinate system is aligned 
with x pointing east, y pointing north, and z point-
ing up.  Other orientations are sometimes used.
	 Velocity components U, V, and W correspond to 
motion in the x, y, and z directions.  For example, 
a positive value of U is a velocity component from 
west to east, while negative is from east to west.  
Similarly, V is positive northward, and W is positive 
upward (Fig. 1.1).
	 In polar coordinates, horizontal velocities can be 
expressed as a direction (α), and speed or magni-
tude (M).  Historically, horizontal wind directions 
are based on the compass, with 0° to the north (the 
positive y direction), and with degrees increasing 
in a clockwise direction through 360°.  Negative 
angles are not usually used.  Unfortunately, this dif-
fers from the usual mathematical convention of 0° 
in the x direction, increasing counter-clockwise 
through 360° (Fig. 1.2).
	 Historically winds are named by the direction  
from which they come, while in mathematics an-
gles give the direction toward which things move.  
Thus, a west wind is a wind from the west; namely, 
from 270°.  It corresponds to a positive value of U, 
with air moving in the positive x direction.
	 Because of these differences, the usual trigono-
metric equations cannot be used to convert between 
(U, V) and  (α, M).  Use the following equations in-
stead, where α is the compass direction from which 
winds come. 
  
	 Conversion to Speed and Direction:

			   M U V= +( )2 2 1 2/ 	 •(1.1)

		  α α= − 



 +90

360
°

°
  ·arctan

C
V
U o 	 •(1.2a)

A SCIENTIFIC PERSPECTIVE  •  
Descartes and the Scientific Method

	 From René Descartes we get more than the name 
“Cartesian”.  In 1637 he published a book Discours de 
la Méthode, in which he defined the principles of the 
modern scientific method:
• Accept something as true only if you know it to 
   be true.
• Break difficult problems into small parts, and
   solve each part in order to solve the whole problem.
• Start from the simple, and work towards the com-
   plex.  Seek relationships between the variables.
• Do not allow personal biases or judgements to 
   interfere, and be thorough.
This method formed the basis of the scientific renais-
sance, and marked an important break away from 
blind belief in philosophers such as Aristotle. 

INFO •  Weather-related Disasters

	 During 1970 to 2012 there were 8,835 disasters, 
1.94 million deaths, and economic losses equivalent 
to US$ 2.4 trillion due to droughts, temperature ex-
tremes, tropical cyclones, floods, and their related 
health epidemics.  Of these totals, storms caused 79% 
of the disasters, 55% of lives lost, and 86% of economic 
losses.  Individual events included: 300,000 killed in 
1970 cyclone Bhola in Bangladesh; 300,000 killed in 
1983 drought in Ethiopia; 150,000 killed in drought 
in Sudan; and 138,866 killed in 1991 cyclone Gorky 
in Bangladesh.  Most of the deaths were in less-de-
veloped countries, while most of the economic losses  
were in the most-developed countries (e.g. US$ 147 
billion and $50 billion from hurricanes Katrina and 
Sandy in the USA).  Source: WMO, 2014: “The Atlas of 
Mortality and Economic Losses from Weather, Climate and 
Water Extremes, 1970-2012”.

Figure 1.1
Local Cartesian coordinates and velocity components. 
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Comparison of meteorological and math angle conventions.
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where  αo =  180° if  U > 0, but is zero otherwise.  C 
is the angular rotation in a full circle (C = 360° = 2·π 
radians).  

	 [NOTE:  Bullets • identify key equations that are 
fundamental, or are needed for understanding later chap-
ters.]

	 Some computer languages and spreadsheets al-
low a two-argument arc tangent function (atan2):

			   α = +360
180

°
atan2 °

C
V U· ( , ) 	 (1.2b)

[CAUTION: in the C and C++ programming languages, 
you might need to switch the order of U & V.]

	 Some calculators, spreadsheets or computer 
functions use angles in degrees, while others use 
radians.  If you don’t know which units are used, 
compute the arccos(–1) as a test.  If the answer is 180, 
then your units are degrees; otherwise, an answer of 
3.14159 indicates radians.  Use whichever value of C 
is appropriate for your units.

	 Conversion to U and V:

				    U M= − ·sin( )α 	 •(1.3)

				    V M= − ·cos( )α 	 •(1.4)

	 In three dimensions, cylindrical coordinates  
(M, α, W) are sometimes used for velocity instead of 
Cartesian (U, V, W), where horizontal velocity com-
ponents are specified by direction and speed, and 
the vertical component  remains W (see Fig. 1.3).
	 Most meteorological graphs are like graphs in 
other sciences, with dependent variables on the 
ordinate (vertical axis) plotted against an inde-
pendent variable on the abscissa (horizontal axis).  
However, in meteorology the axes are often switched 
when height (z) is the independent variable.  This 
axis switching makes locations higher in the graph 
correspond to locations higher in the atmosphere 
(Fig. 1.4). 

1.3. Earth  Frameworks Reviewed

	 The Earth is slightly flattened into an oblate 
spheroid of revolution (Fig. 1.5).   The distance 
from the center of the Earth to the north (N) and 
south (S) poles is roughly 6356.755 km, slightly less 
than the 6378.140 km distance from the center to 

Sample Application
	 Find wind speed and direction, given eastward 
component 3 m s–1, and northward  4 m s–1. 

Find the Answer 
(Problem-solving methods are given in Appendix A.)
Given:		 U = 3 m s–1.   eastward wind component.
			   V = 4 m s–1.   northward wind component.
Find:  		  M = ? m s–1.            wind speed
			   α = ? degrees.    wind direction

Sketch:

Use eq. (1.1):
M	 = [ U2 + V2 ] 1/2

	 = [ (3 m s–1)2 + (4 m s–1)2 ]0.5         U

V M

α	 = (9 + 16)0.5 ·[(m s–1)2]0.5 
	 = (25)0.5 m s–1   =   5 m s–1. 

Use eq. (1.2a):
α 	 = 90° –  (360°/C)·arctan(V/U) + 180°
	 = 90° – (360/360)·arctan[(4 m s–1)/(3 m s–1)]+180°
	 =  90° –  tan–1(1.333) + 180°   
	 =  90° –  53.13° + 180°   =    216.87°. 

Check: Units OK.  Sketch OK.  Values physical.
Exposition:  Thus, the wind is from the south-south-
west (SSW) at 5 m s–1.

Figure 1.3 
Notation used in cylindrical coordinates for velocity.
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Figure 1.4
Hypothetical temperature T profile in the atmosphere, plotted 
such that locations higher in the graph correspond to locations 
higher in the atmosphere.  The independent variable can be 
height z (left axis) or pressure P (right axis).
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the equator.  This 21 km difference in Earth radius 
causes a north-south cross section (i.e., a slice) of the 
Earth to be slightly elliptical.  But for all practical 
purposes you can approximate the Earth a sphere 
(except for understanding Coriolis force in the Forc-
es & Winds chapter). 

1.3.1. Cartography
	 Recall that north-south lines are called merid-
ians, and are numbered in degrees longitude.  
The prime meridian (0° longitude) is defined by 
international convention to pass through Green-
wich, Great Britain.  Longitude is positive east of 
the prime meridian, and negative west.  We often 
divide the 360° of longitude around the Earth into 
halves relative to Greenwich: 
	 	 • Western Hemisphere:  0 – 180°W, 
	 	 • Eastern Hemisphere:  0 – 180°E.  
	 Looking toward the Earth from above the north 
pole, the Earth rotates counterclockwise about its 
axis.  This means that all objects on the surface of 
the Earth (except at the poles) move toward the east. 
	 East-west lines are called parallels, and are 
numbered in degrees latitude.  By convention, the 
equator is defined as 0° latitude; the north pole 
is at 90°N; and the south pole is at 90°S.  Latitude 
is positive north of the equator, and negative south.  
Between the north and south poles are 180° of lati-
tude, although we usually divide the globe into the:
	 	 • Northern Hemisphere: 0 – 90°N,  
	 	 • Southern hemisphere: 0 – 90°S. 
	 On the surface of the Earth, each degree of lati-
tude equals 111 km, or 60 nautical miles.

1.3.2. Azimuth, Zenith, & Elevation Angles
	 As a meteorological observer on the ground 
(black circle in Fig. 1.6), you can describe the local 
angle to an object (white circle) by two angles: the 
azimuth angle (α), and either the zenith angle (ζ) 
or elevation angle (ψ).  The object can be physical 
(e.g., sun, cloud) or an image (e.g.,  rainbow, sun dog).  
By “local angle”, we mean angles measured relative 
to the Cartesian local horizontal plane (e.g., a lake 
surface, or flat level land surface such as a polder), 
or relative to the local vertical direction at your lo-
cation.  Local vertical (up) is defined as opposite to 
the direction that objects fall.
	 Zenith means “directly overhead”.  Zenith angle 
is the angle measured at your position, between a 
conceptual line drawn to the zenith (up) and a line 
drawn to the object (dark arrow in Fig. 1.6).  The el-
evation angle is how far above the horizon you see 
the object.  Elevation angle and zenith angle are re-
lated by:  ψ = 90° – ζ , or if your calculator uses radi-
ans, it is ψ = π/2 – ζ.   Abbreviate both of these forms 
by ψ = C/4  – ζ, where C = 360° = 2π radians. 

Sample Application
	 A thunderstorm top is at azimuth 225° and eleva-
tion angle 60° from your position.  How would you 
describe its location in words?  Also, what is the zenith 
angle?

Find the Answer:  
Given: α = 225° 
		  Ψ = 60°. 
Find: 	 Location in words, and find ζ .
		  (continued next page).

Figure 1.5
Earth cartography.
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	 For the azimuth angle, first project the object 
vertically onto the ground (A, in Fig. 1.6).  Draw a 
conceptual arrow (dashed) from you to A; this is the 
projection of the dark arrow on to the local horizon-
tal plane.  Azimuth angle is the compass angle along 
the local horizontal plane at your location, measured 
clockwise from the direction to north (N) to the di-
rection to A.

1.3.3. Time Zones
	 In the old days each town defined their own lo-
cal time.  Local noon was when the sun was highest 
in the sky.  In the 1800s when trains and telegraphs 
allowed fast travel and communication between 
towns, the railroad companies created standard 
time zones to allow them to publish and maintain 
precise schedules.  Time zones were eventually ad-
opted worldwide by international convention.  
	 The Earth makes one complete revolution (rela-
tive to the sun) in one day.  One revolution contains 
360° of longitude, and one day takes 24 hours, thus 
every hour of elapsed time spans 360°/24 = 15° of 
longitude.  For this reason, each time zone was cre-
ated to span 15° of longitude, and almost every zone 
is 1 hour different from its neighboring time zones.   
Everywhere within a time zone, all clocks are set to 
the same time.  Sometimes the time-zone boundar-
ies are modified to follow political or geographic 
boundaries, to enhance commerce.
	 Coordinated Universal Time (UTC) is the 
time zone at the prime meridian.   It is also known 
as Greenwich M ean T ime (GMT) and  Zulu 
time ( Z ).  The prime meridian is in the middle of 
the UTC time zone; namely, the zone spreads 7.5° on 
each side of the prime meridian.  UTC is the official 
time used in meteorology, to help coordinate simul-
taneous weather observations around the world.
	 Internationally, time zones are given letter desig-
nations A - Z, with Z at Greenwich, as already dis-
cussed.  East of the UTC zone, the local time zones 
(A, B, C, ...) are ahead; namely, local time of day is 
later than at Greenwich.  West of the UTC zone, the 
local time zones (N, O, P, ...) are behind; namely, local 
time of day is earlier than at Greenwich.  
	 Each zone might have more than one local name, 
depending on the countries it spans.  Most of west-
ern Europe is in the Alpha (A) zone, where  A = UTC 
+ 1 hr.  This zone is also known as Central Europe 
Time (CET) or Middle European Time (MET).  In N. 
America are 8 time zones P* - W (see Table 1-1). 
	 Near 180° longitude (in the middle of the Pacific 
Ocean) is the international date line.  When you 
fly from east to west across the date line, you lose a 
day (it becomes tomorrow).  From west to east, you 
gain a day (it becomes yesterday). 

Table 1-1.  Time zones in North America.  
ST = standard time in the local time zone.    
DT = daylight time in the local time zone.  
UTC = coordinated universal time.  
For conversion, use:   
			                             ST = UTC – α  ,  DT = UTC – β

Zone Name α (h) β (h)
P* Newfoundland 3.5 (NST) 2.5 (NDT)

Q Atlantic 4 (AST) 3 (ADT)

R Eastern 5 (EST) 4 (EDT)

S Central, and 
Mexico

6 (CST)
6 (MEX)

5 (CDT)
5 

T Mountain 7 (MST) 6 (MDT)

U Pacific 8 (PST) 7 (PDT)

V Alaska 9 (AKST) 8 (AKDT)

W Hawaii-
Aleutian

10 (HST) 9 (HDT)

(continuation)

Sketch:  (see above)
Because south has azimuth 180°, and west has azimuth 
270°, we find that 225° is exactly halfway between 
south and west.  Hence, the object is southwest (SW) 
of the observer.  Also, 60° elevation is fairly high in the 
sky.  So the thunderstorm top is high in the sky to the 
southwest of the observer.

Rearrange equation [ Ψ = 90° – ζ ] to solve for zenith 
angle:   ζ = 90° – ψ = 90° - 60° = 30° .

Check: Units OK. Locations reasonable.  Sketch good.
Exposition:  This is a bad location for a storm chaser 
(the observer), because thunderstorms in North Amer-
ica often move from the SW toward the northeast (NE).  
Hence, the observer should quickly seek shelter under-
ground, or move to a different location out of the storm 
path.

N
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	 Many countries utilize Daylight Saving Time 
(DT) during their local summer.  The purpose is 
to shift one of the early morning hours of daylight 
(when people are usually asleep) to the evening 
(when people are awake and can better utilize the 
extra  daylight).  At the start of DT (often in March 
in North America), you set your clocks one hour 
ahead.  When DT ends in Fall (November), you set 
your clocks one hour back.  The mnemonic “Spring 
ahead, Fall back” is a useful way to remember.
	 Times can be written as two or four digits.  If two, 
then these digits are hours (e.g., 10 = 10 am, and 14 = 
2 pm).   If four, then the first two are hours, and the 
last two are minutes (e.g., 1000 is 10:00 am, and 1435 
is 2:35 pm).  In both cases, the hours use a 24-h clock 
going from 0000 (midnight) to 2359 (11:59 pm).
 

1.4. Thermodynamic State

	 The thermodynamic state of air is measured by 
its pressure (P), density (ρ), and temperature (T).  

1.4.1. Temperature
	 When a group of molecules (microscopic) move 
predominantly in the same direction, the motion 
is called wind (macroscopic).  When they move in 
random directions, the motion is associated with 
temperature.   Higher temperatures T are associated 
with greater average molecular speeds v : 

				    T a m vw= · · 2 	 (1.5)

where   a  =  4.0x10–5  K·m–2 ·s2 ·mole·g–1  is a con-
stant.  Molecular weights  mw  for the most common 
gases in the atmosphere are listed in Table 1-2.
	 [CAUTION:  symbol “a” represents different con-
stants for different equations, in this textbook. ] 

Sample Application
	 A weather map is valid at 12 UTC on 5 June.   What 
is the valid local time in Reno, Nevada USA?  
Hint:  Reno is at roughly 120°W longitude.

Find the Answer:  
Given: UTC = 12 ,  Longitude = –120°  =  120°W. 
Find: 	 Local valid time.

First, determine if standard or daylight time:
	 Reno is in the N. Hem., and 5 June is after the start 
	 date (March) of DT, so it is daylight time.
Hint:  each 15° longitude = 1 time zone.
Next, use longitude to determine the time zone.
	 –120° / (15° / zone) = –8 zones.
But –8 zones difference corresponds to the 
	 Pacific Time Zone.  (using the ST column
	 of Table 1-1, for which α also indicates the 
	 difference in time zones from UTC)
Use Table 1-1 for Pacific Daylight Time: β = 7 h
	 PDT = UTC – 7 h = 12 – 7 = 5 am PDT.  

Check:  Units OK.  5 am is earlier than noon.
Exposition:  In the USA, Canada, and Mexico, 12 UTC 
maps always correspond to morning of the same day, 
and 00 UTC maps correspond to late afternoon or eve-
ning of the previous day.
Caution:  The trick of dividing the longitude by 15° 
doesn’t work for some towns, where the time zone has 
been modified to follow geo-political boundaries.

INFO  •  Escape Velocity

	 Fast-moving air molecules that don’t hit other 
molecules can escape to space by trading their kinetic 
energy (speed) for potential energy (height).  High in 
the atmosphere where the air is thin, there are few 
molecules to hit.  The lowest escape altitude for Earth 
is  about 550 km above ground, which marks the base 
of the exosphere (region of escaping gases).  This 
equals 6920 km when measured from the Earth’s cen-
ter, and is called the critical radius, rc.
	 The escape velocity,  ve , is given by

			 
v

G m

re
c

=










2 1 2· ·   /
planet

where G = 6.67x10–11 m3·s–2·kg–1   is the gravitational 
constant, and mplanet is the mass of the planet.  The 
mass of the Earth is 5.975 x 1024 kg.  Thus, the escape 
velocity from Earth is roughly     ve = 10,732 m s–1. 		
Using this velocity in eq. (1.5) gives the temperature 
needed for average-speed molecules to escape: 9,222 
K for H2, and 18,445 K for the heavier He.  Tempera-
tures in the exosphere (upper thermosphere) are not 
hot enough for average-speed H2 and He to escape, 
but some are faster than average and do escape.
	  Heavier molecules such as O2 have unreachably 
high escape temperatures (147,562 K), and have stayed 
in the Earth’s atmosphere, to the benefit of life.

Sample Application
	 What is the average random velocity of nitrogen 
molecules at 20°C ?  

Find the Answer:
Given: T = 273.15 + 20 = 293.15 K.  
Find:  	v  =  ?  m s–1 (=avg  mol. velocity)
				                         Sketch:	
Get mw from Table 1-2.  Solve eq. (1.5) for v:
  v 	= [T/a·mw]1/2  
	 =  [(293.15 K)/(4.0x10–5 K·m–2·s2·mole/g) ·(
		  28.01g/mole)]1/2        =  511.5 m s–1 .

Check:  Units OK.  Sketch OK.  Physics OK.
Exposition:  Faster than a speeding bullet.
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	 Absolute units such as Kelvin (K) must be used 
for temperature in all thermodynamic and radiative 
laws.  Kelvin is the recommended temperature unit.  
For everyday use, and for temperature differences, 
you can use degrees Celsius (°C).  
	 [Caution: degrees Celsius (°C) and degrees Fahr-
enheit (°F) must always be prefixed with the degree symbol 
(°) to avoid confusion with the electrical units of coulombs 
(C) and farads (F), but Kelvins (K) never take the degree 
symbol.] 
	 At absolute zero (T = 0 K  = –273.15°C) the mol-
ecules are essentially not moving.  Temperature con-
version formulae are:

				    T TF C° °= +[( / )· ]9 5 32 	 •(1.6a)

				    T TC F° °= −( / )·[ ]5 9 32 	 •(1.6b)

				    T TK C= +° 273 15. 	 •(1.7a)

				    T TC K° = − 273 15. 	 •(1.7b)

	 For temperature differences, you can use ΔT(°C) 
= ΔT(K), because the size of one degree Celsius is the 
same as the size of one unit of Kelvin.  Hence, only 
in terms involving temperature differences can you 
arbitrarily switch between °C and K without need-
ing to add or subtract 273.15.
	 Standard (average) sea-level temperature is
			   T  =  15.0°C  =  288 K   =   59°F.
Actual temperatures can vary considerably over the 
course of a day or year.  Temperature variation with 
height is not as simple as the curves for pressure and 
density, and will be discussed in the Standard At-
mosphere section a bit later.

1.4.2. Pressure
	 Pressure P is the force F acting perpendicular 
(normal) to a surface, per unit surface area A:
   
 				    P F A= / 	 •(1.8)

Static pressure (i.e., pressure in calm winds) is 
caused by randomly moving molecules that bounce 
off each other and off surfaces they hit.  In a vacuum 
the pressure is zero.
	 In the International System of Units (SI), a 
Newton (N) is the unit for force, and m2 is the unit 
for area.  Thus, pressure has units of Newtons per 
square meter, or  N·m–2.   One Pascal (Pa) is defined 
to equal a pressure of 1 N·m–2.  The recommended 
unit for atmospheric pressure is the kiloPascal 
(kPa).  The average (standard) pressure at sea level 
is P = 101.325 kPa.  Pressure decreases nearly expo-
nentially with height in the atmosphere, below 105 
km.

Table 1-2.  Characteristics of gases in the air near the 
ground.  Molecular weights are in g mole–1.  The vol-
ume fraction indicates the relative contribution to air in 
the Earth’s lower atmosphere.  EPA is the USA Environ-
mental Protection Agency.

Symbol Name Mol.
Wt.

Volume
Fraction%

Constant Gases   (NASA 2015)

N2
O2
Ar
Ne
He
Kr
H2
Xe

Nitrogen
Oxygen
Argon
Neon
Helium
Krypton
Hydrogen
Xenon

 28.01
 32.00
 39.95
 20.18
   4.00
 83.80
   2.02
131.29

78.08
20.95
0.934
0.001 818
0.000 524
0.000 114
0.000 055
0.000 009

Variable Gases
H2O
CO2
CH4
N2O

Water vapor
Carbon dioxide
Methane
Nitrous oxide

18.02
44.01
16.04
44.01

0 to 4
0.040
0.00017
0.00003

EPA National Ambient Air Quality Standards
  (NAAQS. 1990 Clean Air Act Amendments. Rules through 2011)

CO

SO2

O3
NO2

Carbon monoxide
	 (8 h average)
	 (1 h average)
Sulfur dioxide
	 (3 h average)
	 (1 h average)
Ozone (8 h average)
Nitrogen dioxide
	 (annual average)
	 (1 h average)

28.01

64.06

48.00
46.01

0.0009
0.0035

0.00000005
0.0000075
0.0000075

0.0000053
0.0000100

Mean Condition for Air
air 28.96 100.0

Table 1-3.   Standard (average) sea-level pressure.

Value Units
101.325  kPa 
1013.25  hPa  
101,325.  Pa
101,325.  N·m–2

101,325 kgm·m–1·s–2

1.033227 kgf·cm–2

1013.25  mb 
1.01325  bar
14.69595  psi
2116.22  psf
1.033227  atm
760 Torr

kiloPascals (recommended)
hectoPascals (allowed)
Pascals
Newtons per square meter
kg-mass per meter per s2

kg-force per square cm
millibars
bars
pounds-force /square inch
pounds-force / square foot
atmosphere
Torr

Measured as height of fluid in a barometer:
29.92126  in Hg 
760  mm Hg
33.89854  ft H2O
10.33227  m H2O

inches of mercury
millimeters of mercury
feet of water
meters of water
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	 While kiloPascals will be used in this book, stan-
dard sea-level pressure in other units are given in 
Table 1-3 for reference.  Ratios of units can be formed 
to allow unit conversion (see Appendix A).  Although 
meteorologists are allowed to use hectoPascals 
(as a concession to those meteorologists trained in 
the previous century, who had grown accustomed 
to millibars), the prefix “hecto” is non-standard.  If 
you encounter weather maps using millibars or hec-
toPascals, you can easily convert to kiloPascals by 
moving the decimal point one place to the left.
	 In fluids such as the atmosphere, pressure force 
is isotropic; namely, at any point it pushes with the 
same force in all directions (see Fig. 1.7a).  Similarly, 
any point on a solid surface experiences pressure 
forces in all directions from the neighboring fluid 
elements.  At such solid surfaces, all forces cancel ex-
cept the forces normal (perpendicular) to the surface 
(Fig. 1.7b).
	 Atmospheric pressure that you measure at any 
altitude is caused by the weight of all the air mol-
ecules above you.  As you travel higher in the at-
mosphere there are fewer molecules still above you; 
hence, pressure decreases with height.  Pressure can 
also compress the air causing higher density (i.e., 
more molecules in a given space).  Compression is 
greatest where the pressure is greatest, at the bottom 
of the atmosphere.  As a result of more molecules 
being squeezed into a small space near the bottom 
than near the top, ambient pressure decreases faster 
near the ground than at higher altitudes.
 	 Pressure change is approximately exponential 
with height, z.  For example, if the temperature (T) 
were uniform with height (which it is not), then:

				    P P eo
a T z= −· ( / )· 	 (1.9a)

    
where  a = 0.0342 K m–1, and where average sea-level 
pressure on Earth is Po = 101.325 kPa.  For more re-
alistic temperatures in the atmosphere, the pressure 
curve deviates slightly from exponential.  This will 
be discussed in the section on atmospheric struc-
ture.  [CAUTION again:  symbol “a” represents different 
constants for different equations, in this textbook. ]   
	 Equation (1.9a) can be rewritten as:

				    P P eo
z Hp= −

·
/ 	 (1.9b)

where Hp = 7.29 km is called the scale height for 
pressure.  Mathematically, Hp is the e-folding dis-
tance for the pressure curve.  

Figure 1.7
(a) Pressure is isotropic.  (b) Dark vectors correspond to those 
marked with  *  in (a).  Components parallel to the surface cancel, 
while those normal to the surface contribute to pressure.

Components parallel to the surface

a)

b)

* *

N
or

m
al

co
m

p.
Pressure Vector Pre

ss
ur

e V
ec

tor

Sample Application
	 The picture tube of an old TV and the CRT display 
of an old computer are types of vacuum tube.  If there 
is a perfect vacuum inside the tube, what is the net 
force pushing against the front surface of a big screen 
24 inch (61 cm) display that is at sea level?

Find the Answer  
Given:   Picture tube sizes are quantified by the diago-
nal length d of the front display surface.  Assume the 
picture tube is square.  The length of the side s of the 
tube is found from:    d2  = 2 s2 .    The frontal surface 
area is
A	 = s2  =  0.5 · d2  =  0.5 · (61 cm)2  =  1860.5 cm2

	 =    (1860.5 cm2)·(1 m/100 cm)2  =  0.186 m2 .
	 At sea level, atmospheric pressure pushing against 
the outside of the tube is 101.325 kPa, while from the 
inside of the tube there is no force pushing back be-
cause of the vacuum.  Thus, the pressure difference 
across the tube face is 
ΔP  =   101.325 kPa   = 101.325x103 N m–2.

Find:  ΔF = ? N,
the net force across the tube.
Sketch:	

ΔF =  Foutside – Finside  , but F = P · A. from eq. (1.8)
	 =  (Poutside – Pinside )·A
	 =  ΔP · A  
	 =  (101.325x103 N m–2)·( 0.186 m2)
	 =  1.885x104 N  =  18.85 kN

Check: Units OK. Physically reasonable.
Exposition:  This is quite a large force, and explains 
why picture tubes are made of such thick heavy glass.  
For comparison, a person who weighs 68 kg (150 
pounds) is pulled by gravity with a force of about 667 
N  (= 0.667 kN).  Thus, the picture tube must be able to 
support the equivalent of 28 people standing on it!

P

s
s
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	 Fig. 1.8 shows the relationship between P and z 
on linear and semi-log graphs, for T = 280 K.  [Graph 
types are reviewed in Appendix A.]  In the lowest 
3 km of the atmosphere, pressure decreases nearly 
linearly with height at about (10 kPa)/(1 km).

	 Because of the monotonic decrease of pressure 
with height, pressure can be used as a surrogate mea-
sure of altitude.  (Monotonic means that it changes 
only in one direction, even though the rate of change 
might vary.)  Fig. 1.4 shows such an example, where 
a reversed logarithmic scale (greater pressure at the 
bottom of the axis) is commonly used for P.  Aircraft 
also use pressure to estimate their altitude.
	 In the atmosphere, the pressure at any height z is 
related to the mass of air above that height.  Under 
the influence of gravity, air mass m has weight F = 
m·|g| , where |g| = 9.8 m·s–2 is gravitational acceler-

INFO  •  e-folding Distance 

	 Some curves never end.  In the figure below, curve 
(a) ends at x = xa.  Curve (b) ends at x = xb.  But curve 
(c), the exponentially decreasing curve, asymptotical-
ly approaches y = 0, never quite reaching it.  The area 
under each of the curves is finite, and in this example 
are equal to each other.

		

y

xxa

0
0

y
o

x b

 (c)

 (a)

 (b)

	 Although the exponential curve never ends, there 
is another way of quantifying how quickly it decreas-
es with x.  That measure is called the e-folding dis-
tance (or e-folding time if the independent variable is t 
instead of x). This is the distance x at which the curve 
decreases to 1/e of the starting value of the dependent 
variable, where e = 2.71828 is the base of natural loga-
rithms.  Thus, 1/e = 0.368 .
 

		

y

yo

xx c

0
0 x d

1

1/e =
0.368

 (c)

 (d)

	 In the example above, both curves (c) and (d) are 
exponentials, but they drop off at different rates, 
where xc and xd are their respective e-folding distanc-
es.  Generically, these curves are of the form:

		  y y e x xo
x x

efold
efold/ exp( / )

/= = −−

	 Another useful characteristic is that the area A un-
der the exponential curve is  A = yo·xefold. 

Sample Application
	 Compare the pressures at 10 km above sea level for 
average temperatures of 250 and 300 K.

Find the Answer  
Given: 	 z = 10 km = 104 m
		  (a)	 T = 250 K,      (b)  T = 300 K
Find: 	 (a)	 P = ? kPa,     (b)  P = ? kPa 

(a)	   Use eq. (1.9a):
	 P=(101.325kPa)·exp[(–0.0342K m–1)·(104m)/250K]
	 P = 25.8 kPa

(b)  P=(101.325kPa)·exp[(–0.0342K m–1)·(104m)/300K]
	 P = 32.4 kPa

Check: Units OK.  Physically reasonable.
Exposition:  Pressure decreases slower with height in 
warmer air because the molecules are further apart.

Figure 1.8 
Height z vs. pressure P in the atmosphere, plotted on linear (left) and semi-log (right) graphs.  See Appendix A for a review of relation-
ships and graphs.
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ation at the Earth’s surface.   This weight is a force 
that squeezes air molecules closer together, increas-
ing both the density and the pressure.  Knowing that 
P = F/A, the previous two expressions are combined 
to give

			         Pz = |g|·mabove z / A	 (1.10)

where A is horizontal cross-section area.  Similarly, 
between two different pressure levels is mass

			      ∆m = (A/|g|)·(Pbottom – Ptop)	 (1.11)

1.4.3. Density
	 Density ρ is defined as mass  m  per unit volume 
Vol.

				    ρ = m Vol/ 	 •(1.12)

Density increases as the number and molecular 
weight of molecules in a volume increase.  Average 
air density at sea level is given in Table 1-4.  The rec-
ommended unit for density is kg·m–3 .
	 Because gases such as air are compressible, air 
density can vary over a wide range.  Density de-
creases roughly exponentially with height in an at-
mosphere of uniform temperature.  

				    ρ ρ= −
o

a T ze· ( / )· 	 (1.13a)
or
				    ρ ρ ρ= −

o
z He· / 	 (1.13b)

where  a = 0.040 K m–1, and where  average sea-level 
density is  ρo   =  1.2250 kg·m–3, at a temperature of 
15°C = 288 K.  The shape of the curve described by 
eq. (1.13) is similar to that for pressure, (see Fig. 1.9).   
The scale height for density is Hρ = 8.55 km. 
	 Although the air is quite thin at high altitudes, 
it still can affect many observable phenomena:  twi-
light (scattering of sunlight by air molecules) up to 

Table 1-4.   Standard atmospheric density at sea lev-
el, for a standard temperature 15°C.

Value Units
1.2250 kg·m–3.

0.076474  lbm ft–3

1.2250 g liter–1

0.001225 g cm–3

kilograms per cubic meter
	 (recommended)
pounds-mass per cubic foot
grams per liter
grams per cubic centimeter

Sample Application
	 What is the air density at a height of 2 km in an 
atmosphere of uniform temperature of 15°C?

Find the Answer  
Given: z =2000 m,  ρo =1.225 kg m–3 , T =15°C =288.15 K
Find: 	 ρ = ? kg m–3

Use eq. (1.13):  
    ρ=(1.225 kg m–3)· exp[(–0.04 K m–1)·(2000 m)/288 K]
    ρ = 0.928 kg m–3

Check: Units OK.  Physics reasonable.
Exposition:  This means that aircraft wings generate 
24% less lift, and engines generate 24% less thrust be-
cause of the reduced air density.

Sample Application
	 Over each square meter of Earth’s surface, how 
much air mass is between 80 and 30 kPa?

Find the Answer:
Given:  Pbottom = 80 kPa,   Ptop = 30 kPa,   A = 1 m2  
Find:    ∆m = ? kg

Use eq. (1.11): ∆m = [(1 m2)/(9.8 ms–2)]·(80 – 30 kPa)·
		  [(1000 kg·m–1·s–2 )/(1 kPa)]  =  5102 kg  
Check: Units OK.  Physics OK.  Magnitude OK.
Exposition:  About 3 times the mass of a car.

Figure 1.9
Density  ρ vs. height z in the atmosphere.
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Sample Application
	 At sea level, what is the mass of air within a room 
of size 5 m x 8 m x 2.5 m ?

Find the Answer  
Given: L = 8 m    room length,  W = 5 m      width
		  H = 2.5 m    height of room
		  ρ = 1.225 kg·m-3 at sea level
Find: 	 m  = ? kg      air mass

The volume of the room is	
Vol = W·L·H  =  (5m)·(8m)·(2.5m) =  100 m3. 
Rearrange eq. (1.12) and solve for the mass:
	 m 	 = ρ·Vol.  =  (1.225 kg·m-3)·(100 m3)  =  122.5 kg.

Check: Units OK.  Sketch OK.  Physics OK.
Exposition:  	This is 1.5 to 2 times a person’s mass.

L
W

H
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63 km,  meteors (incandescence by friction against 
air molecules) from 110 to 200 km, and aurora (exci-
tation of air by solar wind) from 360 to 500 km.
	 The specific volume (α) is defined as the inverse 
of density (α = 1/ρ).  It has units of volume/mass.   

 

1.5. Atmospheric Structure

	 Atmospheric structure refers to the state of the 
air at different heights.  The true vertical structure 
of the atmosphere varies with time and location due 
to changing weather conditions and solar activity. 

1.5.1. Standard Atmosphere
	 The “1976 U.S. Standard Atmosphere” (Table 
1-5) is an idealized, dry, steady-state approximation 
of  atmospheric state as a function of height.  It has 
been adopted as an engineering reference.  It ap-
proximates the average atmospheric conditions, al-
though it was not computed as a true average.
	 A geopotential height, H, is defined to com-
pensate for the decrease of gravitational acceleration 
magnitude |g| above the Earth’s surface:

				    H R z R zo o= +·  /( ) 	 •(1.14a)

				    z R H R Ho o= −·  /( ) 	 •(1.14b)

where the average radius of the Earth is  Ro = 6356.766 
km.  An air parcel (a group of air molecules mov-
ing together) raised to geometric height z would 
have the same potential energy as if lifted only to 
height H under constant gravitational acceleration.  
By using H instead of z, you can use |g| = 9.8 m s–2 
as a constant in your equations, even though in real-
ity it decreases slightly with altitude.  
	 The difference (z – H) between geometric and 
geopotential height increases from 0 to 16 m as 
height increases from 0 to 10 km above sea level.  
	 Sometimes g and H are combined into a new 
variable called the geopotential, Φ:

				    Φ = g H· 	 (1.15)

Geopotential is defined as the work done against 
gravity to lift 1 kg of mass from sea level up to height 
H.  It has units of m2 s–2.  
	 Other standard atmospheres are: International 
Standard Atmosphere (ISA 1975; ISO 2533:1975, 
up to 86 km), International Civil Aviation Organiza-
tion (ICAO) Standard Atmosphere (1993; up to 
80 km), and the Naval Research Lab (2003; NRLM-
SISE-00; up through the exosphere). 

HIGHER MATH  •  Geopotential Height

What is “HIGHER MATH”? 
	 These boxes contain supplementary material that 
use calculus, differential equations, linear algebra, or 
other mathematical tools beyond algebra.  They are 
not essential for understanding the rest of the book, 
and may be skipped.  Science and engineering stu-
dents with calculus backgrounds might be curious 
about how calculus is used in atmospheric physics.  

Geopotential Height
	 For gravitational acceleration magnitude, let |go| 
= 9.8 m s–2 be average value at sea level, and |g| be the 
value at height z.  If Ro is Earth radius, then r = Ro + z 
is distance above the center of the Earth.  
	 Newton’s Gravitation Law gives the force |F| be-
tween the Earth and an air parcel:

			   |F| = G · mEarth · mair parcel / r2  
 
where G = 6.67x10–11 m3·s–2·kg–1 is the gravitational 
constant.  Divide both sides by mair parcel, and recall 
that by definition |g| = |F|/mair parcel.  Thus

			   |g| = G · mEarth / r2  

This eq. also applies at sea level (z = 0):

			   |go| = G · mEarth/ Ro
2  

 
Combining these two eqs. give

			   |g| = |go| · [ Ro / (Ro + z) ]2  

	 Geopotential height H is defined as the work per 
unit mass to lift an object against the pull of gravity, 
divided by the gravitational acceleration value for sea 
level:

			   H
g

g dZ
o Z

z

=
=
∫1

0

·  

Plugging in the definition of |g| from the previous 
paragraph gives:

				    H R R Z dZo o
Z

z

= +( )−
=
∫2 2

0

·

This integrates to

				            H
R

R Z
o

o Z

z

=
−

+
=

2

0

After plugging in the limits of integration, and put-
ting the two terms over a common denominator, the 
answer is:
				    H R z R zo o= +·  /( ) 	 (1.14a)
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	 Table 1-5 gives the standard temperature, pres-
sure, and density as a function of geopotential height 
H above sea level.  Temperature variations are linear 
between key altitudes indicated in boldface.  Stan-
dard-atmosphere temperature is plotted in Fig. 1.10.
	 Below a geopotential altitude of 51 km, eqs. (1.16) 
and (1.17) can be used to compute standard tempera-
ture and pressure.  In these equations, be sure to use 
absolute temperature as defined by T(K) = T(°C) + 
273.15 .			   (1.16)

T = 288.15 K – (6.5 K km–1)·H	   for H ≤ 11 km

T = 216.65 K		  11 ≤ H ≤ 20 km

T = 216.65 K +(1 K km–1)·(H–20km)	 20 ≤ H ≤ 32 km

T = 228.65 K +(2.8 K km–1)·(H–32km)	32 ≤ H ≤ 47 km

T = 270.65 K		  47 ≤ H ≤ 51 km

	 For the pressure equations, the absolute tempera-
ture T that appears must be the standard atmosphere 
temperature from the previous set of equations.  In 
fact, those previous equations can be substituted 
into the equations below to make them a function of 
H rather than T.		  (1.17)

P = (101.325kPa)·(288.15K/T) –5.255877	 H ≤ 11 km

P = (22.632kPa)·exp[–0.1577·(H–11 km)]
					     11 ≤ H ≤ 20 km

Table 1-5.   Standard atmosphere.

H (km) T (°C) P (kPa) ρ (kg m–3)
-1
0
1
2
3
4
5
6
7
8
9
10
11
13
15
17
20
25
30
32
35
40
45
47
50
51
60
70
71
80

84.9
89.7

100.4
105
110

21.5
15.0
8.5
2.0
-4.5
-11.0
-17.5
-24.0
-30.5
-37.0
-43.5
-50.0
-56.5
-56.5
-56.5
-56.5
-56.5
-51.5
-46.5
-44.5
-36.1
-22.1
-8.1
-2.5
-2.5
-2.5
-27.7
-55.7
-58.5
-76.5
-86.3
-86.3
-73.6
-55.5
-9.2

113.920
101.325
89.874
79.495
70.108
61.640
54.019
47.181
41.060
35.599
30.742
26.436
22.632
16.510
12.044
8.787
5.475
2.511
1.172
0.868
0.559
0.278
0.143
0.111
0.076
0.067

0.02031
0.00463
0.00396
0.00089
0.00037
0.00015
0.00002
0.00001
0.00001

1.3470
1.2250
1.1116
1.0065
0.9091
0.8191
0.7361
0.6597
0.5895
0.5252
0.4664
0.4127
0.3639
0.2655
0.1937
0.1423
0.0880
0.0395
0.0180
0.0132
0.0082
0.0039
0.0019
0.0014
0.0010

0.00086
0.000288
0.000074
0.000064
0.000015
0.000007
0.000003

0.0000005
0.0000002
0.0000001

Sample Application
	 Find the geopotential height and the geopotential 
at 12 km above sea level.

Find the Answer
Given:  z = 12 km,  Ro = 6356.766 km
Find:	 H = ? km,   Φ = ? m2 s–2  

Use eq. (1.14a):   	H = (6356.766km)·(12km) / 
	 ( 6356.766km + 12km )   =     11.98 km  
Use eq. (1.15): Φ = (9.8 m s–2)·(11,980 m) =1.17x105 m2 
s–2  
Check:  Units OK.  
Exposition:  H ≤ z as expected, because you don’t need 
to lift the parcel as high for constant gravity as you 
would for decreasing gravity, to do the same work.

Sample Application
     Find std. atm. temperature & pressure at H=2.5 km.

Find the Answer
Given:  H = 2.5 km.      Find: T = ? K,  P = ? kPa
Use eq. (1.16):  T = 288.15 –(6.5K/km)·(2.5km) = 271.9 K
Use eq. (1.17): P =(101.325kPa)·(288.15K/271.9K)–5.255877 
	 =   (101.325kPa)· 0.737  =  74.7 kPa. 
Check:  T = –1.1°C.  Agrees with Fig. 1.10 & Table 1-5.

Figure 1.10
Standard temperature T profile vs. geopotential height H.
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P = (5.4749kPa)·(216.65K/T) 34.16319	 20 ≤ H ≤ 32 km

P = (0.868kPa)·(228.65K/T) 12.2011	 32 ≤ H ≤ 47 km

P = (0.1109kPa)·exp[–0.1262·(H–47 km)]
					     47 ≤ H ≤ 51 km

These equations are a bit better than eq. (1.9a) be-
cause they do not make the unrealistic assumption 
of uniform temperature with height.  
	 Knowing temperature and pressure, you can cal-
culate density using the ideal gas law eq. (1.18).   

1.5.2. Layers of the Atmosphere
	 The following layers are defined based on the 
nominal standard-atmosphere temperature struc-
ture (Fig. 1.10).
		  Exosphere*		  (500 to 103) km ≤ z
		  Thermosphere	 84.9 ≤ H ≤ (500 to 103) km
		  Mesosphere		  47 ≤ H ≤ 84.9 km
		  Stratosphere		  11 ≤ H ≤ 47 km
		  Troposphere		  0 ≤ H ≤ 11 km
Almost all clouds and weather occur in the tropo-
sphere.  (*Not defined by the US Standard Atmos.  
The air is so thin in the exosphere that molecules 
don’t behave as a gas, and can escape to space.)
	 The top limits of the bottom three spheres are 
named:
		  Thermopause or Exobase	 z = 500 - 103 km
		  Mesopause		  H = 84.9 km
		  Stratopause		  H = 47 km
		  Tropopause		  H = 11 km
On average, the tropopause is lower (order of 8 km) 
near the Earth’s poles, and higher (order of 18 km) 
near the equator.  In mid-latitudes, the tropopause 
height averages about 11 km, but is slightly lower in 
winter, and higher in summer.
	 The three relative maxima of temperature are a 
result of three altitudes where significant amounts 
of solar radiation are absorbed and converted into 
heat.  Ultraviolet light is absorbed by oxygen and 
ozone near the stratopause, visible light is absorbed 
at the ground, and most other radiation is absorbed 
in the thermosphere.

1.5.3. Atmospheric Boundary Layer
	 The bottom 0.3 to 3 km of the troposphere is 
called the atmospheric boundary layer (ABL).  It 
is often turbulent, and varies in thickness in space 
and time (Fig. 1.11).  It “feels” the effects of the 
Earth’s surface, which slows the wind due to surface 
drag, warms the air during daytime and cools it at 
night, and changes in moisture and pollutant con-
centration.  We spend most of our lives in the ABL.  
Details are discussed in a later chapter.  

Sample Application
	 Is eq. (1.9a) a good fit to standard atmos. pressure?

Find the Answer
Assumption:  Use T = 270 K in eq. (1.9a) because it min-
imizes pressure errors in the bottom 10 km.
Method:  Compare on a graph where the solid line is 
eq. (1.9a) and the data points are from Table 1-5.

		
P ( kPa )

0 20 40 60 80 100
0

10

20

30

40

50

H
 (

 k
m

 )

Exposition:  Over the lower 10 km, the simple eq. 
(1.9a) is in error by no more than 1.5 kPa.  If more accu-
racy is needed, then use the hypsometric equation (see 
eq. 1.26, later in this chapter).

Figure 1.11
Boundary layer (shaded) within the bottom of the troposphere.  
Standard atmosphere is dotted.  Typical temperature profiles 
during day (black line) and night (grey line)  Boundary-layer 
top (dashed line) is at height zi.
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1.6. Equation of State– Ideal Gas Law

	 Because pressure is caused by the movement of 
molecules, you might expect the pressure P to be 
greater where there are more molecules (i.e., greater 
density ρ), and where they are moving faster (i.e., 
greater temperature T).  The relationship between 
pressure, density, and temperature is called the 
Equation of State.  
	 Different fluids have different equations of state, 
depending on their molecular properties.   The gas-
es in the atmosphere have a simple equation of state 
known as the Ideal Gas Law. 
	 For dry air (namely, air with the usual mix of 
gases, except no water vapor), the ideal gas law is:

				    P Td= ℜρ· · 	 •(1.18)

where  ℜd	 =   0.287053  kPa·K–1·m3·kg–1

			     =   287.053  J·K–1·kg–1 .

ℜd is called the gas constant for dry air.  Absolute 
temperatures (K) must be used in the ideal gas law.  
The total air pressure P is the sum of the partial 
pressures of nitrogen, oxygen, water vapor, and the 
other gases.
	 A similar equation of state can be written for just 
the water vapor in air:

				    e Tv v= ℜρ · · 	 (1.19)

where e is the partial pressure due to water vapor 
(called the vapor pressure),  ρv is the density of wa-
ter vapor (called the absolute humidity), and the 
gas constant for pure water vapor is

			   ℜv   = 0.4615 kPa·K–1·m3·kg–1

				     = 461.5 J·K–1·kg–1 .
 
	 For moist air (normal gases with some water va-
por), 

				    P T= ℜρ· · 	 (1.20)

where density  ρ  is now the total density of the air.  
A difficulty with this last equation is that the “gas 
constant” is NOT constant.  It changes as the humid-
ity changes because water vapor has different mo-
lecular properties than dry air.  
	 To simplify things, a virtual temperature Tv 
can be defined to include the effects of water vapor:

				    T T a rv = +·[ ( · )]1 	 •(1.21)

Sample Application
	 In an unsaturated tropical environment with tem-
perature of 35°C and water-vapor mixing ratio of 30 
gwater vapor/kgdry air, what is the virtual temperature?

Find the Answer:
Given:	T = 35°C, r = 30 gwater vapor/kgdry air
Find:	 Tv  = ? °C

First, convert T and r to proper units 
T = 273.15 + 35 = 308.15 K.
r =(30 gwater/kg air)·(0.001 kg/g) = 0.03 gwater/g air

Next use eq. (1.21):  
	 Tv	 =  (308.15 K)·[ 1 + (0.61 · 0.03) ] 
		  =  313.6 K   = 40.6°C.

Check:  Units OK.  Physically reasonable.
Exposition:  Thus, high humidity reduces the density 
of the air so much that it acts like dry air that is 5°C 
warmer, for this case.

Sample Application
	 What is the absolute humidity of air of temperature 
20°C and water vapor pressure of 2 kPa? 

Find the Answer:  
Given:	e = 2 kPa,   T  =  20°C = 293 K 
Find: 	  ρv =  ?  kgwater vapor ·m-3  

Solving eq. (1.19) for ρv gives:  ρv = e / (ℜv·T)
	 ρv 	 = ( 2 kPa ) / ( 0.4615 kPa·K–1·m3·kg–1  · 293 K )
		  = 0.0148   kgwater vapor ·m-3  

Check: Units OK.  Physically reasonable.
Exposition:  Small compared to the total air density.

Sample Application
	 What is the average (standard) surface temperature 
for dry air, given standard pressure and density? 

Find the Answer:  
Given:	P = 101.325 kPa,     ρ =  1.225  kg·m-3

Find: 	 T  =  ? K

Solving eq. (1.18) for T gives:  T = P / (ρ·ℜd)

T = 101 325

1 225 0 287

.

( . )·( .

 kPa

 kg·m  kPa·K ·-3 -1 mm ·kg3 -1)

	 =  288.2 K   =   15°C

Check: Units OK.  Physically reasonable.
Exposition:  The answer agrees with the standard 
surface temperature of 15°C discussed earlier, a cool 
but pleasant temperature.
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where r is the water-vapor mixing ratio [r = 
(mass of water vapor)/(mass of dry air), with units 
gwater vapor /gdry air, see the Water Vapor chapter], a 
= 0.61 gdry air/gwater vapor, and all temperatures are 
in absolute units (K).  In a nutshell, moist air of tem-
perature T behaves as dry air with temperature  Tv .    
Tv is greater than T because water vapor is less dense 
than dry air, and thus moist air acts like warmer dry 
air. 
	 If there is also liquid water or ice in the air, then 
this virtual temperature must be modified to in-
clude the liquid-water loading (i.e., the weight of 
the drops falling at their terminal velocity) and ice 
loading:

				          T T a r r rv L I= + − −·[ ( · ) ]1 	 •(1.22)

where  rL is the liquid-water mixing ratio (gliquid wa-
ter / gdry air), rI is the ice mixing ratio (gice / gdry air), 
and  a = 0.61  (gdry air / g water vapor ).  Because liquid 
water and ice are heavy, air with liquid-water and/
or ice loading acts like colder dry air.   
	 With these definitions, a more useful form of the 
ideal gas law can be written for air of any humid-
ity:
				    P Td v= ℜρ· · 	 •(1.23)

where ℜd is still the gas constant for dry air.  In this 
form of the ideal gas law, the effects of variable hu-
midity are hidden in the virtual temperature factor, 
which allows the dry “gas constant” to be used (nice, 
because it really is constant).

1.7. Hydrostatic Equilibrium

	 As discussed before, pressure decreases with 
height.  Any thin horizontal slice from a column of 
air would thus have greater pressure pushing up 
against the bottom than pushing down from the top 
(Fig. 1.12).  This is called a vertical pressure gradi-
ent, where the term gradient means change with 
distance.  The net upward force acting on this slice 
of air, caused by the pressure gradient, is F = ΔP·A, 
where A is the horizontal cross section area of the 
column, and ΔP = Pbottom – Ptop.
	 Also acting on this slice of air is gravity, which 
provides a downward force (weight) given by

				    F m g= · 	 •(1.24)

where  g = – 9.8 m·s–2 is the gravitational accelera-
tion.  (See Appendix B for variation of g with lati-
tude and altitude.)  Negative g implies a negative 

Sample Application
	 In a tropical environment with temperature of 
35°C, water-vapor mixing ratio of 30 gwater vapor/kgdry 

air , and 10 gliquid water/kgdry air  of raindrops falling 
at their terminal velocity through the air, what is the 
virtual temperature?

Find the Answer:
Given:	T = 35°C,   r = 30 gwater vapor/kgdry air
		  rL =  10 gliquid water/kgdry air  
Find:	 Tv  = ? °C

First, convert T , r and  rL  to proper units 
T = 273.15 + 35 = 308.15 K.
r =(30 gvapor/kg air)·(0.001 kg/g) = 0.03 gvapor/g air
rL =(10 gliquid/kg air)·(0.001 kg/g) = 0.01 gliquid/g air

Next use eq. (1.22):  
	 Tv	 =  (308.15 K)·[ 1 + (0.61 · 0.03) – 0.01 ] 
		  =  310.7 K   = 37.6°C.

Check:  Units OK.  Physically reasonable.
Exposition:  Compared to the previous Sample Ap-
plication, the additional weight due to falling rain 
made the air act like it was about 3°C cooler.

Figure 1.12.
Hydrostatic balance of forces on a thin slice of air.

P(top) = small

P(bottom) = large

Gravity

Sample Application
	 What is the weight (force) of a person of mass  75 kg 
at the surface of the Earth? 

Find the Answer
Given:		 m = 75 kg
Find:		  F = ? N

Sketch:	
Use eq. (1.24)
	 F 	 =   m·g   =   (75 kg)·(– 9.8 m·s–2)
		  =   – 735 kg·m·s–2      =    – 735 N

Check:  Units OK.  Sketch OK.  Physics OK.
Exposition:  The negative sign means the person is 
pulled toward the Earth, not repelled away from it.
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(downward) force.   (Remember that the unit of force 
is  1 N = 1 kg·m·s–2 , see  Appendix A).  The mass 
m of air in the slice equals the air density times the 
slice volume; namely, m = ρ · (A·Δz), where Δz is the 
slice thickness.
	 For situations where pressure gradient force ap-
proximately balances gravity force, the air is said to 
be in a state of hydrostatic equilibrium.  The cor-
responding hydrostatic equation is:

				    ∆ ∆P g z= ρ· · 	 (1.25a)

or
				  

∆
∆
P
z

g= – ·ρ 	 •(1.25b)

	 The term hydrostatic is used because it de-
scribes a stationary (static) balance in a fluid (hydro) 
between pressure pushing up and gravity pulling 
down.  The negative sign indicates that pressure 
decreases as height increases.  This equilibrium is 
valid for most weather situations, except for vigor-
ous storms with large vertical velocities.      

HIGHER MATH  •  Physical Interpretation of 
Equations

	 Equations such as (1.25b) are finite-difference ap-
proximations to the original equations that are in dif-
ferential form: 
				           d

d
– ·

P
z

g= ρ 	 (1.25c)

The calculus form (eq. 1.25c) is useful for derivations, 
and is the best description of the physics.  The alge-
braic approximation eq. (1.25b) is often used in real 
life, where one can measure pressure at two different 
heights [i.e., ΔP/Δz = (P2 – P1)/ (z2 – z1)].   
	 The left side of eq. (1.25c) describes the infinitesi-
mal change of pressure P that is associated with an 
infinitesimal local change of height z.  It is the vertical 
gradient of pressure.  On a graph of P vs. z, it would be 
the slope of the line.  The derivative symbol “d” has no 
units or dimensions, so the dimensions of the left side 
are kPa m–1.
	 Eq. (1.25b) has a similar physical interpretation.  
Namely, the left side is the change in pressure associ-
ated with a finite change in height.  Again, it repre-
sents the slope of a line, but in this case, it is a straight 
line segment of finite length, as an approximation to a 
smooth curve.
	 Both eqs. (1.25b & c) state that rate of pressure  de-
crease (because of the negative sign) with height is 
greater if the density ρ is greater, or if the magnitude 
of the gravitational acceleration |g| is greater.  Name-
ly, if factors ρ or |g| increase, then the whole right 
hand side (RHS) increases because ρ and |g| are in 
the numerator.  Also, if the RHS increases, then the left 
hand side (LHS) must increase as well,  to preserve the 
equality of LHS = RHS.

A SCIENTIFIC PERSPECTIVE  •  Check 
for Errors

	 As a scientist or engineer you should always be 
very careful when you do your calculations and de-
signs.  Be precise.  Check and double check your 
calculations and your units.  Don’t take shortcuts, 
or make unjustifiable simplifications.  Mistakes you 
make as a scientist or engineer can kill people and 
cause great financial loss.
	 Be careful whenever you encounter any equa-
tion that gives the change in one variable as a func-
tion of change of another.   For example, in equa-
tions (1.25)  P is changing with z.  The “change of” 
operator (Δ) MUST be taken in the same direction 
for both variables.  In this example ΔP/Δz means 
[ P(at z2) – P(at z1) ] / [ z2 – z1 ] .  We often abbreviate 
this as [ P2 – P1 ] / [ z2 – z1 ].   
	 If you change the denominator to be  [ z1 – z2 ], 
then you must also change the numerator to be in the 
same direction [ P1 – P2 ] .  It doesn’t matter which 
direction you use, so long as both the numerator and 
denominator (or both Δ variables as in eq. 1.25a) are in 
the same direction.  
	 To help avoid errors in direction, you should al-
ways think of the subscripts by their relative posi-
tions in space or time.  For example, subscripts 2 and 
1 often mean top and bottom, or right and left, or later 
and earlier, etc.  If you are not careful, then when you 
solve numerical problems using equations, your an-
swer will have the wrong sign, which is sometimes 
difficult to catch.

Sample Application
	 Near sea level, a height increase of 100 m corre-
sponds to what pressure decrease?

Find the Answer
Given:		 ρ= 1.225 kg·m–3  at sea level
			   Δz  =  100 m
Find:		  ΔP = ?  kPa
Sketch:  			 

Use eq. (1.25a):
ΔP   =   ρ·g·Δz
	 =  ( 1.225 kg·m–3)·(–9.8 m·s–2)·(100 m)
	 = – 1200.5 kg·m–1·s–2

	 = – 1.20 kPa

Check:  Units OK. Sketch OK.  Physics OK.
Exposition:  This answer should not be extrapolated 
to greater heights.

∆z = 100 m

P

P

bottom

top



	 R. Stull   •   Practical  Meteorology	 17

1.8. Hypsometric Equation

	 When the ideal gas law and the hydrostatic equa-
tion are combined, the result is an equation called 
the hypsometric equation.  This allows you to 
calculate how pressure varies with height in an at-
mosphere of arbitrary temperature profile:

			   z z a T
P
Pv2 1

1

2
− ≈







· ·ln 	 •(1.26a)

or

			   P P
z z

a Tv
2 1

1 2= −





·exp
·

	 •(1.26b)

where Tv  is the average virtual temperature be-
tween heights z1 and z2.  The constant a =  ℜd /|g| = 
29.3 m K–1. The height difference of a layer bounded 
below and above by two pressure levels P1 (at z1) and 
P2 (at z2) is called the thickness of that layer.
	 To use this equation across large height differ-
ences, it is best to break the total distance into a 
number of thinner intervals, Δz.  In each thin layer, 
if the virtual temperature varies little, then you can 
approximate  by Tv.  By this method you can sum all 
of the thicknesses of the thin layers to get the total 
thickness of the whole layer.
	 For the special case of a dry atmosphere of uni-
form temperature with height, eq. (1.26b) simplifies 
to eq. (1.9a).  Thus, eq. (1.26b) also describes an expo-
nential decrease of pressure with height.   

1.9. Process Terminology

	 Processes associated with constant temperature 
are isothermal.  For example, eqs. (1.9a) and (1.13a) 
apply for an isothermal atmosphere.  Those occur-
ring with constant pressure are isobaric.  A line 
on a weather map connecting points of equal tem-
perature is called an isotherm, while one connect-
ing points of equal pressure is an isobar.  Table 1-6 
summarizes many of the process terms.   

Sample Application (§)
	 What is the thickness of the 100 to 90 kPa layer, 
given [P(kPa), T(K)] = [90, 275] and [100, 285].

Find the Answer
Given:  observations at top and bottom of the layer
Find:  Δz = z2 – z1
Assume: T varies linearly with z.   Dry air:  T = Tv.

	 Solve eq. (1.26) on a computer spreadsheet (§) for 
many thin layers 0.5 kPa thick.  Results for the first few 
thin layers, starting from the bottom, are:

P(kPa) Tv (K) Tv  (K) Δz(m)

100
99.5
99.0

285
284.5
284

284.75
284.25
etc.

41.82
41.96
etc.

			                       Sum of all Δz = 864.11 m

Check: Units OK.  Physics reasonable.
Exposition:  In an aircraft you must climb 864.11 m 
to experience a pressure decrease from 100 to 90 kPa, 
for this particular temperature sounding. If you com-
pute the whole thickness at once from ∆z = (29.3m 
K–1)·(280K)·ln(100/90) = 864.38 m, this answer is less 
accurate than by summing over smaller thicknesses.

Table 1-6.Process names. (tendency = change with time)

Name Constant or equal
adiabat
contour
isallobar
isallohypse
isallotherm
isanabat
isanomal
isentrope
isobar
isobath
isobathytherm
isoceraunic
isochrone
isodop
isodrosotherm
isoecho
isogon
isogram
isohel
isohume
isohyet
isohypse
isoline
isoneph
isopleth
isopycnic
isoshear
isostere
isotach
isotherm

entropy (no heat exchange)
height
pressure tendency
height tendency
temperature tendency
vertical wind speed
weather anomaly
entropy or potential temp.
pressure
water depth
depth of constant temperature
thunderstorm activity or freq.
time
(Doppler) radial wind speed
dew-point temperature
radar reflectivity intensity
wind direction
(generic, for any quantity)
sunshine
humidity
precipitation accumulation
height (similar to contour)
(generic, for any quantity)
cloudiness
(generic, for any quantity)
density
wind shear
specific volume (1/ρ)
speed
temperature

Sample Application
	 Name the process for constant density.

Find the Answer:  
	 From Table 1-6:     It is an isopycnal process.

Exposition:  Isopycnics are used in oceanography, 
where both temperature and salinity affect density.
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HIGHER MATH • Hypsometric Eq.

	 (Continuation) 

where |g|/ℜd is pulled out of the integral on the RHS 
because it is constant. 

	 The left side of that equation integrates to become 
a natural logarithm (consult tables of integrals).  

	 The right side of that equation is more difficult, 
because we don’t know the functional form of the 
vertical temperature profile.  On any given day, the 
profile has a complex shape that is not conveniently 
described by an equation that can be integrated.  
	 Instead, we will invoke the mean-value theorem 
of calculus to bring Tv out of the integral.  The overbar 
denotes an average (over height, in this context).  
	 That leaves only dz on the right side.  After inte-
grating, we get:

				  
ln( ) –| |P
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Plugging in the upper and lower limits gives:
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	 But the difference between two logarithms can be 
written as the  ln  of the ratio of their arguments:
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Recalling that  ln(x) = –ln(1/x), then:
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Rearranging and approximating 1 1/ /T Tv v≈  
(which is NOT an identity), then one finally gets the 
hypsometric eq:

			   z z
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· · ln 	 (1.26)

HIGHER MATH  •  Hypsometric Eq.

	 To derive eq. (1.26) from the ideal gas law and the 
hydrostatic equation, one must use calculus.  It can-
not be done using algebra alone. However, once the 
equation is derived, the answer is in algebraic form. 
	 The derivation is shown here only to illustrate the 
need for calculus.  Derivations will NOT be given for 
most of the other equations in this book.  Students 
can take advanced meteorology courses, or read ad-
vanced textbooks, to find such derivations. 

Derivation of the hypsometric equation:
Given: the hydrostatic eq:

				  
d
d

– ·
P
z

g= ρ 	 (1.25c)

and the ideal gas law:

				    P Td v= ℜρ· · 	  (1.23)

First, rearrange eq. (1.23) to solve for density:

				    ρ = ℜP Td v/( · )

Then substitute this into (1.25c):

				    d
d

–
·
·

P
z

P g

Td v
=

ℜ

	 One trick for integrating equations is to separate 
variables.  Move all the pressure factors to one side, 
and all height factors to the other.  Therefore, multi-
ply both sides of the above equation by dz, and divide 
both sides by P. 
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Compared to the other variables, g and ℜd are rela-
tively constant, so we will assume that they are con-
stant and separate them from the other variables.  
However, usually temperature varies with height:  
T(z).  Thus:
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 	 Next, integrate the whole eq. from some lower 
altitude z1 where the pressure is P1, to some higher 
altitude z2 where the pressure is P2:
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				    	 (continues in next column)
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1.10. Pressure Instruments

	 Atmospheric-pressure sensors are called 
barometers.  Almost all barometers measure the 
pressure difference between atmospheric pressure 
on one side of the sensor, and a reference pressure 
on the other side.  This pressure difference causes 
a net force that pushes against a spring or a weight.  
For most barometers, the reference pressure is a 
vacuum (zero pressure).  
	 Aneroid barometers use a corrugated metal-
lic can (the aneroid element) with a vacuum in-
side the can.  A spring forces the can sides outward 
against the inward-pushing atmospheric-pressure 
force. The relative inflation of the can is measured 
with levers and gears that amplify the minuscule 
deflection of the can, and display the result as a 
moving needle on a barometer or a moving pen on 
a barograph (a recording barometer).  The scale on 
an aneroid barometer can be calibrated to read in 
any pressure units (see Table 1-3).
	 Mercury (Hg) barometers (developed by 
Evangelista Torricelli in the 1600s) are made from 
a U-shaped tube of glass that is closed on one end.  
The closed end has a vacuum, and the other end is 
open to atmospheric pressure.  Between the vacuum 
and the air is a column of mercury inside the tube, 
the weight of which balances atmospheric pressure.  
	 Atmospheric pressure is proportional to the 
height difference ∆z between the top of the mercury 
column on the vacuum side, and the height on the 
side of the U-tube open to the atmosphere.  Typical 
∆z scales are millimeters of mercury (mm Hg), 
centimeters of mercury (cm Hg), or inches of 
mercury (in Hg).  To amplify the height signal, 
contra-barometers (developed by Christiaan Huy-
gens in the 1600s) use mercury on one side of the 
U-tube and another fluid (e.g., alcohol) on the other.
	 Because mercury is a poison, modern Torricelli 
(U-tube) barometers use a heavy silicon-based fluid 
instead.  Also, instead of using a vacuum as a ref-
erence pressure, they use a fixed amount of gas in 
the closed end of the tube.  All Torricelli barometers 
require temperature corrections, because of thermal 
expansion of the fluid.
	 Electronic barometers have a small can with a 
vacuum or fixed amount of gas inside.  Deflection of 
the can is measured by strain gauges, or by chang-
es in capacitance between the top and bottom metal 
ends of an otherwise non-conductive can.  Digital 
barometers are electronic barometers that include 
analog-to-digital circuitry to send pressure data to 
digital computers.  More info about all weather in-
struments is in WMO-No. 8 Guide to Meteorological 
Instruments and Methods of Observation. 

1.11. Review

	 Pressure, temperature, and density describe the 
thermodynamic state of the air.  These state variables 
are related to each other by the ideal gas law.  Change 
one, and one or both of the others must change too.  
Ambient pressure decreases roughly exponentially 
with height, as given by the hypsometric equation.  
The vertical pressure gradient is balanced by the 
pull of gravity, according to the hydrostatic eq.  
	 Density variation is also exponential with height.  
Temperature, however, exhibits three relative max-
ima over the depth of the atmosphere, caused by 
absorption of radiation from the sun.  Thermody-
namic processes can be classified.  The standard 
atmosphere is an idealized model of atmospheric 
vertical structure, and is used to define atmospher-
ic layers such as the troposphere and stratosphere.  
Atmospheric pressure is measured with mercury, 
aneroid, or electronic barometers.

1.11.1. Tips for Using This Book
	 • Take advantage of the extensive index.
	 • Check online for errata (corrections) to the 
		  current edition.
	 • Use split screens or multiple windows to view 
		  different but related items (such as homework 
		  exercises and relevant material in the body of 
		  the chapter).

1.11.2. Tips for the Homework
	 At the end of each chapter are four types of 
homework exercises:  
	 	 • Broaden Knowledge & Comprehension
	 	 • Apply 
	 	 • Evaluate & Analyze
	 	 • Synthesize
Each of these types are explained here in Chapter 
1, at the start of their respective subsections.  I also 
recommend how you might approach these differ-
ent types of problems.
	 One of the first tips is in the “A SCIENTIFIC PER-
SPECTIVE” box.  Here I recommend that you write 
your exercise solutions in a format very similar to 
the “Sample Applications” that I have through-
out this book.  Such meticulousness will help you 
earn higher grades in most science and engineering 
courses, and will often give you partial credit (in-
stead of zero credit) for exercises you solved incor-
rectly.  
	 Finally, most of the exercises have multiple parts 
to them.  Your instructor need assign only one of the 
parts for you to gain the skills associated with that 
exercise.  Many of the numerical problems are sim-
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ilar to Sample Applications presented earlier in the 
chapter.  Thus, you can try to do the Sample Appli-
cation first, and if you get the same answer as I did, 
then you can be more confident in getting the right 
answer when you re-solve the exercise part assigned 
by your instructor.  Such re-solutions are trivial if 
you use a computer spreadsheet (Fig. 1.13) or other 
similar program to solve the numerical exercises.  

A SCIENTIFIC PERSPECTIVE • Be Me-
ticulous

Format Guidelines for Your Homework
	 Good scientists and engineers are not only cre-
ative, they are methodical, meticulous, and accurate.  
To encourage you to develop these good habits, many 
instructors require your homework to be written in a 
clear, concise, organized, and consistent format.  Such 
a format is described below, and is illustrated in all 
the Sample Applications in this book.  The format be-
low closely follows steps you typically take in problem 
solving (Appendix A).

				    Format:
1. Give the exercise number, & restate the problem.
2. Start the solution section by listing the “Given” 
	 known variables (WITH THEIR UNITS).
3. List the unknown variables to find, with units.
4. Draw a sketch if it clarifies the scenario.
5. List the equation(s) you will use.
6. Show all your intermediate steps and calcula-
	 tions (to maximize your partial credit), and be 
	 sure to ALWAYS INCLUDE UNITS with the 
	 numbers when you plug them into eqs.
7. Put a box around your final answer, or under-
	 line it, so the grader can find it on your page 
	 amongst all the coffee and pizza stains.
8. Always check the value & units of your answer.
9. Briefly discuss the significance of the answer.

				    Example:
Problem :	 What is air density at height 2 km in an 
isothermal atmosphere of temperature 15°C?

Find the Answer  
Given: z = 2000 m
		  ρo = 1.225 kg m–3

		  T = 15°C = 288.15 K
Find: 	 ρ = ? kg m–3

	 Use eq. (1.13a):     ρ =
(1.225 kg m–3)· exp[(–0.040K m–1)·(2000m)/288K]

	 ρ = 0.928 kg m–3

Check: Units OK.  Physics reasonable.
Exposition: (ρo – ρ)/ρo ≈ 0.24.  This means that aircraft 
wings generate 24% less lift, aircraft engines generate 
24% less power, and propellers 24% less thrust be-
cause of the reduced air density.  This compounding 
effect causes aircraft performance to decrease rapidly 
with increasing altitude, until the ceiling is reached 
where the plane can’t climb any higher.
	 Fig. 1.13 shows the solution of this problem on a 
computer spreadsheet.

Figure 1.13
Example of a spreadsheet used to solve a numerical problem.

(1.13a), where
0.040 
0.928 

0.928/ 1.225 = 76%

°

°
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1.12. Homework Exercises

1.12.1. Broaden Knowledge & Comprehension
	 These questions allow you to solve problems 
using current data, such as satellite images, weath-
er maps, and weather observations that you can 
download through the internet.  With current data, 
exercises can be much more exciting, timely, and rel-
evant. Such questions are more vague than the oth-
ers, because we can’t guarantee that you will find a 
particular weather phenomenon on any given day.  
	 Many of these questions are worded to encour-
age you to acquire the weather information for loca-
tions near where you live.  However, the instructor 
might suggest a different location if a better example 
of a weather event is happening elsewhere.  Even if 
the instructor does not suggest alternative locations, 
you should feel free to search the country, the con-
tinent, or the globe for examples of weather that are 
best suited for the exercise.
	 Web URL (uniform resource locator) addresses 
are very transient.  Web sites come and go.  Even 
a persisting site might change its web address.  For 
this reason, the web-enhanced questions do not usu-
ally give the URL web site for any particular exer-
cise.  Instead, you are expected to become proficient 
with internet search engines.  Nonetheless, there 
still might be occasions where the data does not ex-
ist anywhere on the web.  The instructor should be 
aware of such eventualities, and be tolerant of stu-
dents who cannot complete the web exercise.
	 In many cases, you will want to print the weather 
map or satellite image to turn in with your home-
work.  Instructors should be tolerant of students 
who have access to only black and white printers.  
If you have black and white printouts, use a colored 
pencil or pen to highlight the particular feature or 
isopleths of interest, if it is otherwise difficult to dis-
cern among all the other black lines on the printout.
	 You should always list the URL web address and 
the date you used it from which you acquired the 
data or images.  This is just like citing books or jour-
nals from the library.  At the end of each web exer-
cise, include a “References” section listing the web 
addresses used, and any of your own annotations.     

B1.  Download a map of sea-level pressure, drawn 
as isobars, for your area.  Become familiar with the 
units and symbols used on weather maps.  

B2.  Download from the web a map of near-surface 
air temperature, drawn is isotherms, for your area. 
Also, download a surface skin temperature map val-
id at the same time, and compare the temperatures.

B3.  Download from the web a map of wind speeds 
at a height near the 200 or 300 mb (= 20 or 30 kPa) jet 
stream level .  This wind map should have isotachs 
drawn on it.  If you can find a map that also has wind 
direction or streamlines in addition to the isotachs, 
that is even better.

B4.  Download from the web a map of humidities 
(e.g., relative humidities, or any other type of hu-
midity), preferably drawn is isohumes.  These are 
often found at low altitudes, such as for pressures of 
850 or 700 mb (85 or 70 kPa).  

B5.  Search the web for info on the standard atmo-
sphere.  This could be in the form of tables, equa-
tions, or descriptive text.  Compare this with the 
standard atmosphere in this textbook, to determine 
if the standard atmosphere has been revised.  

B6.  Search the web for the air-pollution regulation 
authority in your country (such as the EPA in the 
USA), and find the regulated concentrations of the 
most common air pollutants (CO, SO2, O3, NO2, vol-
atile organic compounds VOCs, and particulates).  
Compare with the results in Table 1-2, to see if the 
regulations have been updated in the USA, or if they 
are different for your country.  

B7.  Search the web for surface weather station obser-
vations for your area.  This could either be a surface 
weather map with  plotted station symbols, or a text 
table.  Use the reported temperature and pressure to 
calculate the density. 

B8.  Search the web for updated information on the 
acceleration due to gravity, and how it varies with 
location on Earth.  

B9. Search the web for weather maps showing thick-
ness between two pressure surfaces.  One of the 
most common is the 1000 - 500 mb thickness chart 
(i.e., the 100 - 50 kPa thickness chart).  Comment on 
how thickness varies with temperature (the most 
obvious example is the general thickness decrease 
further away from the equator).  
   

A SCIENTIFIC PERSPECTIVE • Give Credit

Part of the ethic of being a good scientist or engineer is 
to give proper credit to the sources of ideas and data, 
and to avoid plagiarism.  Do this by citing the author 
and the title of their book, journal paper, or electronic 
content.  Include the international standard book num-
ber (isbn), digital object identifier (doi), or other identi-
fying info.
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1.12.2. Apply
	 These are essentially “plug & chug” exercises.  
They are designed to ensure that you are comfort-
able with the equations, units, and physics by get-
ting hands-on experience using them.  None of the 
problems require calculus.
	 While most of the numerical problems can be 
solved using a hand calculator, many students find 
it easier to compose all of their homework answers 
on a computer spreadsheet.  It is easier to correct 
mistakes using a spreadsheet, and plotting graphs 
of the answer is trivial.  
	 Some exercises are flagged with the symbol (§), 
which means  you should use a Spreadsheet or other 
more advanced tool such as R, Matlab, Mathemati-
ca,  or Maple.  These exercises have tedious repeated 
calculations to graph a curve or trend.  To do them 
by hand calculator would be painful.  If you don’t 
know how to use a spreadsheet (or other more ad-
vanced program), now is a good time to learn.
	 Most modern spreadsheets also allow you to add 
objects called text boxes, note boxes or word boxes, 
to allow you to include word-wrapped paragraphs 
of text, which are handy for the “Problem” and the 
“Exposition” parts of the answer.
	 A spreadsheet example is given in Fig. 1.13.  Nor-
mally, to make your printout look neater, you might 
use the page setup or print option to turn off print-
ing of the row numbers, column letters, and grid 
lines.  Also, the borders around the text boxes can be 
eliminated, and color could be used if you have ac-
cess to a color printer.  Format all graphs to be clear 
and attractive, with axes labeled and with units, and 
with tic marks having pleasing increments.    

A1.  Find the wind direction (degrees) and speed (m 
s–1), given the (U, V) components:
	 a.  (-5, 0) knots		  b.  (8, -2) m s–1

	 c. (-1, 15) mi h–1		 d.  (6, 6)  m s–1

	 e.  (8, 0) knots		  f.  (5, 20) m s–1

	 g. (-2, -10) mi h–1		  h.  (3, -3)  m s–1

A2.  Find the U and V wind components (m s–1), 
given wind direction and speed:
	 a.  west at 10 knots		 b.  north at 5 m s–1

	 c.  225° at 8 mi h–1		  d.  300° at 15 knots
	 e.  east at 7 knots		  f.  south at 10 m s–1

	 g.  110° at 8 mi h–1		  h. 20° at 15 knots

A3.  Convert the following UTC times to local times 
in your own time zone:
	 a. 0000	 b. 0330	 c. 0610		 d. 0920
	 e. 1245	 f. 1515		 g. 1800	 h. 2150

A4.  (i). Suppose that a typical airline window is cir-
cular with radius 15 cm, and a typical cargo door is 
square of side 2 m.  If the interior of the aircraft is 
pressured at 80 kPa, and the ambient outside pres-
sure is given below in kPa, then what are the mag-
nitudes of forces pushing outward on the window 
and door?
	 (ii). Your weight in pounds is the force you ex-
ert on things you stand on.  How many people of 
your same weight standing on a window or door are 
needed to equal the forces calculated in part a.  As-
sume the window and door are horizontal, and are 
near the Earth’s surface. 
	 a.  30 		  b. 25		  c. 20		  d. 15
	 e. 10		  f. 5			  g. 0		  h. 40

A5.  Find the pressure in kPa at the following heights 
above sea level, assuming an average T = 250K:
	 a.   -100 m (below sea level)	 b.  1 km
	 c.  11 km		  d.  25 km		 e.   30,000 ft
	 f.  5 km		  g.  2 km		  h.   15,000 ft

A6.  Use the definition of pressure as a force per unit 
area, and consider a column of air that is above a 
horizontal area of 1 square meter.  What is the mass 
of air in that column: 
	 a. above the Earth’s surface.
	 b. above  a height where the pressure is 50 kPa?
	 c. between pressure levels of 70 and 50 kPa?
	 d. above a height where the pressure is 85 kPa?
	 e. between pressure levels 100 and 20 kPa?
	 f. above height where the pressure is 30 kPa?
	 g. between pressure levels 100 and 50 kPa?
	 h. above a height where the pressure is 10 kPa?

B10.  Access from the web an upper-air sounding (e.g., 
Stuve, Skew-T, Tephigram, etc.) that plots temperature 
vs. height or pressure for a location near you.  We will 
learn details about these charts later, but for now look 
at only temperature vs. height.  If the sounding goes 
high enough (up to 100 mb or 10 kPa or so) , can you 
identify the troposphere, tropopause, and stratosphere.  

B11.  Often weather maps have isopleths of tempera-
ture (isotherm), pressure (isobar), height (contour), hu-
midity (isohume), potential temperature (adiabat or 
isentrope), or wind speed (isotach).  Search the web for 
weather maps showing other isopleths.  (Hint, look for 
isopleth maps of precipitation, visibility, snow depth, 
cloudiness, etc.)   
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A7.  Find the virtual temperature (°C) for air of:
		   	 a.	  	 b.		   c.		   d.		  e.		  f.		  g.
T (°C)		 20		  10		  30		  40		  50		  0		  –10
r (g/kg)	 10		  5		  0		  40		  60		  2		  1

A8.  Given the planetary data in Table 1-7.
	 (i). What are the escape velocities from a planet 
for each of their main atmospheric components?    
(For simplicity, use the planet radius instead of the 
“critical” radius at the base of the exosphere.).  
	 (ii). What are the most likely velocities of those 
molecules at the surface, given the average surface 
temperatures given in that table?  Comparing these 
answers to part (i), which of the constituents (if any) 
are most likely to escape?   a. Mercury	   b. Venus
	 c. Mars		  d. Jupiter			  e.  Saturn	
	 f. Uranus 	 g. Neptune		  h. Pluto

Table 1-7.  Planetary data.

Planet Radius
(km)

Tsfc
(°C)
(avg.)

Mass 
relative
to Earth

Main
gases in
atmos.

Mercury 2440 180 0.055 H2, He

Venus 6052 480 0.814 CO2, N2

Earth 6378 8 1.0 N2, O2

Mars 3393 –60 0.107 CO2, N2

Jupiter 71400 –150 317.7 H2, He

Saturn 60330 –185 95.2 H2, He

Uranus 25560 –214 14.5 H2, He

Neptune 24764 –225 17.1 H2, He

Pluto* 1153 –236 0.0022 CH4, N2, CO
* Demoted to a “dwarf planet” in 2006.

A9.  Convert the following temperatures:
	 a. 15°C = ?K			   b.  50°F = ?°C
	 c. 70°F = ?K			   d.  15°C = ?°F
	 e. 303 K = ?°C		  f.  250K = ?°F
	 g. 2000°C = ?K 		  h.  –40°F = ?°C

A10.  a. What is the density (kg·m–3) of air, given 
		  P = 80 kPa and T = 0 °C ?
	 b. What is the temperature (°C) of air, given 
		  P = 90 kPa and  ρ = 1.0 kg·m–3  ?
	 c. What is the pressure (kPa) of air, given 
		  T = 90°F  and ρ = 1.2  kg·m–3 ?
	 d. Give 2 combinations of pressure and density 
		  that have a temperature of 30°C.
	 e. Give 2 combinations of pressure and density 
		  that have a temperature of 0°C.
	 f. Give 2 combinations of pressure and density 
		   that have a temperature of –20°C.
	 g. How could you determine air density if you 
		  did not have a density meter?
	 h.  What is the density (kg·m–3) of air, given 

		  P = 50 kPa   and  T = –30 °C ? 
	 i.  What is the temperature (°C) of air, given 
		  P = 50 kPa and  ρ = 0.5 kg·m–3  ?
	 j. What is the pressure (kPa) of air, given 
		  T = –25°C  and ρ = 1.2  kg·m–3 ?

A11.  At a location in the atmosphere where the air 
density is 1 kg m–3, find the change of pressure (kPa) 
you would feel if your altitude increases by ___ km.
	 a. 2	 b. 5	 c. 7	 d. 9	 e. 11	 f. 13	 g. 16
	 h. –0.1  	 i. –0.2  	 j. –0.3	    k. –0.4	   l. –0.5 

A12.  At a location in the atmosphere where the aver-
age virtual temperature is 5°C, find the height dif-
ference (i.e., the thickness in km) between the fol-
lowing two pressure levels (kPa):
	 a. 100, 90		  b. 90, 80	   c. 80, 70		  d. 70, 60
	 e. 60, 50		  f. 50, 40	   g. 40, 30		 h. 30, 20
	 i. 20, 10		  j. 100, 80	   k. 100, 70 	 l. 100, 60
	 m. 100, 50	 n. 50, 30

A13.  Name the isopleths that would be drawn on a 
weather map to indicate regions of equal
	 a. pressure		  b. temperature
	 c. cloudiness		 d. precipitation accumulation
	 e. humidity   	 f. wind speed
	 g. dew point		 h. pressure tendency 

A14.  What is the geometric height and geopotential, 
given the geopotential height?
	 a. 10 m	 b. 100 m	 c. 1 km	 d. 11 km
What is the geopotential height and geopotential, 
given the geometric height?
	 e. 500 m	 f. 2 km	 g. 5 km	 h. 20 km

A15.  What is the standard atmospheric tempera-
ture, pressure, and density at each of the following 
geopotential heights? 
	 a. 1.5 km	   b. 12 km	 c. 50 m	    d. 8 km
	 e. 200 m	    f. 5 km  	 g. 40 km	    h.  25 km

A16.  What are the geometric heights (assuming a 
standard atmosphere) at the top and bottom of the:
	 a. troposphere		  b. stratosphere
	 c. mesosphere		  d. thermosphere

A17.  Is the inverse of an average of numbers equal to 
the average of the inverses of those number?  (Hint, 
work out the values for just two numbers: 2 and 4.)  
This question helps explain where the hypsometric 
equation given in this chapter is only approximate.

A18(§).  Using the standard atmosphere equations, 
re-create the numbers in Table 1-5 for 0 ≤ H ≤ 51 km.
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1.12.3. Evaluate & Analyze
	 These questions require more thought, and are 
extensions of material in the chapter.  They might 
require you to combine two or more equations or 
concepts from different parts of the chapter, or from 
other chapters.  You might need to critically evaluate 
an approach.  Some questions require a numerical 
answer — others are “short-answer” essays.  
	 They often require you to make assumptions, be-
cause insufficient data is given to solve the problem.  
Whenever you make assumptions, justify them first.  
A sample solution to such an exercise is shown be-
low.  

E1.  What are the limitations of the “standard atmo-
sphere”?

E2. For any physical variable that decreases expo-
nentially with distance or time, the e-folding scale 
is defined as the distance or time where the physical 
variable is reduced to 1/e of its starting value.  For 
the atmosphere the e-folding height for pressure de-
crease is known as the scale height.  Given eq. (1.9a), 
what is the algebraic and numerical value for atmo-
spheric scale height (km)?

E3(§).  Invent some arbitrary data, such as 5 data 
points of wind speed M vs. pressure P.  Although 
P is the independent variable, use a spreadsheet to 
plot it on the vertical axis (i.e., switch axes on your 
graph so that pressure can be used as a surrogate 
measure of height), change that axis to a logarithmic 
scale, and then reverse the scale so that the largest 
value is at the bottom, corresponding to the greatest 
pressure at the bottom of the atmosphere.  
	 Now add to this existing graph a second curve of 
different data of M vs. P.  Learn how to make both 
curves appear properly on this graph because you 
will use this skill repeatedly to solve problems in fu-
ture chapters.

E4. Does hydrostatic equilibrium (eq. 1.25) always 
apply to the atmosphere? If not, when and why not?

E5.  a. Plug eqs. (1.1) and (1.2a) into (1.3), and use trig 
to show that U = U.     b. Similar, but for V = V. 

E6.	What percentage of the atmosphere is above a 
height (km) of :	a. 2	 b. 5	 c. 11	 d. 32 
					     e. 1 	 f. 18 	 g. 47 	 h. 8 

E7.   What is the mass of air inside an airplane with a 
cabin size of  5 x 5 x 30 m, if the cabin is pressurized 
to a cabin altitude of sea level?  What mass of outside 
air is displaced by that cabin, if the aircraft is flying 
at an altitude of 3 km?  The difference in those two 
masses is the load of air that must be carried by the 
aircraft.  How many people cannot be carried be-
cause of this excess air that is carried in the cabin?

E8.	Given air of initial temperature 20°C and density 
of 1.0 kg m–3.  
	 a.  What is its initial pressure?
	 b.  If the temperature increases to 30°C in an
		  isobaric process, what is the new density?
	 c. If the temperature increases to 30°C in an
		  isobaric process, what is the new pressure?
	 d. For an isothermal process, if the pressure 
		  changes to 20 kPa, what is the new density?
	 e. For an isothermal process, if the pressure 

Sample Application – Evaluate & Analyze (E) 
	 What are the limitations of eq. (1.9a), if any?  How 
can those limitations be eliminated?

Find the Answer  
	 Eq. (1.9a) for P vs. z relies on an average tempera-
ture over the whole depth of the atmosphere.  Thus, eq. 
(1.9a) is accurate only when the actual temperature is 
constant with height.
	 As we learned later in the chapter, a typical or 
“standard” atmosphere temperature is NOT constant 
with height.  In the troposphere, for example, tempera-
ture decreases with height.  On any given day, the real 
temperature profile is likely to be even more compli-
cated.  Thus, eq. (1.9a) is inaccurate.
	 A better answer could be found from the 
hypsometric equation (1.26b):

  P P
z z

a Tv
2 1

2 1= − −





·
·

exp        with  a = 29.3 m K–1.

By iterating up from the ground over small increments 
Δz = z2 – z1, one can use any arbitrary temperature pro-
file.  Namely, starting from the ground, set z1 = 0 and 
P1 = 101.325 kPa.  Set z2 = 0.1 km, and use the average 
virtual temperature value in the hypsometric equation 
for that 0.1 km thick layer from z = 0 to 0.1 km.  Solve 
for P2.  Then repeat the process for the layer between z 
= 0.1 and 0.2 km, using the new Tv for that layer.  
	 Because eq. (1.9a) came from eq. (1.26), we find oth-
er limitations.  
1) Eq. (1.9a) is for dry air, because it uses temperature 
rather than virtual temperature.
2) The constant “a” in eq. (1.9a) equals  = (1/29.3) K m–1.  
Hence, on a different planet with different gravity and 
different gas constant, “a” would be different.  Thus, 
eq. (1.9a) is limited to Earth.
	 Nonetheless, eq. (1.9a) is a reasonable first-order 
approximation to the variation of pressure with alti-
tude, as can be seen by using standard-atmosphere P 
values from Table 1-5, and plotting them vs. z.  The re-
sult (which was shown in the Sample Application after 
Table 1-5) is indeed close to an exponential decrease 
with altitude.
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		  changes to 20 kPa, what is the new T?
	 f. In a large, sealed, glass bottle that is full of air, 
		  if you increase the temperature, what if 
		   anything would be conserved (P, T, or  ρ)?
	 g. In a sealed, inflated latex balloon, if you lower 
		  it in the atmosphere, what thermodynamic 
	  	 quantities if any, would be conserved?
	 h. In a mylar (non stretching) balloon, suppose 
		  that it is inflated to equal the surrounding 
		  atmospheric pressure.  If you added more 
		  air to it, how would the state change?

E9(§).	 Starting from sea-level pressure at z = 0, use 
the hypsometric equation to find and plot P vs. z in 
the troposphere, using the appropriate standard-at-
mosphere temperature.  Step in small increments to 
higher altitudes (lower pressures) within the tropo-
sphere,  within each increment.  How is your answer 
affected by the size of the increment?  Also solve it 
using a constant temperature equal to the average 
surface value.  Plot both results on a semi-log graph, 
and discuss meaning of the difference.

E10.  Use the ideal gas law and eq. (1.9) to derive the 
equation for the change of density with altitude, as-
suming constant temperature.

E11.  What is the standard atmospheric tempera-
ture, pressure, and density at each of the following 
geopotential heights (km)? 
	 a. 75 		  b. 65 		  c. 55 		  d. 45	   e. 35
	 f. 25		  g. 15		  h. 5		  i. –0.5 

E12.  The ideal gas law and hypsometric equation 
are for compressible gases.  For liquids (which are 
incompressible, to first order), density is not a func-
tion of pressure.  Compare the vertical profile of 
pressure in a liquid of constant temperature with 
the profile of a gas of constant temperature.

E13. At standard sea-level pressure and temperature, 
how does the average molecular speed compare to 
the speed of sound?   Also, does the speed of sound 
change with altitude?  Why? 

E14.  For  a standard atmosphere below H = 11 km: 
	 a.  Derive an equation for pressure as a function 
		  of H.  
	 b.  Derive an equation for density as a function 
		  of H.

E15.  Use the hypsometric equation to derive an 
equation for the scale height for pressure, Hp.  

E16.  Plot & discuss graphs of temperature vs. height 
to compare the 4 different standard atmospheres. 

1.12.4. Synthesize
	 These are “what if” questions.  They are often 
hypothetical — on the verge of being science fiction.  
By thinking about “what if” questions you can gain  
insight about the physics of the atmosphere, because 
often you cannot apply existing paradigms.  
	 “What if” questions are often asked by scientists, 
engineers, and policy makers.  For example, “What 
if the amount of carbon dioxide in the atmosphere 
doubled, then how would world climate change?”
	 For many of these questions, there is not a single 
right answer.  Different students could devise dif-
ferent answers that could be equally insightful, and 
if they are supported with reasonable arguments, 
should be worth full credit.  Often one answer will 
have other implications about the physics, and will 
trigger a train of related ideas and arguments. 
	 A Sample Application of a synthesis question is 
presented in the next page.  This solution might not 
be the only correct solution, if it is correct at all.

S1.	What if the meteorological angle convention is 
identical to that shown in Fig. 1.2, except for wind 
directions which are given by where they blow 
towards rather than where they blow from.  Cre-
ate a new set of conversion equations (1.1 - 1.4) for 
this convention, and test them with directions and 
speeds from all compass quadrants.

S2. Find a translation of Aristotle’s Meteorologica in 
your library.  Discuss one of his erroneous state-
ments, and how the error might have been avoided 
if he had following the Scientific Method as later 
proposed by Descartes.

S3. As discussed in a Sample Application, the glass 
on the front face of CRT and old TV picture tubes is 
thick in order to withstand the pressure difference 
across it.  Why is the glass not so thick on the other 
parts of the picture tube, such as the narrow neck 
near the back of the TV?

S4. Eqs. (1.9a) and (1.13a) show how pressure and 
density decrease nearly exponentially with height. 
	 a. How high is the top of the atmosphere?
	 b. Search the library or the web for the effective 
altitude for the top of the atmosphere as experienced 
by space vehicles re-entering the atmosphere. 

S5.  What is “ideal” about the ideal gas law?  Are 
there equations of state that are not ideal?

S6. What if temperature as defined by eq. (1.5) was 
not dependent on the molecular weight of the gas. 
Speculate on how the composition of the Earth’s 
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atmosphere might have evolved differently since it 
was first formed.

S7.  When you use a hand pump to inflate a bicycle 
or car tire, the pump usually gets hot near the out-
flow hose.  Why?  Since pressure in the ideal gas law 
is proportional to the absolute virtual temperature 
(P=ρ·ℜd·Tv), why should the tire-pump temperature 
warmer than ambient? 

S8.  In the definition of virtual temperature, why do 
water vapor and liquid water have opposite signs?

S9.  How should equation (1.22) for virtual tempera-
ture be modified to also include the effects of air-
planes and birds flying in the sky?

S10.  Meteorologists often convert actual station 
pressures to the equivalent “sea-level pressure” by 
taking into account the altitude of the weather sta-
tion. The hypsometric equation can be applied to 
this job, assuming that the average virtual tempera-
ture is known.  What virtual temperature should be 
used below ground to do this?  What are the limita-
tions of the result?  

S11.  Starting with our Earth and atmosphere as at 
present, what if gravity were to become zero.  What 
would happen to the atmosphere?  Why?

S12.  Suppose that gravitational attraction between 
two objects becomes greater, not smaller, as the dis-
tance between the two objects becomes greater.  
	 a. Would the relationship between geometric 
		  altitude and geopotential altitude change?  
		  If so, what is the new relationship?
	 b. How would the vertical pressure gradient in 
		  the atmosphere be different, if at all?
	 c. Would the orbit of the Earth around the sun 
		  be affected?  How? 

Sample Application – Synthesize
	 What if liquid water (raindrops) in the atmosphere 
caused the virtual temperature to increase [rather than 
decrease as currently shown by the negative sign in 
front of rL in eq. (1.22)].  What would be different about 
the weather?

Find the Answer  
	 More and larger raindrops would cause warmer 
virtual temperature.  This warmer air would act more 
buoyant (because warm air rises).   This would cause 
updrafts in rain clouds that might be fast enough to 
prevent heavy rain from reaching the ground.  
	 But where would all this rain go?  Would it accumu-
late at the top of thunderstorms, at the top of the tropo-
sphere?  If droplets kept accumulating, they might act 
sufficiently warm to rise into the stratosphere.  Perhaps 
layers of liquid water would form in the stratosphere, 
and would block out the sunlight from reaching the 
surface.
	 If less rain reached the ground, then there would 
be more droughts.  Eventually all the oceans would 
evaporate, and life on Earth as we know it would die.  
	 But perhaps there would be life forms (insects, 
birds, fish, people) in this ocean layer aloft.  The rea-
son: if liquid water increases virtual temperature, then 
perhaps other heavy objects (such as automobiles and 
people) would do the same.  
	 In fact, this begs the question as to why liquid water 
would be associated with warmer virtual temperature 
in the first place.  We know that liquid water is heavier 
than air, and that heavy things should sink.  One way 
that heavy things like rain drops would not sink is if 
gravity worked backwards.  
	 If gravity worked backwards, then all things would 
be repelled from Earth into space.  This textbook would 
be pushed into space, as would your instructor.  So you 
would have never been assigned this exercise in the 
first place.
	 Life is full of paradoxes.  Just be careful to not get 
a sign wrong in any of your equations — who knows 
what might happen as a result.
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