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17  REGIONAL  WINDS

 Each locale has a unique landscape that creates or 
modifies the wind.  These local winds affect where 
we choose to live, how we build our buildings, what 
we can grow, and how we are able to travel.
 During synoptic high pressure (i.e., fair weather), 
some winds are generated locally by temperature 
differences.  These gentle circulations include ther-
mals, anabatic/katabatic winds, and sea breezes.  
 During synoptically windy conditions, moun-
tains can modify the winds.  Examples are gap 
winds, boras, hydraulic jumps, foehns/chinooks, 
and mountain waves.  

17.1. WIND FREQUENCY

17.1.1. Wind-speed Frequency
 Wind speeds are rarely constant.  At any one 
location, wind speeds might be strong only rare-
ly during a year, moderate many hours, light even 
more hours, and calm less frequently (Fig. 17.1).  The 
number of times that a range ∆M of wind speeds 
occurred in the past is the frequency of occurrence.  
Dividing the frequency by the total number of wind 
measurements gives a relative frequency.  The ex-
pectation that this same relative frequency will oc-
cur in the future is the probability (Pr).  
 The probability distribution of mean wind speeds 
M at any location is described by the Weibull dis-
tribution:
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Figure 17.1
Wind-speed M probability (relative frequency) for a Weibull dis-
tribution with parameters  α = 2 and Mo = 5 m s–1.
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where Pr is the probability (or relative frequency) 
of wind speed M± 0.5·∆M.  Such wind-speed vari-
ations are caused by synoptic, mesoscale, local and 
boundary-layer processes.
 Location parameter Mo is proportional to the 
mean wind speed.  For spread parameter  α, small-
er α causes wider spread of winds about the mean.  
Values of the parameters and the corresponding dis-
tribution shape vary from place to place.
 The bin size or resolution is ∆M.  For exam-
ple, the column plotted in Fig. 17.1 for M = 3 m s–1 
is the probability that the wind is between 2.5 and 
3.5 m s–1.  The width of each column in the histo-
gram is ∆M = 1 m s–1.  The sum of probabilities for 
all wind speeds should equal 1, meaning there is a 
100% chance that the wind speed is between zero 
and infinity.  Use this to check for errors.  Eq. (17.1) is 
only approximate, so the sum of probabilities almost 
equals 1.
 Wind-speed distributions are useful to estimate 
electrical power generation by wind turbines, and 
when designing buildings and bridges to withstand 
extreme winds.  
 You can express extreme-wind likelihood as a re-
turn period (RP), which is equal to the total period 
of measurement divided by the number of times the 
wind exceeded a threshold.  For example, if winds 
exceeding 30 m s–1 occurred twice during the last 
century, then the return period for 30 m s–1 winds is  
RP = (100 yr)/2 = 50 years.  Faster winds occur less 
frequently, and have greater return periods.

17.1.2. Wind-direction Frequency
 By counting the frequency of occurrence that 
winds came from each compass direction (N, NNE, 
NE, etc.) over a period such as 10 years, and then 
plotting that frequency on a polar graph, the result 
is called a wind rose.  For example, Fig. 17.2 shows 
the wind rose for Vancouver Airport (CYVR).  
 The total length of each wind line gives the total 
frequency of any wind speed from that direction, 
while the width (or color) of the line subdivides that 
frequency into the portions associated with various 
wind speeds.  (Not all wind roses are subdivided by 
wind speed.)  The frequency of calm winds is usu-
ally written in the center of the circle if it fits, or is 
indicated off to the side.  The sum of all the frequen-
cies (including calm) should total 100%.  At a glance, 
the longest lines indicate the predominant wind di-
rections for any location. 
 For example, at Vancouver Airport, East (E) winds 
(winds from the east) are most frequent, followed by 
winds from the WNW and then from the ESE.  Air-
craft take-offs and landings are safer — and require 
shorter distances — if they are done into the wind.  
Hence, airports are built with their runways aligned 

Sample Application
 Given Mo = 5 m s–1 and α = 2, find the probability 
that the wind speed will be between 5.5 & 6.5 m s–1? 

Find the Answer
Given: Mo = 5 m s–1,  α = 2,  M= 6 m s–1

 ∆M = 6.5 – 5.5 m s–1 = 1 m s–1, 
Find:  Pr = ?  (dimensionless)

Use eq. (17.1):
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 = 0.114  = 11.4%  

Check:  Units OK.  Physics OK.
Exposition: This agrees with Fig. 17.1 at M = 6 m s–1, 
which had the same parameters as this example.  To 
get a sum of probabilities that is very close to 100%, use 
a smaller bin size ∆M and be sure not to cut off the tail 
of the distribution at high wind speeds.

Sample Application
     How frequent are east winds at Vancouver airport?

Find the Answer
 Use Fig. 17.2.   Frequency ≈ 26% .  

Exposition:  This is the sum of 2% for 0.5 < M ≤ 1.9, 
plus 9% for 1.9 <  M ≤ 3.4, plus 10% for 3.4 < M ≤ 5.5, plus 
5% for M > 5.5 m s–1. 

Figure 17.2
Wind rose for Vancouver Airport (CYVR), 
Canada.  Circles indicate frequency.
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parallel to the predominant wind directions (within 
reason, as dictated by property boundaries and ob-
stacles).  
 Fig. 17.3 shows that the runways at Vancouver 
Airport are appropriate for the wind climatology of 
the previous figure.  The end of each runway is la-
beled with the magnetic compass direction (in tens 
of degrees; e.g., 12 means 120° magnetic) towards 
which the aircraft is flying when approaching that 
end of the runway from outside the airport.  Thus, 
aircraft will use runway 30 for winds from 300°.  
Parallel runways are labeled as left (L) or right (R).

17.2. WIND-TURBINE POWER GENERATION

 Power is defined as the rate of energy production.  
Kinetic energy of the wind is proportional to air 
mass times wind-speed squared.  The rate at which 
this energy is blown through a wind turbine is the 
wind speed.  Thus, the theoretical power available 
from the wind is proportional to wind speed cubed: 

   Power E R Min= π( / )· · · ·2 2 3ρ  (17.2)

where R is the turbine-blade radius, Min is incoming 
wind speed, and ρ is air density.  Turbine efficiencies 
are E = 30% to 45%.  
 Faster winds and larger-radius turbines allow 
greater power generation.  Modern large wind tur-
bines have a hub height (center of the turbine) of 80 
m or more, to reach the faster winds higher above 
the surface.  Turbines with radius of 30 m can gen-
erate up to 1.5 MW (mega Watts) of electricity, while 
blades of 40 m radius can generate up to 2.5 MW. 
 To see how a wind turbine works, consider Fig. 
17.4 with an incoming wind speed Min.  Even before 
the wind reaches the disk swept out by the turbine 
blades, it feels the increased drag (higher pressure) 
from the turbine and begins to slow.  It slows further 
while passing through the turbine (because the tur-
bine is extracting energy from the wind), and slows 
more just behind the turbine due to the suction drag.  
Because the exit speed Mout is slower than the en-
trance speed, and because air-volume flow rate (= 
M · cross-section area) is conserved, the diameter of 
the air that feels the influence of the turbine must 
increase as wind speed decreases.
 Zero exit speed is impossible, because the exit-
ed air would block subsequent in-flow, preventing 
power production.  Also, if the exit speed equals the 
entrance speed, then power production is zero be-
cause no energy is extracted from the wind.  Thus, 
wind turbines are designed to have an optimum 
wind-speed decrease of Mout/Min = 1/3 (see HIGH-

Sample Application
 A wind turbine at sea level uses a 30 m radius blade 
to convert a 10 m s–1 wind into electrical power at 40% 
efficiency.  What is the theoretical power output?

Find the Answer
Given: ρ =1.225 kg·m–3, R=30 m, Min = 10 m s–1, E = 0.4
Find:  Power = ? kW   (Appendix A defines Watt, W)

Use eq. (17.2): 
  Power = (π/2)·(1.225 kg·m–3)·(0.4)·(30m)2·(10m s–1)3 
 = 6.93x105  kg·m2·s–3 =  693 kW  

Check:  Units OK.  Physics OK.
Exposition:  To estimate annual wind turbine power, 
use the Weibull distribution to find the power for each 
wind speed separately, and add all these power incre-
ments.  Do not use the annual average wind speed. 

Figure 17.3
Plan view of runways at Vancouver International Airport 
(CYVR), Canada.
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ER MATH box on Betz’ Law).  Albert Betz showed 
that the theoretical maximum turbine efficiency at 
this optimum speed is  Emax = 16/27  = 59.3%, which 
is known as Betz’ Limit.
 Wind turbines need a wind speed of at least 3 
to 5 m s–1 to start turning.  This is called the cut-
in speed.   As wind speed increases, so increases 
the amount of power generated.  At its rated wind 
speed (8 to 15 m s–1), the turbine is producing the 
maximum amount of electricity that the generators 
can handle.  As wind speeds increase further, the 
aerodynamics of the blades are designed to change 
(via feathering the blades to reduce their pitch, or 
causing aerodynamic stalling) to keep the shaft ro-
tation rate and electrical power generation nearly 
constant.  Namely, the efficiency is intentionally re-
duced to protect the equipment.  Finally, for wind 
speeds at or above a cut-out wind speed (25 - 30 
m s–1), turbine rotation is stopped by feathering 
(changing the angle of attack of) the blades, to pre-
vent damage.  Fig. 17.5 shows the resulting idealized 
power output curve for a wind turbine.  

17.3. THERMALLY DRIVEN CIRCULATIONS

17.3.1. Thermals
 Thermals are warm updrafts of air, rising due to 
their buoyancy.  Thermal diameters are nearly equal 
to their depth, zi (Fig. 17.6).
 A rising thermal feels drag against the surround-
ing environmental air (not against the ground).  This 
drag is proportional to the square of the thermal up-
draft velocity relative to its environment.  Neglect-
ing advection and pressure deviations, the equation 
of vertical velocity W from the Atmospheric Forces 
& Winds chapter reduces to:

HIGHER MATH  •  Betz’ Law

 In 1919 Albert Betz reasoned that the energy ex-
tracted by the turbine is the difference between in-
coming and outgoing kinetic energies:

  Energy  =  0.5·m·Min
2  – 0.5·m·Mout

2   (1)

where m is air mass and M is wind speed.  The amount 
of air mass moving through the disk swept by the tur-
bine during time interval ∆t is the air density ρ times 
disk area (A = πR2) times average speed:

  m = ρ · A · 0.5(Min + Mout) · ∆t    (2)

 Plug this into the previous eq. and divide by ∆t to 
get the power that the turbine can produce:

Power = 0.25 ·ρ ·A ·(Min + Mout) ·( Min
2  – Mout

2 ) (3)

Divide this power by the power of the incoming wind 
0.5·ρ·A· Min

3  to get a theoretical efficiency Eo:   

  Eo = (1/2) · [ 1 – (Mout/Min)2 ] · [ 1 + (Mout/Min)]   (4)

Solve eq. (4) on a spreadsheet and plot Eo vs. Mout/Min 
(see Fig. below)  The peak in the curve gives

  Emax = 0.593       at      Mout/Min = 1/3.
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Fig. 17.a Theoretical turbine efficiencies using Betz’ Law.

 We can get the precise answer using calculus.  Let 
the ratio of wind speeds be  r = Mout/Min , to simplify 
the notation.  Use r in eq. (4):

  Eo = (1/2)·(1 – r2)·(1 + r)  =  (1/2)·[1 + r – r2 – r3] (5)

Differentiate Eo and set  dEo/dr = 0 to find the value of 
r at max Eo:                3 r2 + 2r – 1 = 0 (6)
Solving this quadratic eq for r gives r =1/3 and r = –1, 
for which the only physically reasonable answer is 
    r = Mout/Min = 1/3  . 
 Finally, plug this r into eq. (5) to get the max Eo:
  Emax = (1/2)·[ 1 + (1/3) – (1/9) – (1/27) ] (7)
Using a common denominator of 27, we find 
 Emax = (1/2)·[32/27]  =  16/27 = 0.593  = 59.3%.  

Figure 17.5
Typical power-output curve for a 1 MW wind turbine as a func-
tion of wind speed M.

0 10 20 30
M (m/s)

0

0.5

1

O
ut

pu
t P

ow
er

 (
M

W
)

cut-in

rated

cut-out



	 R.	STULL			•			PRACTICAL		METEOROLOGY	 649

   
∆
∆
W
t T

g C
W
z

vp ve

ve
w

i
=

−
−

θ θ
·

2

 (17.3)
    tendency         buoyancy            turb. drag

where zi is the mixed-layer (boundary-layer) depth, 
Cw ≈ 5  is the vertical drag coefficient,  θv is the virtu-
al potential temperature, subscripts p and e indicate 
the air parcel (the thermal) and the environment, 
Tve is average absolute virtual temperature of the 
environment, and |g|= 9.8 m·s–2 is the magnitude of 
gravitational acceleration. 
 At steady state, the acceleration is near zero (∆W/∆t 
≈ 0).  Eq. (17.3) can be solved for the updraft speed of 
buoyant thermals (i.e., of warm air parcels):

   W
g z

C T
i

w

vp ve

ve
=

−· ( )θ θ  (17.4)

Thus, warmer thermals in deeper boundary layers 
have greater updraft speeds.
 This equation also applies to deeper convection 
at the synoptic- and meso-scales, such as weak up-
drafts in thunderstorms that rise to the top of the 
troposphere.  For that case, zi is the depth of the 
troposphere, and the temperature difference is that 
between the mid-cloud and the surrounding envi-
ronment at the same height.  For stronger updrafts 
and downdrafts in thunderstorms, the pressure de-
viation term of the equation of vertical motion must 
also be included (see the Thunderstorm chapters).

17.3.2. Cross-valley Circulations
 (Circulations perpendicular to the valley axis.)

17.3.2.1. Anabatic Wind
 During daytime in synoptically calm conditions 
(high-pressure center) with mostly clear skies, the 
sunlight heats mountain slopes.  The warm moun-
tain surface heats the neighboring air, which then 
rises.  However, instead of rising vertically like 
thermals, the rising air hugs the slope as it rises.  
This warm turbulent air rising upslope is called an 
anabatic wind (Fig. 17.7).  Typical speeds are 3 to 

Sample Application
 Find the steady-state updraft speed in the middle 
of (a) a thermal in a boundary layer that is 1 km thick; 
and (b) a thunderstorm in a 11 km thick troposphere.  
Virtual temperature excess is 2°C for the thermal & 5°C 
for the thunderstorm, and |g|/ Tve  = 0.0333 m·s–2·K–1 .

Find the Answer
Given: |g|/ Tve  = 0.0333 m·s–2·K–1 ,
  (a) zi = 1000 m,  Tvp – Tve = 2°C 
  (b) zi = 11,000 m,  Tvp – Tve = 5°C, 
Find:  W = ? m s–1

Use eq. (17.4):  (a) For the thermal:
    

W =
( . )( )( )0 0333 1000 2

5
m·s K m K-2 -1      = 3.65 m s–1  

(b) For the thunderstorm:
    

W =
( . )( )( )0 0333 11000 5

5
m·s K m K-2 -1     = 19.1 m s–1  

Check:  Units OK.  Physics OK.
Exposition:  These speeds are rough estimates.  
Between the updrafts are larger-diameter, slower 
downdrafts, so that air mass is conserved across any 
arbitrary horizontal plane.  Convection (regions of 
up- and downdrafts) cause bumpy airplane rides.

Figure 17.6a
Sketch of thermals in a convective mixed layer of depth zi. White 
arrows show thermal updrafts W.  Tp is temperature of the ther-
mal. Green arrows show free-atmosphere air being entrained 
down into the convective mixed layer between the thermals.  

Figure 17.6b
Actual thermals are visible to lidar (laser radar) by the light 
scattered off of pollutants carried up from the surface.  (Image 
courtesy of Shane Mayor, Nat’l. Ctr. for Atmos. Res.)
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5 m s–1, and depths are hundreds of meters.  The 
anabatic wind is the rising portion of a cross-val-
ley circulation.
 When the warm air reaches ridge top, it breaks 
away from the mountain and rises vertically, often 
joined by the updraft from the other side of the same 
mountain.  Cumulus clouds called anabatic clouds 
can form just above ridge top in this updraft.
 The dashed line in Fig. 17.7 is at a constant height 
above sea level.  Following the line from left to right 
in Fig. 17.7a, potential temperatures of about 19°C are 
constant until reaching anabatic air near the moun-
tain, where the potential temperature rises to about 
21°C in this idealized illustration.  
 The temperature difference between the warmed 
air near the mountain and the cooler ambient air 
creates a small horizontal pressure gradient force 
(exaggerated in Fig. 17.7b) that holds the warm ris-
ing air against the mountain.  To find this horizon-
tal pressure-gradient force per unit mass m, use the 
hypsometric equation (see INFO box on next page):

     
F

m
P
x

g
T

T
x PG

e
= − =1

ρ
α∆

∆
∆

·tan( )  (17.5)

where ∆x is horizontal distance (positive in the up-
hill direction), |g|= 9.8 m·s–2 is gravitational acceler-
ation magnitude, ∆T = Tp – Te is temperature differ-
ence between the air near and far from the slope, Tp 
is temperature of the warm near-mountain air, Te is 
temperature of the cooler environmental air, and α 
is the mountain slope angle.  Use absolute tempera-
ture (kelvins) in the denominator of eq. (17.5).
 The horizontal pressure difference across the 
anabatic flow is very small compared to the verti-
cal pressure difference of air in hydrostatic balance.  
However, the horizontal pressure difference occurs 
across a short horizontal distance (tens of meters), 
yielding a modest pressure gradient that drives a 
measurable anabatic wind.
 The portion of this pressure-gradient force in the 
along-slope direction (s) is  Fs PG = Fx PG · cos(α), as 
can be seen from Fig. 17.8a.  Combining this with 
the previous equation, and using the trigonometric 
identity  tan(α) · cos(α) = sin(α), gives:  

    
F

m
g

T
T

s PG

e
= ∆

·sin( )α  (17.6)

But recall from the vertical equation of motion that 
the vertical buoyancy force is  FzB/m = |g|·(∆T/Te).  
Thus, eq. (17.6) can also be interpreted as the com-
ponent of vertical buoyancy force in the up-slope 
direction (s), as can be seen from Fig. 17.8b.   

Sample Application
 Anabatic flow is 5°C warmer than the ambient 
environment of 15°C.  Find the horizontal and along-
slope pressure-gradient forces/mass, for a 30° slope.

Find the Answer
Given:  Te = 15°C + 273 = 288 K,  ∆T = 5 K,  α = 30°
Find:  (a) FxPG/m = ? m·s–2,   (b) FsPG/m = ? m·s–2  

|g|·∆T/Te = (9.8m·s–2)·(5K)/(288K) =  0.17 m·s–2   

Use eq. (17.5):
 Fx PG/m = (0.17 m·s–2)·tan(30°) = 0.098 m·s–2   

Use eq. (17.6):
 Fs PG/m = (0.17 m·s–2)·sin(30°) = 0.085 m·s–2  

Check:  Units OK, because m·s–2 = N kg–1.  
Exposition:   Glider and hang-glider pilots use the 
anabatic updrafts to soar along mountain slopes and 
mountain tops.

Figure 17.8
Geometry of anabatic (upslope) flows.  F is force, subscript s is 
in the up-slope direction, subscript PG is pressure gradient, and 
subscript B is buoyancy.   FsB = FsPG.
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INFO  •  Anabatic Slope Flow
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Fig. 17.b.  Dashed green lines are isobars.  Soundings at 
left and right correspond to air columns B and A.  

Derivation of Horizontal Pressure Gradient
 Consider an idealized situation of isothermal 
environmental air of temperature Te and warmer 
near-mountain air (shaded grey) of temperature Tp 
with uniform vertical depth ∆z, as sketched in Fig. 
17.b.  Consider two air columns: A and B.  If a reference 
height ref is set at the base of column A (thin grey line), 
then place column B such that the same ref  height is at 
the top of the warm-air layer.  
 For both columns A and B, start at the same pres-
sure (Po, at the solid black dots in Fig. 17.b).  As you de-
scend distance ∆z, the pressure P increase depends on 
air temperature T, as given by the hypsometric equa-
tion (from Chapter 1):

    ln( ) ln( )
∆
·

P P
z

a To= +  (1)

where a = ℜd/|g| = 29.3 m K–1.  Thus, the ln(P) increas-
es linearly with decreasing altitude (Fig. 17.c).
 In column B, the temperature is uniformly cool  be-
tween the solid black dot and the reference height, so 
pressure increases rapidly as you descend (Fig. 17.c).  
However, in column A, the temperature is uniformly 
warmer, so the pressure doesn’t increase as fast.  
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ln(P)ln(P0) ln(P1) ln(P2)

BA

A, B

ref.
d

∆ln(Px)

Fig. 17.c.  Change of pressure with height, as given by the 
hypsometric equation for cool air in column B and warm air 
in column A.  (not to scale)
     (continues in next column)

INFO  •  Anabatic (continuation)

By the time you have descended distance ∆z from the 
black dot to the reference height, the pressure in the 
cold air has increased to P2, but in the warm air has in-
creased a smaller amount to P1.  Thus, at the reference 
height, there is a horizontal pressure difference ∆P = 
P2 – P1 pointing toward the mountain slope.  
 To quantify this effect, start with the hypsometric 
equation, separately for columns A and B:

  Col. B at ref.:     ln(P2) = ln(Po) + ∆z/(a·Te)

  Col. A at ref:     ln(P1) = ln(Po) + ∆z/(a·Tp)

where a = ℜd/|g| = 29.3 m K–1 from Chapter 1. 
Subtract equation A from B

   ln( ) ln( )
∆

·P P
z

a T Te p
2 1
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Create a common denominator in the parentheses, 
and combine the  ln()  terms:
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 Take the exponential of both sides, solve for P1:
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where ∆T = Tp – Te , and where Te
2 ≈ Te·Tp because both 

are absolute temperatures.  Next, subtract P2 from 
both sides, and let ∆P = P1 – P2  be the pressure change 
in the positive x-direction at the reference height:
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 Approximate the exponential with a truncated 
Taylor series: exp(–y) ≈ 1 – y +  . . .  Thus, the pressure 
decrease along the  ref. height from B to A is

    ∆ ·
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Expanding a and using the ideal gas law gives:
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 Divide both sides by ∆x to give the horizontal pres-
sure-gradient force per unit mass Fx PG/m :
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Substituting ∆z/∆x = tan(α)  gives the desired eq. (17.5), 
where α is the mountain slope angle.  
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·tan( )  (17.5)

Also, in Fig. 17.c, d = z(P1 at B) – z(P1 at A) is the deflection 
distance of the near-mountain end of isobar P1 in Fig. 
17.b.  
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 To forecast the speed of the upslope flow, apply 
the equation of horizontal motion to a sloping sur-
face and use eq. (17.6), which gives:
     (17.7)
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where Us is along-slope (up- or down-slope) flow, V 
is across-slope flow, ∆θv is virtual potential tempera-
ture difference between the slope-flow air and the 
environment (where ∆θv = ∆θ = ∆T for dry air), Tv is 
the absolute virtual temperature, fc = 2Ω·sin(latitude) 
is the Coriolis parameter, 2Ω = 1.458423x10–4 s–1, CD 
is a drag coefficient against the ground, and ∆z is the 
vertical depth of the slope flow.  

17.3.2.2. Katabatic Wind
 During anticyclonic conditions of calm or light 
synoptic-scale winds at night, air adjacent to a cold 
mountain slope can become colder than the sur-
rounding air.  This cold, dense air flows downhill 
under the influence of gravity (buoyancy), and is 
called a katabatic wind (Fig. 17.9).  It can also form 
in the daytime over snow- or ice-covered slopes.
 The katabatic wind is shallowest at the top of the 
slope, and increases in thickness and speed further 
downhill.  Typical depths are 10 to 100 m, where the 
depth is roughly 5% of the vertical drop distance 
from the hill top.  Typical speeds are 3 to 8 m s–1.   
Katabatic flows are shallower and less turbulent 
than anabatic flows.
 Equation (17.7) also applies for katabatic flows, 
but with negative ∆θv.  A horizontal pressure gradi-
ent drives the katabatic wind, but with hydrostatic 
air pressure increasing near the slope due to the cold 
dense air.  Namely, isobars bend upward near the 
mountain during katabatic flows (Fig. 17.9). 
 The virtual potential temperature in a katabatic 
flow is generally coldest at the ground, and smooth-
ly increases with height (Fig. 17.9).  For the differ-
ence  ∆θv = (θvp – θve), use the average temperature 
in the katabatic flow θvp  minus the environmental 
temperature at the same altitude  θve.
 If there were no friction against the surface, then 
the fastest downslope winds would be where the air 
is the coldest; namely, closest to the ground.  How-
ever, winds closest to the ground are slowed due 
to turbulent drag, leaving a nose of fast winds just 
above ground level (Fig. 17.9).
 In Antarctica where downslope distances are 
hundreds of kilometers, the katabatic wind speeds 
are 3 to 20 m s–1 with extreme cases up to 50 m s–1, 
and durations of many days.  These attributes are 
sufficiently large that Coriolis force turns the equi-

Sample Application
 For the scenario in the previous Sample Applica-
tion, suppose a steady-state is reached where the only 
two forces are buoyancy and drag.  Find the anabatic 
wind speed, assuming an anabatic flow depth of 50 m 
and drag coefficient of 0.05.

Find the Answer
Given:  buoyancy term = 0.085 m·s–2 from previous
  Sample Application.  CD = 0.05,  ∆z = 50m  
Find:  Us = ? m s–1

Solve eq. (17.7) for Us, considering only buoyancy and 
drag terms:

 Us = [(∆z/CD)·buoyancy term) ]1/2  

  =  [ ((50m)/(0.05)) · (0.085 m·s–2)  ]1/2  = 9.2 m s–1  

Check:  Units OK.  Magnitude too large.  
Exposition:  In real anabatic flows, the temperature 
excess (5°C in this example) exists only close to the 
ground, and decreases to near zero by 50 to 100 m away 
from the mountain slope.  If we had applied eq. (17.7) 
over the 5 m depth of the temperature excess, then a 
more-realistic answer of 2.9 m s–1 is found.
 A better approach is to use the average tempera-
ture excess over the depth of the anabatic flow, not the 
maximum temperature excess measured close to the 
mountain slope.
 Turbulence is strong during convective conditions 
such as during anabatic winds, which increases the 
turbulent drag against the ground.

Figure 17.9
Katabatic winds (shaded light blue).  Superimposed (thick black 
lines) are the along-slope wind-speed profile (Us vs. z’) and tem-
perature profile (T vs z’), where z’ is normal to the surface s.   Tp 
is the average temperature in the katabatic-flow air, and Te is the 
ambient environmental temperature just outside of the katabatic 
flow.  The katabatic wind is indicated with the large blue arrows.  
Isobars (dashed green lines) tilt upward in the cold air.
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librium wind direction 30 to 50° left of the fall line 
(a line pointing downhill).  However, for most small-
er valleys and slopes you can neglect Coriolis force 
and the across-slope (V) wind, allowing eq. (17.7) to 
be solved for some steady-state situations, as shown 
next. 
 Initially the wind (averaged over the depth of the 
katabatic flow) is influenced mostly by buoyancy and 
advection.  It accelerates with distance s downslope:

  U g
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saverage
v

ve
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/
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1 2

 (17.8)

where |g| = 9.8 m·s–2, Tve is absolute temperature 
in the environment at the height of interest, α is the 
mountain slope angle, and s is distance downslope.
 The average katabatic wind eventually approach-
es an equilibrium where drag balances buoyancy:
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 (17.9)

where CD is the total drag against both the ground 
and the slower air aloft, and h is depth of the 
katabatic flow. 

17.3.3. Along-valley Winds
 Katabatic and anabatic winds are part of larger 
circulations in the valley.  

17.3.3.1. Night
 At night, the katabatic winds from the bottom of 
the slopes drain into the valley, where they start to 
accumulate.  This pool of cold air is often stratified 
like a layer cake, with the coldest air at the bottom 
and less-cold air on top.  Katabatic winds that start 
higher on the slope often do not travel all the way 
to the valley bottom (Fig. 17.10).  Instead, they either 
spread out at an altitude where they have the same 
buoyancy as the stratified pool in the valley, or they 
end in a turbulent eddy higher above the valley 
floor.  This leads to a relatively mild thermal belt 
of air at the mid to upper portions of the valley walls 
— a good place for vineyards and orchards because 
of fewer frost days.
 Meanwhile, the cold pool of air in the valley 
bottom flows along the valley axis in the same di-
rection that a stream of water would flow.  As this 
cold air drains out of the valley onto the lowlands, 
it is known as a mountain wind.  This is part of 
an along-valley circulation.  A weak return flow 
aloft (not drawn), called the anti-mountain wind, 
flows up-valley, and is the other part of this along-
valley circulation.   

Sample Application (§)
 Air adjacent to a 10° slope averages 10°C cooler 
over its 20 m depth than the surrounding air of virtual 
temperature 10°C.  Find and plot the wind speed vs. 
downslope distance, and the equilibrium speed.  CD = 
0.005 .

Find the Answer
Given:  ∆θv= –10°C,   Tve=283 K,   α= 10°,   CD= 0.005
Find:   U (m s–1) vs. x (km),  where s ≈ x .

Use eq. (17.9) to find final equilibrium value:
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 |Ueq| = 15.5 m s–1   

Use eq. (17.8) for the initial variation.
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Check:  Units OK.  Physics OK.
Exposition:  Although these two curves cross, the 
complete solution to eq. (17.7) smoothly transitions 
from the initial curve to the final equilibrium value.

Figure 17.10
Katabatic winds are cross-valley flows that merge into the 
along-valley mountain winds draining down the valley.  Rela-
tively warm air can exist in the “thermal belt” regions.
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17.3.3.2. Day
 During anabatic conditions, there is often a weak 
cross-valley horizontal circulation (not drawn) 
from the tops of the anabatic updrafts back toward 
the center of the valley.  Some of this air sinks (sub-
sides) over the valley center, and helps trap air pol-
lutants in the valley.
 During daytime, the upslope anabatic winds 
along the valley walls remove air from the valley 
floor.  This lowers the pressure very slightly near 
the valley floor, which creates a pressure gradient 
that draws in replacement air from lower in the val-
ley.   These upstream flowing winds are called val-
ley winds (Fig. 17.11), and are part of an along-val-
ley circulation.  A weak return flow aloft (heading 
down valley; not drawn in Fig. 17.11) is called the 
anti-valley wind.

17.3.3.3. Transitions
 Because the sun angle relative to the mountain 
slope determines the solar heating rate of that slope, 
the anabatic winds on one side of the valley are of-
ten stronger than on the other.  At low sun angles 
near sunrise or sunset, the sunny side of the valley 
might have anabatic winds while the shady side 
might have katabatic winds. 

17.3.4. Sea breeze
 A sea breeze is a shallow cool wind that blows 
onshore (from sea to land) during daytime (Fig. 
17.12).  It occurs in large-scale high-pressure regions 
of weak or calm geostrophic wind under mostly 
clear skies.  Similar flows called lake breezes form 
along lake shorelines, and inland sea breezes 
form along boundaries between adjacent land re-
gions with different land-use characteristics (e.g., 
irrigated fields of crops adjacent to drier land with 
less vegetation).  
 The sea breeze is caused by a 5 °C or greater tem-
perature difference between the sun-heated warm 
land and the cooler water.  It is a surface manifes-
tation of a thermally driven mesoscale circulation 
called the sea-breeze circulation, which often in-
cludes a weak return flow aloft from land to sea.  
 For warm air over land, the hypsometric equa-
tion states that hydrostatic pressure does not de-
crease as rapidly with increasing height as it does 
in the cooler air over the sea (Fig. 17.13).  This creates 
a pressure gradient aloft between higher pressure 
over land and lower pressure over the sea, which ini-
tiates a wind aloft.  This wind moves air molecules 
from over land to over sea, causing surface pressure 
over the warm land to decrease because fewer total 
molecules in the warm-air column cause less weight 
of air at the base of the column.  Similarly, the sur-
face pressure over the water increases due to mol-

INFO  •  On Naming Local Winds

 Local winds are often named by where they come 
from.   Winds from the mountains are called moun-
tain winds.  Winds from the valley are called valley 
winds.  A breeze from the sea is called a sea-breeze.  

The opposite is a land breeze.  

Figure 17.11
Anabatic winds are warm upslope flows that are resupplied with 
air by valley winds flowing upstream.
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Figure 17.12
Vertical cross section through a sea-breeze circulation.   KHW 
= Kelvin-Helmholtz waves.  SBH = sea-breeze head.  TIBL = 
thermal internal boundary layer.
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ecules added to the cool-air column.  This creates 
a pressure gradient near the surface that drives the 
bottom portion of the sea-breeze circulation.  Such 
hydrostatic thermal circulations were explained 
in the General Circulation chapter.
 A sea-breeze front marks the leading edge of 
the advancing cool marine air and behaves similarly 
to a weak advancing cold front or a thunderstorm 
gust front.  If the updraft ahead of the front is humid 
enough, a line of cumulus clouds can form along the 
front, which can grow into a line of thunderstorms 
if the atmosphere is convectively unstable.
 The raised portion of cool air immediately be-
hind the front, called the sea-breeze head, is anal-
ogous to the head at the leading edge of a gust front.  
The sea-breeze head is roughly twice as thick as 
the subsequent portion of the feeder cool onshore 
flow (which is  0.5 to 1 km thick).  The top of the sea-
breeze head often curls back in a large horizontal 
roll eddy over warmer air from aloft.
 Vertical wind shear at the density interface be-
tween the low-level sea breeze and the return flow 
aloft can create Kelvin-Helmholtz (KH) waves.  
These breaking waves in the air have wavelength of  
0.5 to 1 km.  The KH waves increase turbulent drag 
on the sea breeze by entraining low-momentum air 
from above the interface.  A slowly subsiding return 
flow occurs over water and completes the circula-
tion as the air is again cooled as it blows landward 
over the cold water. 
 As the cool marine air flows over the land, a 
thermal internal boundary layer (TIBL) forms 
just above the ground (Fig. 17.12).  The TIBL grows in 
depth zi with the square root of distance x from the 
shore as the marine air is modified by the heat flux 
FH (in kinematic units K·m s–1) from the underlying 
warm ground:
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where γ = ∆θ/∆z is the gradient of potential tempera-
ture in the air just before reaching the coast, and M 
is the wind speed.
 In early morning, the sea-breeze circulation does 
not extend very far from the coast, but advances 
further over land and water as the day progresses.  
Advancing cold air behind the sea-breeze front be-
haves somewhat like a density current or gravity 
current in which a dense fluid spreads out horizon-
tally beneath a less dense fluid.  When this is simu-
lated in water tanks, the speed MSBF of advance of 
the sea-breeze front, is
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= · ·
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Sample Application
 What horizontal pressure difference is needed in 
the bottom part of the sea-breeze circulation to drive a  
onshore wind that accelerates from 0 to 6 m s–1 in 6 h? 

Find the Answer
Given:  ∆M/∆t = (6 m s–1)/(6 h) = 0.000278 m·s–2  
Find:  ∆P/∆x = ?  kPa km–1

Neglect all other terms in the horiz. eq. of motion:
   ∆M/∆t = –(1/ρ)·∆P/∆x      (10.23a)
Assume air density is  ρ = 1.225 kg m–3 at sea level.  
Solve for ∆P/∆x : 
∆P/∆x = –ρ · (∆M/∆t)  =  –(1.225kg m–3)·(0.000278m·s–2) 
 = –0.00034 kg·m–1·s–2/m   =   –0.00034 Pa m–1

 = –0.00034 kPa km–1  

Check:  Units OK.  Magnitude OK.
Exposition: Only a small pressure gradient is needed 
to drive a sea breeze.

Sample Application
 For a surface kinematic heat flux of 0.2 K m s–1, 
wind speed of 5 m s–1, and γ = 3K km–1, find the TIBL 
depth 5 km from shore.

Find the Answer
Given: FH=0.2 K·m s–1, M=5 m s–1, γ =3K km–1, x=5 km
Find:  zi = ?  m

Use eq. (17.10):
   zi =  [2·(0.2K·m s–1)·(5km) / {(3K km–1)·(5m s–1)} ]1/2 
 = 0.365 km  

Check:  Units OK.  Magnitude reasonable.
Exposition:  Above this height, the air still feels the 
marine influence, and not the warmer land.

Figure 17.13
Vertical cross section through a sea-breeze circulation, showing 
isobars (green).  H and L at any one altitude indicate relative-
ly higher or lower pressure.  The horizontal pressure gradient 
is greatly exaggerated in this illustration.  Thick black arrows 
show the coast-normal component of horizontal winds.
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where ∆θv is the virtual potential temperature dif-
ference between the cool marine sea-breeze air and 
the warmer air over land that is being displaced, Tv 
is an absolute average virtual temperature, |g| = 9.8 
m·s–2 is gravitational acceleration magnitude, d is 
depth of the density current, and constant k ≈ 0.62 . 
 When fully developed, surface (10 m height) 
wind speeds in the marine, inflow portion of the sea 
breeze at the coast are  1 to 10 m s–1 with typical 
values of  6 m s–1.  The relationship between sea-
breeze wind speed M at the coast and speed of the 
sea-breeze front is:

    M ≈ 1.15 · MSBF (17.12)

 The sea-breeze front can advance L = 10 to 200 
km inland by the end of the day, although typical 
advances are  L = 20 to 60 km unless inhibited by 
mountains or by opposing synoptic-scale winds.  
Even without mountain barriers, the sea breeze 
will eventually turn away from its advance due 
to Coriolis force.  For latitudes ≠ 30° (to avoid a di-
vide-by-zero error), L is roughly

    L
M

f

SBF

c

≈
−ω2 2 1 2/

 (17.13)

where MSBF  is given by the previous equa-
tion, ω = 2π day–1 = 7.27x10–5 s–1  is the frequen-
cy of the daily heating/cooling cycle, and fc = 
(1.458x10–4 s–1)·sin(latitude)  is the Coriolis param-
eter.  As the front advances, prefrontal waves may 
cause wind shifts ahead of the front.
 At the end of the day, the sea-breeze circulation 
dissipates and a weaker, reverse circulation called 
the land-breeze forms in response to the nighttime 
cooling of the land surface relative to the sea.  Some-
times, the now-disconnected sea-breeze front from 
late afternoon continues to advance farther inland 
during the night as a bore (the front of dense fluid 
advancing under less-dense fluid; also described 
as a propagating solitary wave with characteristics 
similar to the hydraulic jump).  In Australia, such 
a bore and its associated cloud along the wave crest 
are known as the Morning	Glory.
 In the vertical cross section normal to the coast-
line (as in Fig. 17.12), the surface wind oscillates back 
and forth between onshore and offshore, reversing 
directions during the morning and evening hours. 
The Coriolis force induces an oscillating along-shore 
wind component that lags the onshore-offshore 
component by 6 h (or 1/4 of a daily cycle).  Hence, 
the horizontal wind vector rotates throughout the 
course of the day.  Rotation is clockwise in the north-
ern hemisphere and counterclockwise in the south-
ern hemisphere.  
 The idealized sea-breeze hodograph has an 

Sample Application
 Marine-air of thickness 500 m and virtual tempera-
ture 16°C is advancing over land.  The displaced con-
tinental-air virtual temperature is 20°C.  Find the sea-
breeze front speed, and the sea-breeze wind speed. 

Find the Answer
Given:  ∆θv =  ∆Tv = 20 – 16°C = 4°C  ,    d = 500 m
   Tv average = (16+20°C)/2 =  18°C = 291K
Find:    MSBF = ? m s–1,      M = ? m s–1

For speed-of-advance of the front, use eq. (17.11):
   MSBF = (0.62) · [(9.8m·s–2)·(4K)·(500m)/(291K)]1/2  
   = 5.1 m s–1  

For the sea-breeze wind speed, use eq. (17.12):
   M = 1.15 · (5.1m s–1)  =  5.9 m s–1  

Check:  Units OK.  Magnitude OK.
Exposition:  Because the sea-breeze circulation ex-
tends 20 to 250 km over the sea, mariners used these 
reliable breezes to sail north-south along the Atlan-
tic coasts of Europe and Africa centuries ago.  Upon 
reaching the latitude of the easterly trade winds in 
the tropical global circulation, they then sailed west 
towards the Americas.  Upon reaching the Americas, 
they again used the sea-breezes to sail north and south 
along the East Coasts of North and South America.  For 
the return trip to Europe, they sailed in the mid-lati-
tude westerlies.  Thus, by using both local sea-breeze 
winds and the global circulation, they achieved an ef-
fective commercial trade route.

Sample Application
 Assuming calm synoptic conditions (i.e., no large-
scale winds that oppose or enhance the sea-breeze), 
what maximum distance inland would a sea-breeze  
propagate.  Use data from the previous Sample Appli-
cation, for a latitude of 45°N.

Find the Answer:
Given:  MSBF = 5.1 m s–1 from previous example.
  latitude = 45°N.
Find: L = ?  km

First, find the Coriolis parameter:
 fc = (1.458x10–4 s–1)·sin(45°) = 1.03x10–4 s–1  
Use eq. (17.13):
 L = (5.1 m s–1) /
  [(7.27x10–5 s–1)2 – (1.03x10–4 s–1)2]1/2  = 70 km  

Check: Units OK.  Magnitude reasonable.
Exposition:  At 30° latitude the denominator of eq. 
(17.13) is zero, causing L = ∞.   But this is physically 
unreasonable.  Thus, we expect eq. (17.13) to not be reli-
able at latitudes near 30°.
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elliptical shape (Fig. 17.14).  For example, along a 
meridional coastline with the ocean to the west in 
the Northern Hemisphere, the diurnal component 
of the surface wind tends to be westerly (onshore) 
during the mid-day, northerly (alongshore) during 
the evening, easterly near midnight, and southerly 
(alongshore) near sunrise. 
 The sea-breeze wind and the mean (24 h average) 
synoptic-scale surface wind are additive.  If the syn-
optic-scale wind in the above example is blowing 
from the north, the surface wind speed will tend to 
be higher around sunset when the mean wind and 
the diurnal component are in the same direction, 
than around sunrise when they oppose each other.
 Many coasts have complex shaped coastlines 
with bays or mountains, resulting in a myriad of 
interactions between local flows that distort the sea 
breeze and create regions of enhanced convergence 
and divergence. The sea breeze can also interact with 
boundary-layer thermals, and urban circulations, 
causing complex dispersion of pollutants emitted 
near the shore.  If the onshore synoptic-scale geo-
strophic wind is too strong, only a TIBL develops 
with no sea-breeze circulation.
 In regions such as the west coast of the Americas, 
where major mountain ranges lie within a few hun-
dred kilometers of the coast, sea breezes and terrain-
induced winds appear in combination. 

17.4. OPEN-CHANNEL HYDRAULICS

 Sometimes a dense cold-air layer lies under a less-
dense warmer layer, with a relatively sharp temper-
ature discontinuity (∆T = ∆θ) between the two layers 
(Fig. 17.15a and b).  This temperature jump marks 
the density interface between the two layers.  Ex-
amples of such a two-layer system include arctic 
air advancing behind a cold front and sliding under 
warmer air, cold gust fronts from thunderstorms, 
and cool marine air moving inland under warmer 
continental air.  
 These two-layer systems behave similarly to wa-
ter in an open channel — a two layer system of 
dense water under less-dense air.  Hence, you can 
apply hydraulics (applications of liquid flow based 
on its mechanical properties) to the atmosphere, for 
cases where air compressibility is not significant.  
 Sometimes the cold air can be stably stratified 
(Figs. 17.15c & d) as idealized here with constant 
lapse rate, where ∆θ/∆z = ∆T/∆z + Γd , using the dry 
adiabatic lapse rate Γd = 9.8 °C km–1.  You can use 
modified hydraulic theory for these cases.
 Hydraulic theory depends on the speed of waves 
on the interface between cold and warm air.

Figure 17.14
Idealized hodograph of surface (z = 10 m) wind vectors during a 
diurnal cycle for a sea breeze.  Assumes Northern Hemisphere 
latitude of Europe, and fair-weather anticyclonic conditions of 
light to calm large-scale winds.  (In this hodograph, compass di-
rections show the direction toward which the wind blows.  Also, 
the vectors are for different times, not different altitudes.)
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Figure 17.15
Idealized stratification situations in the atmosphere.  The dashed 
orange lines indicate dry adiabats (lines of constant potential 
temperature θ).  (a) and (b) are two ways of plotting the same sit-
uation: two-layers each having uniform potential temperature 
θ, and with a temperature jump between them.  In contrast, (c) 
and (d) both show a linear change of T with height (i.e., constant 
stratification) instead of a temperature jump.
 Because hydraulics depends on density, it is more accurate 
to use virtual temperature instead of temperature, to include the 
effect of humidity on air density.  Namely, use Tv instead of T, 
use ∆Tv instead of ∆T, and ∆θv instead of ∆θ.  
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17.4.1. Wave Speed
 Waves (vertical oscillations that propagate hor-
izontally on the density interface) can exist in air 
(Fig. 17.16), and behave similarly to water waves.  
For hydraulics, if water in a channel is shallow, then 
long-wavelength waves on the water surface travel 
at the intrinsic “shallow-water” phase speed co of:

    c g ho = ·  (17.14)

where |g| = 9.8 m s–2 is gravitational acceleration 
magnitude, and h is average water depth.  Intrin-
sic phase speed is the speed of propagation of any 
wave crest relative to the mean fluid motion.
 For a two-layer air system, the effect of gravity is 
reduced because it depends on the relative buoyan-
cy between the warm and cold air layers.  Define a  
reduced gravity as |g’|= |g|·∆θv/Tv.  For a shallow 
bottom layer, the resulting intrinsic phase speed of 
surface waves on the interface between the cold- 
and warm-air layers is:

   c g h g
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where ∆θv is the virtual potential temperature jump 
between the two air layers, Tv is an average absolute 
virtual temperature (in Kelvin), h is the depth of the 
cold layer of air, and |g| = 9.8 m·s–2 is gravitational 
acceleration magnitude.
 The speed that wave energy travels through a 
fluid is the group speed cg.  Group speed is the 
speed that hydraulic information can travel relative 
to the mean flow velocity, and it determines how the 
upstream flow reacts to downstream flow changes.  
For a two-layer system with bottom-layer depth less 
than 1/20 the wavelength, the group speed equals 
the phase speed
                  cg = co  (17.16)

 For a statically-stable atmospheric system with 
constant lapse rate, there is no surface (no interface) 
on which the waves can ride.  Instead, internal 
waves can exist that propagate both horizontally 
and vertically inside the statically stable region.  In-
ternal waves reflect from solid surfaces such as the 
ground, and from statically neutral layers.  
 For internal waves, the horizontal component 
of group velocity ug depends on both vertical and 
horizontal wavelength λ.  To simplify this compli-
cated situation, focus on infinitely-long waves in 
the horizontal (which propagate the fastest in the 
horizontal), and focus on a wave for which the verti-
cal wavelength is proportional to the depth h of the 
statically stable layer of air.  Thus:
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Sample Application
 For a two-layer air system with 5°C virtual poten-
tial temperature difference across the interface and a 
bottom-layer depth of 20 m, find the intrinsic group 
speed, and compare it to the speed of a water wave.

Find the Answer
Given:  ∆θv = 5°C = 5K,  h = 20 m.   Assume Tv = 283 K
Find:   cg = ? m s–1, for air and for water

For a 2-layer air system, use eqs. (17.15 & 17.16):  
 cg = co = [(9.8 m·s–2)·(5K)·(20m)/(283K)]1/2  = 1.86 m s–1

For water under air, use eq. (17.14 & 17.16)):
  cg  =  co = [(9.8 m·s–2)·(20m)]1/2  = 14 m s–1  

Check:  Units OK.   Magnitude OK.
Exposition:  Atmospheric waves travel much slower 
than channel or ocean waves, and have much longer 
wavelengths.   This is because of the reduced gravity 
|g’| for air, compared to the full gravity |g| for water.

Sample Application
 Find the internal-wave horizontal group speed in 
air for a constant virtual potential-temperature gradi-
ent of 5°C across a stable-layer depth of 20 m.  

Find the Answer
Given: ∆θv = 5°C = 5K, ∆z = h = 20 m.   Let Tv = 283 K
Find:   ug = ? m s–1

Use eq. (17.17):  ug = 
     [(9.8 m·s–2)·(5K)/(283K · 20m)]1/2 ·(20m) = 1.86 m s–1

Check:  Units OK.  Magnitude OK.
Exposition:  For the example here with ∆z = h, the 
equation for ug in a stably-stratified fluid is identical to 
the equation for cg in a two layer system.  This is one of 
the reasons why we can often use hydraulics methods 
for a stably-stratified atmosphere.

Figure 17.16
Sketch of waves on the interface between cold and warm air lay-
ers.  λ is wavelength, and h is average depth of cold air.
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where NBV is the Brunt-Väisälä frequency, and  ∆θv/
∆z is the vertical gradient of virtual potential tem-
perature (a measure of static-stability strength).

17.4.2. Froude Number - Part 1
 The ratio of the fluid speed (M) to the wave group 
velocity (cg , the speed that energy and information 
travels) is called the Froude number Fr.  

    Fr =  M / cg   (17.18)

At least three different Froude numbers can be de-
fined, depending on the static stability and the flow 
situation.  We will call these Fr1, Fr2, and Fr3, the last 
of which will be introduced in a later section.
 For surface (interfacial) waves in an idealized at-
mospheric two-layer system where cg = co = (|g’|·h)1/2, 
the Froude number is Fr1 = M/co:
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where h is the depth of the bottom (cold) air layer, 
∆θv is the virtual potential temperature jump be-
tween the two air layers, Tv is an average absolute 
virtual temperature (in Kelvins), and |g| = 9.8 m·s–2 
is gravitational acceleration magnitude.
 For the other situation of a statically stable region 
supporting internal waves, the Froude number is  
Fr2 = M/ug :
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 The nature of the flow is classified by the value of 
the Froude number:

	 	 •	subcritical (tranquil)  for  Fr < 1
	 	 •	critical      for  Fr = 1
	 	 •	supercritical (rapid)  for  Fr > 1

For subcritical flow, waves and information trav-
el upstream faster than the fluid is flowing down-
stream, thus allowing the upstream flow to “feel” 
the effect of  both upstream conditions and down-
stream conditions such as flow constrictions.  For 
supercritical flow, the fluid is moving so fast that no 
information can travel upstream (relative to a fixed 
location); hence, the upstream fluid does not “feel” 
the effects of downstream flow constrictions until 
it arrives at the constriction.  For airflow, the words 
(upwind, downwind) can be used instead of (up-
stream, downstream).     

Sample Application
 For a smooth virtual potential-temperature gradi-
ent of 5°C across a stable-layer depth of 20 m, find the 
Froude number if the average flow speed is 5 m s–1.   
Discuss whether the flow is critical.

Find the Answer
Given: ∆θv = 5°C = 5K, ∆z = h = 20 m.   
 Assume Tv = 283 K
Find:   Fr2 = ? (dimensionless)

Use eq. (17.20).  But since ∆z = h , this causes eq. (17.20) 
to reduce to eq. (17.19).  Hence, we get the same answer 
as in the previous Sample Application:
   Fr2 =  2.69  

Check: Units OK.  Magnitude OK.
Exposition:  This flow is also supercritical.  Although 
this example was contrived to give the same virtual 
potential temperature gradient across the whole fluid 
depth as before, often this is not the case.  So always 
use eq. (17.20) for  a constant stable stratification flow, 
and don’t assume that it always reduces to eq. (17.19).

Sample Application
 For a two-layer air system with 5°C virtual poten-
tial temperature difference across the interface and a 
bottom-layer depth of 20 m, find the Froude number if 
the average flow speed is 5 m s–1.  Discuss whether the 
flow is critical.

Find the Answer
Given:  ∆θv = 5°C = 5K,  h = 20 m.   M = 5 m s–1.
  Assume Tv = 283 K
Find:   Fr1 = ? (dimensionless)

For a 2-layer air system, use eq. (17.19):  
  Fr1 = (5 m s–1) / [(9.8 m·s–2)·(5K)·(20m)/(283K)]1/2  
   = (5 m s–1) / (1.86 m s–1)  =  2.69  

Check:  Units OK.   Magnitude OK.
Exposition:  This flow is supercritical.  Hence, the air 
blows the wave downwind faster than it can propagate 
upwind against the mean flow. 
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17.4.3. Conservation of Air Mass 
 Consider a layer of well-mixed cold air flowing 
at speed Ms along a wide valley of width Ds.  If it 
encounters a constriction where the valley width 
shrinks to Dd (Fig. 17.17), the winds will accelerate 
to Md to conserve the amount of air mass flowing.  
If the depth h of the flow is constant (not a realistic 
assumption), then air-mass conservation gives:

  mass flowing out  =  mass flowing in   (17.21)

   ρ · volume flowing out  =  ρ · volume flowing in  

   ρ · Md · h · Dd  =  ρ · Ms · h · Ds (17.22)

Thus,
                    M

D
D

Md
s

d
s= · 	 •(17.23)

under the assumptions of negligible changes in air 
density ρ.  Thus, the flow must become faster in the 
narrower valley.
 Similarly, suppose air is flowing downhill 
through a  valley of constant-width D.  Cold air of 
initial speed Ms might accelerate due to gravity to 
speed Md further down the slope.  Air-mass conser-
vation requires that the depth of the flow hd in the 
high speed region be less than the initial depth hs in 
the lower-speed region.

    h
M
M

hd
s

d
s= ·  (17.24)

17.4.4. Hydraulic Jump
 Consider a layer of cold air flowing supercriti-
cally in a channel or valley.  If the valley geometry 
or slope changes at some downstream location and 
allows wind speed M to decrease to its critical value 
(Fr = 1), there often occurs a sudden increase in flow 
depth h and a dramatic increase in turbulence.  This 
transition is called a hydraulic jump.  Downstream 
of the hydraulic jump, the wind speed is slower and 
the flow is subcritical.
 In Fig. 17.18, you can consider the hydraulic jump 
as a wave that is trying to propagate upstream.  
However, the cold air flowing downslope is trying 
to wash this wave downstream.  At the hydraulic 
jump, the wave speed exactly matches the opposing 
wind speed, causing the wave to remain stationary 
relative to the ground.
 For example (Fig. 17.18), consider cold air flowing 
down a mountain slope.  It starts slowly, and has Fr 
< 1.  As gravity accelerates the air downslope and 
causes its depth to decrease, the Froude can even-
tually reach the critical value Fr = 1.  As the air con-
tinues to accelerate downhill the flow can become 
supercritical (Fr > 1).  But once this supercritical flow 

Sample Application
 If a 20 km wide band of winds of 5 m s–1 must 
contract to pass through a 2 km wide gap, what is the 
wind speed in the gap.

Find the Answer
Given:  Ds = 20 km,   Dd = 2 km,   Ms = 5 m s–1.
Find:    Md = ? m s–1

Use eq. (17.23): Md = [(20km)/(2km)]·(5m s–1) = 50 m s–1 

Check:  Units OK.  Physics OK. 
Exposition:  The actual winds would be slower, be-
cause turbulence would cause significant drag.

Figure 17.17
Acceleration of air through a constriction.  View looking down 
from above.
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Figure 17.18
Variation of Froude number (Fr) with downwind distance (x), 
showing a hydraulic jump where the flow changes from super-
critical to subcritical.
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reaches the bottom of the slope and begins to decel-
erate due to turbulent drag across the lowland, its 
velocity can decrease and the flow depth gradually 
increases.  At some point downstream the Froude 
number again reaches its critical value  Fr = 1.  A hy-
draulic jump can occur at this point, and turbulent 
drag increases.  If this descending cold air is foggy 
or polluted, the hydraulic jump can be visible. 

17.5. GAP WINDS

17.5.1. Basics
 During winter in mountainous regions, some-
times the synoptic-scale weather pattern can move 
very cold air toward a mountain range.  The cold 
air is denser than the warm overlying air, so buoy-
ancy opposes rising motions in the cold air.  Thus, 
the mountain range is a barrier that dams cold air 
behind it.  
 However, river valleys, fjords, straits, and passes 
(Fig. 17.19) are mountain gaps through which the 
cold air can move as gap winds (Fig. 17.20).  Gap 
wind speeds of 5 to 25 m s–1 have been observed, 
with gusts to 40 m s–1.  Temperature  jumps at the 
top of the cold-air layer in the 5 to 10°C range are 
typical, while extremes of 15°C have been observed.  
Gap flow depths of 500 m to over 2 km have been 
observed.   In any locale, the citizens often name the 
gap wind after their town or valley.
 The cold airmass dammed on one side of the 
mountain range often has high surface pressure (H), 
as explained in the Hydrostatic Thermal Circulation 
section of the General Circulation chapter.  When 
synoptic low-pressure centers (L) approach the op-
posite side of the mountain range, a pressure gradi-
ent of order (0.2 kPa)/(100 km) forms across the range 
that can drive the gap wind.  Gap winds can also be 
driven by gravity, as cold air is pulled downslope 
through a mountain pass.
 Divide gap flow into two categories based on 
the gap geometry: (1) short gaps, and (2) long gaps.  
Long gaps are ones with a gap width (order of 2 - 20 
km) that is much less than the gap length (order of 
100 km).  Coriolis force is important for flow through 
long gaps, but is small enough to be negligible in 
short gaps.  

17.5.2. Short-gap Winds
 For short gaps, you can neglect Coriolis force 
and use open-channel hydraulics.  Although the 
gap-wind speed could range from subcritical to su-
percritical, observations suggest that one or more 
hydraulic jumps (Fig. 17.21) are usually triggered in 

Figure 17.19
Geography of southwestern British Columbia, Canada, and 
northwestern Washington, USA, illustrating mountain gaps.  
Higher elevations are shown as darker greys, with the highest 
peaks 3,000 to 4,000 m above sea level.  Ocean and very-low-
elevation-land areas are white.  Lower-elevation fjords, straits, 
and river valleys (i.e., gaps) appear as filaments of white or 
light-grey across the dark-shaded mountain range.  In winter, 
sometimes very cold arctic air can pool in the Interior Plateau 
northeast of the Coast Mountains.
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the supercritical regions due to irregularities in the 
valley shape, or by obstacles, similar to hydraulic 
jumps you can see in irregular river channels.  The 
resulting turbulence in the hydraulic jumps causes 
extra drag, slowing the wind to its critical value.  
 The net result is that many gap winds are likely to 
have maximum speeds nearly equal to their critical 
value: the speed that gives Fr = 1.  Using this in the 
definition of the Froude number allows us to solve 
for the likely maximum gap wind speed through 
gaps short enough that Coriolis force is not a factor:

    M g
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17.5.3. Long-gap Winds
 For long gaps, examine the horizontal forces (in-
cluding Coriolis force) that act on the air.   Consider a 
situation where the synoptic-scale isobars are nearly 
parallel to the axis of the mountain range (Fig. 17.22), 
causing a pressure gradient across the mountains.
 For long narrow valleys this synoptic-scale cross-
mountain pressure gradient is unable to push the 
cold air through the gap directly from high to low 
pressure, because Coriolis force tends to turn the 
wind to the right of the pressure gradient.  Instead, 
the cold air inside the gap shifts its position to en-
able the gap wind, as described next.
 Fig. 17.23 idealizes how this wind forms in the 
N. Hemisphere.  Cold air (light grey in Fig. 17.23a) 
initially at rest in the gap feels the synoptically im-
posed pressure-gradient force FPGs along the valley 
axis, and starts moving at speed M (shown with the 
short dark-blue arrow in Fig. 17.23a’) toward the im-
posed synoptic-scale low pressure (L) on the oppo-
site side of the gap.  At this slow speed, both Coriolis 
force (FCF) and turbulent drag force (FTD) are corre-
spondingly small (Fig. 17.23a’).  The sum (black-and-
white dotted arrow) of all the force vectors (black) 
causes the wind to turn slightly toward its right in 
the N. Hemisphere and to accelerate into the gap.   
 This turning causes the cold air to “ride up” on 
the right side of the valley (relative to the flow direc-
tion, see Fig. 17.23b).  It piles up higher and higher 
as the gap wind speed M increases.  But cold air is 
denser than warm.  Thus slightly higher pressure 
(small dark-grey H) is under the deeper cold air, and 
slightly lower pressure (small dark-grey L) is under 
the shallower cold air.  The result is a cross-valley 
mesoscale pressure-gradient force  FPGm  per unit 
mass m (Fig. 17.23b’) at the valley floor of:
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Sample Application
 Cold winter air of virtual potential temperature 
–5°C and depth 200 m flows through an irregular 
short mountain pass.  The air above has virtual poten-
tial temperature 10°C.  Find the max likely wind speed 
through the short gap.

Find the Answer
Given:  ∆θv = 15°C = 15K,  h = 200 m.  
Find:    Mgap max  =  ? m s–1

For a 2-layer air system, use eq. (17.25):  
 Mgap max  =  [(9.8 m·s–2)·(15K)·(200m)/(267K)]1/2  
     =  10.5  m s–1  

Check:  Units OK.  Magnitude OK.
Exposition:  Because of the very strong temperature 
jump across the top of the cold layer of air and the cor-
respondingly faster wave group speed, faster gap flow 
speeds are possible.  Speeds any faster than this would 
cause an hydraulic jump, which would increase turbu-
lent drag and slow the wind back to this wind speed.

Figure 17.21
Cold air flow through a short gap.  Vertical slice inside the gap, 
along section A - A’ from the previous figure.  A series of 3 
hydraulic jumps are shown in this idealization.
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Figure 17.22
Scenario for gap winds in the N. Hemisphere in long valleys, 
with cold air (light blue) dammed behind a mountain range 
(brown).  High pressure (H) is in the cold air, and low pressure 
(L) is at the opposite side of the mountains.  Thick curved green 
lines are sea-level isobars around the synoptic-scale pressure 
centers.  The vertical profile of potential temperature θ is plot-
ted (purple).
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where ∆z/∆x is the cross-valley slope of the top of 
the cold-air layer, ∆Pm/∆x is the mesoscale pressure 
gradient across the valley, ∆θv is the virtual potential 
temperature difference between the cold and warm 
air, Tv is an average virtual temperature (Kelvin), 
|g| = 9.8 m·s–2 is the magnitude of gravitational ac-
celeration, and ρ is the average air density.  
 When this new pressure gradient force is vector-
added to the larger drag and Coriolis forces associ-
ated with the moderate wind speed M, the resulting 
vector sum of forces (dotted white-and-black vector; 
Fig. 17.23b’) begins to turn the wind to become al-
most parallel to the valley axis.  
 Gap-wind speed M increases further down the 
valley (Fig. 17.23c and c’), with the gap-wind cold air 
hugging the right side of the valley.  In the along-
valley direction (the –y direction in Figs. 17.23), the 
synoptic pressure gradient force FPGs is often larger 

than the opposing turbulent drag force FTD, allow-
ing the air to continue to accelerate along the valley, 
reaching its maximum speed near the valley exit.  
The antitriptic wind results from a balance of drag 
and synoptic-scale pressure-gradient forces.  Simi-
lar gap winds are sometimes observed in the Juan 
de Fuca Strait (Fig. 17.19), with the fastest gap winds 
near the west exit region of the strait.
 In the cross-valley direction, Coriolis force FCF 
nearly balances the mesoscale pressure gradient 
force FPGm.  These last two forces define a mesoscale 
“gap-geostrophic wind” speed Gm parallel to the 
valley axis:
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The actual gap wind speeds are of the same order of 
magnitude as this gap-geostrophic wind.

Figure 17.23
An enlargement of just the mountain gap portion of the previ-
ous figure.  (a)-(c) Oblique view showing evolution of the cold 
air (light blue) in the gap.  (a’)-(c’) Plan view (looking down 
from above) showing the corresponding forces acting on a cold 
air parcel as a gap wind forms (see text for details).
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 The synoptic-scale geostrophic wind on either 
side of the mountain range is nearly equal to the syn-
optic-scale geostrophic wind well above the moun-
tain (G, in Fig. 17.23a).  These synoptic winds are at 
right angles to the mesoscale gap-geostrophic wind.
 The maximum possible gap wind speed is given 
by the equation above, but with ∆z replaced with the 
height h of the valley walls above the valley floor.  If 
either h or ∆θv are too small, then some of the cool air 
can ride far enough up the valley wall to escape over 
top of the valley walls (Fig. 17.24), and the resulting 
gap winds are weaker.  Gap winds occur more often 
in winter, when cold valley air causes large ∆θv.
 For a case where ∆θv is near zero (i.e., near-neutral 
static stability), the synoptic-scale geostrophic wind 
dominates.  The vector component of G along the 
valley axis can appear within the valley as a chan-
neled wind parallel to the valley axis.  However, 
the cross-valley component of G can create strong 
turbulence in the valley (due to cavity, wake, and 
mountain-wave effects described later in this chap-
ter).  These components combine to create a turbu-
lent corkscrew motion within the valley (Fig. 17.25).

17.6. COASTALLY TRAPPED LOW-LEVEL 

(BARRIER) JETS
 Coriolis force is also important in locations such 
as the eastern Pacific Ocean, where coastally trapped 
low-level wind jets form parallel to the west coast of 
N. America.  Similar barrier jets can form at other 
mountain ranges.  These jets have dynamics that are 
very similar to the dynamics of long-gap winds.
 Consider situations where synoptic-scale low-
pressure systems reach the coast of N. America and 
encounter mountain ranges.  Behind the approach-
ing cyclone is cold air, the leading edge of which is 

Sample Application
 What long-gap wind speed can be supported in 
a strait 10 km wide through mountains 0.5 km high?  
The cold air is 4°C colder than the overlying 292 K air.  

Find the Answer
Given:  h = ∆z = 0.5 km,  ∆x = 10 km, ∆θv = 4°C = 4 K, 
  Tv = 0.5·(288K + 292K) = 290K.
Find:   Gm = ? m s–1

Assume:  fc = 10–4 s–1.    
Use eq. (17.27):
    Gm = |(9.8 m·s–2/ 10–4 s–1)·(4K/290K)·(0.5km/10km)| 
     = 67 m s–1.

Check:  Units OK.  Magnitude seems too large.
Exposition:  The unrealistically large magnitude 
might be reached if the strait is infinitely long.  But in 
a finite-length strait, the accelerating air would exit the 
strait before reaching this theoretical wind speed. 
 We implicitly assumed that the air was relatively 
dry, allowing Tv ≈ T, and ∆θv ≈ ∆θ.  If humidity is larg-
er, then you should be more accurate when calculat-
ing virtual temperatures.  Also, as the air accelerates 
within the valley, mass conservation requires that the 
air depth ∆z decreases, thereby limiting the speed ac-
cording to eq. (17.27).

Figure 17.24
Gap winds can overtop the valley side walls if these walls are 
too low, or if the temperature difference between cold and warm 
layers of air is too small.
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Figure 17.25
Without a layer of cold air near the surface, the cross-valley 
component of synoptic-scale geostrophic wind can create turbu-
lent corkscrew motions and channeling of wind in the valley.
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(a) Precursor synoptic conditions, as a low L center approaches 
a coastal mountain (Mtn.) range in the N. Hemisphere.  Curved 
green lines are isobars at sea level. (b) Conditions later when the 
low reaches the coast, favoring coastally trapped low-level jets.
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the cold front (Fig. 17.26a).  The cold air stops advanc-
ing eastward when it hits the mountains, causing a 
stationary front along the ocean side of the moun-
tain range (Fig. 17.26b). 
 A pressure gradient forms parallel to the moun-
tain range (Fig. 17.26b), between the low (L) center to 
the north and higher pressure (H) to the south.  Fig. 
17.27 shows a zoomed view of the resulting situation 
close to the mountains.  The isobars are approxi-
mately perpendicular to the mountain-range axis, 
not parallel as was the case for gap winds.
 As the synoptic-scale pressure gradient (PGs) 
accelerates the cold air from high towards low, 
Coriolis force (CF) turns this air toward the right (in 
the N. Hem.) causing the cold air to ride up along the 
mountain range.  This creates a mesoscale pressure 
gradient (PGm) pointing down the cold-air slope 
(Fig. 17.28).  Eventually an equilibrium is reached 
where turbulent drag (TD) nearly balances the syn-
optic pressure-gradient force, and Coriolis force is 
balanced by the mesoscale pressure gradient.
 The end result is a low-altitude cold wind par-
allel to the coast, just west of the  mountain range.  
The jet-core height is located vertically about 1/3 of 
the distance from the ocean (or lowland floor) to the 
ridge top.  Jet core altitudes of 50 to 300 m above sea 
level have been observed along the west coast of N. 
America, while altitudes of about 1 km have been ob-
served for barrier jet cores in California west of the 
Sierra-Nevada mountain range. Maximum speeds 
of 10 to 25 m s–1 have been observed in the jet core.
 Width of the coastal jet is on the order of 100 to 
150 km.  This width is roughly equal to the Rossby 
radius of deformation, λR, which is a measure of 
the upstream region of influence of the mountain 
range on a flow that is in geostrophic balance.  For 
a cold marine layer of air capped by a strong inver-
sion as sketched in Fig. 17.28, the external Rossby 
radius of deformation is

    λ
θ

R
v v

c

g h T

f
=

· ·∆ /  (17.28)

where|g| = 9.8 m·s–2 is gravitational acceleration 
magnitude, h is mountain range height, fc is the 
Coriolis parameter, ∆θv is the jump of virtual poten-
tial temperature at the top of the marine air layer, 
and Tv is an average absolute virtual temperature of 
the air.  For a statically-stable layer of air having a 
linear increase of potential temperature with height 
instead of a step discontinuity, an internal Rossby 
radius of deformation is

    λR
BV

c

N h
f

=
·

 (17.29)

where NBV = [(|g|/Tv) · ∆θv/∆z]1/2 is the Brunt-Väisälä 
frequency.     

Figure 17.27
Synoptic conditions that favor creation of a mesoscale low-level 
jet parallel to the coast.  Curved green lines are isobars, H and 
L are high and low-pressure centers, and θ is potential tempera-
ture.  
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Final force (F) balance and cold-air location during a coastally 
trapped low-level jet (fast winds parallel to the coast).  Vertical 
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17.7. MOUNTAIN WAVES

Figure 17.29
Mountain-wave characteristics.
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17.7.1. Natural Wavelength
 When statically stable air flows with speed M 
over a hill or ridge, it is set into oscillation at the 
Brunt-Väisälä frequency, NBV.   The natural wave-
length λ is

    λ =
π2 · M

NBV

	 •(17.30)

Longer wavelengths occur in stronger winds, or 
weaker static stabilities.
 These waves are known as mountain waves, 
gravity waves, buoyancy waves, or lee waves.  
They can cause damaging winds, and interesting 
clouds (see the Clouds chapter).
 Friction and turbulence damp the oscillations 
with time (Fig. 17.29).  The resulting path of air is a 
damped wave:

  z z
x

b
x

= −





π



1

2
·exp

·
· cos

·
λ λ

 (17.31)

where z is the height of the air above its starting 
equilibrium height, z1 is the initial amplitude of the 
wave (based on height of the mountain), x is dis-
tance downwind of the mountain crest, and b is a 
damping factor.  Wave amplitude reduces to 1/e  at 
a downwind distance of b wavelengths (that is, b·λ is 
the e-folding distance).    

17.7.2. Lenticular Clouds
 In the updraft portions of mountain waves, the 
rising air cools adiabatically.  If sufficient moisture is 
present, clouds can form, called lenticular clouds.  
The first cloud, which forms over the mountain crest, 
is usually called a cap cloud (see Clouds chapter).  
 The droplet sizes in these clouds are often quite 
uniform, because of the common residence times 
of air in the clouds.  This creates interesting optical 

Sample Application (§)
 Find and plot the path of air over a mountain, giv-
en:  z1 = 500 m, M = 30 m s–1, b = 3, ∆T/∆z = –0.005 K 
m–1, T = 10°C, and Td = 8°C for the streamline sketched 
in Fig. 17.29.  

Find the Answer
Given:  (see above).  Thus T = 283 K
Find:  NBV = ? s–1,   λ = ? m,   and plot z vs. x  

From the Stability chapter:

   
NBV = − +( )













−9 8
283

0 005 0 0098
1 2

. ·
· . .

/
m s

K

2

   =  0.0129 s–1  
Use eq. (17.30)

      λ =
π

−
2 30

0 0129 1
·( )

.

m/s

s
   = 14.62 km

Solve eq. (17.31) on a spreadsheet to get the answer:
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Check:  Units OK.  Physics OK.  Sketch OK.
Exposition:  Glider pilots can soar in the updraft por-
tions of the wave, highlighted with white boxes.

Sample Application
 The influence of the coast mountains extends how 
far to the west of the coastline in Fig. 17.28?  The cold 
air has virtual potential temperature 8°C colder than 
the neighboring warm air.  The latitude is such that 
the Coriolis parameter is 10–4 s–1.   Mountain height is 
2000 m.

Find the Answer
Given:  h = 2000 m,  ∆θv = 8°C = 8 K,  fc = 10–4 s–1 .
Find:  λR = ? km,  external Rossby deformation radius

Assume:  |g|/Tv = 0.03333 m·s–2·K–1 
The region of influence extends a distance equal to the 
Rossby deformation radius.   Thus, use eq. (17.28):  
    λR = [(0.03333 m·s–2·K–1)·(2000 m)·(8 K)]1/2 /(10–4 s–1) 
    =  231,000 m  =   231 km  

Check:  Units OK.  Magnitude OK.
Exposition:  Even before fronts and low-pressure 
centers hit the coastal mountains, the mountains are 
already influencing these weather systems hundreds 
of kilometers offshore.
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phenomena such as corona and iridescence when 
the sun or moon shines through them (see the At-
mospheric Optics chapter). 
 Knowing the temperature and dew point of air at 
the starting altitude before blowing over the moun-
tain, a lifting condensation level (LCL) can be calcu-
lated using equations from the Water Vapor chapter.  
Clouds will form in the crests of those waves for 
which  z > zLCL.      

17.7.3. Froude Number - Part 2
 For individual hills not part of a continuous 
ridge, some air can flow around the hill rather than 
over the top.  When less air flows over the top, shal-
lower waves form. 
 The third variety of Froude Number Fr3 is a 
measure of the ability of waves to form over hills.  It 
is given by

    Fr
W3 2

= λ
·

	 •(17.32)

where W is the hill width, and λ is the natural wave-
length.  Fr3 is dimensionless.
 For strong static stabilities or weak winds, Fr3 
<<  1.  The natural wavelength of air is much shorter 
than the width of the mountain, resulting in only a 
little air flowing over the top of the hill, with small 
waves (Fig. 17.30a).  If H is the height of the hill (Fig. 
17.29), then wave amplitude z1 < H/2 for this case.  
Most of the air is blocked in front of the ridge, or 
flows around the sides for an isolated hill. 
 For moderate stabilities where the natural wave-
length is nearly equal to twice the hill width, Fr3 ≈ 
1.   The air resonates with the terrain, causing very 
intense waves (Fig. 17.30b).  These waves have the 
greatest chance of forming lenticular clouds, and 
pose the threat of violent turbulence to aircraft.  Ex-
tremely fast near-surface winds on the downwind 
(lee) side of the mountains cause downslope wind 
storms that can blow the roofs off of buildings.  
Wave amplitude roughly equals half the hill height: 
z1 ≈ H/2.  Sometimes rotor circulations and rotor 
clouds will form near the ground under the wave 
crests (Fig. 17.30b; also see the Clouds chapter). 
 For weak static stability and strong winds, the 
natural wavelength is much greater than the hill 
width,  Fr3 >> 1.  Wave amplitude is weak, z1 < 
H/2.  A turbulent wake will form downwind of the 
mountain, sometimes with a cavity of reverse flow 
near the ground (Fig. 17.30c).  The cavity and rotor 
circulations are driven by wind shear like a bike 
chain turning a gear.  
 For statically neutral conditions, Fr = ∞.  A large 
turbulent wake occurs (Fig. 17.30d).  These wakes 
are hazardous to aircraft.   

Sample Application (§)
 Replot the results from the previous Sample Appli-
cation, indicating which waves have lenticular clouds.

Find the Answer
Given: (see previous Sample Application). 
Find:  zLCL = ? m.

From the Moisture chapter:  zLCL = a · (T – Td) .
  zLCL = (125m °C–1)·(10°C – 8°C) = 250 m  
above the reference streamline altitude.  From the 
sketch below, we find 1 cap cloud and 2 lenticular 
clouds.       

          

z 
(m

)

–600

–400

–200

0

200

400

600 lenticular  clouds

zLCL

cap
cloud

x (km)0 20 40

Check:  Units OK.  Physics OK.  Sketch OK.
Exposition:  Most clouds are blown with the wind, 
but standing-lenticular clouds are stationary while 
the wind blows through them!

Figure 17.30
Mountain wave behavior vs. Froude number, Fr3.  
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17.7.4. Mountain-wave Drag
 For Fr3 < 1, wave crests tilt upwind with increas-
ing altitude (Fig. 17.31).  The angle α of tilt relative to 
vertical is

    cos( )α = Fr3  (17.33)

 For this situation, slightly lower pressure devel-
ops on the lee side of the hill, and higher pressure on 
the windward side.  This pressure gradient opposes 
the mean wind, and is called wave drag.  Wave drag 
adds to the surface friction (skin drag).  The wave 
drag (WD) force per unit mass near the ground is:

 F
m

H N
h

Fr FrxWD BV
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= − −
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2 1 2

8
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·
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 (17.34)

where hw is the depth of air containing waves.  
 Not surprisingly, higher hills cause greater wave 
drag.  The whole layer of air containing these waves 
feels the wave drag, not just the bottom of this layer 
that touches the mountain.

17.8. STREAMLINES, STREAKLINES, AND 

TRAJECTORIES

 Streamlines are conceptual lines that are ev-
erywhere parallel to the flow at some instant (i.e., a 
snapshot).  This is an Eulerian point of view.  Fig. 
17.32 shows an example of streamlines on a weath-
er map.  Streamlines never cross each other except 
where the speed is zero, and the wind never cross-
es streamlines.  Streamlines can start and end any-
where, and can change with time.  They are often 
not straight lines.

Sample Application
 For Fr3 = 0.8, find the angle of the wave crests and 
the wave drag force over a hill of height 800 m.  The 
Brunt-Väisälä frequency is 0.01 s–1, and the waves fill 
the 11 km thick troposphere.

Find the Answer
Given: Fr3 = 0.8 ,  H = 800 m,  NBV =   0.01 s–1.
Find:  α = ?°,   Fx WD/m = ? m·s–2  

Use eq. (17.33):         α = cos–1(0.8)  =  36.9°  
Use eq. (17.34):

        

F
m

xWD = −
−[( )·( . )]

·( , )
· . ·[

800 0 01
8 11 000

0 8
1 2m s

m
11 0 8 2 1 2− ( . ) ] /

   = 3.5x10–4  m·s–1 .

Check:  Units OK.  Physics OK.
Exposition:  This is of the same order of magnitude 
as the other forces in the equations of motion.

Sample Application
 For a natural wavelength of 10 km and a hill width 
of 15 km, describe the type of waves.

Find the Answer
Given: λ = 10 km, W = 15 km.     
Find:    Fr = ?  (dimensionless)

Use eq. (17.32):      Fr3 = (10km)/[2· (15km)] = 0.333  

Check:  Units OK.  Magnitude OK.
Exposition:  Waves as in Fig. 17.30a form off the top 
of the hill, because Fr3 < 1.  Some air also flows around 
sides of hill.

Figure 17.31
Vertical wave propagation, tilting crests, and wave drag.
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Streamlines near the tropopause, over N. America.
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 Streaklines are lines deposited in the flow 
during a time interval by continuous emission of a 
tracer from a fixed point.  Examples can be seen in 
aerial photographs of smoke plumes emitted from 
smokestacks, or  volcanic ash clouds.
 Trajectories, also called path lines, trace the 
route traveled by an air parcel during a time inter-
val.  This is the Lagrangian point of view.  For sta-
tionary (not changing with time) flow, streamlines, 
streaklines, and trajectories are identical.  
 For nonstationary flow (flow that changes with 
time), there can be significant differences between 
them.  For example, suppose that initially the flow 
is steady and from the north.  Later, the wind sud-
denly shifts to come from the west.   
 Fig. 17.33 shows the situation shortly after this 
wind shift.  Streamlines (thin solid blue lines in 
this figure) are everywhere from the west in this 
example.  The streakline caused by emission from 
a smokestack is the thick brown line.  The green 
dashed line shows the path followed by one air par-
cel in the smoke plume.

17.9. BERNOULLI’S EQUATION

17.9.1. Principles
 Consider a steady-state flow (flow that does 
not change with time), but which can have different 
velocities at different locations.  If we follow an air 
parcel as it flows along a streamline, its velocity can 
change as it moves from one location to another.  For 
wind speeds M ≤ 20 m s–1 at constant altitude, the 
air behaves as if it is nearly incompressible (namely, 
constant density ρ).  

17.9.1.1. Incompressible Flow
 For the special case of incompressible, steady-
state, laminar (non-turbulent) motion with no drag, 
the equations of motion for an air parcel following 
a streamline can be simplified into a form known as 
Bernoulli’s equation:

    
1
2

2M
P

g z CB+ + =
ρ

· 	 •(17.35)

 energy:   kinetic + flow + potential  =  constant

where M is the total velocity along the streamline, P 
is static air pressure, ρ is air density, |g| = 9.8 m·s–2 is 
gravitation acceleration magnitude, and z is height 
above some reference.  
 CB is an arbitrary constant called Bernoulli’s 
constant or Bernoulli’s function.  CB is constant 

Sample Application
Environmental air outside a hurricane has sea-level 
pressure 100 kPa.  Find the rise in sea level at the eye, 
where sea-level pressure is 90 kPa.  Neglect currents 
and wind waves.

Find the Answer
Given: Penv = 100 kPa,  zenv = 0 m,  Peye = 90 kPa,  M≈ 0
Find:  zeye = ? m  , where z is height of sea level. 

Consider a streamline in the water at the sea surface.  
ρ = 1025 kg m–3 for sea water.  

Use Bernoulli’s eq. (17.35) to find CB for the environ-
ment, then use it for the eye:

 Env:  0.5·(0m s–1)2 + (100,000Pa)/(1025kg m–3) + 
   (9.8 m s–2)·(0m)  =  CB  =  97.6 m2 s–2 

 Eye:  0.5·(0m s–1)2 + (90,000Pa)/(1025kg m–3) + 
   (9.8 m s–2)·(zeye)  =  CB  =  97.6 m2 s–2 

zeye = {(97.6 m2 s–1)–[(90,000Pa)/(1025kg m–3)]}/
  (9.8 m s–2)
  =   1.0 m.   

Check:  Units OK.  Magnitude OK.
Exposition:  Such a rise in sea level is a hazard called 
the storm-surge. 

Figure 17.33
Streamlines (blue), streaklines (smoke plumes; plotted as brown), 
and trajectories (path lines; plotted as green) in nonstationary 
flow.
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along any one streamline, but different streamlines 
can have different CB values.   
 Bernoulli’s equation focuses on mechani-
cal-energy conservation along a streamline.  The 
first term on the left is the kinetic energy per unit 
mass.  The middle term is the work done on the air 
(sometimes called flow energy per unit mass) that 
has been stored as pressure.  The last term on the left 
is the potential energy per unit mass.  Along any 
one streamline, energy can be converted from one 
form to another, provided the sum of these energies 
is constant.
 In hydraulics, the gravity term is given by the 
change in depth of the water, especially when con-
sidering a streamline along the water surface.  In 
meteorology, a similar situation occurs when cold 
air rises into a warmer environment; namely, it is 
a dense fluid rising against gravity.  However, the 
gravity force felt by the rising cold air is reduced be-
cause of its buoyancy within the surrounding air.  To 
compensate for this, the gravity factor in Bernoulli’s 
equation can be replaced with a reduced gravity  
g’ = |g|·∆θv/Tv , yielding:

   
1
2

2M
P

g
T

z Cv

v
B+ + =

ρ
θ∆

· 	 •(17.36)

where ∆θv is the virtual potential temperature dif-
ference between the warm air aloft and the cold air 
below, and Tv is absolute virtual air temperature (K).  
Thus, the gravity term is nonzero when the stream-
line of interest is surrounded by air of different 
virtual potential temperature, for air flowing up or 
down.
 To use eq. (17.36), first measure all the terms in 
the left side of the equation at some initial (or up-
stream) location in the flow.  Call this point 1.  Use 
this to calculate the initial value of CB.  Then, at 
some downstream location (point 2) along the same 
streamline use eq. (17.36) again, but with the known 
value of CB from point 1.  The following equation is 
an expression of this procedure of equating final to 
initial flow states:
	 	 	 	 	 •(17.37)
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 Another way to consider eq. (17.36) is if any one 
or two terms increase in the equation, the other 
term(s) must decrease so that the sum remains con-
stant.  In other words, the sum of changes of all the 
terms must equal zero:     

Sample Application
 Cold-air flow speed 10 m s–1 changes to 2 m s–1 af-
ter passing a hydraulic jump.  This air is 10°C colder 
than the surroundings. How high can the hydraulic-
jump jump?  

              
stre

a
m

li
n e

1

2
z2

z1

hydraulic
jump

0x

z

cold air
M1

Find the Answer     
Given:  M1 = 10 m s–1,  M2 = 2 m s–1,  ∆T = 10K,   z1 = 0.
Find:   z2 = ? m above the initial z.

Assume:  ∆θv = ∆T and |g|/Tv = 0.0333 m·s–2·K–1.  P ≈ 
constant on a streamline along the top of the cold air. 
 Use eq. (17.36), noting that  CB – P/ρ  is constant :
•	At	point	1:		0.5	·(10m	s–1)2 + 0 = CB – P/ρ  =  50 m2 s–2 
•	At	2:	0.5·(2m	s–1)2+(0.0333m·s–2·K–1)·(10K)·z2 
 =50 m2 s–2 
Solve for z2:   z2  = [M1

2 – M2
2] ·Tv/(2·|g|·∆θv)  =  144 m   

Check:  Units OK.  Magnitude OK.
Exposition: Hydraulic jumps are very turbulent and 
would dissipate some of the mechanical energy into 
heat.  So the actual jump height would be less. 

HIGHER MATH  •  Bernoulli Derivation
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Fig. 17.d.  Forces acting on an air parcel (light blue rectan-
gle) that is following a streamline (dark blue curve).

 To derive Bernoulli’s equation, apply Newton’s 
second law (a = F/m) along a streamline s.  Accelera-
tion is the total derivative of wind speed:  a = dM/dt 
= ∂M/∂t + M·∂M/∂s.  Consider the special case of flow 
that is steady at any location (∂M/∂t = 0) even though 
the flow can be different at different locations (∂M/∂s 
≠ 0).  Thus
    M·∂M/∂s  =  F/m  
 The forces per unit mass F/m acting on a fluid par-
cel along the direction of the streamline are pressure-
gradient force and the component of gravity along the 
streamline [ |g|·sin(α)  =  |g|·∂z/∂s ]:
  M·∂M/∂s  =  –(1/ρ)·∂P/∂s – |g|·∂z/∂s  
or
  (1/2) dM2  +  (1/ρ)·dP  + |g|·dz  =  0

 For incompressible flow, ρ = constant.  Integrate 
the equation above to get Bernoulli’s equation:

   (1/2) M2  +  P/ρ  + |g|·z  =  CB  
where CB is the constant of integration.
 This result applies only to steady incompressible 
flow along a streamline.  Do not use it for situations 
where additional forces are important, such as turbu-
lent drag, or across wind turbines or fans.



	 R.	STULL			•			PRACTICAL		METEOROLOGY	 671

 ∆ ∆ ∆
∆1

2
02M

P
g

T
zv

v






+









 +









 =ρ

θ
· · 	 •(17.38)

Caution:  ∆[(0.5)·M2] ≠ (0.5)·[∆M]2 .
 The Bernoulli equations above do NOT work:
	 •	anywhere	that	the	flow	is	turbulent
	 •	behind	obstacles	that	create	turbulent	wakes
     or that cause sudden changes in the flow
	 •	at	locations	of	heat	input	or	loss
	 •	at	locations	of	mechanical-energy	input	
    (such as a fan) or loss (such as a wind turbine)
	 •	near	the	ground	where	drag	slows	the	wind
	 •	where	flow	speed	>	20	m	s–1

	 •	where	density	is	not	approximately	constant
Hence, there are many atmospheric situations for 
which the above equations are too simplistic.

17.9.1.2. Compressible Flow
 For many real atmospheric conditions where 
winds can be any speed, you should use a more 
general form of the Bernoulli equation that includes 
thermal processes.

 For an isothermal process, the equation be-
comes:

   
1
2

2M T P g
T

z Cd v
v

v
B+ ℜ + =· ·ln( ) ·

∆θ
 (17.39)

where ℜd = 287 m2·s–2·K–1 is the ideal gas constant 
for dry air, and where CB is constant during the pro-
cess (i.e., initial CB = final CB).  

 For adiabatic (isentropic; no heat transfer) flow, 
the Bernoulli equation is
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ρ
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where Cp is the specific heat at constant pressure, 
and ℜ is the ideal gas constant.  For dry air, Cpd/ℜd 
= 3.5 (dimensionless).  
 Using the ideal gas law, this last equation for adi-
abatic flow along a streamline becomes

   1
2

2M C T g
T

z Cp
v

v
B+ + =· ·

∆θ 	 •(17.41)

       kinetic  +  sensible  + potential  =  constant
       energy        heat            energy

where Cp·T is the enthalpy (also known as the sen-
sible heat in meteorology), and  Cp = 1004 m2·s–2·K–1 
for dry air.  In other words:

Sample Application
 Wind at constant 
altitude decelerates 
from 15 to 10 m s–1 while 
passing through a wind 
turbine.  What opposing 
net pressure difference 
would have caused the 
same deceleration in 
laminar flow?

Find the Answer   

z
x

P

x

M1

P1

M2

P2

P

x

∆P
Net  P
change

Actual  P
change

 
Given: ∆z = 0,  
 M1 = 15 m s–1 ,  M2 = 10 m s–1.  
Find: ∆P = ? Pa    

Assume ρ = 1 kg m–3 = constant.
Solve eq. (17.38) for ∆P:       ∆P = – ρ · ∆[(0.5)·M2]  
 ∆P = – (1 kg m–3) · (0.5)·[(10m s–1)2 – (15m s–1)2] 
  = 62.4 Pa

Check:  Units OK.  Magnitude OK.
Exposition:  The process of extracting mechanical 
energy from the wind has the same affect as an op-
posing pressure difference.  This pressure difference 
is small compared to ambient atmospheric pressure P 
= 100,000 Pa.  
 The actual pressure change across a wind turbine 
is shown in bottom figure.

Sample Application
 Air with pressure 100
kPa is initially at rest.  It 
is accelerated over a flat 
0°C snow surface as it is 
sucked toward a house-        

snow-covered ground
fanair

z

x

hold ventilation system.  If the final speed is 10 m s–1, 
what is the air pressure at the fan entrance?

Find the Answer
Given:  P1 = 100 kPa,  M1 = 0,  M2 = 10 m s–1,  ∆z = 0 .
Find:    P2 = ? kPa

Assume the snow keeps their air at constant Tv = 0°C.
Use eq.  (17.39) for an isothermal process:
  [0.5M2

2 – 0]  + ℜd·Tv·[ln(P2)–ln(P1)] = 0
Use  ln(a) – ln(b) = ln(a/b).  Then take exp of both sides,
and rearrange:    P2 = P1 ·exp[–0.5M2

2 / (ℜd·Tv)] 
P2 = 
  = (100kPa)·exp[–0.5(10m s–1)2/{(287m2·s–2·K–1)·(273K)}]
 = (100kPa)·exp[–0.000638]  =  (100kPa)· (0.9994)
 = 99.94 kPa.  

Check:  Units OK.   Magnitude OK.
Exposition:  This decrease of about 0.06 kPa is small 
compared to ambient P = 100 kPa.  The air-pressure 
decrease is expected because of the suction caused by 
the fan. 
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where subscript 2 denotes final state, and subscript 
1 denotes initial state.   Equation (17.41) is also some-
times written as
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 (17.43)

 energy:   kinetic + internal + flow + potential   =  constant

Again, CB is constant during the adiabatic process.

17.9.1.3. Energy Conservation
  Because these several previous equations also 
consider temperature, we cannot call them Ber-
noulli equations.  They are energy conservation 
equations that consider mechanical and thermal 
energies following a streamline.  
 If we extend this further into an energy budget 
equation, then we can add the effects of net addi-
tion of thermal energy (heat per unit mass) ∆q via 
radiation, condensation or evaporation, conduction, 
combustion, etc.  We can also include shaft work 
per unit mass ∆SW done on the air by a fan, or en-
ergy extracted from the air by a wind turbine.  
     (17.44)
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17.9.2. Some Applications

17.9.2.1. Dynamic & Static Pressure & Temperature
 Free-stream atmospheric pressure away from 
any obstacles is called the static pressure Ps.  Sim-
ilarly, let T be the free stream (initial) temperature.  
 When the wind approaches an obstacle, much of 
the air flows around it, as shown in Fig. 17.34.  How-
ever, for one streamline that hits the obstacle, air de-
celerates from an upstream speed of Minitial = Ms to 
an ending speed of Mfinal = 0.  This ending point is 
called the stagnation point.  
 As air nears the stagnation point, wind speed 
decreases, and pressure increases as air molecules 
converge.  This causes temperature to increase, ac-
cording to the ideal gas law.  The increased pressure 

Sample Application
 A 75 kW electric wind machine with a 2.5 m ra-
dius fan is used in an orchard to mix air to reduce frost 
damage on fruit.  The fan horizontally accelerates air 
from 0 to 5 m s–1.  Find the temperature change across 
the fan, neglecting mixing with environmental air.

Find the Answer
Given: Power = 75 kW = 75000 kg·m2·s–3,   R = 2.5 m, 
 M1 = 0,   M2 = 5 m s–1,   ∆z = 0
Find:   ∆T = ? °C

Assume that all the electrical energy used by the fan 
motor goes into a combination of heat and shaft work.
 The mass flow rate through this fan is:
 ρ·M2·π·R2 = (1.225kg m–3)·(5m s–1)·π·(2.5m)2 =120 kg s–1

Thus: ∆q + ∆SW = Power/(Mass Flow Rate) = 624 m2·s–2 
Use eq. (17.45):  ∆T = (1/Cp)·[∆q +∆SW –0.5·(M2

2 –M1
2)]

 = (1/1004 m2·s–2·K–1)·[(624 m2·s–2) – 0.5·(5m s–1)2]
 =  0.61 K   = 0.61°C  

Check:  Units OK.   Magnitude OK.
Exposition:  In spite of the large energy consumption 
of the electric motor, the heating is spread into a very 
large volume of air that passes through the fan.  Hence, 
the amount of temperature change is small.

Sample Application
 A short distance behind the engine of a jet aircraft 
flying in level flight, the exhaust temperature is 400 °C 
and the jet-blast speed is 200 m s–1. After the jet exhaust 
decelerates to zero, what is the final exhaust air tem-
perature, neglecting conduction & turbulent mixing.

Find the Answer
Given: M1 = 200 m s–1, T1 =400°C = 673K, M2 = 0, ∆z=0
Find: T2 = ? °C.      Assume adiabatic process.

Rearrange eq. (17.42):    T2 = T1 + M1
2/(2Cp)  

 T2 = (673K) + (200m s–1)2/(2· 1004 m2·s–2·K–1) 
  = 673K + 19.9K    =   693 K  =   420°C   

Check: Units OK.  Magnitude OK.
Exposition:  Jet exhaust is turbulent and mixes quick-
ly with the cooler ambient air, so it is not appropriate to 
use Bernoulli’s equation.  See the “dynamic warming” 
section later in this chapter for more info.

Figure 17.34
Streamlines, showing stagnation as air approaches the obstacle.
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is called the dynamic pressure Pdyn, and the in-
creased temperature is called the dynamic tem-
perature Tdyn.  At the stagnation point where ve-
locity is zero, the final dynamic pressure is called 
the stagnation pressure Po, and the associated dy-
namic temperature is given the symbol To.  Think of 
subscript “o” as indicating zero wind speed relative 
to the obstacle.
 To find the dynamic effects at stagnation, use the 
energy conservation equation (17.42) for wind blow-
ing horizontally (i.e., no change in z), and assume a 
nearly adiabatic process:

    C T M C Tp o s p· ·= +1
2

2  (17.46)

Solving for the dynamic temperature To gives:

    T T
M

Co
s

p
= +

2

2 ·
	 •(17.47)

where Cp = 1004 m2·s–2·K–1 for dry air.  Eq. (17.47) is 
valid for subsonic speeds (see INFO box).
 This effect is called dynamic warming or dy-
namic heating — an effect that you must consider 
when deploying thermometers in the wind, because 
the wind will stagnate when it hits the thermometer.  
As shown in Fig. 17.35, dynamic warming (∆T = To – 
T) is negligible (∆T ≤ 0.2°C) for flow speeds of Ms ≤ 20 
m s–1.  
 However, for thermometers on an aircraft mov-
ing 100 m s–1 relative to the air, or for stationary 
thermometers exposed to tornadic winds of Ms = 
100 m s–1, the dynamic warming is roughly  ∆T ≈ 
5°C.  For these extreme winds you can correct for 
dynamic warming by using the dynamic tempera-
ture To measured by the thermometer, and using 
the measured wind speed Ms, and then solving eq. 
(17.47) for free-stream temperature T.  
 In the Heat Budgets chapter is a relationship be-
tween temperature and pressure for an adiabatic, 
compressible process.  Using this with the equation 
above allows us to solve for the stagnation pres-
sure:
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where Cp/ℜ ≈ Cpd/ℜd = 3.5 for air, Ps is static (free-
stream) pressure, Ms is free-stream wind speed 
along the streamline, Cp ≈ Cpd = 1004 J·kg–1·K–1, T is 
free-stream temperature, and subscript d denotes 
dry air. Fig. 17.35 shows stagnation-pressure in-
crease with increasing flow speed.

Sample Application
 Tornadic winds of 100 m s–1 and 30°C blow into a 
garage and stagnate. Find stagnation T & P.  What net 
force pushes against a 3 x 5 m garage wall?

Find the Answer
Given: Ms =100 m s–1, T=30°C, Wall area A=3x5 =15 m2 
Find:  Fnet = ? N.  Assume: ρ = 1.2 kg m–3,  P = 100 kPa.

Use eq. (17.47): 
 To = (30°C)+[(100m s–1)2/(2 · 1004m2·s–2·K–1) = 35°C.

Use eq. (17.48):
 Po = (100 kPa)·[(35+273)/(30+273)]3.5 = 105.9 kPa.

Compare with eq. (17.50):     Po = (100kPa)  +  
  [(0.5 · 1.2kg m–3)·(100m s–1)2]·(1 kPa/1000Pa)= 106 kPa
 
Fnet = ∆P·A  = (6 kN m–2)·(15 m2) = 90 kN  

Check:  Units OK.  Physics OK. 
Exposition:  This force is equivalent to the weight of  
more than 1000 people, and acts on all walls and the 
roof.  It is strong enough to pop the whole roof up off of 
the house.  Then the walls blow out, and the roof falls 
back down onto the floor.  
 Hide in the basement.  Quickly.

Figure 17.35
Increase in pressure (∆P, green solid line) and temperature (∆T, 
orange dashed line) due to dynamic warming when air of speed 
Ms hits an obstacle and stagnates.  Ambient free-stream condi-
tions for this calculation are T = 290K and Ps = 100 kPa, giving 
a speed of sound of  c = 341 m s–1.  

0.001

0.010

0.100

1.0

10.

100.

1 10 100 1000
Ms (m/s)

∆P
(kPa)

∆T
(°C)



674	 CHAPTER			17			•			REGIONAL		WINDS

 For wind speeds of Ms < 100 m s–1, the previous 
equation is very well approximated by the simple 
Bernoulli equation for incompressible flow:

    P P Mo s s= + ρ
2

2 	 •(17.50)

where ρ is air density.  Do not use eq. (17.50) to find 
dynamic heating when combined with the ideal gas 
law, because it neglects the large density changes 
that occur in high-speed flows that stagnate.  
 The previous three equations show that the pres-
sure increase due to stagnation (∆P = Po – Ps) is small 
(∆P < 0.25 kPa) compared to ambient atmospheric 
pressure (Ps = 100 kPa) for wind speeds of Ms < 20 m 
s–1. 
 Dynamic effects make it difficult to measure 
static pressure in the wind.  When the wind hits the 
pressure sensor, it decelerates and causes the pres-
sure to increase.  For this reason, static pressure in-
struments are designed to minimize flow decelera-
tion and dynamic errors by having pressure ports 
(holes) along the sides of the sensor where there is 
no flow toward or away from the sensor.  
 Dynamic pressure can be used to measure wind 
speed.  An instrument that does this is the pitot 
tube.  Aircraft instruments measure stagnation 
pressure with the pitot tube facing forward into 
the flow, and static pressure with another port fac-
ing sideways to the flow to minimize dynamic ef-
fects.  The instrument then computes an “indicated 
airspeed” from eq. (17.49 or 17.50) using the pitot 
– static pressure difference.
 During tornadoes and hurricanes, if strong 
winds encounter an open garage door or house 
window, the wind trying to flow into the building 
causes pressure inside the building to increase dy-
namically.  As is discussed in a Sample Application, 
the resulting pressure difference across the roof and 
walls of the building can cause them to blow out so 
rapidly that the building appears to explode.

17.9.2.2. Venturi Effect
 Bernoulli’s equation says that if velocity increas-
es in the region of flow constriction, then pressure 
decreases.  This is called the Venturi effect. 
 For gap winds of constant depth, eq. (17.37) can 
be written as
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which can be combined with eq. (17.23) to give the 
Venturi pressure decrease:
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INFO  •  Speed of Sound

 The speed  c  of sound in air is
    

c  =  [ k · ℜ · T ]1/2   (17.42)

where k = Cp/Cv is the ratio of specific heats for air, ℜ is 
the ideal gas law constant, and T is absolute tempera-
ture.  [See the INFO box in Chapter 3, section 3.2.3, for 
a review of specific heats at constant pressure Cp and 
constant volume Cv.]  For dry air, the constants are: k  
=  Cpd/Cvd  = 1.4, and ℜd =  287.053 (m2 s–2)·K–1.  Thus, 
the speed of sound increases with the square root of 
absolute temperature.
 The speed M of any object such as an aircraft or an 
air parcel can be compared to the speed of sound:
    

Ma  =  M / c   (17.43)

where Ma is the dimensionless Mach	 number.  
Thus, an object moving at Mach 1 is traveling at the 
speed of sound.
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Fig. 17.e.    Speed of sound in dry air.

Sample Application
 If a 20 km wide band of winds of 5 m s–1 must con-
tract to pass through a 2 km wide gap, what is the pres-
sure drop in the gap compared to the non-gap flow?

Find the Answer
Given:  Ds = 20 km,   Dd = 2 km,   Ms = 5 m s–1.
Find:    Md = ? m s–1.     

Assume:  ρ = 1.2 kg m–3.   

Use eq. (17.52):  
 ∆P = (1.2 kg·m–3/2)·(5m s–1)2·[1 – ((20 km)/(2 km))2]
  =  –1485 kg·m–1·s–2   =  –1.5 kPa  

Check:  Units OK.  Physics OK. 
Exposition:  This is a measurable drop in atmospheric 
pressure.   The pressure measured at weather stations 
in such gaps should be compensated for this venturi 
effect to calculate the effective static pressure, such as 
could be used in analyzing weather maps.
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 Unfortunately, gap flows are often not constant 
depth, because the temperature inversion that caps 
these flows are not rigid lids.

17.10. DOWNSLOPE WINDS

 Consider a wintertime situation of a layer of 
cold air under warm, with a synoptic weather pat-
tern forcing strong winds toward a mountain range.  
Flow over ridge-top depends on cold-air depth, and 
on the strength of the temperature jump between 
the two layers.  If conditions are right, fast winds, 
generically called fall winds, can descend along 
the lee slope.  Sometimes these downslope winds 
are fast enough to cause significant destruction to 
buildings, and to affect air and land transportation.  
Downslope wind storms can be caused by moun-
tain waves (previously discussed), bora winds, and 
foehns.

17.10.1. Bora
 If the fast-moving cold air upstream is deeper 
than the ridge height H (Fig. 17.36), then very fast 
(hurricane force) cold winds can descend down the 
lee side.  This phenomena is called a Bora.  The 
winds accelerate in the constriction between moun-
tain and the overlying inversion, and pressure drops 
according to the Venturi effect.  The lower pressure 
upsets hydrostatic balance and draws the cold air 
layer downward, causing fast winds to hug the slope. 
 The overlying warmer air is also drawn down by 
this same pressure drop.  Because work must be done 
to lower this  warm air against buoyancy, Bernoul-
li’s equation tells us that the Bora winds decelerate 
slightly on the way down.  Once the winds reach the 
lowland, they are still destructive and much faster 
than the winds upstream of the mountain, but are 
slower than the winds at ridge top.  See the Sample 
Application for Bernoulli’s equation and Bora.
 Boras were originally named for the cold fall 
wind along the Dalmatian coast of Croatia and Bos-
nia in winter, when cold air from Russia crosses 
the mountains and descends  southwest toward the 
Adriatic Sea.  The name Bora is used generally now 
for any cold fall wind having similar dynamics.  
 For situations where the average mountain ridge 
height is greater than zi but the mountain pass is 
lower than zi, boras can start in the pass (as a gap 
wind) and continue down the lee slope.
 The difference between katabatic and Bora winds 
is significant.  Katabatic winds are driven by the lo-
cal thermal structure, and form during periods of 
weak synoptic forcing such as in high-pressure ar-

Sample Application
 For the Bora situation of Fig. 17.36, the inversion of 
strength 6°C is 1200 m above the upstream lowland.  
Ridge top is 1000 m above the valley floor.  If upstream 
winds are 10 m s–1, find the Bora wind speed in the lee 
lowlands.  

Find the Answer
Given: H = 1 km,  zi = 1.2 km, ∆θv = 6°C,
 Ms = 10 m s–1. Assume |g|/Tv = 0.0333 m·s–2·K–1  
Find:  MBora = ? m s–1

Volume conservation similar to eq. (17.23) gives ridge 
top winds Md:
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Assume Bora thickness = constant = zi – H .
Follow the streamline indicated by the thick dashed 
line in Fig. 17.36.  Assume ending pressure equals 
starting pressure on this streamline.
 Use Bernoulli’s eq. (17.37):
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Combine the above eqs.  Along the streamline, zridgetop 
= zi, and zBora = zi – H.  Thus ∆z = H.    Solve for MBora:
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Finally, we can plug in the numbers:   MBora = 
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 = ( )3600 400− −m s2 1   =  56.6 m s–1  

Check:  Units OK.  Physics OK. 
Exposition:  Winds at ridge top were 60 m s–1.  Al-
though the Bora winds at the lee lowlands are weaker 
than ridge top, they are still strong and destructive.  
Most of the wind speed up was due to volume conser-
vation, with only a minor decrease given by Bernoul-
li’s equation.  This decrease is because kinetic energy 
associated with wind speed must be expended to do 
work against gravity by moving warm inversion air 
downward.

Figure 17.36
Cold Bora winds, during synoptic weather patterns where strong 
winds are forced toward the ridge from upstream.  Thin lines are 
streamlines.  Thick dashed line is a temperature inversion. 
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eas of fair weather and light winds.  Over mid-lati-
tude land, katabatic winds exist only at night and are 
usually weak, while on the slopes of Antarctica they 
can exist for days and can become strong.  Boras are 
driven by the inertia of strong upstream winds that 
form in regions of low pressure and strong horizon-
tal pressure gradient.  They can last for several days.  
Although both phenomena are cold downslope 
winds, they are driven by different dynamics. 

17.10.2. Foehns and Chinooks
 A warm, dry downslope wind is called a Foehn.  
Foehn wind onset can be accompanied by a very 
rapid temperature increase at the surface.  If the 
warm and dry air flows over snowy ground, it rap-
idly melts and sublimates the snow (“snow eater”).  
In summer, the hot Foehn exacerbates forest fires.
 Foehn winds were originally named for the 
southerly winds from Italy that blow over the Alps 
and descend in Austria, Germany, and Switzerland.  
Other names in different parts of the world are chi-
nook (east of the Rocky Mountains in N. America), 
Santa Ana (S. California), zonda (Argentina), aus-
tru (Romania), and  aspre (France).  Foehns can be 
created by different processes in different locations.
 One mechanism for creating Foehn winds does 
not require clouds and precipitation. If the moun-
tain height H is greater than the thickness zi of cold 
air upstream, then the cold air is dammed behind 
the mountain and does not flow over (Fig. 17.37).  
The strong warm winds aloft can flow over the ridge 
top, and can warm further upon descending adia-
batically on the lee side. 
 A second Foehn mechanism is based on net 
latent heating associated with condensation and 
precipitation on the upwind side of the mountain 
range.   Consider an air parcel before it flows over a 
mountain, such as indicated at point (1) in Fig. 17.38.  
Suppose that the temperature is 20°C and dew point 
is 10°C initially, as indicated by the filled and open 
circles at point (1) in Fig. 17.39.  This corresponds to 
about 50% relative humidity.
 As the air rises along the windward slopes, it cools 
dry-adiabatically while conserving mixing ratio un-
til the lifting condensation level (LCL) is reached 
(2).  Further lifting is moist adiabatic (3) within the 
orographic cloud (a cloud caused by the terrain).  
Suppose that most of the condensed water falls out 
as precipitation on the windward slopes.
 Over the summit (4), suppose that the air has ris-
en to a height where the ambient pressure is 60 kPa.  
The air parcel now has a temperature of about –8°C.  
As it begins to descend down the lee side, any re-
sidual cloud droplets will quickly evaporate in the 
adiabatically warming air.  The trailing edge of the 
orographic cloud is called a Foehn wall, because 

Figure 17.37
One mechanism for creating warm Foehn winds, given syn-
optic weather patterns where strong winds are forced toward 
the mountain ridge from upstream.  Thin lines are streamlines.  
Thick purple dashed line is a temperature inversion. 
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Figure 17.38
Another mechanism for creating warm Foehn winds, where 
net heating occurs due to formation and fallout of precipitation 
(dashed lines).   Black curved line shows one streamline.
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Figure 17.39
Foehn thermodynamics, plotted on a Stüve thermo diagram.  
P is pressure, T is temperature, r is water-vapor mixing ratio.  
Solid dots and thick lines indicate air temperature, while dotted 
blue lines and open circles indicate humidity.  The numbers 1 - 
6 correspond to the numbered locations in the previous figure.
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it looks like a wall of clouds when viewed from the 
lowlands downwind.  
 Continued descent will be dry adiabatic (5) be-
cause there are no liquid water drops to cause evap-
orative cooling.  By the time the air reaches its start-
ing altitude on the lee side (6), its temperature has 
warmed to about 35°C, with a dew point of about 
–2°C.  This is roughly 10% relative humidity.
 The net result of this process is: clouds and 
precipitation form on the windward slopes of the 
mountain, a Foehn wall forms just downwind of the 
mountain crest, and there is warming and drying in 
the lee lowlands.  
 A third Foehn mechanism is where obstacle 
wake turbulence (Fig. 17.30d) mixes warm air down-
ward from an elevated temperature inversion. 

17.11. CANOPY FLOWS

17.11.1. Forests and Crops
 The leaf or needle layer of a crop or forest is called 
a canopy.  Individual plants or trees in these crops 
or forests each cause drag on the wind.  The average 
winds in the air space between these plant-canopy  
or forest-canopy obstacles is the canopy flow.  
 Just above the top of the canopy, the flow is ap-
proximately logarithmic with height (Fig. 17.40a).  
For statically neutral conditions in the surface layer:

   ln*M
u
k

z d
z do

= −
−







 for z ≥ hc  (17.53)

where M is wind speed, z is height above ground, 
u* is the friction velocity (a measure of the drag 
force per unit surface area of the ground), k ≈  0.4 
is the von Kármán constant, d is the displace-
ment distance (0 ≤ d ≤ hc), and zo is the roughness 
length, for an average canopy-top height of hc.
 If you can measure the actual wind speed M at 3 
or more heights z within 20 m above the top of the 
canopy, then you can use the following procedure to 
find d, zo, and u*:  (1) use a spreadsheet to plot your 
M values on a linear horizontal axis vs. their [z–d] 
values on a logarithmic vertical axis;  (2) experiment 
with different values of d until you find the one that 
aligns your wind points into a straight line;  (3) ex-
trapolate that straight line to M = 0, and note the re-
sulting intercept on the vertical axis, which gives the 
roughness length zo.  Finally, (4)pick any point exact-
ly on the plotted line, and then plug in its M and z 
values, along with the d and zo values just found, to 
calculate u* using eq. (17.53).  
 If you do not have measurements of wind speed 
above the canopy top, you can use the following 

Sample Application
 Air from the Pacific Ocean (T =5°C, Td = 3°C, z = 0) 
flows over the Coast Mountains (z ≈ 3000 m), and de-
scends toward the interior plateau of British Columbia, 
Canada (z ≈1000 m).  Fig. 17.19 shows the topography of 
this region.  Find the final T and Td. 

Find the Answer
Given:  T = 5 °C,  Td = 3 °C, z = 0 m initially.
Find:   T = ? °C,  Td = ? ° at z = 1000 m finally.

Use the thermo diagram from chapter 5:
 Use the thermo diagram to find that the initial 
mixing ratio is r ≈ 5 g kg–1.  Clouds form as the air 
rises over the mountains, with base at zLCL = (0.125 km 
°C–1)·(5–3°C) = 0.25 km.  From there to z = 3000 m, the 
air follows a moist adiabat, reaching T = Td ≈ –17°C.  
 Assuming all condensate falls out as precipitation 
on the windward side, the air then descends dry-adia-
batically to the town of Williams Lake.  The final state 
is:   T ≈ 4°C at  z = 1000 m, and Td ≈  –13°C.

Check:  Units OK.  Physics OK.
Exposition:  The air is much drier (RH ≈ 25%) on the 
lee side, but nearly the same temperature as initially.  
This is typical of a foehn wind.

Figure 17.40
Canopy flows for (a) crops or urban canopies, and (b) forest can-
opies having a relatively open trunk space.  Left: sketch of the 
canopy objects.   Right: wind profile (solid line).  The dashed 
green line shows a logarithmic profile extrapolated to zero wind 
speed M.   Average top of the canopy is at height hc. 
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crude approximations to estimate the needed pa-
rameters:  d ≈ 0.65·hc  and  zo ≈ 0.1·hc.  Methods to 
estimate u* are given in the Boundary-Layer chapter.  
 The average wind speed at the average cano-
py-top height is Mc.  For the crude approximations 
above, we find that   Mc ≈ 3.13 u*.  
 Within the top 3/4 of canopy, an exponential for-
mula describes the average wind-speed M profile:

   M M a
z
hc

c
= −















·exp · 1    (17.54)

     for 0.5hc ≤ z ≤ hc

where a is an attenuation coefficient that increas-
es with increasing leaf area and decreases as the 
mean distance between individual plants increases.   
Typical values are: a ≈ 2.5 - 2.8 for oats and wheat; 
2.0 - 2.7 for mature corn; 1.3 for sunflowers; 1.0 - 1.1 
for larch and small evergreen trees; and 0.4 for a cit-
rus orchard.  The exponential and log-wind speeds 
match at the average canopy top hc.  
 For a forest with relatively open trunk space (i.e., 
only the tree trunks without many leaves, branches, 
or smaller underbrush), the previous equation fails.  
Instead, a weak relative maximum wind speed can 
occur (Fig. 17.40b).  In such forests, if the canopy is 
very dense, then the sub-canopy (trunk space) flow 
can be relatively disconnected from the flow above 
the tree tops.  Weak katabatic flows can exist in the 
trunk space day and night. 

17.11.2. Cities
 The collection of buildings and trees that make 
up a city is sometimes called an urban canopy.  
These obstacles cause an average canopy-flow wind 
similar to that for forests and crops (Fig. 17.40a).  
 However, winds at any one location in the city 
can be quite different.  For example, the street corri-
dors between tall buildings can channel flow similar 
to the flow in narrow valleys.  Hence these corridors 
are sometimes called urban canyons.  Also, taller 
buildings can deflect down to the surface some of 
the faster winds aloft.  This causes much greater 
wind speeds and gusts near the base of tall build-
ings than near the base of shorter buildings. 
 Cities can be 2 - 12°C degrees warmer than the 
surrounding rural countryside — an effect called 
the urban heat island (UHI, Fig. 17.41).  Reasons in-
clude the abundance of concrete, glass and asphalt, 
which capture and store the solar heat during day-
time and reduce the IR cooling at night.  Also, veg-
etated areas are reduced in cities, and rainwater is 
channeled away through storm drains.  Hence, there 
is less evaporative cooling.  Also, fuel and electrical 
consumption by city residents adds heat via heating, 
air conditioning, industry, and transportation.  

Sample Application (§)
 Given these wind measurements over a 2 m high 
corn crop: [z (m), M (m s–1)] = [5, 3.87] , [10, 5.0] , [20, 6.01]. 
Find the displacement distance, roughness length, and 
friction velocity.  If the attenuation coefficient is 2.5, 
plot wind speed M vs. height over  0.5 m ≤ z ≤ 5 m.  

Find the Answer
Given: hc =2m, [z (m), M (m s–1)] listed above,  a = 2.5.
Find:  d = ? m,   zo = ? m,  u* = ? m s–1, and plot M vs. z.

 Guess d = 0, and plot M vs. log(z–d) on a spread-
sheet.  This d is too small (see graph below), because 
the curve is concave up.  Guess d = 4, which is too 
large, because curve is concave down.  After other 
guesses (some not shown), I find that d = 1.3 m gives 
the straightest line.  
 Next, extrapolate on the semi-log graph to M = 0, 
which gives an intercept of zo = 0.2 m.  
 Solve eq. (17.53) for u* = k·M/ln[(z–d)/zo]  
u*  =  0.4(5m s–1)/ln[(10–1.3)/0.2]  =  0.53 m s–1   
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 Solve eq. (17.53) for Mc at z = hc = 2 m:  
  Mc = [(0.53m s–1)/0.4] · ln[(2–1.3m)/0.2]  = 1.66 m s–1

 Use eq. (17.54) to find M for a range of heights be-
low hc, and use eq. (17.53) for heights above hc:
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Check:  Shape of curve looks reasonable.
Exposition:  For this exercise, zo = 0.1 hc, and d = 0.65 
hc.  Namely, the crude approximations are OK.
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 The city–rural temperature difference ∆TUHI is 
greatest during clear calm nights, because the city 
stays warm while rural areas cool considerably due 
to IR radiation to space.  The largest values  ∆TUHI_

max occur near the city center (Fig. 17.42), at the loca-
tion of greatest density of high buildings and nar-
row streets.  For clear, calm nights, this relationship 
is described by

    ∆TUHI_max ≈ a + b· ln(H/W) (17.55)

where  a = 7.54°C  and  b = 3.97°C.  H is the average 
height (m) of the buildings in the downtown city 
core, W is the average width (m) of the streets at the 
same location, and H/W is dimensionless.  
 Temperature difference is much smaller dur-
ing daytime. When averaged over a year (including 
windy and cloudy periods of minimal UHI), the av-
erage ∆TUHI at the city center is only 1 to 2°C.
 During periods of fair weather and light synoptic-
scale winds, the warm city can generate circulations 
similar to sea breezes, with inflow of low-altitude 
rural air toward the city, and rising air over the hot-
test parts of town.  These circulations can enhance 
clouds, and trigger or strengthen thunderstorms 
over and downwind of the city.  With light to mod-
erate winds, the UHI area is asymmetric, extending 
much further from the city in the downwind direc-
tion (Fig. 17.41), and the effluent (heat, air pollution, 
odors) from the city can be observed downwind as 
an urban plume (Fig. 17.43).

17.12. REVIEW

 The probability of any wind speed at a particular 
location can be described by a Weibull distribution.  
The distribution of wind directions can be plotted 
on a wind rose.  Regions with greater probability of 
moderate winds are ideal for siting wind turbines.
 During weak synoptic forcing (weak geostrophic 
winds), local circulations can be driven by thermal 
forcings.  Examples include anabatic (warm upslope) 
and katabatic (cold downslope) winds, mountain 
and valley winds, and sea breezes near coastlines.  
 During strong synoptic forcing, winds can be 
channeled through gaps, can form downslope 
windstorms, and can create mountain waves and 
wave drag.  The winds in short gaps can be well de-
scribed by open-channel hydraulics and Bernoulli’s 
equation.  Winds in longer gaps and fjords are influ-
enced by Coriolis force.
 The Bora is a cold downslope wind driven dy-
namically by the synoptic-scale flow.  Foehn winds 
are also driven dynamically, but are warm, and can 

Figure 17.41
An urban heat island at night, where To is the rural air tempera-
ture.  The grid represents city streets.
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Figure 17.42
Maximum urban-heat-island temperature difference ∆TUHI_

max increases with average aspect ratio H/W of the urban can-
yons near the built-up city center.  Based on data from North 
America, Europe, and Australasia.  [Adapted from Oke, Mills, 
Christen, & Voogt, 2016: Urban Climates, submitted to Cam-
bridge Univ. Press.  (used with lead author’s permission).]
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B3.  Find on the web climatological maps giving lo-
cations of persistent, moderate winds.  These are fa-
vored locations for wind turbine farms.  Also search 
the web for locations of existing turbine farms.

B4.  Search the web for a weather map showing ver-
tical velocities over your country or region.  Some-
times, these vertical velocities are given as omega 
(ω) rather than w, where ω is the change of pressure 
with time experienced by a vertically moving parcel, 
and is defined in the Extratropical Cyclone chapter.  
What is the range of vertical velocities on this par-
ticular day, in m s–1?

B5.  Search the web for the highest resolution (hope-
fully 0.5 km or better resolution) visible satellite 
imagery for your area.  Which parts of the country 
have rising thermals, based on the presence of cu-
mulus clouds at the top of the thermals?  

B6.  Search the web for lidar (laser radar) images of 
thermals in the boundary layer.  

B7.  Search the web for the highest resolution (hope-
fully 0.5 km or better resolution) visible satellite im-
agery for your area.  Also search for an upper-air 
sounding (i.e., thermo diagram) for your area.  Does 
the depth of the mixed layer from the thermo dia-
gram agree with the diameter of thermals (clouds) 
visible in the satellite image?  Comment.

B8.  Access IR high resolution satellite images over 
cloud-free regions of the Rocky Mountains (or Cas-
cades, Sierra-Nevada, Appalachians, or other signifi-
cant mountains) for late night or early morning dur-
ing synoptic conditions of high pressure and light 
winds.  Identify those regions of cold air in valleys, 
as might have resulted from katabatic winds.  Some-
times such regions can be identified by the fog that 
forms in them.  

B9.  Search the web for weather station observations 
at the mouth of a valley.  Plotted meteograms of 
wind speed and direction are best to find.  See if you 
can find evidence of mountain/valley circulations 
in these station observations, under weak synoptic 
forcing. 

B10.  Same as the previous problem, but to detect a 
sea breeze for a coastal weather station.   

B11.  Search the web for satellite observations of the 
sea breeze, evident as changes in cloudiness parallel 
to the coastline. 

be enhanced by orographic precipitation and latent 
heating.  Hydraulic jumps occur downstream of 
bora winds and in some gap flows as the flow re-ad-
justs to hydrostatic equilibrium.  
 Wind and temperature instruments are con-
structed to minimize dynamic pressure and heating 
errors.  Wind speed is reduced inside plant and ur-
ban canopies.  The urban-heat-island effect of cities 
can induce local circulations.

17.13. HOMEWORK EXERCISES

17.13.1. Broaden Knowledge & Comprehension
B1.  Search the web for wind-rose graphs for a loca-
tion (weather station or airport) near you, or other 
location specified by your instructor.

B2.  Search the web for wind-speed distributions for 
a weather station near you.  Relate this distribution 
to extreme or record-breaking winds.

A SCIENTIFIC PERSPECTIVE  •  Simple 
is Best

 Fourteenth century philosopher William of Occam 
suggested that “the simplest scientific explanation is 
the best”.  This tenant is known as Occam’s Razor, 
because with it you can cut away the bad theories and 
complex equations from the good.  
 But why should the simplest or most elegant be the 
best?  There is no law of nature that says it must be so.  
It is just one of the philosophies of science, as is the 
scientific method of Descartes.  Ultimately, like any 
philosophy or religion, it is a matter of faith. 

 I suggest an alternative tenant:  “a scientific 
relationship should not be more complex 
than needed.”  This is motivated by the human 
body — an amazingly complex system of hydraulic, 
pneumatic, electrical, mechanical, chemical, and oth-
er physical processes that works exceptionally well.  
In spite of its complexity, the human body is not more 
complex than needed (as determined by evolution).  
 Although this alternative tenant is only subtly dif-
ferent from Occam’s Razor, it admits that sometimes 
complex mathematical solutions to physical prob-
lems are valid.  This tenant is used by a data-analy-
sis method called computational evolution (or 
gene-expression programming).  This ap-
proach creates a population of different algorithms 
that compete to best fit the data, where the best al-
gorithms are allowed to persist with mutation into 
the next generation while the less-fit algorithms are 
culled via computational natural selection.
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B12.  Search the web for information on how tsuna-
mi on the ocean surface travel at the shallow-water 
wave speed as defined in this chapter, even when 
the waves are over the deepest parts of the ocean.  
Explain.

B13. Search the web for images of hydraulic jump in 
the atmosphere.  If you can’t find any, then find im-
ages of hydraulic jump in water instead.

B14.  Access images from digital elevation data, 
and find examples of short and long gaps through 
mountain ranges for locations other than Western 
Canada.  

B15.  Search the web for news stories about danger-
ous winds along the coast, but limit this search to 
only coastally-trapped jets.  If sufficient information 
is given in the news story, relate the coastal jet to the 
synoptic weather conditions.

B16.  Access visible high-resolution satellite photos of 
mountain wave clouds downwind of a major moun-
tain range.  Measure the wavelength from these im-
ages, and compare with the wind speed accessed 
from upper air soundings in the wave region.  Use 
those data to estimate the Brunt-Väisälä frequency.

B17.  Access from the web photographs taken from 
ground level of lenticular clouds.  Also, search for 
iridescent clouds on the web, to find if any of these 
are lenticular clouds.

B18.  Access from the web pilot reports of turbu-
lence, chop, or mountain waves in regions down-
wind of mountains.  Do this over several days, and 
show how these reports vary with wind speed and 
static stability.  

B19.  Access high-resolution visible satellite imag-
es from the web during clear skies, that show the 
smoke plume from a major source (such as Gary, 
Indiana, or Sudbury, Ontario, or a volcano, or a for-
est fire).  Assume that this image shows a streakline.  
Also access the current winds from a weather map 
corresponding roughly to the altitude of the smoke 
plume, from which you can infer the streamlines.  
Compare the streamlines and streaklines, and spec-
ulate on how the flow has changed over time, if at 
all.  Also, draw on your printed satellite photo the 
path lines for various air parcels within the smoke 
plume.

B20.  From the web, access weather maps that show 
streamlines.  These are frequently given for weather 
maps of the jet stream near the tropopause (at 20 to 

30 kPa).  Also access from the web weather maps that 
plot the actual upper air winds from rawinsonde ob-
servations, valid at the same time and altitude as the 
streamline map.  Compare the instantaneous winds 
with the streamlines.

B21.  From the web, access a sequence of weather 
maps of streamlines for the same area.  Locate a 
point on the map where the streamline direction has 
changed significantly during the sequence of maps.  
Assume that smoke is emitted continuously from 
that point.  On the last map of the sequence, plot the 
streakline that you would expect to see.  (Hint, from 
the first streamline map, draw a path line for an air 
parcel that travels until the time of the next stream-
line map.  Then, using the new map, continue find-
ing the path of that first parcel, as well as emit a new 
second parcel that you track.  Continue the process 
until the tracks of all the parcels end at the time of 
the last streamline map.  The locus of those parcels 
is a rough indication of the streakline.)

B22.  Access from the web information for aircraft 
pilots on how the pitot tube works, and/or its cali-
bration characteristics for a particular model of air-
craft.

B23.  Access from the web figures that show the 
amount of destruction for different intensities of 
tornado winds.  Prepare a table giving the dynamic 
pressures and forces on the side of a typical house 
for each of those different wind categories.  

B24.  Access from the web news stories of damage 
to buildings or other structures caused by Boras, 
mountain waves, or downslope windstorms.

B25.  Access from the web data or images that in-
dicate typical height of various mature crops (other 
than the ones already given at the end of the Nu-
merical exercises).  

B26. Access from the web the near-surface air tem-
perature at sunrise in or just downwind of a large 
city, and compare with the rural temperature.

B27.  Use info from the web to estimate the urban 
canopy H/W aspect ratio for the city center nearest 
to you.  Then use Fig. 17.42 to estimate ∆TUHI_max.

17.13.2. Apply
A1.(§)  Plot the probability of wind speeds using a 
Weibull distribution with a resolution of 0.5 m s–1, 
and Mo = 8 m s–1, for α =
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9
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A12.  Assume |g|/Tv = 0.0333 m·s–2·K–1.  For a cold 
layer of air of depth 50 m under warmer air, find the 
surface (interfacial) wave phase speed (m s–1) for a 
virtual potential temperature difference (K) of:
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A13.  For the previous problem, find the value of 
the Froude number Fr1.  Also, classify this flow as 
subcritical, critical, or supercritical.  Given M = 15 
m s–1.

A14.  Assume |g|/Tv = 0.0333 m·s–2·K–1.  Find the in-
ternal wave horizontal group speed (m s–1) for a sta-
bly stratified air layer of depth 400 m, given ∆θv/∆z 
(K km–1) of: 
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A15.  For the previous problem, find the value of the 
Froude number Fr2. Also, classify this flow as sub-
critical, critical, or supercritical.

A16.  Winds of 10 m s–1 are flowing in a valley of 10 
km width.  Further downstream, the valley narrows 
to the width (km) given below.  Find the wind speed 
(m s–1) in the constriction, assuming constant depth 
flow.
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A17.  Assume |g|/Tv = 0.0333 m·s–2·K–1.  For a two-
layer atmospheric system flowing through a short 
gap, find the maximum expected gap wind speed 
(m s–1).   Flow depth is 300 m, and the virtual poten-
tial temperature difference (K) is:
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A18.  Find the long-gap geostrophic wind (m s–1) at 
latitude 50°, given |g|/Tv = 0.0333 m·s–2·K–1 and ∆θv 
= 3°C, and assuming that the slope of the top cold-
air surface is given by the height change (km) below 
across a valley 10 km wide. 
 a. 0.3  b. 0.4  c. 0.5  d. 0.6  e. 0.7
 f. 0.8  g. 0.9  h. 1.0  i. 1.1  j. 1.2
 k. 2.4  m. 2.6  n. 2.8  o. 3

A19.  Find the external Rossby radius of deformation 
(km) for a coastally trapped jet that rides against a 
mountain range of 2500 m altitude at latitude (°) giv-
en below, for air that is colder than its surroundings 
by 10°C.   Assume |g|/Tv = 0.0333 m·s–2·K–1.
 a. 80 b. 85 c. 20 d. 25 e. 30 f. 35 g. 40
 h. 45 i. 50 j. 55 k. 60 m. 65 n. 70 o. 75

A2.  A wind turbine of blade radius 25 m runs at 35% 
efficiency.  At sea level, find the theoretical power 
(kW) for winds (m s–1) of:  
 a. 1 b. 2 c. 3 d. 4 e. 5 f. 6   g. 7 h. 8
 i. 9  j. 10 k. 11 m. 12 n. 13 o. 14 p. 15

A3.  Find the equilibrium updraft speed (m s–1) of a 
thermal in a 2 km boundary layer with environmen-
tal temperature 15°C.  The thermal temperature (°C) 
is:  a. 16 b. 16.5  c. 17 d. 17.5  e. 18 f. 18.5
 g. 19 h. 19.5  i. 20 j. 20.5  k. 21 m. 21.5

A4.  Anabatic flow has a temperature excess of 4°C.  
Find the buoyant along-slope pressure gradient force 
per unit mass for a slope of angle (°):
 a. 10 b. 15 c. 20 d. 25 e. 30 f. 35 g. 40
 h. 45 i. 50 j. 55 k. 60 m. 65 n. 70 o. 75

A5(§).  Plot katabatic wind speed (m s–1) vs. 
downslope distance (m) if the environment is 20°C 
and the cold katabatic air is 15°C.  The slope angle 
(°) is:
 a. 10 b. 15 c. 20 d. 25 e. 30 f. 35 g. 40
 h. 45 i. 50 j. 55 k. 60 m. 65 n. 70 o. 75

A6.  Find the equilibrium downslope speed (m s–1) 
for the previous problem, if the katabatic air is 5 m 
thick and the drag coefficient  is 0.002.

A7.  Find the depth (m) of the thermal internal 
boundary layer 2 km downwind of the coastline, for 
an environment with wind speed 8 m s–1 and γ = 4 K 
km–1.  The surface kinematic heat flux (K·m s–1) is
 a. 0.04  b. 0.06  c. 0.08  d. 0.1  e. 0.12
 f. 0.14  g. 0.16  h. 0.18  i. 0.2  j. 0.22

A8.  Assume Tv = 20°C.  Find the speed (m s–1) of 
advance of the sea-breeze front, for a flow depth of 
700 m and a temperature excess ∆θ (K) of:
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A9.  For the previous problem, find the sea-breeze 
wind speed (m s–1) at the coast.

A10.  For a sea-breeze frontal speed of 5 m s–1, find 
the expected maximum distance (km) of advance of 
the sea-breeze front for a latitude (°) of
 a. 10 b. 15 c. 20 d. 25 e. 80 f. 35 g. 40
 h. 45 i. 50 j. 55 k. 60 m. 65 n. 70 o. 75

A11.  What is the shallow-water wave phase speed 
(m s–1) for a water depth (m) of:
 a. 2 b. 4 c. 6 d. 8 e. 10 f. 15 g. 20
 h. 25 i. 30 j. 40 k. 50 m. 75 n. 100   o. 200
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A20.  Assume |g|/Tv = 0.0333 m·s–2·K–1.  Find the 
natural wavelength of air, given
 a. M = 2 m s–1,  ∆T/∆z = 5 °C km–1

 b. M = 20 m s–1,  ∆T/∆z = –8 °C km–1

 c. M = 5 m s–1,  ∆T/∆z = –2 °C km–1

 d. M = 20 m s–1,  ∆T/∆z = 5 °C km–1

 e. M = 5 m s–1,  ∆T/∆z = –8 °C km–1

 f. M = 2 m s–1,  ∆T/∆z = –2 °C km–1

 g. M = 5 m s–1,  ∆T/∆z = 5 °C km–1

 h. M = 2 m s–1,  ∆T/∆z = –8 °C km–1

A21.  For a mountain of width 25 km, find the Froude 
number Fr3 for the previous problem.  Draw a sketch 
of the type of mountain waves that are likely for this 
Froude number.

A22.  For the previous problem, find the angle of the 
wave crests, and the wave-drag force per unit mass.  
Assume H = 1000 m and hw = 11 km. 

A23(§).  Plot the wavy path of air as it flows past a 
mountain, given an initial vertical displacement of 
300 m, a wavelength of 12.5 km, and a damping fac-
tor of
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A24(§)  Given a temperature dew-point spread of 
1.5°C at the initial (before-lifting) height of air in the 
previous problem, identify which wave crests con-
tain lenticular clouds.

A25.  Cold air flow speed 12 m s–1 changes to 3 m 
s–1 after a hydraulic jump.  Assume |g|/Tv = 0.0333 
m·s–2·K–1.  How high can the hydraulic jump rise if 
the exit velocity (m s–1) is
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A26.  Assuming standard sea-level density and 
streamlines that are horizontal, find the pressure 
change given the following velocity (m s–1) change:
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A27.  Wind at constant altitude decelerates from 12 
m s–1 to the speed (m s–1) given below, while passing 
through a wind turbine.  What opposing net pres-
sure difference (Pa) would have caused the same de-
celeration in laminar flow?
 a. 1.0 b. 1.5 c. 2.0 d. 2.5 e. 3.0 f. 3.5 g. 4.0
 h. 4.5 i. 5.0 j. 5.5 k. 6.0 m. 7 n. 8 o. 9

A28.  Air with pressure 100 kPa is initially at rest.  
It is accelerated isothermally over a flat 0°C snow 

surface as it is sucked toward a household venti-
lation system.  What is the final air pressure (kPa) 
just before entering the fan if the final speed (m s–1) 
through the fan is:
 a. 1 b. 2 c. 3 d. 4 e. 5 f. 6   g. 7 h. 8
 i. 9  j. 10 k. 11 m. 12 n. 13 o. 14 p. 15

A29.  A short distance behind the jet engine of an 
aircraft flying in level flight, the exhaust tempera-
ture is 500°C.  After the jet exhaust decelerates to 
zero, what is the final exhaust air temperature (°C), 
neglecting conduction and mixing, assuming the 
initial jet-blast speed (m s–1) is:
 a. 100 b. 125 c. 150 d. 175 e. 200 f. 210 g. 220
 h. 230 i. 240 j. 250 k. 260 m. 270   n. 280 o. 290

A30.  An 85 kW electric wind machine with a 3 m 
radius fan blade is used in an orchard to mix air so 
as to reduce frost damage on fruit.  The fan horizon-
tally accelerates the air from calm to the speed (m 
s–1) given below.  Find the temperature change (°C) 
across the fan, neglecting mixing with the environ-
mental air.
 a. 6 b. 6.5 c. 7 d. 7.5 e. 8 f. 8.5   g. 9
 h. 9.5 i. 10 j. 10.5 k. 11 m. 12 n. 13 o. 14

A31.  Tornadic air of temperature 25°C blows with 
speed (m s–1) given below, except that it stagnates 
upon hitting a barn.  Find the final stagnation tem-
perature (°C) and pressure change (kPa).
 a. 100 b. 125 c. 150 d. 175 e. 200 f. 210 g. 220
 h. 230 i. 240 j. 250 k. 260 m. 270   n. 280 o. 290

A32.  Find the speed of sound (m s–1) and Mach 
number for Mair = 100 m s–1, given air of tempera-
ture (°C):
 a. –50  b. –45  c. –40  d. –35  e. –30
 f. –25  g. –20  h. –15  i. –10  j. –5
 k. 0  m. 5  n. 10  o. 15  p. 20

A33.   Water flowing through a pipe with speed 2 m 
s–1 and pressure 100kPa accelerates to the speed (m 
s–1) given below when it flows through a constric-
tion.  What is the fluid pressure (kPa) in the constric-
tion?  Neglect drag against the pipe walls.  
 a. 6 b. 6.5 c. 7 d. 7.5 e. 8 f. 8.5   g. 9
 h. 9.5 i. 10 j. 10.5 k. 11 m. 12 n. 13 o. 14

A34.  For the bora Sample Application, redo the cal-
culation assuming that the initial inversion height 
(km) is: a. 1.1  b. 1.15  c. 1.25  d. 1.3  e . 
1.35
 f. 1.4  g. 1.45  h. 1.5  i. 1.55  j. 1.6
 k. 1.65  m. 1.7  n. 1.75  o. 1.8  p. 1.85
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butions, such as Gaussian (symmetric, bell shaped), 
exponential, or others.

E3.  Why was an asymmetric distribution such as 
the Weibull distribution chosen to represent winds?

E4.  What assumptions were used in the derivation 
of Betz’ Law, and which of those assumptions could 
be improved?

E5.  To double the amount of electrical power pro-
duced by a wind turbine, wind speed must increase 
by what percentage, or turbine radius increase by 
what percentage? 

E6.  For the Weibull distribution as plotted in Fig. 
17.1, find the total wind power associated with it.

E7.  In Fig. 17.5, what determines the shape of the 
wind-power output curve between the cut-in and 
rated points?  

E8.  List and explain commonalities among the equa-
tions that describe the various thermally-driven lo-
cal flows.

E9.  If thermals with average updraft velocity of W 
= 5 m s–1 occupy 40% of the horizontal area in the 
boundary layer, find the average downdraft veloc-
ity.

E10.  What factors might affect rise rate of the ther-
mal, in addition to the ones already given in this 
chapter?

E11.  Anabatic and lenticular clouds were described 
in this chapter.  Compare these clouds and their for-
mation mechanisms.  Is it possible for both clouds to 
occur simultaneously over the same mountain?

E12.  Is the equation describing the anabatic pres-
sure gradient force valid or reasonable in the limits 
of 0° slope, or  90° slope.  Explain. 

E13.  Explain in terms of Bernoulli’s equation the 
horizontal pressure gradient force acting on anabatic 
winds.

E14.  What factors control the shape of the katabatic 
wind profile, as plotted in Fig. 17.9?

E15.  The Sample Application for katabatic wind 
shows the curves from eqs. (17.8) and (17.9) as cross-
ing.  Given the factors that appear in those equa-
tions, is a situation possible where the curves never 
cross?  Describe.

A35.  Use a thermodynamic diagram.  Air of ini-
tial temperature 10°C and dew point 0°C starts at a 
height where the pressure (kPa) is given below.  This 
air rises to height 70 kPa as it flows over a mountain, 
during which all liquid and solid water precipitate 
out.  Air descends on the lee side of the mountain 
to an altitude of 95 kPa.  What is the temperature, 
dew point, and relative humidity of the air at its fi-
nal altitude?  How much precipitation occurred on 
the mountain?  [Hint: use a thermo diagram.]
 a. 104 b. 102 c. 100 d. 98 e. 96 f. 94 g. 92
 h. 90 i. 88 j. 86 k. 84 m. 82 n. 80

A36.  Plot wind speed vs. height, for heights between 
0.25 hc and 5 hc, where hc is average plant canopy 
height.  Given:  
  Plant  hc(m)  u*(m s–1)   attenuation coef.  
 a. Wheat 1.0   0.5   2.6
 b. Wheat 1.0   0.75  2.6
 c. Soybean 1.0   0.5   3.5
 d. Soybean 1.0   0.75  3.5
 e. Oats  1.5   0.5   2.8
 f. Oats  1.5   0.75  2.8
 g. Corn  2.0   0.5   2.7
 h. Corn  2.0   0.75  2.7
 i. Corn  2.5   0.5   2.2
 j. Corn  2.5   0.75  2.2
 k. Sunflower  2.75  0.5   1.3
 m. Sunflower  2.75  0.75  1.3
 n. Pine  3.0   0.5   1.1
 o. Pine  3.0   0.25  1.1
 p. Orchard 4.0   0.5   0.4
 q. Orchard 4.0   0.25  0.4
 r. Forest  20.   0.5   1.7
 s. Forest  20.   0.25  1.7

A37. Estimate the max urban heat island tempera-
ture excess compared to the surrounding rural 
countryside, for a city with urban-canyon aspect ra-
tio (H/W) of:
 a. 0.5   b. 0.75  c. 1.0 d. 1.25   e. 1.5  f. 1.75
 g. 2.0   h. 2.25 i. 2.5 j. 2.75   k. 3.0   m. 3.25 

17.13.3. Evaluate & Analyze
E1.  For a Weibull distribution, what is the value of 
the probability in any one bin as the bin size be-
comes infinitesimally small?   Why?

E2(§).  Create a computer spreadsheet with location 
and spread parameters in separate cells.  Create and 
plot a Weibull frequency distribution for winds by 
referencing those parameters.  Then try changing 
the parameters to see if you can get the Weibull 
distribution to look like other well-known distri-
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E16.  Suppose a mountain valley exits right at a 
coastline.  For synoptically weak conditions (near 
zero geostrophic wind), describe how would the 
mountain/valley circulation and sea-breeze circula-
tion interact.   Illustrate with drawings.

E17.  The thermal internal boundary layer can form 
both during weak- and strong-wind synoptic condi-
tions.  Why?

E18.  For stronger land-sea temperature contrasts, 
which aspects of the sea-breeze would change, and 
which would be relatively unchanged?  Why?

E19.  At 30° latitude, can the sea-breeze front advance 
an infinite distance from the shore?   Why?

E20.  In the Southern Hemisphere, draw a sketch of 
the sea-breeze-vs.-time hodograph, and explain it.

E21.  For what situations would open-channel hy-
draulics NOT be a good approximation to atmo-
spheric local flows?  Explain.

E22.  Interfacial (surface) wave speed was shown to 
depend on average depth of the cold layer of air.  Is 
this equation valid for any depth?  Why?

E23.  In deriving eq. (17.17) for internal waves, we 
focused on only the fastest wavelengths.  Justify.

E24.  In what ways is the Froude number for incom-
pressible flows similar to the Mach number for com-
pressible flows?

E25.  If supercritical flows tend to “break down” to-
ward subcritical, then why do supercritical flows ex-
ist at all in the atmosphere?   

E26.  Is it possible to have supercritical flow in the 
atmosphere that does NOT create an hydraulic jump 
when it changes to subcritical?  Explain?

E27.  Contrast the nature of gap winds through short 
and long gaps.  Also, what would you do if the gap 
length were in between short and long?

E28.  For gap winds through a long gap, why are 
they less likely to form in summer than winter?

E29.  Can coastally trapped jets form on the east 
coast of continents in the N. Hemisphere?  If so, ex-
plain how the process would work.

E30.  It is known from measurements of the iono-
sphere that the vertical amplitude of mountain 
waves increases with altitude.  Explain this using 
Bernoulli’s equation.

E31.  What happens to the natural wavelength of air 
for statically unstable conditions?

E32.  Why are lenticular clouds called standing 
lenticular?  

E33.  Compare and contrast the 3 versions of the 
Froude number.  Do they actually describe the same 
physical processes?   Why?

E34.  Is there any max limit to the angle a of moun-
tain wave crests (see Fig. 17.31)?  Comment.

E35.  If during the course of a day, the wind speed is 
constant but the wind direction gradually changes 
direction by a full 360°, draw a graph of the resulting 
streamline, streakline, and path line at the end of the 
period.  Assume continuous emissions from a point 
source during the whole period.

E36.  Identify the terms of Bernoulli’s equation that 
form the hydrostatic approximation.  According to 
Bernoulli’s equation, what must happen or not hap-
pen in order for hydrostatic balance to be valid?

E37.  Describe how the terms in Bernoulli’s equation 
vary along a mountain-wave streamline as sketched 
in Fig. 17.29.  

E38.  If a cold air parcel is given an upward push in a 
warmer environment of uniform potential tempera-
ture, describe how the terms in Bernoulli’s equation 
vary with parcel height.  

E39.  For compressible flow, show if (and how) the 
Bernoulli equations for isothermal and adiabatic 
processes reduce to the basic incompressible Ber-
noulli equation under conditions of constant den-
sity.

E40.  In the Sample Application for the pressure 
variation across a wind turbine, hypothesize why 
the actual pressure change has the variation that 
was plotted.

E41.  In Fig. 17.34, would it be reasonable to move the 
static pressure port to the top center of the darkly 
shaded block, given no change to the streamlines 
drawn?  Comment on potential problems with a 
static port at that location.  
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E42.  Design a thermometer mount on a fast aircraft 
that would not be susceptible to dynamic warming.  
Explain why your design would work.  

E43.  In Fig. 17.34, speculate on how the streamlines 
would look if the approaching flow was supersonic.  
Draw your streamlines, and justify them.   

E44.  Comment on the differences and similarities 
of the two mechanisms shown in this Chapter for 
creating Foehn winds.

E45.  For Bora winds, if the upwind cold air was over 
an elevated plateau, and the downwind lowland 
was significantly lower than the plateau, how would 
Bora winds be different, if at all?  Why?

E46.  If the air in Fig. 17.38 went over a mountain but 
there was no precipitation, would there be a Foehn 
wind?  

E47.  Relate the amount of warming of a Foehn wind 
to the average upstream wind speed and the precipi-
tation rate in mm h–1 .

E48.  How sensitive is the solution for wind speed 
above a plant canopy?  [Hint: see the Sample Ap-
plication in the canopy flow section.]  Namely, if you 
have a small error in estimating displacement dis-
tance d, are the resulting errors in friction velocity u* 
and roughness length zo relatively small or large?

17.13.4. Synthesize
S1.  Suppose that in year 2100 everyone is required 
by law to have their own wind turbine.  Since wind 
turbines take power from the wind, the wind be-
comes slower.  What effect would this have on the 
weather and climate, if any?

S2.  If fair-weather thermals routinely rose as high 
as the tropopause without forming clouds, comment 
on changes to the weather and climate, if any.

S3.  Suppose that katabatic winds were friction-
less.  Namely, no turbulence, no friction against the 
ground, and no friction against other layers of air.  
Speculate on the shape of the vertical wind profile of 
the katabatic winds, and justify your arguments.

S4.  If a valley has two exists, how would the moun-
tain and valley winds behave?

S5.  Suppose that katabatic winds flow into a bowl-
shaped depression instead of a valley.  Describe how 
the airflow would evolve during the night.  

S6.  If warm air was not less dense than cold, could 
sea breezes form?  Explain.

S7.  Why does the cycling in a sea-breeze hodograph 
not necessarily agree with the timing of the pendu-
lum day?

S8.  What local circulations would disappear if air 
density did not vary with temperature?  Justify.   

S9.  Can a Froude number be defined based on deep-
water waves rather than shallow-water waves?  If so, 
write an equation for the resulting Froude number, 
and suggest applications for it in the atmosphere. 

S10.  What if waves could carry no information and 
no energy.  How would the critical nature of the flow 
change, if at all?

S11.  If the Earth did not rotate, compare the flow 
through short and long gaps through mountains.

S12.  If no mountains existing along coasts, could 
there ever be strong winds parallel to the coast?

S13.  If mountain-wave drag causes the winds to be 
slower, does that same drag force cause the Earth to 
spin faster?  Comment.

S14.  Suppose that mountain-wave drag worked op-
positely, and caused winds to accelerate aloft.   How 
would the weather & climate be different, if at all?  

S15.  Is it possible for a moving air parcel to not be 
traveling along a streamline?  Comment.

S16.  Suppose that Bernoulli’s equation says that pres-
sure decreases as velocity decreases along a stream-
line of constant height.  How would the weather and 
climate be different, if at all?  Start by commenting 
how Boras would be different, if at all.

S17.  Suppose you are a 2 m tall person in a town 
with average building height of 8 m.  How would 
the winds that you feel be different (if at all) than the 
winds felt by a 0.2 m tall cat in a young corn field of 
average height 0.8 m?

S18.  If human population continued to grow until 
all land areas were urban, would there be an urban 
heat island?  Justify, and relate to weather changes.
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