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10  ATMOSPHERIC  FORCES  &  WINDS

 Winds power our wind turbines, push our sail-
boats, cool our houses, and dry our laundry.  But 
winds can also be destructive — in hurricanes, 
thunderstorms, or mountain downslope wind-
storms.  We design our bridges and skyscrapers to 
withstand wind gusts.  Airplane flights are planned 
to compensate for headwinds and crosswinds.
 Winds are driven by forces acting on air.  But 
these forces can be altered by heat and moisture car-
ried by the air, resulting in a complex interplay we 
call weather.  Newton’s laws of motion describe how 
forces cause winds — a topic called dynamics.  
 Many forces such as pressure-gradient, advection, 
and frictional drag can act in all directions.  Inertia 
creates an apparent centrifugal force, caused when 
centripetal force (an imbalance of other forces) 
makes wind change direction.  Local gravity acts 
mostly in the vertical.  But a local horizontal compo-
nent of gravity due to Earth’s non-spherical shape, 
combined with the contribution to centrifugal force 
due to Earth’s rotation, results in a net force called 
Coriolis force.  
 These different forces are present in different 
amounts at different places and times, causing large 
variability in the winds.  For example, Fig. 10.1 shows 
changing wind speed and direction around a low-
pressure center.  In this chapter we explore forces, 
winds, and the dynamics that link them.
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Figure 10.1
Winds (arrows) around a low-pressure center (L) in the N. 
Hemisphere.  Green lines are isobars of sea-level pressure (P).
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10.1. WINDS AND WEATHER MAPS

10.1.1. Heights on Constant-Pressure Surfaces
 Pressure-gradient force is the most important 
force because it is the only one that can drive winds 
in the horizontal.  Other horizontal forces can alter 
an existing wind, but cannot create a wind from 
calm air.  All the forces, including pressure-gradient 
force, are explained in the next sections.  However, 
to understand the pressure gradient, we must first 
understand pressure and its atmospheric variation.
 We can create weather maps showing values 
of the pressures measured at different horizontal 
locations all at the same altitude, such as at mean-
sea-level (MSL).  Such a map is called a constant-
height map.  However, one of the peculiarities of 
meteorology is that we can also create maps on oth-
er surfaces, such as on a surface connecting points 
of equal pressure.  This is called an isobaric map.  
Both types of maps are used extensively in meteo-
rology, so you should learn how they are related. 
 In Cartesian coordinates (x, y, z),  z is height above 
some reference level, such as the ground or sea level.  
Sometimes we use  geopotential height H in place of 
z, giving a coordinate set of (x, y, H) (see Chapter 1).  
 Can we use pressure as an alternative vertical 
coordinate instead of z?  The answer is yes, because 
pressure changes monotonically with altitude.  The 
word monotonic means that the value of the de-
pendent variable changes in only one direction (nev-
er decreases, or never increases) as the value of the 
independent variable increases.  Because P never in-
creases with increasing z, it is indeed monotonic, al-
lowing us to define pressure coordinates (x, y, P).
 An isobaric surface is a conceptual curved sur-
face that connects points of equal pressure, such as 
the shaded surface in Fig. 10.2b.  The surface is higher 
above sea level in high-pressure regions, and lower 
in low-pressure regions.  Hence the height contour 
lines for an isobaric surface are good surrogates for 
pressures lines (isobars) on a constant height map.  
Contours on an isobaric map are analogous to el-
evation contours on a topographic map; namely, the 
map itself is flat, but the contours indicate the height 
of the actual surface above sea level. 
 High pressures on a constant height map corre-
spond to high heights of an isobaric map.  Similarly, 
regions on a constant-height map that have tight 
packing (close spacing) of isobars correspond to 
regions on isobaric maps that have tight packing of 
height contours, both of which are regions of strong 
pressure gradients that can drive strong winds.  This 
one-to-one correspondence of both types of maps 
(Figs. 10.2c & d) makes it easier for you to use them 
interchangeably.

Figure 10.2
Sketch of the similarity of (c) pressures drawn on a constant 
height surface to (d) heights drawn on a constant pressure sur-
face.  At any one height such as z = 5 km (shown by the thin 
dotted line in the vertical cross section of Fig. a), pressures at 
one location on the map might differ from pressure at other loca-
tions.  In this example, a pressure of 50 kPa is located midway 
between the east and west limits of the domain at 5 km altitude.  
Pressure always decreases with increasing height z, as sketched 
in the vertical cross section of (a).  Thus, at the other locations 
on the cross section, the 50 kPa pressure will be found at higher 
altitudes, as sketched by the thick dashed line.  This thick dashed 
line and the corresponding thin dotted straight line are copied 
into the 3-D view of the same scenario is sketched in Fig. b.  
“L” indicates the cyclone center, having low pressure and low 
heights.  
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 Isobaric surfaces can intersect the ground, but 
two different isobaric surfaces can never intersect 
because it is impossible to have two different pres-
sures at the same point.  Due to the smooth mono-
tonic decrease of pressure with height, isobaric sur-
faces cannot have folds or creases.
 We will use isobaric charts for most of the up-
per-air weather maps in this book when describing 
upper-air features (mostly for historical reasons; see 
INFO box).   Fig. 10.3 is a sample weather map show-
ing height contours of the 50 kPa isobaric surface. 

10.1.2. Plotting Winds
 Symbols on weather maps are like musical notes 
in a score — they are a shorthand notation that con-
cisely expresses information.  For winds, the symbol 
is an arrow with feathers (or barbs and pennants).  
The tip of the arrow is plotted over the observation 
(weather-station) location, and the arrow shaft is 
aligned so that the arrow points toward where the 
wind is going.  The number and size of the feathers 
indicates the wind speed (Table 10-1, copied from 
Table 9-9).  Fig. 10.3 illustrates wind barbs.

INFO • Why use isobaric maps?

 There are five reasons for using isobaric charts.  
 1) During the last century, the radiosonde (a 
weather sensor hanging from a free helium balloon 
that rises into the upper troposphere and lower strato-
sphere) could not measure its geometric height, so in-
stead it reported temperature and humidity as a func-
tion of pressure.  For this reason, upper-air charts 
(i.e., maps showing weather above the ground) tradi-
tionally have been drawn on isobaric maps.  
 2) Aircraft altimeters are really pressure gauges.  
Aircraft assigned by air-traffic control to a specific “al-
titude” above 18,000 feet MSL will actually fly along 
an isobaric surface.  Many weather observations and 
forecasts are motivated by aviation needs.
 3) Air pressure is created by the weight of air mol-
ecules.  Thus, every point on an isobaric map has the 
same mass of air molecules above it.  
 4) An advantage of using equations of motion in 
pressure coordinates is that you do not need to consid-
er density, which is not routinely observed.
 5) Some numerical weather prediction models use 
reference pressures that vary hydrostatically with alti-
tude.  
 
 Items (1) and (5) are less important these days, be-
cause modern radiosondes use GPS (Global	Posi-
tioning System) to determine their (x, y, z) position.  
So they report all meteorological variables (including 
pressure) as a function of z.  Also, some of the mod-
ern weather forecast models do not use pressure as 
the vertical coordinate.  Perhaps future weather anal-
yses and numerical predictions will be shown on con-
stant-height maps.

Table	10-1.  Interpretation of wind barbs.

Symbol Wind Speed Description

calm two concentric circles

1 - 2 speed units shaft with no barbs

5 speed units a half barb (half line)

10 speed units each full barb (full line)

50 speed units each pennant (triangle)

• The total speed is the sum of all barbs and pennants.  
For example,  indicates a wind from the west at 
speed 75 units. Arrow tip is at the observation location.
• CAUTION: Different organizations use different 
speed units, such as knots, m s–1, miles h–1, km h–1, etc.  
Look for a legend to explain the units.  When in doubt, 
assume knots — the WMO standard.  For unit conver-
sion, a good approximation is 1 m s–1 ≈ 2 knots.  

Sample	Application
 Draw wind barb symbol for winds from the: 
(a) northwest at 115 knots;  (b) northeast at 30 knots.

Find the Answer
(a) 115 knots = 2 pennants + 1 full barb + 1 half barb.
(b) 30 knots = 3 full barbs
     (a) (b)

Check:  Consistent with Table 10-1.  
Exposition: Feathers (barbs & pennants) should be on 
the side of the shaft that would be towards low pres-
sure if the wind were geostrophic.  

Figure 10.3
Winds (1 knot ≈ 0.5 m s–1) and heights (km) on the 50 kPa iso-
baric surface.  The relative maxima and minima are labeled as H 
(high heights) and L (low heights).  Table 10-1 explains winds.
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10.2. NEWTON’S  2ND  LAW

10.2.1. Lagrangian
 For a Lagrangian framework (where the coordi-
nate system follows the moving object), Newton’s 
Second Law of Motion is

              
→ →=

 
   ·  F m a  •(10.1)

where  
→ →=

 
   ·  F m a  is a force vector, m is mass of the ob-

ject, and  
→ →=

 
   ·  F m a   is the acceleration vector of the object.  

Namely, the object accelerates in the direction of the 
applied force. 
 Acceleration is the velocity  

→
V     change during a 

short time interval  ∆t:

    
→

→
=

 

    
∆
∆

 a
V
t

 (10.2)

 Plugging eq. (10.2) into (10.1) gives:  

    → →
=

 

   ·
∆
∆

 F m
V
t

 (10.3a)

Recall that momentum is defined as m·
→
V   .  Thus, if 

the object’s mass is constant, you can rewrite New-
ton’s 2nd Law as Lagrangian momentum bud-
get:

    
→ →

=

 

  
∆( · )

∆
 F

m V
t

 (10.3b)

Namely, this equation allows you to forecast the rate 
of change of the object’s momentum.
 If the object is a collection of air molecules mov-
ing together as an air	parcel, then eq. (10.3a) allows 
you to forecast the movement of the air (i.e., the 
wind).  Often many forces act simultaneously on an 
air parcel, so we should rewrite eq. (10.3a) in terms 
of the net force:

    
→ →

=∆
∆
V
t

F
m
net  (10.4)

where  
→ →=

 
   ·  F m anet is the vector sum of all applied forces, as 

given by Newton’s Corollary 1 (see the INFO box).

 For situations where 
→ →=

 
   ·  F m anet/m = 0, eq. (10.4) tells us 

that the flow will maintain constant velocity due to 

inertia.  Namely, ∆
→
V  /∆t = 0 implies that 

→
V   = constant (not necessarily that 

→
V   = 0).   

INFO • Newton’s Laws of Motion

 Isaac Newton’s published his laws in Latin, the 
language of natural	philosophy (science) at the 
time (1687).  Here is the translation from Newton’s 
Philosophiæ Naturalis Principia Mathematica (“Math-
ematical Principles of Natural Philosophy”):

 “Law I.  Every body perseveres in its state of be-
ing at rest or of moving uniformly straight forward, 
except inasmuch as it is compelled by impressed forc-
es to change its state.

 “Law II.  Change in motion is proportional to the 
motive force impressed and takes place following the 
straight line along which that force is impressed.

 “Law III.  To any action, there is always a con-
trary, equal reaction; in other words, the actions of 
two bodies each upon the other are always equal and 
opposite in direction.

 “Corollary	1.  A body under the joint action of 
forces traverses the diagonal of a parallelogram in the 
same time as it describes the sides under their sepa-
rate actions.”

Sample	Application
 If a 1200 kg car accelerates from 0 to 100 km h–1 in 7 
s, heading north, then: (a) What is its average accelera-
tion?  (b) What vector force caused this acceleration?

Find the Answer

Given:  
→
V  initial = 0,  

→
V  final = 100 km h–1 = 27.8 m s–1

  tinitial = 0,   tfinal = 7 s.    Direction is north.
  m = 1200 kg.

Find:  (a) 
→ →=

 
   ·  F m a  = ? m·s–2  , (b) 

→ →=
 

   ·  F m a = ? N

(a) Apply eq. (10.2):   
→

→
=

 

    
∆
∆

 a
V
t

  

 = (27.8 – 0 m s–1) / (7 – 0 s) = 3.97 m·s–2  to the 
north

(b) Apply eq. (10.1):   
→ →=

 
   ·  F m a = (1200 kg) · (  3.97 m·s–2 ) 

    = 4766 N  to the north
 where  1 N = 1 kg·m·s–2  (see Appendix A).

Check:  Physics and units are reasonable.
Exposition:  My small car can accelerate from 0 to 100 
km in 20 seconds, if I am lucky.  Greater acceleration 
consumes more fuel, so to save fuel and money, you  
should accelerate more slowly when you drive. 
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 In Chapter 1 we defined the (U, V, W) wind com-
ponents in the (x, y, z) coordinate directions (positive 
toward the East, North, and up).  Thus, we can split 
eq. (10.4) into separate scalar (i.e., non-vector) equa-
tions for each wind component:

    ∆
∆

=U
t

F

m
x net  •(10.5a)

    ∆
∆

=V
t

F

m
y net  •(10.5b)

    
∆
∆

=W
t

F

m
z net

 •(10.5c)

where Fx net is the sum of the x-component of all the 
applied forces, and similar for Fy net and Fz net .
 From the definition of ∆ = final – initial, you can 
expand  ∆U/∆t  to be  [U(t+∆t) – U(t)]/∆t.  With similar 
expansions for ∆V/∆t and ∆W/∆t, eq. (10.5) becomes

    U t t U t
F

m
t

x net
( ) ( ) ·+ ∆ = + ∆  •(10.6a)

    V t t V t
F

m
t

y net
( ) ( ) ·+ ∆ = + ∆  •(10.6b)

    W t t W t
F

m
t

z net
( ) ( ) ·+ ∆ = + ∆  •(10.6c)

 These are forecast equations for the wind, and are 
known as the equations of motion.  The Numeri-
cal Weather Prediction (NWP) chapter shows how 
the equations of motion are combined with budget 
equations for heat, moisture, and mass to forecast 
the weather.

10.2.2. Eulerian
 While Newton’s 2nd Law defines the fundamen-
tal dynamics, we cannot use it very easily because 
it requires a coordinate system that moves with the 
air.  Instead, we want to apply it to a fixed location 
(i.e., an Eulerian framework), such as over your 
house.  The only change needed is to include a new 
term called advection along with the other forces, 
when computing the net force Fnet in each direction.  
All these forces are explained in the next section.
 But knowing the forces, we need additional infor-
mation to use eqs. (10.6) — we need the initial winds 
[U(t), V(t), W(t)] to use for the first terms on the right 
side of eqs. (10.6).  Hence, to make numerical weather 
forecasts, we must first observe the current weather 
and create an analysis of it.  This corresponds to an 
initial-value	problem in mathematics.
 Average horizontal winds are often 100 times 
stronger than vertical winds, except in thunder-
storms and near mountains.  We will focus on hori-
zontal forces and winds first. 

Sample	Application
 Initially still air is acted on by force Fy net/m = 5x10–4 
m·s–2 .  Find the final wind speed after 30 minutes.

Find the Answer
Given: V(0) = 0,   Fy net/m = 5x10–4 m·s–2 ,  ∆t = 1800 s
Find:  V(∆t) = ? m s–1.            Assume:  U = W = 0.

Apply eq. (10.6b):   V(t+∆t) = V(t) + ∆t · (Fy net/m)
  = 0 + (1800s)·(5x10–4 m·s–2)   = 0.9 m s–1.

Check:  Physics and units are reasonable.
Exposition:  This wind toward the north (i.e., from 
180°) is slow.  But continued forcing over more time 
could make it faster.

A SCIENTIFIC PERSPECTIVE • Creativity

 As a child at Woolsthorpe, his mother’s farm in 
England, Isaac Newton built clocks, sundials, and 
model windmills.  He was an average student, but his 
schoolmaster thought Isaac had potential, and recom-
mended that he attend university.
 Isaac started Cambridge University in 1661.  He 
was 18 years old, and needed to work at odd jobs to 
pay for his schooling.  Just before the plague hit in 
1665, he graduated with a B.A.  But the plague was 
spreading quickly, and within 3 months had killed 
10% of London residents.  So Cambridge University 
was closed for 18 months, and all the students were 
sent home.  
 While isolated at his mother’s farm, he continued 
his scientific studies independently.  This included 
much of the foundation work on the laws of motion, 
including the co-invention of calculus and the expla-
nation of gravitational force.  To test his laws of mo-
tion, he built his own telescope to study the motion of 
planets.  But while trying to improve his telescope, he 
made significant advances in optics, and invented the 
reflecting telescope.  He was 23 - 24 years old.

 It is often the young women and men who are most 
creative — in the sciences as well as the arts.  Enhanc-
ing this creativity is the fact that these young people 
have not yet been overly swayed (perhaps misguided) 
in their thinking by the works of others.  Thus, they 
are free to experiment and make their own mistakes 
and discoveries.  
 You have an opportunity to be creative.  Be wary 
of building on the works of others, because subcon-
sciously you will be steered in their same direction 
of thought.  Instead, I encourage you to be brave, and 
explore novel, radical ideas.
 This recommendation may seem paradoxical. You 
are reading my book describing the meteorological 
advances of others, yet I discourage you from reading 
about such advances.  You must decide on the best 
balance for you.
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10.3. HORIZONTAL FORCES

 Five forces contribute to net horizontal accelera-
tions that control horizontal winds: pressure-gra-
dient force (PG), advection (AD), centrifugal	
force (CN), Coriolis	 force (CF), and turbulent	
drag (TD):
  

F

m

F

m

F

m

F

m

F

m

F

m
xnet x AD x PG xCN xCF xTD

   = + + + +

 (10.7a)

  
F

m

F

m

F

m

F

m

F

m

F

m
y net y AD y PG yCN yCF yTD

   = + + + +
 (10.7b)

Centrifugal force is an apparent force that allows us 
to include inertial effects for winds that move in a 
curved line.  Coriolis force, explained in detail later,  
includes the gravitational and compound centrifu-
gal forces on a non-spherical Earth.  In the equations 
above, force per unit mass has units of N kg–1.  These 
units are equivalent to units of acceleration  (m·s–2 , 
see Appendix A), which we will use here.

10.3.1. Advection of Horizontal Momentum
 Advection is not a true force. Yet it can cause a 
change of wind speed at a fixed location in Eulerian 
coordinates, so we will treat it like a force here.  The 
wind moving past a point can carry specific mo-
mentum (i.e., momentum per unit mass).  Recall 
that momentum is defined as mass times velocity, 
hence specific momentum equals the velocity (i.e., 
the wind) by definition.  Thus, the wind can move 
(advect) different winds to your fixed location.
 This is illustrated in Fig. 10.4a.  Consider a mass 
of air (grey box) with slow U wind (5 m s–1) in the 
north  and faster U wind (10 m s–1) in the south.  
Thus, U decreases toward the north, giving ∆U/∆y 
= negative.  This whole air mass is advected toward 
the north over a fixed weather station “O” by a south 
wind (V = positive).  At the later time sketched in Fig. 
10.4b, a west wind of 5 m s–1 is measured at “O”.  
Even later, at the time  of Fig. 10.4c, the west wind 
has increased to 10 m s–1 at the weather station.  
The rate of increase of U at “O” is larger for faster 
advection (V), and when ∆U/∆y is more negative. 
 Thus,  ∆U/∆t = –V · ∆U/∆y  for this example.  The 
advection term on the RHS causes an acceleration 
of U wind on the LHS, and thus acts like a force per 
unit mass:  ∆U/∆t = Fx AD/m =  –V · ∆U/∆y .
  You must always include advection when mo-
mentum-budget equations are written in Eulerian 
frameworks.  This is similar to the advection terms 
in the moisture- and heat-budget Eulerian equations 
that were in earlier chapters.

Figure 10.4
Illustration of V advection of U wind.  “O” is a fixed weather 
station. Grey box is an air mass containing a gradient of U 
wind.  Initial state (a) and later states (b and c).
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 For advection, the horizontal force components 
are

  
F

m
U

U
x

V
U
y

W
U
z

x AD = − ∆
∆

− ∆
∆

− ∆
∆

· · ·  •(10.8a)

  
F

m
U

V
x

V
V
y

W
V
z

y AD = − ∆
∆

− ∆
∆

− ∆
∆

· · ·  •(10.8b)

Recall that a gradient is defined as change across a 
distance, such as ∆V/∆y.  With no gradient, the wind 
cannot cause accelerations.
 Vertical advection of horizontal wind (–W·∆U/∆z 
in eq. 10.8a, and –W·∆V/∆z in eq. 10.8b) is often very 
small outside of thunderstorms.

10.3.2. Horizontal Pressure-Gradient Force
 In regions where the pressure changes with dis-
tance (i.e., a pressure gradient), there is a force 
from high to low pressure.  On weather maps, this 
force is at right angles to the height contours or iso-
bars, directly from high heights or high pressures to 
low.  Greater gradients (shown by a tighter packing 
of isobars; i.e., smaller spacing ∆d between isobars 
on weather maps) cause greater pressure-gradient 
force (Fig. 10.5).  Pressure-gradient force is indepen-
dent of wind speed, and thus can act on winds of 
any speed (including calm) and direction.
 For pressure-gradient force, the horizontal com-
ponents are:

    F

m
P
x

x PG = − ∆
∆

1
ρ

·  •(10.9a)

    F

m
P
y

y PG = − ∆
∆

1
ρ

·
 •(10.9b)

where ∆P is the pressure change across a distance of 
either ∆x or ∆y, and  ρ is the density of air.  

Sample	Application
 Minneapolis (MN, USA) is about 400 km north of 
Des Moines (IA, USA).  In Minneapolis the wind com-
ponents (U, V) are (6, 4) m s–1 , while in Des Moines 
they are (2, 10) m s–1.  What is the value of the advective 
force per mass?

Find the Answer
Given: (U, V) =  (6, 4) m s–1 in Minneapolis, 
  (U, V) =  (2, 10) m s–1 in Des Moines
  ∆y = 400 km,     ∆x = is not relevant
Find:  Fx AD/m =?  m·s–2 ,      Fy AD/m =?  m·s–2 

Use the definition of a gradient:
 ∆U/∆y = (6 – 2 m s–1)/400,000 m = 1.0x10–5 s–1 
 ∆U/∆x = not relevant,  ∆U/∆z = not relevant, 
 ∆V/∆y = (4 – 10 m s–1)/400,000 m = –1.5x10–5 s–1 
 ∆V/∆x = not relevant,  ∆V/∆z = not relevant
Average U = (6 + 2 m s–1)/2 = 4 m s–1

Average V = (4 + 10 m s–1)/2 = 7 m s–1

Use eq. (10.8a):
 Fx AD/m  =  – (7m s–1)·(1.0x10–5 s–1 )
  =   –7x10–5 m·s–2 
Use eq. (10.8b):
 Fy AD/m =   – (7m s–1)·(–1.5x10–5 s–1 )
  =    1.05x10–4 m·s–2 

Check:  Physics and units are reasonable.
Exposition:  The slower U winds from Des Moines 
are being blown by positive V winds toward Minne-
apolis, causing the U wind speed to decrease at Min-
neapolis.  But the V winds are increasing there because 
of the faster winds in Des Moines moving northward.

Sample	Application
  Minneapolis (MN, USA) is about 400 km north 
of Des Moines (IA, USA).  In (Minneapolis , Des Moines) 
the pressure is (101, 100) kPa.  Find the pressure-gradi-
ent force per unit mass?  Let ρ = 1.1 kg·m–3.

Find the Answer
Given: P =101 kPa @ x = 400 km (north of Des Moines).
  P =100 kPa @ x = 0 km at Des Moines.  ρ = 1.1 kg·m–3.
Find:  Fy PG/m = ?  m·s–2 

Apply eq. (10.9b):

     

F

m
y PG = − −

−
1

1 1

101 000 100 000
4( . · )

 ·  
( , , )

(kg m

Pa
3 000 000 0, )− m

  = –2.27x10–3  m·s–2.
Hint, from Appendix A:  1 Pa = 1 kg·m–1·s–2.

Check:  Physics and units are reasonable.
Exposition:  The force is from high pressure in the 
north to low pressure in the south.  This direction is 
indicated by the negative sign of the answer; namely, 
the force points in the negative y direction.

Figure 10.5
The dark arrow shows the direction of pressure-gradient force 
FPG from high (H) to low (L) pressure.  This force is perpendic-
ular to the isobars (solid curved green lines).
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If pressure increases toward one direction, then the 
force is in the opposite direction (from high to low 
P); hence, the negative sign in these terms. 
 Pressure-gradient-force magnitude is

    F
m

P
d

PG = 1
ρ

·
∆
∆

 (10.10)

where ∆d is the distance between isobars.
 Eqs. (10.9) can be rewritten using the hydrostatic 
eq. (1.25) to give the pressure gradient components 
as a function of spacing between height contours on 
an isobaric surface:
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m
g

z
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x PG = − ∆
∆

·  (10.11a)
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m
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y PG = − ∆
∆

·  (10.11b)

for a gravitational acceleration magnitude of |g| = 
9.8 m·s–2 .  ∆z is the height change in the ∆x or ∆y di-
rections; hence, it is the slope of the isobaric surface.  
Extending this analogy of slope, if you conceptually 
place a ball on the isobaric surface, it will roll down-
hill (which is the pressure-gradient force direction).
The magnitude of pressure-gradient force is

    F
m

g
z
d

PG = ·
∆
∆

 (10.12)

where ∆d is distance between height contours.
 The one force that makes winds blow in the hori-
zontal is pressure-gradient force.  All the other forc-
es are a function of wind speed, hence they can only 
change the speed or direction of a wind that already 
exists.  The only force that can start winds blowing 
from zero (calm) is pressure-gradient force.  

10.3.3. Centrifugal Force
 Inertia makes an air parcel try to move in a 
straight line.  To get its path to turn requires a force 
in a different direction.  This force, which pulls to-
ward the inside of the turn, is called centripetal 
force.  Centripetal force is the result of a net imbal-
ance of (i.e., the nonzero vector sum of) other forces.
 For mathematical convenience, we can define 
an apparent force, called centrifugal force, that is 
opposite to centripetal force.  Namely, it points out-
ward from the center of rotation.  Centrifugal-force 
components are:

                
F

m
s

V M
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xCN = + ·
·

 •(10.13a)

                
F

m
s

U M
R

y CN = − ·
·

 •(10.13b)

Sample	Application
 If the height of the 50 kPa pressure surface decreas-
es by 10 m northward across a distance of 500 km, what 
is the pressure-gradient force?

Find the Answer
Given: ∆z = –10 m, ∆y = 500 km, |g|= 9.8 m·s–2 .
Find:  FPG/m = ? m·s–2 

Use eqs. (10.11a & b):
Fx PG/m = 0 m·s–2  , because ∆z/∆x = 0.   Thus, FPG/m  
=  Fy PG/m.
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    FPG/m   =  0.000196 m·s–2

Check:  Physics, units & sign are reasonable.
Exposition:  For our example here, height decreases 
toward the north, thus a hypothetical ball would roll 
downhill toward the north.  A northward force is in 
the positive y direction, which explains the positive 
sign of the answer.

Table	10-2.  To apply centrifugal force to separate Car-
tesian coordinates, a (+/–) sign factor  s  is required.

Hemisphere
For	winds	encircling	a

Low Pressure 
Center

High Pressure 
Center

Southern –1 +1

Northern +1 –1

Sample	Application
 500 km east of a high-pressure center is a north 
wind of 5  m s–1.  Assume N.
Hemisphere.  What is the 
centrifugal force?

Find the Answer
Given: R = 5x105 m,
 U = 0,  V = – 5 m s–1

Find:  Fx CN/m = ? m·s–2.    

HR
FCN

V
 

Apply eq. (10.13a).  In Table 10-2  find s = –1.

F

m
xCN = −

−
×

1
5 5

5 105·
( ·(m/s) m/s)

  =  5x10–5 m·s–2.

Check:  Physics and units OK. Agrees with sketch.
Exposition:  To maintain a turn around the high-pres-
sure center, other forces (the sum of which is the cen-
tripetal force) are required to pull toward the center.
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where M = ( U2 + V2 )1/2 is wind speed (always posi-
tive), R is radius of curvature, and s is a sign factor 
from Table 10-2 as determined by the hemisphere 
(North or South) and synoptic pressure center (Low 
or High). 
 Centrifugal force magnitude is proportional to 
wind speed squared:

        F
m

M
R

CN =
2

 (10.14)

10.3.4. Coriolis Force
 An object such as an air parcel that moves relative 
to the Earth experiences a compound	centrifugal	
force based on the combined tangential velocities of 
the Earth’s surface and the object.  When combined 
with the non-vertical component of gravity, the re-
sult is called Coriolis force (see the INFO box on the 
next page).  This force points 90° to the right of the 
wind direction in the Northern Hemisphere (Fig. 
10.6), and 90° to the left in the S. Hemisphere. 
 The Earth rotates one full revolution (2π radians) 
during a sidereal day (i.e., relative to the fixed stars, 
Psidereal is a bit less than 24 h, see Appendix B), giving 
an angular rotation rate of

   Ω = 2· /π Psidereal   •(10.15)
         = 0.729 211 6 x 10–4 radians s–1 

The units for Ω are often abbreviated as  s–1.  Using 
this rotation rate, define a Coriolis	parameter as:

    fc = 2· · sin( )Ω φ     •(10.16)

where ϕ is latitude, and 2·Ω = 1.458423x10–4 s–1.  Thus, 
the Coriolis parameter depends only on latitude.  Its 
magnitude is roughly 1x10–4 s–1 at mid-latitudes.  
 The Coriolis force in the Northern Hemisphere 
is:
    F

m
f V

xCF
c= ·  •(10.17a)

     
F

m
f U

y CF
c= − ·  •(10.17b)

In the Southern Hemisphere the signs on the right 
side of eqs. (10.17) are opposite.  Coriolis force is zero 
under calm conditions, and thus cannot create a 
wind.  However, it can change the direction of an ex-
isting wind.  Coriolis force cannot do work, because 
it acts perpendicular to the object’s motion.
 The magnitude of Coriolis force is:

  | FCF /m |  ≈   2 · Ω ·|sin(ϕ)·M| (10.18a)
or
  | FCF /m |  ≈   | fc · M | (10.18b) 

Sample	Application	(§)
a) Plot Coriolis parameter vs. latitude.  
b) Find FCF/m at Paris, given a north wind of 15 m s–1.

Find the Answer:  
a) Given:  ϕ = 48.874°N at Paris. 
    Find fc (s–1) vs. ϕ(°) using eq. (10.16).  For example: 
  fc = (1.458x10–4 s–1)·sin(48.874°)  =  1.1x10–4 s–1.
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b)  Given: V = –15 m s–1 .    Find:  FCF/m= ? m s–2   
Assume U = 0 because no info, thus Fy CF/m= 0.
Apply eq. (10.17a): 
  Fx CF/m = (1.1x10–4 s–1)·(–15 m s–1) = –1.65x10–3 m s–2  
Exposition: This Coriolis force points to the west.

INFO  •  Coriolis Force in 3-D

 Eqs. (10.17) give only the dominant components 
of Coriolis force.  There are other smaller-magnitude 
Coriolis terms (labeled small below) that are usually 
neglected.   The full Coriolis force in 3-dimensions is:

   
F

m
f V W

xCF
c= −· ·cos( )·2Ω φ  (10.17c)

                                 [small because often W<<V]

   
F

m
f U

y CF
c= − ·  (10.17d)

   
F

m
U

zCF = 2Ω·cos( )·φ  (10.17e)
                   [small relative to other vertical forces]  

Figure 10.6
Coriolis force (FCF) vs. latitude, wind-speed, and hemisphere.
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	 INFO	•	On	
Coriolis Force 
(continuation)

     

Equator
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H
Earth FGV
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ϕ

FCN

FCNH

FCNVFGH

R

Figure 10.c.   Horizontal & vertical force components.

 Split the vectors of true gravity into local vertical 
FGV and horizontal  FGH components.  Do the same for 
the centrifugal force (FCNV , FCNH) of Earth’s rotation 
(Fig. 10.c).  Total centrifugal force FCN is parallel to the 
equator (EQ).  Thus, for an object at latitude ϕ , you can 
use trig to show  FCNH  ≈ FCN·sin(ϕ).

Objects at Rest with respect to Earth’s Surface
 Looking down towards the north pole (NP), the 
Earth turns counterclockwise with angular velocity  
Ω = 360°/(sidereal day) (Fig. 10.d).  Over a time interval 
∆t, the amount of rotation is Ω·∆t.  Any object (black 
dot) at rest on the Earth’s surface moves with the Earth 
at tangential speed Mtan = Ω·R (grey arrow), where R = 
Ro·cos(ϕ) is the distance from the axis of rotation.  Ro = 
6371 km is average Earth radius.
 But because the object is at rest, its horizontal 
component of centrifugal force FCNH associated with 
movement following the curved latitude (called a par-
allel) is the same as that for the Earth, as plotted in 
Fig. 10.c above.  But this horizontal force is balanced 
by the horizontal component of gravity FGH, so the

object feels no net hori-
zontal force.

 

E
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or

A
ny Parallel (const. la

tit
ud

e)

X

FGH

FCNH

Mtan =
Ω·R

NP

Earth Ω·∆t
R

Figure 10.d.
Looking down on the 

North Pole (NP), for an 
object at rest on Earth’s surface.

     
Objects	Moving	East	or	West	relative	to	Earth
 Suppose an object moves with velocity M due east  
relative to the Earth.  This velocity (thin white arrow 
in Fig. 10.e) is relative to Earth’s velocity, giving the ob-
ject a faster total velocity (grey arrow), causing greater 
centrifugal force and greater FCNH.  But FGH is con-
stant.     (continues in next column)

INFO  •  On Coriolis Force

 Gaspar Gustave Coriolis explained a compound 
centrifugal force on a rotating non-spherical planet 
such as Earth (Anders Persson: 1998, 2006, 2014). 

Basics
 On the rotating Earth an imbalance can occur be-
tween gravitational force and centrifugal force.  
 For an object of mass m moving at tangential 
speed Mtan along a curved path having radius of cur-
vature R, centrifugal	force was shown earlier in 
this chapter to be  FCN/m = (Mtan)2/R.  In Fig 10.a the 
object is represented by the black dot, and the center 
of rotation is indicated by the X.  

  X

R

FCN /m =

(Mtan)2 / R

Mtan

Figure 10.a.
Basics of 

centrifugal force (FCN).

 The Earth was mostly molten early in its forma-
tion.  Although gravity tends to make the Earth spher-
ical, centrifugal force associated with Earth’s rotation 
caused the Earth to bulge slightly at the equator.  Thus, 
Earth’s shape is an ellipsoid (Fig. 10.b).
 The combination of gravity FG and centrifugal 
force FCN causes a net force that we feel as effective 
gravity FEG.  Objects fall in the direction of effective 
gravity, and it is how we define the local vertical (V) 
direction.  Perpendicular to vertical is the local “hor-
izontal” (H) direction, along the ellipsoidal surface.  
An object initially at rest on this surface feels no net 
horizontal force.  [Note: Except at the poles and equa-
tor, FG does not point exactly to Earth’s center, due to 
gravitational pull of the equatorial bulge.]

      

Equator (EQ)

North Pole
(NP)

V

HEarth (with
exaggerated
oblateness)

(SP)
South Pole

FCN

FEG
FG

Figure 10.b. Earth cross section (exaggerated).
(continues in next column)  
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	 	 	 INFO	•	On	Coriolis	Force		(continuation)

  

X
FGH

FCNH
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Earth

R

FCF

M

X
NPEarth

Ω·∆t
R

FGH

FCF
FCNH

M

Figure 10.e.  Figure 10.f.
Eastward moving object.             Westward moving object.

 Horizontal force FCNH does NOT balance FGH.  
The thick green arrow (Fig. 10.e) shows that the force 
difference FCF is to the right relative to the object’s mo-
tion M.   FCF  is called Coriolis	force. 
 The opposite imbalance of FCNH and FGH occurs 
for a westward-moving object (thin white arrow), 
because the object has slower net tangential veloci-
ty (grey arrow in Fig. 10.f).  This imbalance, Coriolis 
force FCF (green arrow), is also to the right of the rela-
tive motion M.

Northward-moving Objects
 When an object moves northward at relative speed 
M (thin white arrow in Fig. 10.g) while the Earth is ro-
tating, the path traveled by the object (thick grey line) 
has a small radius of curvature about point X that is 
displaced from the North Pole.  The smaller radius R 
causes larger centrifugal force FCNH pointing outward 
from X.  
 Component FCNH-ns of centrifugal force balances 
the unchanged horizontal gravitational force FGH.  But 
there remains an unbalanced east-west component of 
centrifugal force FCNH-ew which is defined as Coriolis 
force FCF (green arrow).  Again, it is to the right of the 
relative motion vector M of the object.

   

latitude  line  (paraallel)

M

NP
Center of

Rotation

R

Earth

X

FCNH
FCNH-ns

FCNH-ew
=   FCF

FGH

Figure 10.g.  Northward moving object.
      

(continues in next column)

	 	 INFO	•	Coriolis	Force		(continuation)

 Objects moving south have a Coriolis force to the 
right due to the larger radius of curvature.  Regard-
less of the direction of motion in the Northern Hemi-
sphere, Coriolis force acts 90° to the right of the ob-
ject’s motion relative to the Earth.  When viewing the 
Southern Hemisphere from below the south pole, the 
Earth rotates clockwise, causing a Coriolis force that is 
90° to the left of the relative motion vector.

Coriolis-force	Magnitude	Derivation
 From Figs. 10.c & d, see that an object at rest (sub-
script R) has 

   FGH  =  FCNH   ≡  FCNHR (C1)

and    Mtan rest = Ω · R   (C2)

 From Fig. 10.e, Coriolis force for an eastward-mov-
ing object is defined as

  FCF  ≡  FCNH – FGH

Apply eq. (C1) to get

  FCF  =  FCNH – FCNHR
or
  FCF  = sin(ϕ) · [FCN – FCNR] (from Fig. 10.c)

Divide by mass m, and plug in the definition for cen-
trifugal force as velocity squared divided by radius:

 FCF / m  =  sin(ϕ)  ·  [ (Mtan)2/R  –  (Mtan rest)2/R ]

Use Mtan = Mtan rest + M, along with eq. (C2):

 FCF / m  = sin(ϕ) · [ (Ω·R+M)2/R  –  (Ω·R)2/R ]

 FCF / m  = sin(ϕ) · [(2·Ω·M)  +  (M2/R)]

 The first term is usually much larger than the last, 
allowing the following approximation for Coriolis 
force per mass:
             FCF /m  ≈ 2·Ω·sin(ϕ) · M   (10.18)

Define a Coriolis parameter as fc ≡ 2·Ω·sin(ϕ) .  Thus,

    FCF /m  ≈  fc · M   

HIGHER MATH • Apparent Forces

In vector form, centrifugal force/mass for an object at 
rest on Earth is –Ω × (Ω × r), and Coriolis force/mass 
is  –2Ω × V , where vector Ω points along the Earth’s 
axis toward the north pole, r points from the Earth’s 
center to the object, V is the object’s velocity relative 
to Earth, and × is the vector cross product.   
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10.3.5. Turbulent-Drag Force
 Surface elements such as pebbles, blades of grass, 
crops, trees, and buildings partially block the wind, 
and disturb the air that flows around them.  The 
combined effect of these elements over an area of 
ground is to cause resistance to air flow, thereby 
slowing the wind.  This resistance is called drag.
 At the bottom of the troposphere is a layer of air 
roughly 0.3 to 3 km thick called the atmospheric 
boundary	layer (ABL).  The ABL is named because 
it is at the bottom boundary of the atmosphere.  Tur-
bulence in the ABL mixes the very-slow near-surface 
air with the faster air in the ABL, reducing the wind 
speed M throughout the entire ABL (Fig. 10.7).
 The net result is a drag force that is normally only 
felt by air in the ABL.  For ABL depth zi the drag is:

    F

m
w

U
z

xTD
T

i
= − ·  •(10.19a)

    F

m
w

V
z

yTD
T

i
= − ·  •(10.19b)

where wT is called a turbulent transport	velocity.  
 The total magnitude of turbulent drag force is

    F
m

w
M
z

TD
T

i
= ·  (10.20)

and is always opposite to the wind direction.
 For statically unstable ABLs with light winds, 
where a warm underlying surface causes thermals 
of warm buoyant air to rise (Fig. 10.7), this convec-
tive turbulence transports drag information upward 
at rate:
    wT = bD · wB  (10.22)

where dimensionless factor bD = 1.83x10–3.  The 
buoyancy	velocity	scale, wB, is of order 10 to 50 m 
s–1, as is explained in the Heat Budget chapter. 
 For statically neutral conditions where strong 
winds M and wind shears (changes of wind di-
rection and/or speed with height) create eddies and 
mechanical turbulence near the ground (Fig. 10.7), 
the transport velocity is

    wT = CD · M (10.21)

where the drag coefficient CD is small (2x10–3 
dimensionless) over smooth surfaces and is larger 
(2x10–2) over rougher surfaces such as forests.   
 In fair weather, turbulent-drag force is felt only 
in the ABL. However, thunderstorm turbulence 
can mix slow near-surface air throughout the tro-
posphere.  Fast winds over mountains can create 
mountain-wave drag felt in the whole atmosphere 
(see the Regional Winds chapter).  

Sample	Application
 What is the drag force per unit mass opposing a U 
= 15 m s–1 wind (with V = 0) for a: (a) statically neutral 
ABL over a rough forest; & (b) statically unstable ABL 
having convection with wB = 50 m s–1, given zi = 1.5 
km.

Find the Answer
Given: U = M = 15 m s–1,  zi = 1500 m,
  CD = 2x10–2,  wB = 50 m s–1.
Find:  Fx TD/m = ? m·s–2. 

(a) Plugging eq. (10.21) into eq. (10.19a) gives:
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      = –3x10–3   m·s–2. 

(b) Plugging eq. (10.22) into eq. (10.19a) gives:
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m
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= − · ·
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0 00183 50
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m

   =  –9.15x10–4   m·s–2. 

Check:  Physics and units are reasonable.
Exposition:  Because the wind is positive (blowing 
toward the east) it requires that the drag be negative 
(pushing toward the west).  Shear (mechanical) tur-
bulence and convective (thermal/buoyant) turbulence 
can both cause drag by diluting the faster winds high-
er in the ABL with slower near-surface winds.

Figure 10.7
Wind speed M (curved black line with white highlights) is slow-
er than geostrophic G (vertical dashed line) because of turbulent 
drag force FTD in the atmospheric boundary layer.
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10.4. EQUATIONS OF HORIZONTAL MOTION

 Combining the forces from eqs. (10.7, 10.8, 10.9, 
10.17, and 10.19) into Newton’s Second Law of Mo-
tion (eq. 10.5) gives simplified equations of horizon-
tal motion:
     •(10.23a)
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pressure
gradient

Coriolis
turbulent

drag

These are the forecast equations for wind.  
 For special conditions where steady winds 
around a circle are anticipated, centrifugal force can 
be included.  

 The terms on the right side of eqs. (10.23) can all 
be of order  1x10–4  to 10x10–4 m·s–2 (which is equiva-
lent to units of N kg–1, see Appendix A for review).   
However, some of the terms can be neglected under 
special conditions where the flow is less compli-
cated.  For example, near-zero Coriolis force occurs 
near the equator.  Near-zero turbulent drag exists 
above the ABL.  Near-zero pressure gradient is at 
low- and high-pressure centers.  
 Other situations are more complicated, for which 
additional terms should be added to the equations of 
horizontal motion.  Within a few mm of the ground, 
molecular	 friction is large.  Above mountains 
during windy conditions, mountain-wave drag is 
large.  Above the ABL, cumulus clouds and thunder-
storms can create strong convective mixing.    
  For a few idealized situations where many terms 
in the equations of motion are small, it is possible 
to solve those equations for the horizontal wind 
speeds.  These theoretical winds are presented in 
the next section. Later in this chapter, equations to 
forecast vertical motion (W) will be presented.  

10.3.6. Summary of Forces

Table	10-3.  Summary of forces.

Item
Name of 

Force
Direction

Magnitude
(N kg–1)

Horiz. (H)
or Vert. (V)

Remarks	(“item”	is	in	col-
umn	1;	H	&	V	in	col.	5)

1 gravity down
F
m

gG =  = 9.8 m·s–2 V hydrostatic	equilibrium 
when items 1 & 2V balance

2
pressure 
gradient

from high to low 
pressure

F
m

g
z
d

PG = ·
∆
∆ V & H

the only force that can drive 
horizontal winds

3 Coriolis
(compound)

90° to right (left) 
of wind in North-

ern (Southern) 
Hemisphere

F
m

MCF = 2· · sin( )·Ω φ H*
geostrophic wind when 

2H and 3 balance (explained 
later in horiz. wind section)

4
turbulent	

drag
opposite to wind

F
m

w
M
z

TD
T

i
= · H*

atm.	boundary-layer	wind 
when 2H, 3 and 4 balance (ex-
plained in horiz. wind section)

5 centrifugal
(apparent)

away from center 
of curvature

F
m

M
R

CN =
2

H*
centripetal = opposite of 

centrifugal.  Gradient	wind 
when 2H, 3 and 5 balance

6 advection
(apparent)

(any)
F
m

M
U
d

AD = − −·
∆
∆

··· V & H
neither creates nor destroys
momentum; just moves it

*Horizontal is the direction we will focus on.  However, Coriolis force has a small vertical component for zonal winds.  Turbulent drag 
can exist in the vertical for rising or sinking air, but has completely different form than the boundary-layer drag given above.  Cen-
trifugal force can exist in the vertical for vortices with horizontal axes.  Note:  units  N kg–1  =  m·s–2. 



302	 CHAPTER		10			•			ATMOSPHERIC		FORCES		&		WINDS

10.5. HORIZONTAL WINDS

 When air accelerates to create wind, forces that 
are a function of wind speed also change.  As the 
winds continue to accelerate under the combined ac-
tion of all the changing forces, feedbacks often oc-
cur to eventually reach a final wind where the forces 
balance.  With a zero net force, there is zero accelera-
tion.
 Such a final, equilibrium, state is called steady 
state:

    
∆
∆

= ∆
∆

=U
t

V
t

0 0,       •(10.24)

Caution: Steady state means no further change to 
the non-zero winds.  Do not assume the winds are 
zero.
 Under certain idealized conditions, some of the 
forces in the equations of motion are small enough 
to be neglected.  For these situations, theoretical 
steady-state winds can be found based on only the 
remaining larger-magnitude forces.  These theoreti-
cal winds are given special names, as listed in Table 
10-4.  These winds are examined next in more detail.  
As we discuss each theoretical wind, we will learn 
where we can expect these in the real atmosphere. 

10.5.1. Geostrophic Wind
 For special conditions where the only forces are 
Coriolis and pressure-gradient (Fig. 10.8), the result-
ing steady-state wind is called the geostrophic wind, 
with components (Ug , Vg).  For this special case, the 
only terms remaining in, eqs. (10.23) are:

    0
1

    ·    ·= − ∆
∆

+
ρ

P
x

f Vc  (10.25a)

    0
1

    ·    ·= − ∆
∆

−
ρ

P
y

f Uc
 (10.25b)

 Define U ≡ Ug  and   V ≡ Vg in the equations above, 
and then solve for these wind components:

    U
f

P
yg

c
= − ∆

∆
1

ρ ·
·  •(10.26a)

    V
f

P
xg

c
= + ∆

∆
1

ρ ·
·  •(10.26b)

where fc = (1.4584x10–4 s–1)·sin(latitude) is the Coriolis 
parameter, ρ is air density, and ∆P/∆x and ∆P/∆y are 
the horizontal pressure gradients.

Sample	Application
 Find geostrophic wind components at a location 
where ρ = 1.2 kg m–3 and fc  = 1.1x10–4 s–1.  Pressure 
decreases by 2 kPa for each 800 km of distance north. 

Find the Answer
Given: fc =1.1x10–4 s–1, ∆P= –2 kPa, ρ=1.2 kg m–3, ∆y=800 km. 
Find:  (Ug , Vg) = ? m s–1 

But ∆P/∆x = 0 implies Vg = 0.  For Ug, use eq. (10.26a):

 U
s

g = −
×

−
− −

1

1 2 1 1 10

2
8004 1( . )·( . )

·
( )
(kg/m

kPa
km3 )) =18.9 m s–1 

Check:  Physics & units OK.  Agrees with Fig. 10.10.
Exposition:  As the pressure gradient accelerates air 
northward, Coriolis force turns it toward the east.

Table	10-4.  Names of idealized steady-state horizon-
tal winds, and the forces that govern them.

   0
1= − ∆

∆
− ∆

∆
+ − +     ·    ·    ·   

·
U

U
x

P
x

f V w
U
z

s
V M

Rc T
iρ

Forces:
pressure
gradient Coriolis turbulent

drag
centri-
fugal

Wind Name
Geostrophic • •
Gradient • • •
Atm.Bound. Layer • • •
ABL Gradient • • • •
Cyclostrophic • •
Inertial • •
Antitriptic • •

Figure 10.8
Idealized weather map for the Northern Hemisphere, showing 
geostrophic wind (G, grey arrow) caused by a balance between 
two forces (brown arrows): pressure-gradient force (FPG) and 
Coriolis force (FCF).  P is pressure, with isobars plotted as thin 
green lines.  L and H are low and high-pressure regions.  The 
small sphere represents an air parcel.
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 Real winds are nearly geostrophic at locations 
where isobars or height contours are relatively 
straight, for altitudes above the atmospheric bound-
ary layer.  Geostrophic winds are fast where isobars 
are packed closer together.  The geostrophic wind 
direction is parallel to the height contours or iso-
bars.  In the N. (S.) hemisphere the wind direction 
is such that low pressure is to the wind’s left (right), 
see Fig. 10.9.  
 The magnitude G of the geostrophic wind is:

    G U Vg g= +2 2  (10.27)

If ∆d is the distance between two isobars (in the 
direction of greatest pressure change; namely, per-
pendicular to the isobars), then the magnitude (Fig. 
10.10) of the geostrophic wind is:

    G
f

P
dc

= 1
ρ·

·
∆
∆

 •(10.28)

 Above sea level, weather maps are often on iso-
baric surfaces (constant pressure charts), from which 
the geostrophic wind (Fig. 10.10) can be found from 
the height gradient (change of height of the isobaric 
surface with horizontal distance):

    U
g

f
z
yg

c
= − ∆

∆
·  •(10.29a)

    V
g

f
z
xg

c
= + ∆

∆
·  •(10.29b)

where the Coriolis parameter is fc , and gravitational 
acceleration is |g| = 9.8 m·s–2.  The corresponding 
magnitude of geostrophic wind on an isobaric chart 
is:

    G
g
f

z
dc

= ·
∆
∆

 •(10.29c)
   

Sample	Application
 Find the geostrophic wind for a height increase of 
50 m per 200 km of distance toward the east.  Assume, 
fc = 0.9x10–4 s–1 .

Find the Answer
Given: ∆x = 200 km,   ∆z = 50 m,     fc = 0.9x10–4 s–1 . 
Find:  G = ? m s–1

No north-south height gradient, thus Ug = 0.
Apply eq. (10.29b) and set  G = Vg :

 V
g

f
z
xg

c
= + ∆

∆
=






·

.
·

9 8 50
200

m s

0.00009s

m-2

-1 ,, 000m






=27.2 m s–1

Check:  Physics & units OK. Agrees with Fig. 10.10.
Exposition:  If height increases towards the east, then 
you can imagine that a ball placed on such a surface 
would roll downhill toward the west, but would turn 
to its right (toward the north) due to Coriolis force.  

INFO  •  Approach to Geostrophy

 How does an air parcel, starting from rest, ap-
proach the final steady-state geostrophic wind speed 
G sketched in Fig. 10.8?  
 Start with the equations of horizontal motion (10.23), 
and ignore all terms except the tendency, pressure-
gradient force, and Coriolis force.  Use the definition of 
     continues on next page

Figure 10.9
Isobars (green lines) that are more closely spaced (i.e., tight-
ly packed) cause stronger geostrophic winds (arrows), for N. 
Hemisphere.
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Figure 10.10
Variation of geostrophic wind speed (G) with horizontal pres-
sure gradient (∆P/∆d) at sea level.  Top scale is height gradient 
of any isobaric surface.
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 If the geopotential  Φ = |g|·z  is substituted in 
eqs. (10.29), the resulting geostrophic winds are:

    U
f yg
c

= − 1
·
∆
∆
Φ

 (10.30a)

    V
f xg
c

= 1
·
∆
∆
Φ

 (10.30b)

10.5.2. Gradient Wind
 If there is no turbulent drag, then winds tend to 
blow parallel to isobar lines or height-contour lines 
even if those lines are curved.  However, if the lines 
curve around a low-pressure center (in either hemi-
sphere), then the wind speeds are subgeostrophic 
(i.e., slower than the theoretical geostrophic wind 
speed).  For lines curving around high-pressure 
centers, wind speeds are supergeostrophic (faster 
than theoretical geostrophic winds).  These theoret-
ical winds following curved isobars or height con-
tours are known as gradient winds.  
 Gradient winds differ from geostrophic winds be-
cause Coriolis force FCF and pressure-gradient force 
FPG do not balance, resulting in a non-zero net force 
Fnet.  This net force is called centripetal force, and is 
what causes the wind to continually change direc-
tion as it goes around a circle (Figs. 10.11 & 10.12).  By 
describing this change in direction as causing an ap-
parent force (centrifugal), we can find the equations 
that define a steady-state gradient wind:

    0
1

    ·    ·    ·
·

= − ∆
∆

+ +
ρ

P
x

f V s
V M

Rc  (10.31a)

    0
1

    ·    ·    ·
·

= − ∆
∆

− −
ρ

P
y

f U s
U M

Rc  (10.31b)

} } }

pressure
gradient

Coriolis centrifugal

 Because the gradient wind is for flow around a 
circle, we can frame the governing equations in ra-
dial coordinates, such as for flow around a low:

    
1 2

ρ
· · tan

tan∆
∆

= +P
R

f M
M

Rc  (10.32)

where R is radial distance from the center of the 
circle, fc is the Coriolis parameter, ρ is air density, 
∆P/∆R is the radial pressure gradient, and Mtan is 
the magnitude of the tangential velocity; namely, 
the gradient wind.   

INFO  •  Appr. to Geostrophy   (continuation)

geostrophic wind (eqs. 10.26) to write the resulting 
simplified equations as:

   

∆ / ∆ ·( )

∆ / ∆ ·( )

U t f V V

V t f U U
c g

c g

= − −

= −

Next, rewrite these as forecast equations:

  

U U t f V V

V V t f U
new old c g old

new old c

= − −

= +

∆ · ·( )

∆ · ·( gg newU− )

Start with initial conditions (Uold, Vold) = (0, 0), and 
then iteratively solve the equations on a spreadsheet 
to forecast the wind.  
 For example, suppose ∆P = 1 kPa, fc = 10–4 s–1, ∆x = 
500 km, ρ = 1 kg m–3, where we would anticipate the 
wind should approach (Ug, Vg) = (0, 20) m s–1.  The ac-
tual evolution of winds (U, V) and air parcel position 
(X, Y) are shown in Figs. below.  
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 Surprisingly, the winds never reach geostrophic 
equilibrium, but instead rotate around the geostrophic 
wind.  This is called an inertial	oscillation, with 
period of  2·π/fc.  For our case, the period is 17.45 h.  
Twice this period is called a pendulum	day.   
 The net result in the figure below is that the wind 
indeed moves at the geos-
trophic speed of 20 m s–1 to 
the north (≈ 1250 km in 17.45 
h), but along the way it stag-
gers west and east with an 
additional ageostrophic 
(non-geostrophic) part.
 Inertial oscillations are 
sometimes observed at night 
in the atmospheric boundary 
layer, but rarely higher in the 
atmosphere.  Why not? (1) 
The ageostrophic component 
of wind (wind from the East 
in this example) moves air 
mass, and changes the pres-
sure gradient.  (2) Friction 
damps the oscillation toward 
a steady wind.
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 By re-arranging eq. (10.32) and plugging in the 
definition for geostrophic wind speed G, you can get 
an implicit solution for the gradient wind Mtan:

    
M G

M
f Rc

tan
tan
·

= ±
2  (10.33)

In this equation, use the + sign for flow around high-
pressure centers, and the – sign for flow around lows 
(Fig. 10.13).

Sample	Application
 What radius of curvature causes the gradient wind to equal the geostrophic wind?

Find the Answer
Given:   Mtan = G            Find:     R = ? km

Use eq. (10.33), with Mtan = G:           G = G ± G2/( fc·R)
This is a valid equality  G = G  only when the last term in eq. (10.33) approaches zero; i.e.,  in the limit of  R = ∞  .

Check:  Eq. (10.33) still balances in this limit.   Exposition:  Infinite radius of curvature is a straight line, which (in 
the absence of any other forces such as turbulent drag) is the condition for geostrophic wind.

Figure 10.11
Forces (brown arrows) that cause the gradient wind (solid grey 
arrow, Mtan) to be slower than geostrophic (hollow grey arrow) 
when circling around a low-pressure center (called a cyclone in 
the N. Hem.).  The short white arrow with black outline shows 
centripetal force (the imbalance between the other two forces).  
Centripetal force pulls the air parcel (blue sphere) inward to 
force the wind direction to change as needed for the wind to 
turn along a circular path.
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Figure 10.12
Forces (brown arrows) that cause the gradient wind (solid grey 
arrow, Mtan) to be faster than geostrophic (hollow grey arrow) 
for an air parcel (blue sphere) circling around a high-pressure 
center (called an anticyclone in the N. Hemisphere).
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Figure 10.13
Comparison of gradient winds Mtan vs. geostrophic wind G for 
flows around low (L) and high (H) pressures. N. Hemisphere.
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 Eq. (10.33) is a quadratic equation that has two so-
lutions.  One solution is for the gradient wind Mtan 
around a cyclone (i.e., a low): 

 M f R
G

f Rc
c

tan . · · ·
·
·

= − + +








0 5 1 1

4
 •(10.34a)

The other solution is for flow around an anticy-
clone (i.e., a high):

 M f R
G

f Rc
c

tan . · · ·
·
·

= − −








0 5 1 1

4  •(10.34b)

 To simplify the notation in the equations above, 
let 
    Ro

G
f Rc
c

=
·

 (10.35)

where we can identify (Roc) as a “curvature” Rossby 
number because its length scale is the radius of cur-
vature (R).  When Roc is small, the winds are roughly 
geostrophic; namely, pressure gradient force nearly 
balances Coriolis force.  [CAUTION:  In later chap-
ters you will learn about a Rossby radius of defor-
mation, which is distinct from both Roc and R.]
 For winds blowing around a low, the gradient 
wind is:

  M
G
Ro

Ro
c

ctan
/

·
· ·= − + +( )



2

1 1 4 1 2
 (10.36a)

and for winds around a high) the gradient wind is:

  M
G
Ro

Ro
c

ctan
/

·
· ·= − −( )



2

1 1 4 1 2  (10.36b)

where G is the geostrophic wind.
 While the differences between solutions (10.36a 
& b) appear subtle at first glance, these differences 
have a significant impact on the range of winds that 
are physically possible.  Any value of Roc can yield 
physically reasonable winds around a low-pressure 
center (eq. 10.36a).  But to maintain a positive argu-
ment inside the square root of eq. (10.36b), only val-
ues of Roc ≤ 1/4 are allowed for a high.
 Thus, strong radial pressure gradients with small 
radii of curvature, and strong tangential winds can 
exist near low center.  But only weak pressure gra-
dients with large radii of curvature and light winds 
are possible near high-pressure centers  (Figs. 10.14 
and 10.15).  To find the maximum allowable hori-
zontal variations of height z or pressure P near an-
ticyclones, use Roc = 1/4 in eq. (10.35) with G from 
(10.29c) or (10.28):

       z z f R gc c= − ( ) ( )2 2 8· / ·  •(10.37a)
or
    P P f Rc c= − ( )ρ· · /2 2 8  •(10.37b)

Figure 10.14
Illustration of how mean sea-level pressure P can vary with dis-
tance R from a high-pressure (H) center.  The anticyclone (i.e., 
the high) has zero horizontal pressure gradient and calm winds 
in its center, with weak pressure gradient (∆P/∆R) and gentle 
winds in a broad region around it.  The cyclone (i.e., the low) can 
have steep pressure gradients and associated strong winds close 
to the low center (L), with a pressure cusp right at the low cen-
ter.  In reality (dotted line), turbulent mixing near the low center 
smooths the cusp, allowing a small region of light winds at the 
low center surrounded by stronger winds.  Although this graph 
was constructed using eq. (10.37b), it approximates the pressure 
variation along the cross section shown in the next figure.
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INFO  •  The Rossby Number

 The Rossby number (Ro) is a dimensionless ratio 
defined by

  Ro
M
f Lc

=
·

         or         Ro
M

f Rc
=

·

where M is wind speed, fc is the Coriolis parameter, L 
is a characteristic length scale, and R is radius of cur-
vature.  
 In the equations of motion, suppose that advection 
terms such as U·∆U/∆x are order of magnitude M2/L, 
and Coriolis terms are of order fc·M.  Then the Rossby 
number is like the ratio of advection to Coriolis terms:  
(M2/L) / ( fc·M) = M/( fc·L) = Ro.  Or, we could consider 
the Rossby number as the ratio of centrifugal (order of 
M2/R) to Coriolis terms, yielding  M/( fc·R) = Ro.  
 Use the Rossby number as follows.  If Ro < 1, then 
Coriolis force is a dominant force, and the flow tends 
to become geostrophic (or gradient, for curved flow).  
If Ro > 1, then the flow tends not to be geostrophic.  
 For example, a midlatitude cyclone (low-pressure 
system) has approximately M = 10 m s–1, fc = 10–4 s–1, 
and R = 1000 km, which gives  Ro = 0.1 .  Hence, mid-
latitude cyclones tend to adjust toward geostrophic 
balance, because Ro < 1.  In contrast, a tornado has 
roughly M = 50 m s–1,  fc = 10–4 s–1, and R = 50 m, 
which gives  Ro = 10,000, which is so much greater 
than one that geostrophic balance is not relevant.  
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where the center pressure in the high (anticyclone) is 
Pc , or for an isobaric surface the center height is zc, 
the Coriolis parameter is fc , |g| is gravitational ac-
celeration magnitude, ρ is air density, and the radius 
from the center of the high is R  (see Fig. 10.14). 
 Figs. 10.14 and 10.15 show that pressure gradi-
ents, and thus the geostrophic wind, can be large 
near low centers.  However, pressure gradients, and 
thus the geostrophic wind, must be small near high 
centers.  This difference in geostrophic wind speed 
G between lows and highs is sketched in Fig. 10.16.  
The slowdown of gradient wind Mtan (relative to 
geostrophic) around lows, and the speedup of gra-
dient wind (relative to geostrophic) around highs 
is also plotted in Fig. 10.16.  The net result is that 
gradient winds, and even atmospheric boundary-
layer gradient winds MABLG (described later in this 
chapter), are usually stronger (in an absolute sense) 
around lows than highs.  For this reason, low-pres-
sure centers are often windy.  

10.5.3. Atmospheric-Boundary-Layer Wind
 If you add turbulent drag to winds that would have 
been geostrophic, the result is a subgeostrophic 
(slower-than-geostrophic) wind that crosses the iso-
bars at angle (α)  (Fig. 10.17).  This condition is found 
in the atmospheric boundary layer (ABL) where the 
isobars are straight.  The force balance at steady state 
is:
  0

1
    ·    ·    ·= − ∆

∆
+ −

ρ
P
x

f V w
U
zc T

i
 (10.38a)

  0
1

    ·    ·    ·= − ∆
∆

− −
ρ

P
y

f U w
V
zc T

i
 (10.38b)

Sample	Application
 If G = 10 m s–1, find the gradient wind speed & Roc, 
given  fc = 10–4 s–1  and a radius of curvature of 500 km?  

Find the Answer
Given:  G = 10 m s–1,   R = 500 km,   fc = 10–4 s–1   
Find:   Mtan = ? m s–1,  Roc = ? (dimensionless)

 

Use eq. (10.34a): 0.5·(10 s )·(500000m)·

1 1
4·(10 / )

(10 s )·(500000m)
8.54 m s

tan
4 1

4 1
1

=

− + +











=

− −

− −
−

M

m s

     
Use eq. (10.35):
   Roc =

×− −
( )

( )·( )

10

10 5 104 5
m/s

s m1      = 0.2 

Check:  Physics & units are reasonable.
Exposition:  The gradient wind is slower than geos-
trophic and is in geostrophic balance.

Figure 10.15
Illustration of strong pressure gradients (closely-spaced isobars) 
around the low-pressure center (L) over eastern Canada, and 
weak pressure gradients (isobars spaced further apart) around 
the high (H) over the NE Atlantic Ocean.  NCEP reanalysis 
of daily-average mean sea-level pressure (Pa) for 5 Feb 2013.    
Pressures in the low & high centers were 96.11 & 104.05 kPa.  
Pressure variation along the dotted line is similar to that plotted 
in the previous figure.  [Courtesy of the NOAA/NCEP Earth 
Systems Research Laboratory. http://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis.html ]
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Figure 10.16
Relative wind speeds around low- & high-pressure centers.  G 
= geostrophic wind, Mtan = gradient wind speed, MABLG = at-
mospheric-boundary-layer gradient wind speed.  High-pressure 
centers cannot have strong pressure gradients; thus G is smaller.
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Figure 10.17
Balance of forces (brown arrows) creating an atmospher-
ic-boundary-layer wind (MABL, solid grey arrow) that is slower 
than geostrophic (G, hollow grey arrow).  Thin green lines are 
isobars.  L and H are low and high-pressure centers.
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Namely, the only forces acting for this special case 
are pressure gradient, Coriolis, and turbulent drag 
(Fig. 10.17).
 Replace U with UABL  and V with VABL to indi-
cate these winds are in the ABL.  Eqs. (10.38) can be 
rearranged to solve for the ABL winds, but this solu-
tion is implicit (depends on itself):

    U U
w V

f zABL g
T ABL

c i
= −

·
·

 (10.39a)

    V V
w U

f zABL g
T ABL

c i
= +

·
·

 (10.39b)

where (Ug, Vg) are geostrophic wind components, fc 
is Coriolis parameter, zi is ABL depth, and wT is the 
turbulent transport velocity.  
 You can iterate to solve eqs. (10.39).  Namely, first 
you guess a value for VABL to use in the right side 
of the first eq.  Solve eq. (10.39a) for UABL and use it 
in the right side of eq. (10.39b), which you can solve 
for VABL.  Plug this back into the right side of eq. 
(10.39a) and repeat this procedure until the solution 
converges (stops changing very much).  The mag-
nitude of the boundary-layer wind is:

             MABL =  [U2
ABL + V2

ABL ]1/2 (10.40)

 For a statically neutral ABL under windy condi-
tions, then wT = CD·MABL, where CD is the drag coef-
ficient (eq. 10.21).  For most altitudes in the neutral 
ABL, an approximate but explicit solution is:
     •(10.41a)
U a U U a V a V GABL g g g g≈ − − −( . · · )· ( . · · )· · ·1 0 35 1 0 5

     •(10.41b)
V a U a G U a V VABL g g g g≈ − + −( . · · )· · · ( . · · )·1 0 5 1 0 35

where the parameter is  a = CD/( fc·zi), G is the 
geostrophic wind speed and a solution is possible 
only if  a·G < 1.  If this condition is not met, or if no 
reasonable solution can be found using eqs. (10.41), 
then use the iterative approach described in the next 
section, but with the centrifugal terms set to zero.  
Eqs. (10.41) do not apply to the surface	layer (bot-
tom 5 to 10% of the neutral boundary layer).  
 If the ABL is statically unstable (e.g., sunny with 
slow winds), use wT = bD·wB (see eq. 10.22).  Above 
the surface layer there is an exact solution that is ex-
plicit:
   U c U c VABL g g= −2 1·[ · ]  •(10.42a)

   V c V c UABL g g= +2 1·[ · ]  •(10.42b)

where  c
b w

f z
D B

c i
1 =

·
·  , and  c

c
2

1
2

1

1
=

+[ ]
  .  

The factors in c1 are given in the “Forces” section. 

Sample	Application
 For statically neutral conditions, find the winds in 
the boundary layer given:  zi = 1.5 km, Ug = 15 m s–1, 
Vg = 0, fc = 10–4 s–1, and CD = 0.003.  What is the cross-
isobar wind angle?

Find the Answer
Given: zi = 1.5 km, Ug = 15 m s–1, Vg = 0, fc = 10–4 s–1,
    CD = 0.003. 
Find: VABL =? m s–1,  UABL =? m s–1,  MABL =? m s–1,  
  α = ? °
First: G =(Ug

2 + Vg
2)1/2 = 15 m s–1. Now apply eq.(10.41)

 
a 

.

( )·( )
.  = =− −

0 003

10 1500
0 024 s m

s/m1

Check: a·G = (0.02 s m–1)·(15 m s–1) =0.3  (is < 1.  Good.)
UABL=[1–0.35·(0.02s m–1)·(15m s–1)]·(15m s–1)≈13.4m s–1

VABL=[1–0.5·(0.02s m–1)·(15m s–1)]·
  (0.02s m–1)·(15m s–1)·(15m s–1)   ≈   3.8 m s–1 

M U VABL ABL ABL= + = +2 2 2 213 4 3 8. .   =  13.9 m s–1 

Isobars are parallel to the geostrophic wind. Thus, the
cross-isobar angle is:
 α =tan–1(VABL/UABL) = tan–1(3.8/13.4)  =  15.8° .

Check:  Physics & units are reasonable.
Exposition:  Drag both slows the wind (13.4 m s–1)  
in the boundary layer below its geostrophic value (15 
m s–1) and turns it at a small angle (15.8°) towards 
low pressure.  Given N. Hem. (because of the positive 
Coriolis parameter), the ABL wind direction is 254.2°.

Sample	Application
 For statically unstable conditions, find winds in the 
ABL given Vg = 0, Ug = 5 m s–1, wB = 50 m s–1, zi = 1.5 
km,   bD = 1.83x10–3, and fc = 10–4 s–1.  What is the cross-
isobar wind angle?

Find the Answer
Given:  (use convective boundary layer values above)
Find:  MABL =? m s–1,  VABL =? m s–1,  UABL =? m s–1, 
  α =?°

Apply eqs. (10.42):

 c1

3

4
1 83 10 50

10 1500
=

× −

− −
( . )·( )

( )·( )

m/s

s m1 = 0.61 (dimensionless)

  c2 = 1/[1+(0.61)2] = 0.729 (dimensionless)
 UABL = 0.729·[(5m s–1) – 0 ]             = 3.6 m s–1 
 VABL = 0.729·[0 + (0.61)·(5m s–1)]  = 2.2 m s–1 
Use eq. (10.40):
 MABL =  [U2

ABL + V2
ABL ]1/2            =  4.2 m s–1 

  α =tan–1(VABL/UABL) = tan–1(2.2/3.6)  = 31.4° 

Check:  Physics & units are reasonable.
Exposition:  Again, drag slows the wind and causes 
it to cross the isobars toward low pressure.  The ABL 
wind direction is 238.6°.
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 In summary, both wind-shear turbulence and 
convective turbulence cause drag.  Drag makes the 
ABL wind slower than geostrophic (subgeostrophic), 
and causes the wind to cross isobars at angle α such 
that it has a component pointing to low pressure. 

10.5.4. ABL Gradient (ABLG) Wind
 For curved isobars in the atmospheric boundary 
layer (ABL), there is an imbalance of the following 
forces:  Coriolis, pressure-gradient, and drag.  This 
imbalance is a centripetal force that makes ABL air 
spiral outward from highs and inward toward lows 
(Fig. 10.18).  An example was shown in Fig. 10.1.
 If we devise a centrifugal force equal in mag-
nitude but opposite in direction to the centripetal 
force, then the equations of motion can be written 
for spiraling flow that is steady over any point on 
the Earth’s surface (i.e., NOT following the parcel):

0
1

    ·    ·    ·    ·
·

= − ∆
∆

+ − +
ρ

P
x

f V w
U
z

s
V M

Rc T
i

 (10.43a)

0
1

    ·    ·    ·    ·
·

= − ∆
∆

− − −
ρ

P
y

f U w
V
z

s
U M

Rc T
i

 (10.43b)
  } } } }

pressure
gradient

Coriolis
turbulent

drag
centrifugal

 We can anticipate that the ABLG winds should 
be slower than the corresponding gradient winds, 
and should cross isobars toward lower pressure at 
some small angle α  (see Fig. 10.19).
 Lows are often overcast and windy, implying that 
the atmospheric boundary layer is statically neutral.  
For this situation, the transport velocity is given by:

 wT  =  CD · M   =   C U VD · 2 2+  (10.21 again)

Because this parameterization is nonlinear, it in-
creases the nonlinearity (and the difficulty to solve), 
eqs. (10.43). 
 Highs often have mostly clear skies with light 
winds, implying that the atmospheric boundary 
layer is statically unstable during sunny days, and 
statically stable at night.  For daytime, the transport 
velocity is given by:

     wT = bD · wB  (10.22 again)

This parameterization for wB is simple, and does not 
depend on wind speed.  For statically stable condi-
tions during fair-weather nighttime, steady state is 
unlikely, meaning that eqs. (10.43) do not apply. 

Figure 10.18
Imbalance of forces (brown arrows) yield a net centripetal force 
(Fnet) that causes the atmospheric-boundary-layer gradient 
wind (MABLG, solid grey arrow) to be slower than both the 
gradient wind (Mtan) and geostrophic wind (G).  The resulting 
air-parcel path crosses the isobars (green lines) at a small angle 
α toward low pressure.
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Figure 10.19
Tangential ABLG wind component (U) and radial  ABLG wind 
component (V) for the one vector highlighted as the thick black 
arrow.  N. Hemisphere.
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 Nonlinear coupled equations (10.43) are difficult 
to solve analytically.  However, we can rewrite the 
equations in a way that allows us to iterate numeri-
cally toward the answer (see the INFO box below for 
instructions).  The trick is to not assume steady state.  
Namely, put the tendency terms (∆U/∆t , ∆V/∆t) back 
in the left hand sides (LHS) of eqs. (10.43).   But recall 
that ∆U/∆t = [U(t+∆t) – U]/∆t, and similar for V. 
 For this iterative approach, first re-frame eqs. 
(10.43) in cylindrical coordinates, where (U, V) are 
the (tangential, radial) components, respectively (see 
Fig. 10.19).  Also, use G, the  geostrophic wind defini-
tion of eq. (10.28), to quantify the pressure gradient.  
 For a cyclone in the Northern Hemisphere (for 
which s = +1 from Table 10-2), the atmospheric 
boundary layer gradient wind eqs. (10.43) become: 
    
    M = ( U2 + V2 )1/2 (1.1 again)

     (10.44a)

U t t U t f V
C M U

z
s

V M
Rc

D

i
( ) · ·

· · ·
+ = + − +









∆ ∆

     (10.44b)

V t t V t f G U
C M V

z
s

U M
Rc

D

i
( ) · ·( )

· · ·+ = + − − −








∆ ∆

where (U, V) represent (tangential, radial) parts for 
the wind vector south of the low center.  These cou-
pled equations are valid both night and day.  

Sample	Application
 If G = 10 m s–1 at R = 400 km from the center of a 
N. Hem. cyclone, CD = 0.02, zi = 1 km, and fc = 10–4 s–1, 
then find the ABLG wind speed and components.

Find the Answer
Given:  (see the data above)
Find:  MBLG = ? m s–1, UBLG = ? m s–1,  VBLG = ? m s–1,  

Use a spreadsheet to iterate (as discussed in the INFO 
box) eqs.  (10.44) & (1.1) with a time step of ∆t = 1200 s.  
Use U = V = 0 as a first guess. 

G (m/s)= 10 zi (km)= 1
R (km)= 400 fc (s–1)= 0.0001

CD = 0.02 ∆t(s)= 1200

Iteration UABLG VABLG MABLG ∆UABLG ∆ VABLG
Counter (m s–1) (m s–1) (m s–1) (m s–1) (m s–1)

0 0.00 0.00 0.00 0.000 1.200
1 0.00 1.20 1.20 0.148 1.165
2 0.15 2.37 2.37 0.292 1.047
3 0.44 3.41 3.44 0.408 0.861
4 0.85 4.27 4.36 0.480 0.640
5 1.33 4.91 5.09 0.502 0.420

. . .
29 4.16 4.33 6.01 -0.003 0.001
30 4.16 4.33 6.01 -0.002 0.001

The evolution of the 
iterative solution 
is plotted at right 
as it approaches 
the final answer of  
UABLG = 4.16 m s–1, 
VABLG = 4.33 m s–1, 
MABLG= 6.01 m s–1, 
where (UABLG , 
VABLG) are (tangen-
tial, radial) parts.

Check: Physics & units are reasonable.  You should 
do the following “what if” experiments on the spread-
sheet to check the validity.  I ran experiments using a 
modified spreadsheet that relaxed the results using a 
weighted average of new and previous winds.
 (a) As R approaches infinity and CD approaches 
zero, then MABLG should approach the geostrophic 
wind G.    I got  UABLG = G = 10 m s–1,  VABLG = 0.
 (b) For finite R and 0 drag, then MABLG should 
equal the gradient wind Mtan.  I got  UABLG = 8.28 
m s–1,  VABLG = 0.   
 (c) For finite drag but infinite R, then MABLG should 
equal the atmospheric boundary layer wind MABL.  I 
got  UABLG = 3.91 m s–1, VABLG = 4.87 m s–1.  Because 
this ABL solution is based on the full equations, it 
gives a better answer than eqs. (10.41).
Exposition:  If you take slightly larger time steps, the 
solution converges faster.  But if ∆t is too large, the it-
eration method fails (i.e., blows up).  

INFO • Find the Answer by Iteration

 Equations (10.44) are difficult to solve analytically, 
but you can iterate as an alternative way to solve for 
the ABLG wind components.   Here is the procedure.

 (1) Make an initial guess for (U, V), such as (0, 0).
 (2) Use these (U, V) values in the right sides of 
  eqs. (10.44) and (1.1), and solve for the new 
  values of [U(t+∆t), V(t+∆t)].  
 (3) In preparation for the next iteration, let 
  U = U(t+∆t) , and V = V(t+∆t) .
 (4) Repeat steps 2 and 3 using the new (U, V) 
  on the right hand sides . 
 (5) Keep iterating.  Eventually, the [U(t+∆t), V(t+∆t)] 
  values stop changing (i.e., reach steady state), 
  giving UABLG = U(t+∆t), and VABLG =  V(t+∆t). 

Because of the repeated, tedious calculations, I recom-
mend you use a spreadsheet (see the Sample Applica-
tion) or write your own computer program. 
 As you can see from the Sample Application, the 
solution spirals toward the final answer as a damped 
inertial	oscillation.  
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 For daytime fair weather conditions in anticy-
clones, you could derive alternatives to eqs. (10.44) 
that use convective parameterizations for atmo-
spheric boundary layer drag.
 Because eqs. (10.44) include the tendency terms, 
you can also use them for non-steady-state (time 
varying) flow.  One such case is nighttime during 
fair weather (anticyclonic) conditions.  Near sunset, 
when vigorous convective turbulence dies, the drag 
coefficient suddenly decreases, allowing the wind 
to accelerate toward its geostrophic equilibrium 
value.  However, Coriolis force causes the winds to 
turn away from that steady-state value, and forces 
the winds into an inertial	oscillation.  See a pre-
vious INFO box titled Approach to Geostrophy for an 
example of undamped inertial oscillations.
 During a portion of this oscillation the winds can 
become faster than geostrophic (supergeostrophic), 
leading to a low-altitude phenomenon called the 
nocturnal	 jet.  See the Atmospheric Boundary 
Layer chapter for details.

10.5.5. Cyclostrophic Wind
 Winds in tornadoes are about 100 m s–1, and in 
waterspouts are about 50 m s–1.  As a tornado first 
forms and tangential winds increase, centrifugal 
force increases much more rapidly than Coriolis 
force.  Centrifugal force quickly becomes the domi-
nant force that balances pressure-gradient force (Fig. 
10.20).  Thus, a steady-state rotating wind is reached 
at much slower speeds than the gradient wind 
speed.
 If the tangential velocity around the vortex is 
steady, then the steady-state force balance is: 

    0
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    ·    ·
·
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∆

+
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 (10.45a)

    0
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 You can use cylindrical coordinates to simplify 
solution for the  cyclostrophic (tangential) winds 
Mcs  around the vortex.  The result is:

    
M

R P
Rcs =

∆
∆ρ

·
 (10.46)

where the velocity Mcs is at distance R from the vor-
tex center, and the radial pressure gradient in the 
vortex is ∆P/∆R.  

Sample	Application
 A 10 m radius waterspout has a tangential velocity 
of 45 m s–1.  What is the radial pressure gradient?

Find the Answer
Given:   Mcs = 45 m s–1,   R = 10 m.
Find:  ∆P/∆R = ? kPa m–1.

Assume cyclostrophic wind, and ρ =  1 kg m–3.
Rearrange eq. (10.46):

 

∆
∆

P
R R

Mcs= =ρ
·

( )·( )2
21 45

10
kg/m m/s

m

3

 ∆P/∆R = 202.5 kg·m–1·s–2 / m        = 0.2 kPa m–1.

Check:  Physics & units are reasonable.
Exposition:  This is 2 kPa across the 10 m waterspout 
radius, which is 1000 times greater than typical synop-
tic-scale pressure gradients on weather maps.

Figure 10.20
Around tornadoes, pressure gradient force FPG is so strong that 
it greatly exceeds all other forces such as Coriolis force FCF.  
The net force (Fnet) pulls the air around the tight circle at the 
cyclostrophic wind speed (Mcs).  
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 Recall from the Gradient Wind section that anticy-
clones cannot have strong pressure gradients, hence 
winds around highs are too slow to be cyclostrophic.  
Around cyclones (lows), cyclostrophic winds can 
turn either counterclockwise or clockwise in either 
hemisphere, because Coriolis force is not a factor.  

10.5.6. Inertial Wind
 Steady-state inertial	motion results from a bal-
ance of Coriolis and centrifugal forces in the absence 
of any pressure gradient:  

    0
2

= +f M
M

Rc i
i·  (10.47)

where Mi is inertial wind speed, fc is the Coriolis pa-
rameter, and R is the radius of curvature.  Since both 
of these forces depend on wind speed, the inertial 
wind cannot start itself from zero.  It can occur only 
after some other force first causes the wind to blow, 
and then that other force disappears.  
 The inertial wind coasts around a circular path 
of radius R, 

    R
M
f

i

c
= −  (10.48)

where the negative sign implies anticyclonic rotation 
(Fig. 10.21).  The time period needed for this inertial	
oscillation to complete one circuit is Period = 2π/fc, 
which is half of a pendulum	day (see Approach to 
Geostrophy INFO Box earlier in this chapter).   
 Although rarely observed in the atmosphere, 
inertial oscillations are frequently observed in the 
ocean.  This can occur where wind stress on the 
ocean surface creates an ocean current, and then 
after the wind dies the current coasts in an inertial 
oscillation.

10.5.7. Antitriptic Wind
 A steady-state antitriptic wind Ma could result 
from a balance of pressure-gradient force and tur-
bulent drag:

    0
1= − −
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P
d

w
M
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i

 (10.49)

where ∆P is the pressure change across a distance 
∆d perpendicular to the isobars, wT is the turbulent 
transport velocity, and zi is the atmospheric bound-
ary-layer depth.  
 This theoretical wind blows perpendicular to the 
isobars (Fig. 10.22), directly from high to low pres-
sure:

Sample	Application
 For an inertial ocean current of 5 m s–1, find the 
radius of curvature and time period to complete one 
circuit.  Assume a latitude where fc = 10–4 s–1.  

Find the Answer
Given:  Mi = 5 m s–1,      fc = 10–4 s–1.
Find:  R = ? km,   Period = ? h

Use eq. (10.48):  R = –(5 m s–1) / (10–4 s–1)  = –50 km  
Use  Period = 2π/fc  =  62832 s  =  17.45 h  

Check:  Units & magnitudes are reasonable.
Exposition:  The tracks of drifting buoys in the ocean 
are often cycloidal, which is the superposition of a 
circular inertial oscillation and a mean current that 
gradually translates (moves) the whole circle.

Figure 10.21
Coriolis force (FCF, thick brown arrow, behind the white arrow) 
on an air parcel (blue ball), creating an anticyclonic inertial 
wind Mi, grey arrow).  R is radius of curvature.  White arrow 
is net force Fnet.
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Figure 10.22
Balance of forces (F, brown arrows) that create the antitriptic 
wind Ma (grey arrow).  G is the theoretical geostrophic wind.  
FTD is turbulent drag, and FPG is pressure-gradient force.
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For free-convective boundary layers, wT = bD·wB is 
not a function of wind speed, so Ma is proportional 
to G.  However, for windy forced-convection bound-
ary layers, wT = CD·Ma, so solving for Ma shows it to 
be proportional to the square root of G.
 This wind would be found in the atmospheric 
boundary layer, and would occur as an along-valley 
component of “long gap” winds (see the Regional 
Winds chapter).  It is also sometimes thought to be 
relevant for thunderstorm cold-air outflow and for 
steady sea breezes.  However, in most other situa-
tions, Coriolis force should not be neglected; thus, 
the atmospheric boundary-layer wind and BL Gra-
dient winds are much better representations of na-
ture than the antitriptic wind.  

10.5.8. Summary of Horizontal Winds
 Table 10-5 summarizes the idealized horizontal 
winds that were discussed earlier in this chapter. 
 On real weather maps such as Fig. 10.23, isobars 
or height contours have complex shapes.  In some 
regions the height contours are straight (suggesting 
that actual winds should nearly equal geostrophic 
or boundary-layer winds), while in other regions the 
height contours are curved (suggesting gradient or 
boundary-layer gradient winds).  Also, as air parcels 
move between straight and curved regions, they are 
sometimes not quite in equilibrium.  Nonetheless, 
when studying weather maps you can quickly esti-
mate the winds using the summary table.
  

Sample	Application
 In a 1 km thick convective boundary layer at a loca-
tion where fc = 10–4 s–1, the geostrophic wind is 5 m s–1.   
The turbulent transport velocity is 0.02 m s–1.  Find the 
antitriptic wind speed.

Find the Answer
Given: G = 5 m s–1,    zi = 1000 m,    fc = 10–4 s–1, 
  wT = 0.02 m s–1

Find: Ma = ?  m s–1

Use eq. (10.50):
 Ma = (1000m)·(10–4 s–1)·(5m s–1) / (0.02 m s–1)
  = 25 m s–1  

Check:  Magnitude is too large.  Units reasonable.
Exposition:  Eq. (10.50) can give winds of Ma > G for 
many convective conditions, for which case Coriolis 
force would be expected to be large enough that it 
should not be neglected.  Thus, antitriptic winds are 
unphysical.  However, for forced-convective bound-
ary layers where drag is proportional to wind speed 
squared, reasonable solutions are possible.

Figure 10.23
One-day average geopotential heights z (thick lines in km, thin 
lines in m) on the 20 kPa isobaric surface for 5 Feb 2013.  Close 
spacing (tight packing) of the height contours indicate faster 
winds.  This upper-level chart is for the same day and location 
(Atlantic Ocean) as the mean-sea-level pressure chart in Fig. 
10.15.  [Courtesy of NOAA/NCEP Earth System Research Lab.  
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly-
sis.html ]
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 For winds turning around a circle, you can add a 
term for centrifugal force, which is an artifice to ac-
count for the continual changing of wind direction 
caused by an imbalance of the other forces (where 
the imbalance is the centripetal force).
 The difference between the actual and 
geostrophic winds is the ageostrophic wind (Uag, 
Vag). The term in eqs. (10.51) containing these differ-
ences indicates the geostrophic departure.

    Uag = U – Ug •(10.52a)

    Vag = V – Vg •(10.52b)

10.6. HORIZONTAL MOTION

10.6.1. Equations of Motion — Again
 The geostrophic wind can be used as a surrogate 
for the pressure-gradient force, based on the defini-
tions in eqs. (10.26).  Thus, the equations of hori-
zontal	motion (10.23) become: 

      •(10.51a)
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} } } } }

tendency advection Coriolis
pressure
gradient

turbulent
drag

Table	10-5.  Summary of horizontal winds**.

Item
Name of 

Wind
Forces Direction Magnitude Where Observed

1 geostrophic pressure-gradient, 
Coriolis

parallel to straight 
isobars with Low pres-
sure to the wind’s left*

faster where isobars 
are closer together.

 
G

g
f

z
dc

= ·
∆
∆

aloft in regions 
where isobars are 

nearly straight

2 gradient
pressure-gradient,

Coriolis, 
centrifugal

similar to geostrophic 
wind, but following 

curved isobars.  Clock-
wise* around Highs, 

counterclockwise* 
around Lows.

slower than 
geostrophic around 

Lows, faster than 
geostrophic around 

Highs

aloft in regions 
where isobars are 

curved

3
atmospheric 

boundary
layer

pressure-gradient,
Coriolis, 

drag

similar to geostrophic 
wind, but crosses 

isobars at small angle 
toward Low pressure

slower than 
geostrophic (i.e., 

subgeostrophic)

near the ground 
in regions where 
isobars are nearly 

straight

4

atmospheric 
boundary-

layer
gradient

pressure-gradient,
Coriolis, 

drag, 
centrifugal

similar to gradient 
wind, but crosses 

isobars at small angle 
toward Low pressure

slower than gradient 
wind speed

near the ground in 
regions where iso-

bars are curved

5 cyclostrophic pressure-gradient,
centrifugal

either clockwise or 
counterclockwise 

around strong vortices 
of small diameter

stronger for lower 
pressure in the vortex 

center

tornadoes, water-
spouts (& sometimes 

in the eye-wall of 
hurricanes)

6 inertial Coriolis, 
centrifugal

anticyclonic circular 
rotation

coasts at constant 
speed equal to its 

initial speed

ocean-surface 
currents

* For Northern Hemisphere.  Direction is opposite in Southern Hemisphere.   ** Antitriptic winds are unphysical; not listed here.
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10.6.2. Scales of Horizontal Motion
 A wide range of horizontal scales of motion (Ta-
ble 10-6) are superimposed in the atmosphere: from 
large global-scale circulations through extra-tropi-
cal cyclones, thunderstorms, and down to swirls of 
turbulence.  
 The troposphere is roughly 10 km thick, and this 
constrains the vertical scale of most weather phe-
nomena.  Thus, phenomena of large horizontal scale 
will have a constrained vertical scale, causing them 
to be similar to a pancake.  However, phenomena 
with smaller horizontal scale can have aspect ratios 
(width/height) of about one; namely, their character-
istics are isotropic.  
 Larger-scale meteorological phenomena tend to 
exist for longer durations than smaller-scale ones.  
Fig. 10.24 shows that time scales τ and horizontal 
length scales λ of many meteorological phenomena 
nearly follow a straight line on a log-log plot.  This 
implies that
           τ/τo = (λ/λo)b (10.53)

where τo  ≈ 10–3 h, λo ≈ 10–3 km, and b ≈ 7/8.  
 In the next several chapters, we cover weather 
phenomena from largest to smallest horiz. scales:
• Chapter 11     General Circulation  (planetary)
• Chapter 12     Fronts & Airmasses  (synoptic)
• Chapter 13     Extratropical Cyclones  (synoptic)
• Chapter 14     Thunderstorm Fundam.  (meso β)
• Chapter 15     Thunderstorm Hazards  (meso γ)
• Chapter 16     Tropical Cyclones  (meso α & β)
• Chapter 17     Regional Winds  (meso β & γ)
• Chapter 18     Atm. Boundary Layers  (microscale)
Although hurricanes are larger than thunderstorms, 
we cover thunderstorms first because they are the 
building blocks of hurricanes.  Similarly, midlati-
tude cyclones often contain fronts, so fronts are cov-
ered before extratropical cyclones.

10.7. VERTICAL FORCES AND MOTION

 Forces acting in the vertical can cause or change 
vertical velocities, according to Newton’s Second 
Law.  In an Eulerian framework, the vertical	com-
ponent of the equations of motion is:
     (10.54)
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micro α           boundary-layer turbulence

micro β           surface-layer turbulence

micro γ
           

inertial subrange turbulence

micro δ
           

fine-scale turbulence
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Horizontal               Scale

     Size     Designation   Name

Table 10-6.  Horizontal scales of motion in the troposphere.

Note: Disagreement among different organizations.
*Synoptic:  AMS: 400 - 4000 km;   WMO: 1000 - 2500 km.
**Mesoscale:  AMS: 3 - 400 km;    WMO: 3 - 50 km.
***Microscale:  AMS:  0 - 2 km;     WMO: 3 cm - 3 km.
where AMS = American Meteorological Society,
and WMO = World Meteorological Organization.

molecular

Figure 10.24
Typical time and spatial scales of meteorological phenomena.  
MCS = Mesoscale Convective System (see the thunderstorm 
chapter).
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where the vertical acceleration given in the left side 
of the equation is determined by the sum of all 
forces/mass acting in the vertical, as given on the 
right.  For Cartesian directions (x, y, z) the velocity 
components are (U, V, W).  Also in this equation are 
air density (ρ), pressure (P), vertical turbulent-drag 
force (Fz  TD), mass (m), and time (t).  Magnitude of 
gravitational acceleration is |g| = 9.8 m·s–2.  Coriolis 
force is negligible in the vertical (see the INFO box 
on Coriolis Force in 3-D, earlier in this chapter), and is 
not included in the equation above.
 Recall from Chapter 1 that our atmosphere has 
an extremely large pressure gradient in the verti-
cal, which is almost completely balanced by gravity 
(Fig. 10.25).  Also, there is a large density gradient 
in the vertical.  We can define these large terms as a 
mean background state or a reference state of 
the atmosphere.  Use the overbar over variables to 
indicate their average background state.  Define this 
background state such that it is exactly in hydro-
static	balance (see Chapter 1):

    ∆
∆

·
P
z

g= −ρ  (10.55)

 However, small deviations in density and pres-
sure from the background state can drive important 
non-hydrostatic vertical motions, such as in ther-
mals and thunderstorms.  To discern these effects, 
we must first remove the background state from the 
full vertical equation of motion.  From eq. (10.54), the 
gravity and pressure-gradient terms are:

    1
ρ

ρ− −
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 But total density ρ can be divided into background 
(ρ ρ ρ= + ′) and deviation (ρ ρ ρ= + ′ ) components: ρ ρ ρ= + ′ .  Do 
the same for pressure: P P P= + ' .  Thus, eq. (10.56) 
can be expanded as:
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The first and third terms in square brackets in eq. 
(10.57) cancel out, due to hydrostatic balance (eq. 
10.55) of the background state. 
 In the atmosphere, density perturbations (ρ ρ ρ= + ′ ) are 
usually much smaller than mean density.  Thus densi-
ty perturbations can be neglected everywhere except 
in the gravity term, where ′ + ′( ) ≈ ′( )ρ ρ ρ ρ ρg g/ / · . 
This is called the Boussinesq approximation.  
 Recall from the chapters 1 and 5 that you can use 
virtual temperature (Tv) with the ideal gas law in 
place of air density (but changing the sign because 
low virtual temperatures imply high densities):

Sample	Application
 Suppose your neighborhood has a background en-
vironmental temperature of 20°C, but at your particu-
lar location the temperature is 26°C with a 4 m s–1 west 
wind and no vertical velocity.  Just 3 km west is an 5 m 
s–1 updraft.  Find the vertical acceleration. 

Find the Answer
Given: Te = 273+20 = 293 K,  ∆θ =  6°C,  U= 4 m s–1

  ∆W/∆x= (5 m s–1 – 0) / (–3,000m – 0)
Find:  ∆W/∆t = ? m·s–2  
Assume: Because W = 0, there is zero drag.  Because 
the air is dry:  Tv = T.  Given no V info, assume zero.

Apply eq. (10.59):   ∆
∆

∆
∆

W
t

U
W
x T

g
p e

e
= − +

−θ θ
·

∆W/∆t = –(4 m s–1)·(–5m·s–1/3,000m)+(6/293)·(9.8m·s–2)
  = 0.0067 + 0.20 = 0.21 m·s–2  

Check:  Physics & units are reasonable.
Exposition:  Buoyancy dominated over advection for 
this example.  Although drag was zero initially be-
cause of zero initial vertical velocity, we must include 
the drag term once the updraft forms.

Figure 10.25
Background state, showing change of mean atmospheric pres-
sure P P P= + ' and mean density ρ ρ ρ= + ′ with height z, based on a standard 
atmosphere from Chapter 1.
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where subscripts p & e indicate the air parcel and the 
environment surrounding the parcel, and where g’ 
is called the reduced gravity.  The virtual potential 
temperature θv can be in either Celsius or Kelvin, but 
units of Kelvin must be used for Tv and Tve. 
 Combining eqs. (10.54) & (10.58) yields: 

     •(10.59)
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Terms from this equation will be used in the Region-
al Winds chapter and in the Thunderstorm chapters 
to explain strong vertical velocities.
 When an air parcel rises or sinks it experiences  
resistance (turbulent drag, Fz TD) per unit mass m as 
it tries to move through the surrounding air.  This 
is a completely different effect than air drag against 
the Earth’s surface, and is not described by the same 
drag equations.  The nature of Fz TD  is considered in 
the chapter on Air Pollution Dispersion, as it affects 
the rise of smoke-stack plumes.  Fz TD = 0 if the air 
parcel and environment move at the same speed.

10.8. CONSERVATION OF AIR MASS

 Due to random jostling, air molecules tend to 
distribute themselves uniformly within any volume.  
Namely, the air tends to maintain its continuity.  
Any additional air molecules entering the volume 
that are not balanced by air molecules leaving (Fig. 
10.26) will cause the air density (ρ, mass of air mol-
ecules in the volume) to increase, as described below 
by the continuity equation.  

10.8.1. Continuity Equation
 For a fixed Eulerian volume, the mass budget 
equation (i.e., the continuity equation) is:
     (10.60)
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The terms in curly braces { } describe advection.  
With a bit of calculus one can rewrite this equation 
as:

Sample	Application
 Hurricane-force winds of 60 m s–1 blow into an 
north-facing entrance of a 20 m long pedestrian tun-
nel.  The door at the other end of the tunnel is closed.  
The initial air density in the tunnel is 1.2 kg m–3.  Find 
the rate of air density increase in the tunnel.

Find the Answer
Given: VN. entrance = –60 m s–1,  VS. entrance = 0 m s–1,    
ρ  =  1.2 kg m–3,  ∆ y = 20 m,
Find:  ∆ρ/∆t = ? kg·m3·s–1 initially.

Use eq. (10.60), with  U = W = 0 because the other walls, 
roof, and floor prevent winds in those directions:

   

∆
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t

V V
y

N entr S entr

tunnel
= −

−
= − 


. . . .
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 ∆ρ/∆t  = +3.6 kg·m–3·s–1 .

Check:  Physics & units are reasonable.
Exposition:  As air density increases, so will air pres-
sure.  This pressure might be sufficient to blow open 
the other door at the south end of the pedestrian tun-
nel, allowing the density to decrease as air escapes.

INFO  •  Eötvös Effect

 When you move along a path at constant distance 
R above Earth’s center, gravitational acceleration ap-
pears to change slightly due to your motion.  The 
measured gravity |gobs| = |g| – ar ,  where:

      ar = 2·Ω·cos(ϕ)·U  +  (U2 + V2)/R  

The first term is the vertical component of Coriolis 
force (eq. 10.17e in the INFO box on p.297), and the last 
term is centrifugal force as you follow the curvature 
of the Earth.  Thus, you feel lighter traveling east and 
heavier traveling west.  This is the Eötvös effect.

Figure 10.26
Air-mass flows to and from 
a fixed Eulerian volume.
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vertical velocities increase with height where there 
is horizontal convergence:

    ∆
∆
W
z

D= −  (10.64)

10.8.3. Boundary-Layer Pumping
 Consider an extratropical cyclone, where the 
boundary-layer gradient wind spirals in toward the 
low-pressure center.  Those spiraling winds consist 
of a tangential component following the isobars as 
they encircle the low center, and a radial component 
having inflow velocity Vin (Fig. 10.27).   
 But volume inflow (2πR·∆z · Vin) through the sides 
of the cylindrical volume of radius R and height 
∆z must be balanced by net volume outflow (πR2 · 
∆W/∆z) through the top and bottom.  Equating these 
incompressible flows gives:

    2·V
R

W
z

in = ∆
∆

 •(10.65a)

Thus, for horizontal inflow everywhere (positive 
Vin), one finds that ∆W must also be positive. 
 If a cylinder of air is at the ground where W = 0 at 
the cylinder bottom, then W at the cylinder top is:

    W = (2 · Vin · ∆z) / R   (10.65b)

Namely, extratropical cyclones have rising air, 
which causes clouds and rain due to adiabatic cool-
ing.  This forcing of a broad updraft region by hor-
izontal-wind drag around a cyclone is known as 
boundary-layer	pumping or Ekman pumping.  
 For atmospheric boundary-layer gradient (ABLG) 
winds around anticyclones (highs), the opposite oc-
curs: horizontal outflow and a broad region of de-
scending air (subsidence).  The subsidence causes 
adiabatic warming, which evaporates any clouds 
and creates fair weather.
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where U, V, and W are the wind components in the x, 
y, and z directions, respectively, and t is time.
 When you calculate wind gradients, be sure to 
take the wind and space differences in the same di-
rection.  For example:  ∆U/∆x = (U2–U1)/(x2–x1).

10.8.2. Incompressible Idealization
 Mean air density changes markedly with alti-
tude, as was sketched in Fig. 10.25.  However, at any 
one altitude the density changes only slightly due 
to local changes in humidity and temperature.  For 
non-tornadic, non-thunderstorm conditions where 
Fig. 10.25 is valid, we can make a reasonable sim-
plifying idealization that density is constant (∆ρ ≈ 
0) at any one altitude.  Namely, air behaves as if it is 
incompressible.
 If we make this idealization, then the advection 
terms of eq. (10.60) are zero, and the time-tendency 
term is zero.  The net result is volume	conserva-
tion, where volume outflow equals volume inflow: 
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 Fig. 10.26 illustrates such incompressible	con-
tinuity.  Can you detect an error in this figure?  It 
shows more air leaving the volume in each coor-
dinate direction than is entering — impossible for 
incompressible flow.  A correct figure would have 
changed arrow lengths, to indicate net inflow in one 
or two directions, balanced by net outflow in the 
other direction(s).
 As will be explained in the last section of this 
chapter, divergence is where more air leaves a vol-
ume than enters (corresponding to positive terms in 
eq. 10.62).  Convergence is where more air enters 
than leaves (corresponding to negative terms in eq. 
10.62).  Thus, volume (mass) conservation of incom-
pressible flow requires one or two terms in eq. (10.62) 
to be negative (i.e., convergence), and the remaining 
term(s) to be positive (i.e., divergence) so that their 
sum equals zero.  
 Horizontal	divergence (D) is defined as

    D
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= +∆
∆

∆
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 (10.63)

Negative values of D correspond to convergence.  
Plugging this definition into eq. (10.62) shows that

Figure 10.27
Volume conservation for an idealized cylindrical extratropical
cyclone.
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 Recall from the ABLG wind section that an ana-
lytical solution could not be found for VABLG (which 
is the needed Vin for eq. 10.65).  Instead, we can ap-
proximate Vin ≈ VABL  for which an analytical solu-
tion exists. But VABL is always larger than VABLG for 
flow around cyclones, so we must be aware that our 
analytical answer will always give winds that are 
slightly faster than occur around lows in nature. 
 To solve for VABL, we need to make an assump-
tion about the static stability of the atmospheric 
boundary layer.  Because cyclones generally have 
overcast skies and strong winds, we can safely as-
sume neutral stability.  In this case, eq. (10.41b) gives 
the cross-isobaric inflow velocity.
 Use VABL for Vin in eq. (10.65b) and solve for W 
(which we will call WABL — the vertical velocity at 
the atmospheric boundary-layer top, as sketched in 
Fig. 10.28):

    W
b C
f

G
RABL

D

c
=

2 2· ·
·  •(10.66)

with geostrophic wind G, radius of curvature R, 
Coriolis parameter fc, and drag coefficient CD for 
statically neutral boundary conditions.  For flow 
over land, CD ≈ 0.005 .
 Eq. (10.41b) can be used to find b = { 1 – 0.5·[CD·G/
( fc·zi)] }  for an atmospheric boundary layer of thick-
ness zi.  If you don’t know the actual atmospheric 
boundary-layer	depth, then a crude approxima-
tion for cyclones (not valid for anticyclones) is :

    z
G

Ni
BV

≈  (10.67)

In this approximation, you must use a Brunt-Väisälä 
frequency NBV that is valid for the statically stable 
air in the troposphere above the  top of the statically 
neutral atmospheric boundary layer.  For this spe-
cial approximation:  b = { 1 – 0.5·[CD·NBV/fc]}.  A re-
quired condition for a physically realistic solution is 
[CD·NBV/fc] < 1.
 You can interpret eq. (10.66) as follows.  Stronger 
pressure gradients (which cause larger geostrophic 
wind G), larger drag coefficients, and smaller radii 
of curvature cause greater atmospheric boundary-
layer pumping WABL.  
 Although the equations above allow a complete 
approximate solution, we can rewrite them in terms 
of a geostrophic	relative	vorticity:

    ζg
G

R
=

2·  (10.68)

which indicates air rotation.  Vorticity is introduced 
later in this chapter, and is covered in greater detail 
in the General Circulation chapter.  

Sample	Application
 Atmospheric boundary-layer gradient winds have 
an inflow component of 3 m s–1 at radius 500 km from 
the center of a midlatitude cyclone. What is the updraft 
speed?

Find the Answer
Given: R = 500 km,  Vin = 3 m s–1.  Let ∆z = zi = 1 km
Find:  W = ? m s–1

Apply eq. (10.65b): 

   W V
z

Rin= ∆ =2 2 3
1

500
· · ·( )·m/s

km
km

         = 0.012 m s–1

Check:  Physics & units are reasonable.
Exposition:  This updraft speed of 1.2 cm/s, while 
slow, can cause significant lifting over many hours.  
Nonetheless, this updraft is slow enough to enable us 
to approximate the atmosphere as being hydrostatic.

Figure 10.28
Application of atmospheric boundary-layer gradient winds 
VABLG to estimate the vertical velocity WABL due to atmospher-
ic boundary-layer pumping around a low-pressure center (L).  
G = geostrophic wind.
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 Eq. (10.66) can be modified to use geostrophic 
vorticity.  The resulting Ekman pumping at the  at-
mospheric boundary layer top in a midlatitude cy-
clone is:

 W C
G
f

C N
fABL D

c
g

D BV

c
= −









· · · .

·
ζ 1 0 5  (10.69)

 The first four factors on the right side imply that 
larger drag coefficients (i.e., rougher terrain with 
more trees or buildings) and stronger pressure gra-
dients (as indicated by larger geostrophic wind) 
driving winds around smaller radii of curvature 
(i.e., larger geostrophic vorticity) at lower latitudes 
(i.e., smaller fc) create stronger updrafts.  Also, stron-
ger static stabilities (i.e., larger Brunt-Väisälä fre-
quency NBV) in the troposphere above atmospheric 
boundary-layer top reduce updraft speed by oppos-
ing vertical motion.
 One can write an internal	Rossby	deforma-
tion radius based on the eq. (10.67) approximation 
for depth zi of the atmospheric boundary layer:

    λR
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f

z
z

≈ ·  (10.70)

where tropospheric depth is zT.  Internal and exter-
nal Rossby deformation radii are described further 
in the General Circulation and Fronts & Airmasses 
chapters, respectively.
 The Rossby deformation radius can be used to 
write yet another expression for Ekman pumping 
vertical velocity out of the top of the atmospheric 
boundary layer:
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10.9. KINEMATICS

 Kinematics is the study of patterns of motion, 
without regard to the forces that cause them.  We 
will focus on horizontal divergence, vorticity, and 
deformation.  All have units of  s–1 .
 We have already encountered horizontal diver-
gence, D, the spreading of air:
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 (10.72)

Figure 10.29a shows an example of pure divergence.  
Its sign is positive for divergence, and negative for 
convergence (when the wind arrows point toward 
a common point).  

Sample	Application
 At 500 km from the center of a midlatitude cyclone 
at latitude where fc = 0.0001 s–1, the pressure gradient 
can drive a 15 m s–1 geostrophic wind.  Assume a stan-
dard atmosphere static stability above the top of the 
atmospheric boundary layer (ABL), and a drag coeffi-
cient of 0.004 at the bottom.  Find the Ekman pumping 
updraft speed out of the atmospheric boundary-layer 
top.  Also, what are the geostrophic relative vorticity, 
the depth of the ABL, and the internal Rossby defor-
mation radius?

Find the Answer
Given:  fc = 0.0001 s–1,  R = 5x105 m,  G = 15 m s–1,    
  CD = 0.004, 
Find:  WABL = ? m s–1, ζg = ? s–1,  zi = ? m,    λR = ? km
For depth of the troposphere, assume zT = 11 km.

First, to get the Brunt-Väisälä frequency, use the Stan-
dard-Atmosphere temperatures (see Chapter 1) at the 
top and bottom of the troposphere to estimate the av-
erage temperature and vertical temperature gradient:
 Tavg  =  0.5·(–56.5 + 15.0)  =  –20.8°C  =  252K
 ∆T = (–56.5 – 15.0)°C  =  –71.5°C across ∆z = 11 km
Use these in eq (5.4a):

   

9.8m/s
252K

71.5K
11000m

0.0098
K
m

0.0113 s 1= − +




= −NBV

Apply eq. (10.67):
 zi ≈ G/NBV = (15 m s–1)/(0.0113 s–1) =  1327 m 

Apply eq. (10.68):

 ζg =
×

2 15

5 105
·( )m/s

m
   = 6x10–5 s–1 

Apply eq. (10.70):

 λR ≈ −
( )

( . )
·

.
15

0 0001

11
1 327

m/s

s

km
km1   = 1243 km 

We need to check to ensure that  [CD·NBV/fc] < 1.
 [0.004·(0.0113s–1)/(0.0001s–1)] = 0.452    < 1.  
Thus, we can expect our approximate solution should 
work for this case.

Apply eq. (10.71):  WABL = 

  

0 004
1 327

11
1 243 10 6 106 5. ·

( . )
( )

·( . )·(
km

km
m s× × − −−

−





1

km
km

)

· . ·( . )·1 0 5 0 004
1243

11
 = (0.036 m s–1) · [0.774] = 0.028 m s–1

Check:  Physics and units are reasonable.
Exposition:  The updraft speed 2.8 cm s–1 is slow, but 
over many hours can cause significant lifting.  As the 
rising air cools adiabatically, clouds form and latent 
heat is released due to condensation.  Hence, clouds 
and bad weather are often associated with midlatitude 
cyclones.
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 Vorticity describes the rotation of air (Fig. 
10.29b).  The relative vorticity, ζr , about a locally ver-
tical axis is given by:

    ζr
V
x

U
y

= −∆
∆

∆
∆

 (10.73)

The sign is positive for counterclockwise rotation 
(i.e., cyclonic rotation in the N. Hemisphere), and 
negative for clockwise rotation.  Vorticity is dis-
cussed in greater detail in the General Circulation 
chapter.  Neither divergence nor vorticity vary with 
rotation of the axes — they are rotationally	 in-
variant. 
 Two types of deformation are stretching defor-
mation and shearing deformation (Figs. 10.29c & d).  
Stretching deformation, F1, is given by:

    F
U
x

V
y1 = −∆

∆
∆
∆

 (10.74)

The axis along which air is being stretched (Fig. 
10.29c) is called the axis	of	dilation (x axis in this 
example), while the axis along which air is com-
pressed is called the axis of contraction (y axis in 
this example).  
 Shearing deformation, F2, is given by:

    F
V
x

U
y2 = +∆

∆
∆
∆

 (10.75)

As you can see in Fig. 10.29d, shearing deformation 
is just a rotated version of stretching deformation.  
The total	deformation, F, is:

    F F F= +



1

2
2

2 1 2/  (10.76)

Deformation often occurs along fronts. Most real 
flows exhibit combinations of divergence, vorticity, 
and deformation. 

10.10. MEASURING WINDS

 For weather stations at the Earth’s surface, wind 
direction can be measured with a wind vane 
mounted on a vertical axle.  Fixed vanes and other 
shapes can be used to measure wind speed, by us-
ing strain gauges to measure the minute deforma-
tions of the object when the wind hits it.
 The generic name for a wind-speed measuring 
device is an anemometer.  A cup anemometer 
has conic- or hemispheric-shaped cups mounted 
on spokes that rotate about a vertical axle.  A pro-

Figure 10.29
Kinematic flow-field definitions.  Black arrows represent wind 
velocity.
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322	 CHAPTER		10			•			ATMOSPHERIC		FORCES		&		WINDS

Coriolis force, which is related to centrifugal force of 
winds relative to a rotating Earth.  
 If all the forces vector-sum to zero, then there 
is no net force and winds blow at constant speed.  
Theoretical winds based on only a small number 
of forces are given special names.  The geostrophic 
wind occurs when pressure-gradient and Coriolis 
forces balance, causing a wind that blows parallel 
to straight isobars. For curved isobars around lows 
and highs, the imbalance between these two forces 
turns the wind in a circle, with the result called the 
gradient wind.  Similar winds can exist in the atmo-
spheric boundary layer, where turbulent drag of the 
air against the Earth’s surface slows the wind and 
causes it to turn slightly to cross the isobars toward 
low pressure.  
 Waterspouts and tornadoes can have such strong 
winds that pressure-gradient force is balanced by 
centrifugal force, with the resulting wind speed 
known as the cyclostrophic wind.  In oceans, cur-
rents can inertially flow in a circle.
 The two most important force balances at mid-
latitudes are hydrostatic balance in the vertical, and 
geostrophic balance in the horizontal.  
 Conservation of air mass gives the continuity 
equation, for which an incompressible approxima-
tion can be used in most places except in thunder-
storms.  Mechanisms that cause motion in one di-
rection (horizontal or vertical) will also indirectly 
cause motions in the other direction as the air tries 
to maintain continuity, resulting in a circulation.  
 Kinematics is the word that describes the be-
havior and effect of winds (such as given by the con-
tinuity equation) without regard to the forces that 
cause them.  The word dynamics describes how 
forces cause winds (as given by Newton’s 2nd law).

10.12. HOMEWORK EXERCISES

Some of these questions are inspired by exercises 
in Stull, 2000: Meteorology for Sci. & Engr. 2nd Ed., 
Brooks/Cole, 528 pp.

10.12.1. Broaden Knowledge & Comprehension
For all the exercises in this section, collect informa-
tion off the internet.  Don’t forget to cite the web sites 
you use.

B1.  a. Find a weather map showing today’s sea-level 
pressure isobars near your location.  Calculate pres-
sure-gradient force (N) based on your latitude and 
the isobar spacing (km/kPa).

peller	anemometer has a propeller mounted on a 
horizontal axle that is attached to a wind vane so it 
always points into the wind.  For these anemome-
ters, the rotation speed of the axle can be calibrated 
as a wind speed.
 Other ways to measure wind speed include a hot-
wire or hot-film	anemometer, where a fine metal 
wire is heated electrically, and the power needed to 
maintain the hot temperature against the cooling 
effect of the wind is a measure of wind speed.  A 
pitot tube that points into the wind measures the 
dynamic pressure as the moving air stagnates in a 
dead-end tube.  By comparing this dynamic pres-
sure with the static pressure measured by a differ-
ent sensor, the pressure difference can be related to 
wind speed.
 Sonic anemometers send pulses of sound back 
and forth across a short open path between two op-
posing transmitters and receivers (transceivers) of 
sound.  The speed of sound depends on both tem-
perature and wind speed, so this sensor can mea-
sure both by comparing sound travel times in op-
posite directions.  Tracers such as smoke, humidity 
fluctuations, or clouds can be tracked photogram-
metrically from the ground or from remote sensors 
such as laser radars (lidars) or satellites, and the 
wind speed then estimated from the change of posi-
tion of the tracer between successive images.  
 Measurements of wind vs. height can be made 
with rawinsonde	balloons (using a GPS receiver 
in the sonde payload to track horizontal drift of the 
balloons with time), dropsondes (like rawinsondes, 
only descending by parachute after being dropped 
from aircraft), pilot	balloons (carrying no payload, 
but being tracked instead from the ground using 
radar or theodolites), wind	 profilers, Doppler	
weather radar (see the Satellites & Radar chapter), 
and via anemometers mounted on aircraft.

10.11. REVIEW

 According to Newton’s second law, winds are 
driven by forces.  The pressure-gradient creates a 
force, even in initially calm (windless) conditions.  
This force points from high to low pressure on a con-
stant altitude chart (such as at sea-level), or points 
from high to low heights on an isobaric chart (such 
as the 50 kPa chart).  Pressure-gradient force is the 
main force that drives the winds.
 Other forces exist only when there is already a 
wind.  One example is turbulent drag against the 
ground, which pushes opposite to the atmospheric 
boundary-layer wind direction.  Another example is 
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 b. Repeat this for a few days, and plot the pres-
sure gradient vs. time.

B2.  Get 50 kPa height contour maps (i.e., 500 hPa 
heights) over any portion of the Northern Hemi-
sphere.  In 2 locations at different latitudes  hav-
ing straight isobars, compute the geostrophic wind 
speed.  In 2 locations of curved isobars, compute 
the gradient wind speed.  How do these theoreti-
cal winds compare with wind observations near the 
same locations?

B3.  Similar exercise B2, but for 2 locations in the 
Southern Hemisphere.

B4.  a. Using your results from exercise B2 or B3, plot 
the geostrophic wind speed vs. latitude and pres-
sure gradient on a copy of Fig. 10.10.  Discuss the 
agreement or disagreement of your results vs. the 
lines plotted in that figure.
 b.  Using your results from exercise B4 or B5, 
show that gradient winds are indeed faster than 
geostrophic around high-pressure centers, and 
slower around low-pressure centers.

B5.  Discuss surprising insights regarding Isaac 
Newton’s discoveries on forces and motion.

B6.  Get a map of sea-level pressure, including isobar 
lines, for a location or date where there are strong 
low and high-pressure centers adjacent to each 
other.  On a printed copy of this map, use a straight 
edge to draw a line connecting the low and high 
centers, and extend the line further beyond each 
center.   Arbitrarily define the high center as location 
x = 0.  Then, along your straight line, add distance 
tic marks appropriate for the map scale you are us-
ing.  For isobars crossing your line, create a table 
that lists each pressure P and its distance x from the 
high.  Then plot P vs. x and discuss how it compares 
with Fig. 10.14.  Discuss the shape of your curve in 
the low- and high-pressure regions.

B7. Which animations best illustrate Coriolis Force?

B8.  a. Get a map of sea-level pressure isobars that 
also shows observed wind directions.  Discuss why 
the observed winds have a direction that crosses the 
isobars, and calculate a typical crossing angle..
 b.  For regions where those isobars curve around 
cyclones or anticyclones, confirm that winds spiral 
into lows and out of highs.
  c.  For air spiraling in toward a cyclone, estimate 
the average inflow radial velocity component, and 
calculate WBL based on incompressible continuity.

B9.  For a typhoon or hurricane, get a current or past 
weather map showing height-contours for any one 
isobaric level corresponding to an altitude about 1/3 
the altitude of the storm (i.e., a map for any pressure 
level between 85 to 60 kPa).  At the eye-wall location, 
use the height-gradient to calculate the cyclostrophic 
wind speed.  Compare this with the observed hurri-
cane winds at that same approximate location, and 
discuss any differences.

B10.  Get a 500 hPa (= 50 kPa) geopotential height 
contour map that is near or over the equator.  Com-
pute the theoretical geostrophic wind speed based 
on the height gradients at 2 locations on that map 
where there are also observed upper-air wind 
speeds.  Explain why these theoretical wind speeds 
disagree with observed winds.

10.12.2. Apply
A1.  Plot the wind symbol for winds with the follow-
ing directions and speeds:
 a. N at 5 kt   b. NE at 35 kt c. E at 65 kt
 d. SE at 12 kt  e. S at 48 kt  f. SW at 105 kt
 g. W at 27 kt  h. NW at 50 kt i. N at 125 kt

A2.  How fast does an 80 kg person accelerate when 
pulled with the force given below in Newtons?
 a. 1     b. 2   c. 5 d. 10 e. 20  f. 50
 g. 100    h. 200 i. 500 j. 1000  k. 2000

A3.  Suppose the following force per mass is applied 
on an object.  Find its speed 2 minutes after starting 
from rest. 
 a. 5 N kg–1   b. 10 m·s–2

 c. 15 N kg–1  d. 20 m·s–2

 e. 25 N kg–1  f.  30 m·s–2

 g. 35 N kg–1  h. 40 m·s–2

 i.  45 N kg–1  j.  50 m·s–2

A4. Find the advective “force” per unit mass given 
the following wind components (m s–1) and hori-
zontal distances (km):
 a. U=10, ∆U=5,  ∆x=3
 b. U=6, ∆U=–10, ∆x=5
 c. U=–8,  ∆V=20, ∆x=10
 d. U=–4, ∆V=10,  ∆x=–2
 e. V=3, ∆U=10, ∆y=10
 f. V=–5, ∆U=10, ∆y=4
 g. V=7, ∆V=–2, ∆y=–50
 h. V=–9, ∆V=–10, ∆y=–6

A5.  Town A is 500 km west of town B.  The pressure 
at town A is given below, and the pressure at town B 
is 100.1 kPa.  Calculate the pressure-gradient force/
mass in between these two towns.
 a. 98.6  b. 98.8  c. 99.0  d. 99.2  e. 99.4
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A11.  Draw a northwest wind of 5 m s–1 in the S. 
Hemisphere on a graph, and show the directions 
of forces acting on it.  Assume it is in the boundary 
layer.
 a. pressure gradient b. Coriolis
 c. centrifugal   d. drag

A12.  Given the pressure gradient magnitude  
(kPa/1000 km) below, find geostrophic wind speed 
for a location having  fc = 1.1x10–4 s–1 and ρ = 0.8 kg 
m–3.  
 a. 1  b. 2   c. 3  d. 4  e. 5 
 f. 6    g. 7  h. 8   i. 9    j. 10
 k. 11  m. 12  n. 13  o. 14  p. 15

A13.  Suppose the height gradient on an isobaric sur-
face is given below in units of (m km–1).  Calculate 
the geostrophic wind at 55°N latitude.
 a. 0.1  b. 0.2   c. 0.3  d. 0.4  e. 0.5 
 f. 0.6  g. 0.7  h. 0.8  i. 0.9  j. 1.0
 k. 1.1  m. 1.2  n. 1.3  o. 1.4  p. 1.5
 
A14.  At the radius (km) given below from a low-
pressure center, find the gradient wind speed 
given a geostrophic wind of 8 m s–1 and given fc = 
1.1x10–4 s–1.
 a. 500  b. 600  c. 700  d. 800   e. 900
 f. 1000  g. 1200  h. 1500 i.  2000 j. 2500

A15. Suppose the geostrophic winds are Ug = –3 m 
s–1 with Vg = 8 m s–1 for a statically-neutral bound-
ary layer of depth zi = 1500 m, where fc = 1.1x10–4 s–1.  
For drag coefficients given below, what is the atmos. 
boundary-layer wind speed, and at what angle does 
this wind cross the geostrophic wind vector?
 a. 0.002 b. 0.004 c. 0.006 d. 0.008 e. 0.010
 f. 0.012 g. 0.014 h. 0.016 i. 0.018 j. 0.019

A16.  For a statically unstable atmos. boundary layer 
with other characteristics similar to those in exercise 
A15, what is the atmos. boundary-layer wind speed, 
at what angle does this wind cross the geostrophic 
wind vector, given wB (m s–1) below? 
 a. 75   b. 100   c. 50  d. 200  e. 150
 f. 225  g. 125  h. 250  i. 175  j. 275

A17(§).  Review the Sample Application in the “At-
mospheric Boundary Layer Gradient Wind” section.  
Re-do that calculation for  MABLG  with a different 
parameter as given below:
 a. zi = 1 km  b. CD = 0.003  c. G = 8 m s–1

 d. fc = 1.2x10–4 s–1  e.  R = 2000 km
 f. G = 15 m s–1  g. zi = 1.5 km h. CD = 0.005
 i. R = 1500 km j. fc = 1.5x10–4 s–1  
Hint:  Assume all other parameters are unchanged.

 f. 99.6  g. 99.8  h. 100.0 i. 100.2 j. 100.4
 k. 100.6 l. 100.8 m. 101.0 n. 101.2 o. 101.4

A6.  Suppose that U = 8 m s–1 and V = –3 m s–1, and 
latitude = 45°  Calculate centrifugal-force compo-
nents around a:
 a. 500 km radius low in the N. hemisphere
 b. 900 km radius high in the N. hemisphere
 c. 400 km radius low in the S. hemisphere
 d. 500 km radius high in the S. hemisphere

A7.  What is the value of fc (Coriolis parameter) at:
 a. Shanghai
 b. Istanbul
 c. Karachi
 d. Mumbai
 e. Moscow
 f. Beijing
 g. São Paulo
 h. Tianjin
 i. Guangzhou
 j. Delhi
 k. Seoul
 l. Shenzhen
 m. Jakarta
 n. Tokyo
 o. Mexico City
 p. Kinshasa
 q. Bangalore
 r. New York City
 s. Tehran
 t. (a city specified by your instructor)

A8.  What is the magnitude and direction of Coriolis 
force/mass in Los Angeles, USA, given:
  U (m s–1 )  V (m s–1)
 a.   5    0
 b.  5    5
 c.  5    –5
 d.   0    5
 e.  0    –5
 f.  –5    0
 g.  –5    –5
 h.  –5    5

A9.  Same wind components as exercise A8, but find 
the magnitude and direction of turbulent drag force/
mass in a statically neutral atmospheric boundary 
layer over an extensive forested region.

A10.  Same wind components as exercise A8, but find 
the magnitude and direction of turbulent drag force/
mass in a statically unstable atmospheric boundary 
layer with a 50 m/s buoyant velocity scale.
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A18.  Find the cyclostrophic wind at radius (m) given 
below, for a radial pressure gradient = 0.5 kPa m–1: 
 a. 10    b. 12  c. 14    d. 16  e. 18 
 f. 20      g. 22     h. 24    i. 26   j. 28   k 30

A19.  For an inertial wind, find the radius of curva-
ture (km) and the time period (h) needed to com-
plete one circuit, given fc = 10–4 s–1 and an initial 
wind speed (m s–1) of:  
 a. 1 b. 2 c. 3 d. 4 e. 6 f. 7   g. 8 h. 9
 i. 10 j. 11 k. 12 m. 13  n. 14 o. 15 

A20.  Find the antitriptic wind for the conditions of 
exercise A15.

A21.  Below is given an average inward radial wind 
component (m s–1) in the atm. boundary layer at ra-
dius 300 km from the center of a cyclone.  What is 
the average updraft speed out of the atm. boundary-
layer top, for a boundary layer that is 1.2 km thick?
  a. 2  b. 1.5  c. 1.2  d. 1.0
 e. –0.5  f. –1  g. –2.5  h. 3 i. 0.8  j. 0.2

A22.  Above an atmospheric boundary layer, assume 
the tropospheric temperature profile is ∆T/∆z = 0.  
For a midlatitude cyclone, estimate the atm. bound-
ary-layer thickness given a near-surface geostrophic 
wind speed (m s–1) of:
 a. 5 b. 10  c. 15  d. 20  e. 25 f. 30
  g. 35 h. 40 i. 3  j. 8  k. 2 l. 1
 
A23(§).  For atm. boundary-layer pumping, plot 
a graph of updraft velocity vs. geostrophic wind 
speed assuming an atm. boundary layer of depth 
0.8 km, a drag coefficient 0.005 .  Do this only for 
wind speeds within the valid range for the atmos. 
boundary-layer pumping eq.  Given a standard at-
mospheric lapse rate at 30° latitude with radius of 
curvature (km) of:
 a. 750  b. 1500 c. 2500 d. 3500 e. 4500
 f. 900  g. 1200 h. 2000 i. 3750  j. 5000

A24.  At 55°N, suppose the troposphere is 10 km 
thick, and has a 10 m  s–1 geostrophic wind speed.  
Find the internal Rossby deformation radius for an 
atmospheric boundary layer of thickness (km):  
 a. 0.2  b. 0.4  c. 0.6  d. 0.8  e. 1.0
 f. 1.2  g. 1.5   h. 1.75  i. 2.0  j. 2.5 

A25.  Given ∆U/∆x = ∆V/∆x = (5 m s–1) / (500 km), 
find the divergence, vorticity, and total deformation 
for (∆U/∆y , ∆V/∆y)  in units of (m s–1)/(500 km)  as 
given below:
 a. (–5, –5)    b. (–5, 0) c. (0, –5)  d. (0, 0)   e. (0, 5)
 f. (5, 0)    g. (5, 5)   h. (–5, 5)   i. (5, –5)

10.12.3. Evaluate & Analyze
E1.  Discuss the relationship between eqs. (1.24) and 
(10.1).

E2.  Suppose that the initial winds are unknown.  
Can a forecast still be made using eqs. (10.6)?  Ex-
plain your reasoning.

E3.  Considering eq. (10.7), suppose there are no forc-
es acting.  Based on eq. (10.5), what can you antici-
pate about the wind speed.

E4.  We know that winds can advect temperature 
and humidity, but how does it work when winds 
advect winds?  Hint, consider eqs. (10.8).

E5.  For an Eulerian system, advection describes the 
influence of air that is blown into a fixed volume.  If 
that is true, then explain why the advection terms 
in eq. (10.8) is a function of the wind gradient (e.g., 
∆U/∆x) instead of just the upwind value?

E6.  Isobar packing refers to how close the isobars 
are, when plotted on a weather map such as Fig. 
10.5.  Explain why such packing is proportional to 
the pressure gradient.  

E7.  Pressure gradient has a direction.  It points to-
ward low pressure for the Northern Hemisphere.  
For the Southern Hemisphere, does it point toward 
high pressure?   Why?

E8.  To help you interpret Fig. 10.5, consider each hor-
izontal component of the pressure gradient.  For an 
arbitrary direction of isobars, use eqs. (10.9) to dem-
onstrate that the vector sum of the components of 
pressure-gradient do indeed point away from high 
pressure, and that the net direction is perpendicular 
to the direction of the isobars.

E9.  For centrifugal force, combine eqs. (10.13) to 
show that the net force points outward, perpendicu-
lar to the direction of the curved flow.  Also show 
that the magnitude of that net vector is a function of 
tangential velocity squared.

E10.  Why does fc = 0 at the equator for an air parcel 
that is stationary with respect to the Earth’s surface, 
even though that air parcel has a large tangential ve-
locity associated with the rotation of the Earth?  

E11.  Verify that the net Coriolis force is perpendicu-
lar to the wind direction (and to its right in the N. 
Hemisphere), given the individual components de-
scribed by eqs. (10.17).  
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E24.  Eq. 10.39 is an “implicit” solution.  Why do we 
say it is “implicit”?

E25.  Determine the accuracy of explicit eqs. (10.41) 
by comparing their approximate solutions for ABL 
wind against the more exact iterative solutions to 
the implicit form in eq. (10.39).

E26.  No explicit solution exists for the neutral atmo-
spheric boundary layer winds, but one exists for the 
statically unstable ABL?   Why is that?

E27.  Plug eqs. (10.42) into eqs (10.38) or (10.39) to con-
firm that the solution is valid.

E28(§).  a. Create your own spreadsheet that gives 
the same answer for ABLG winds as in the Sample 
Application in the ABLG-wind section. 
 b. Do “what if” experiments with your spread-
sheet to show that the full equation can give the gra-
dient wind, geostrophic wind, and boundary-layer 
wind for conditions that are valid for those situa-
tions.
 c. Compare the results from (b) against the re-
spective analytical solutions (which you must com-
pute yourself).

E29.  Photocopy Fig. 10.13, and enhance the copy 
by drawing additional vectors for the atmospheric 
boundary-layer wind and the ABLG wind.  Make 
these vectors be the appropriate length and direc-
tion relative to the geostrophic and gradient winds 
that are already plotted.

E30.  Plug the cyclostrophic-wind equation into eq. 
(10.45) to confirm that the solution is valid for its spe-
cial case.

E31.  Find an equation for cyclostrophic wind based 
on heights on an isobaric surface.  [Hint: Consider 
eqs. (10.26) and (10.29).]

E32.  What aspects of the Approach to Geostrophy INFO 
Box are relevant to the inertial wind?  Discuss.

E33.   a.  Do your own derivation for eq. (10.66) based 
on geometry and mass continuity (total inflow = to-
tal outflow).  
 b.  Drag normally slows winds.  Then why does 
the updraft velocity increase  in eq. (10.66) as drag 
coefficient increases?  
 c.  Factor b varies negatively with increasing drag 
coefficient in eq. (10.66).  Based on this, would you 
change your argument for part (b) above?   

E12.  For the subset of eqs. (10.1 - 10.17) defined by 
your instructor, rewrite them for flow in the South-
ern Hemisphere.

E13.  Verify that the net drag force opposes the wind 
by utilizing the drag components of eqs. (10.19).  
Also, confirm that drag-force magnitude for stati-
cally neutral conditions is a function of wind-speed 
squared.

E14.  How does the magnitude of the turbulent-
transport velocity vary with static stability, such as 
between statically unstable (convective) and stati-
cally neutral (windy) situations? 

E15.  Show how the geostrophic wind components 
can be combined to relate geostrophic wind speed 
to pressure-gradient magnitude, and to relate 
geostrophic wind direction to pressure-gradient di-
rection.

E16.  How would eqs. (10.26) for geostrophic wind be 
different in the Southern Hemisphere?

E17.  Using eqs. (10.26) as a starting point, show your 
derivation for eqs. (10.29).  

E18.  Why are actual winds finite near the equator 
even though the geostrophic wind is infinite there? 
(Hint, consider Fig. 10.10).

E19.  Plug eq. (10.33) back into eqs. (10.31) to confirm 
that the solution is valid.  

E20.  Plug eqs. (10.34) back into eq. (10.33) to confirm 
that the solution is valid.

E21.  Given the pressure variation shown in Fig. 10.14.  
Create a mean-sea-level pressure weather map with 
isobars around high- and low-pressure centers such 
that the isobar packing matches the pressure gradi-
ent in that figure.

E22.  Fig. 10.14 suggests that any pressure gradient is 
theoretically possible adjacent to a low-pressure cen-
ter, from which we can further infer that any wind 
speed is theoretically possible.  For the real atmo-
sphere, what might limit the pressure gradient and 
the wind speed around a low-pressure center?

E23.  Given the geopotential heights in Fig. 10.3, 
calculate the theoretical values for gradient and/or 
geostrophic wind at a few locations.  How do the ac-
tual winds compare with these theoretical values?
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E34.  Look at each term within eq. (10.69) to justi-
fy the physical interpretations presented after that 
equation.

E35.  Consider eq. (10.70).  For the internal Rossby 
deformation radius, discuss its physical interpreta-
tion in light of eq. (10.71).

E36.  What type of wind would be possible if the 
only forces were turbulent-drag and Coriolis.  Dis-
cuss.

E37.  Derive equations for Ekman pumping around 
anticyclones.  Physically interpret your resulting 
equations.

E38.  Rewrite the total deformation as a function of 
divergence and vorticity.  Discuss.

10.12.4. Synthesize
S1.  For zonal (east-west) winds, there is also a verti-
cal component of Coriolis force.  Using your own di-
agrams similar to those in the INFO box on Coriolis 
Force, show why it can form.  Estimate its magni-
tude, and compare the magnitude of this force to 
other typical forces in the vertical.  Show why a ver-
tical component of Coriolis force does not exist for 
meridional (north-south) winds.

S2.  On Planet Cockeyed, turbulent drag acts at right 
angles to the wind direction.  Would there be any-
thing different about winds near lows and highs on 
Cockeyed compared to Earth?

S3.  The time duration of many weather phenomena 
are related to their spatial scales, as shown by eq. 
(10.53) and Fig. 10.24.   Why do most weather phe-
nomena lie near the same diagonal line on a log-log 
plot?   Why are there not additional phenomena that 
fill out the relatively empty upper and lower tri-
angles in the figure?  Can the distribution of time 
and space scales in Fig. 10.24 be used to some ad-
vantage?

S4.  What if atmospheric boundary-layer drag were 
constant (i.e., not a function of wind speed).   De-
scribe the resulting climate and weather.

S5.  Suppose Coriolis force didn’t exist.  Describe the 
resulting climate and weather.

S6.  Incompressibility seems like an extreme simpli-
fication, yet it works fairly well?  Why?  Consider 
what happens in the atmosphere in response to 
small changes in density.  

S7.  The real Earth has locations where Coriolis force 
is zero.   Where are those locations, and what does 
the wind do there?

S8.  Suppose that wind speed M = c·F/m, where c = 
a constant,  m = mass, and F is force.  Describe the 
resulting climate and weather.

S9.  What if Earth’s axis of rotation was pointing di-
rectly to the sun.   Describe the resulting climate and 
weather.

S10.  What if there was no limit to the strength of 
pressure gradients in highs.  Describe the resulting 
climate, winds and weather.

S11.  What if both the ground and the tropopause 
were rigid surfaces against which winds experience 
turbulent drag.  Describe the resulting climate and 
weather.

S12.  If the Earth rotated half as fast as it currently 
does, describe the resulting climate and weather.

S13.  If the Earth had no rotation about its axis, de-
scribe the resulting climate and weather.

S14.  Consider the Coriolis-force INFO box. Create 
an equation for Coriolis-force magnitude for winds 
that move:
 a. westward  b. southward

S15. What if a cyclostrophic-like wind also felt drag 
near the ground?  This describes conditions at the 
bottom of tornadoes.  Write the equations of mo-
tion for this situation, and solve them for the tan-
gential and radial wind components.  Check that 
your results are reasonable compared with the pure 
cyclostrophic winds.  How would the resulting 
winds affect the total circulation in a tornado?  As 
discoverer of these winds, name them after your-
self. 

S16.  What if F = c·a, where c = a constant not equal 
to mass, a = acceleration, and F is force.  Describe the 
resulting dynamics of objects such as air parcels. 

S17.  What if pressure-gradient force acted parallel 
to isobars.  Would there be anything different about 
our climate, winds, and weather maps?

S18.  For a free-slip Earth surface (no drag), describe 
the resulting climate and weather.

S19.  Anders Persson discussed issues related to 
Coriolis force and how we understand it (see Weath-
er, 2000.)   Based on your interpretation of his paper, 
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can Coriolis force alter kinetic energy and momen-
tum of air parcels, even though it is only an apparent 
force?  Hint, consider whether Newton’s laws would 
be violated if your view these motions and forces 
from a fixed (non-rotating) framework.

S20.  If the Earth was a flat disk spinning about the 
same axis as our real Earth, describe the resulting 
climate and weather.

S21.  Wind shear often creates turbulence, and tur-
bulence mixes air, thereby reducing wind shear.  
Considering the shear at the ABL top in Fig. 10.7, 
why can it exist without mixing itself out?

S22.  Suppose there was not centrifugal or centrip-
etal force for winds blowing around lows or highs.  
Describe the resulting climate, winds and weather.

S23.  Suppose advection of the wind by the wind 
were impossible.  Describe the resulting climate and 
weather.
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