ATSC 201 Fall 2023

Chapter 1: A1e, A3e, A5e, A6e, A9e, A14e, A15e

Total mark out of 25

A1e) (4 marks)

Find the wind direction (degrees) and speed (m/s), given the (U,V) components: d) (8,0) knots

Given: U = 8 knots

V = 0 knots

Find: alpha (wind direction) M (wind speed)

Using eq. 1.1:

 $M = (U^2 + V^2)^0.5$

Using eq. 1.2a:

if U > 0

alpha = 90deg - (360deg/C)*arctan(V/U) + alpha0

C = 360 deg

alpha0 = 180 deg M = 8 knots

= 4.11556507 m/s

M = 4.12 m/s alpha = 270.00 deg

Checks: Units ok. Physics ok.

Discussion: The wind is coming from the W with a magnitude of 4.12 m/s.

A3e)

Convert the following UTC time to local time in your own time zone: e) 12:45

(3 marks)

Given: 12:45 UTC

Find: local time

Using eqs. from Table 1-1

DT = UTC - beta

Vancouver's time zone is "U" (Pacific)

beta = 7:00 PDT alpha = 8:00 PST

Currently, local time is PDT.

DT = 5:45 PDT

for partial marks: ST = 4:45 PST

Checks: Units ok.

Discussion: Vancouver is currently in Pacific Daylight Time, so it is presently

7 hours behind UTC time.

A5e) (2.5 marks)

Find the pressure in kPa at the following heights above sea level, assuming an average T = 250K: d) 25 km.

Given: z (m) = 30,000 ft "=" 9144

avg T = 250 K

Find: P ? kPa

Using eq. 1.9a:

 $P = Po * e^{(-(a/T)*z)}$

where: Po = 101.3250 kPa

a = 0.0342 K/m

P = 29.0 kPa

Checks: Units ok. Physics ok.

Discussion: At 30,000 ft =~9km above sea level, the pressure is reduced to 29 kPa

A6e)

(3 marks)

Use the definition of pressure as a force per unit area, and consider a column of air that is above a horizontal area of 1 square meter. What is the mass of air in that column: e) Between pressure levels 100 and 20 kPa

Given: Pbottom = 100 kPa

Ptop = 20 kPa A = 1 m^2

Find: $\Delta m = ?$ kg

mass of air between Pbottom and Ptop

Using eq. 1.11:

 $\Delta m = (A/g)*(Pbottom - Ptop)$ where $g = 9.81 \text{ m/s}^2$

Convert Pbottom(kPa) and Ptop(kPa) to Pbottom(Pa) and Ptop(Pa):

Pbottom = 100000 Pa Ptop = 20000 Pa

Δm = 8154.94 kg

Checks: Units ok. Physics ok.

Discussion: This is a calculation of the air mass between 100 and 20 kPa pressure

that exists over 1 square meter of area.

A9e)

Convert the following temperatures: e) 303 K = ?°C

(2.5 marks)

Given: $T^{\circ} K = 303 \text{ K}$

Find: $T^{\circ}c = ?$ °C

Using equation 1.7b:

 $T^{\circ}C = TK - 273.15$

T_{°F} = 29.85 °C

Checks: Units ok.

Discussion: 29.85°C should be one of the hottest days in the summer in Vancouve

A14e)

(4.5 marks)

What is the geopotential height and geopotential, given the geometric height? e) 500m

Given: H = 500 m

Find: z = ? m

 $\Phi = \qquad ? \qquad m^2/s^2$

Using eq. 1.14b:

z = Ro*H /(Ro - H)

where the radius of the Earth, Ro = 6356.766km = 6,356,766m.

Ro = 6356766 m

And using eq. 1.15:

 $\Phi = g^*H$ where $g = 9.81 \text{ m/s}^2$

H = 499.960675 m

z = 499.96 m Φ = 4904.61 m^2/s^2

Checks: Units ok. Physics ok.

Discussion: The difference between the geometric height and

the geopotential height is negligible at 500ft.

A15e)

(5.5 marks)

What is the standard atmospheric temperature, pressure, and density at the following geopotential height: e) 200m?

Given: H = 200 m

0.2 km

Find: T = ? degC

HW 1 Answer Key

$$\begin{array}{lll} P = & ? & kPa \\ \rho = & ? & kg/m^3 \end{array}$$

Using eqs. 1.16 for $\,$ H < 11km:

T = 288.15-6.5*H

T =	286.85 K
	13.70 degC

Using eq. 1.17 for H < 11km:

 $P = 101.325*(288.15/T)^{-5.255877}$

P = 98.95 kPa

Using and rearranging eq. 1.18:

 $\rho = P \ / \ Rd*T \qquad \qquad \text{where Rd} = 0.287053 \ kPa*m^3 \ / \ K*kg \\ \qquad \qquad \text{gas constant for dry air}$

ρ = 1.20165096 kg/m^3

Checks: Units ok. Physics ok.

Discussion:

At 200m, the air not noticeably colder

and has a similar pressure