ATSC 201 Fall 2023
Chapter 1: A1e, A3e, A5e, A6e, A9e, A14e, A15e
Total mark out of 25

A1e)
(4 marks)
Find the wind direction (degrees) and speed (m / s), given the
(U, V) components: d$)(8,0)$ knots
Given: $\quad U=\quad 8$ knots

Find: \quad alpha (wind direction) $\quad M$ (wind speed)
Using eq. 1.1:

$$
M=\left(U^{\wedge} 2+V^{\wedge} 2\right)^{\wedge} 0.5
$$

Using eq. 1.2a:

Checks: Units ok. Physics ok.
Discussion: The wind is coming from the W with a magnitude of $4.12 \mathrm{~m} / \mathrm{s}$.

Convert the following UTC time to local time in your own time zone: e) 12:45
(3 marks)
Given: 12:45 UTC

Find: local time

Using eqs. from Table 1-1
DT = UTC - beta
ST = UTC - alpha

Vancouver's time zone is "U" (Pacific)

$$
\begin{array}{ll}
\text { beta }= & 7: 00 \text { PDT } \\
\text { alpha }= & 8: 00 \text { PST }
\end{array}
$$

Currently, local time is PDT.

DT = $5: 45$ PDT	
for partial marks: ST $=$	$4: 45$ PST

Checks: Units ok.
Discussion: Vancouver is currently in Pacific Daylight Time, so it is presently 7 hours behind UTC time.

A5e)
(2.5 marks)

Find the pressure in kPa at the following heights above sea level, assuming an average $\mathrm{T}=\mathbf{2 5 0 K}$: d) $\mathbf{2 5} \mathbf{~ k m}$.
Given: $\quad z(m)=30,000 \mathrm{ft} 9144$
Find: P \quad ?

Using eq. 1.9a:

	$\mathrm{P}=\mathrm{Po}{ }^{*} \mathrm{e}^{\wedge}\left(-(\mathrm{a} / \mathrm{T})^{*} \mathrm{z}\right)$	
where:	$\mathrm{Po}=$	101.3250 kPa
	$\mathrm{a}=$	$0.0342 \mathrm{~K} / \mathrm{m}$

$P=\quad 29.0 \mathrm{kPa}$

Checks: Units ok. Physics ok.
Discussion: At 30,000 ft $=^{\sim} 9 \mathrm{~km}$ above sea level, the pressure is reduced to 29 kPa

A6e)
Use the definition of pressure as a force per unit area, and consider a column of air that is above a horizontal area of 1 square meter. What is the mass of air in that column: e) Between pressure levels 100 and 20 kPa

Given: | Pbottom $=$ | 100 kPa | |
| :--- | :--- | ---: |
| | Ptop $=$ | 20 kPa |
| | $A=$ | $1 \mathrm{~m}^{\wedge} 2$ |

Find: $\quad \Delta \mathrm{m}=\quad$? kg
mass of air between Pbottom and Ptop

Using eq. 1.11:

$$
\Delta \mathrm{m}=(\mathrm{A} / \mathrm{g})^{*}(\text { Pbottom }- \text { Ptop }) \quad \text { where } \mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2
$$

Convert Pbottom(kPa) and Ptop(kPa) to Pbottom(Pa) and $\mathrm{Ptop}(\mathrm{Pa})$:

Pbottom $=$	100000 Pa
Ptop $=$	20000 Pa

$\Delta m=\quad 8154.94 \mathrm{~kg}$

Checks: Units ok. Physics ok.
Discussion: This is a calculation of the air mass between 100 and 20 kPa pressure that exists over 1 square meter of area.

A9e) Convert the following temperatures: e) $303 \mathrm{~K}=$? $^{\circ} \mathrm{C}$
(2.5 marks)

Given: $\quad \mathrm{T}^{\circ} \mathrm{K}=\quad 303 \mathrm{~K}$

Find: $\quad \mathrm{T}^{\circ} \mathrm{C}=\quad$? ${ }^{\circ} \mathrm{C}$

Using equation 1.7b:

$$
\mathrm{T}^{\circ} \mathrm{C}=\mathrm{TK}-273.15
$$

$\mathrm{T}^{\circ} \mathrm{F}=\quad 29.85{ }^{\circ} \mathrm{C}$

Checks: Units ok.
Discussion: $29.85^{\circ} \mathrm{C}$ should be one of the hottest days in the summer in Vancouve

A14e)
(4.5 marks)

What is the geopotential height and geopotential, given the geometric height? e) 500 m

Given: $\quad \mathrm{H}=\quad 500 \mathrm{~m}$

Find: $\quad z=\quad$?
$\Phi=\quad ? \quad \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2$

Using eq. 1.14b:
$z=R o * H /(R o-H)$
where the radius of the Earth, $\mathrm{Ro}=6356.766 \mathrm{~km}=6,356,766 \mathrm{~m}$.

$$
\text { Ro }=\quad 6356766 \mathrm{~m}
$$

And using eq. 1.15:
$\Phi=g^{*} H \quad$ where $g=9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$H=\quad 499.960675 \mathrm{~m}$

$\mathrm{z}=$	499.96 m
$\Phi=$	$4904.61 \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2$

Checks: Units ok. Physics ok.
Discussion: The difference between the geometric height and the geopotential height is negligible at 500 ft .

A15e)

Given: $\quad \mathrm{H}=\quad$| 200 m | |
| :---: | :---: |
| | 0.2 km |

Find:
$\mathrm{T}=$
?
degC

$$
\begin{array}{lll}
\mathrm{P}= & ? & \mathrm{kPa} \\
\rho= & ? & \mathrm{~kg} / \mathrm{m}^{\wedge} 3
\end{array}
$$

Using eqs. 1.16 for $\mathrm{H}<11 \mathrm{~km}$:

$$
\mathrm{T}=288.15-6.5 * \mathrm{H}
$$

$\mathrm{T}=\quad 286.85 \mathrm{~K}$
13.70 degC

Using eq. 1.17 for $\mathrm{H}<11 \mathrm{~km}$:

$$
P=101.325^{*}(288.15 / T)^{\wedge}[-5.255877]
$$

$P=$
98.95 kPa

Using and rearranging eq. 1.18:
$\rho=P / R d * T$
where $\mathrm{Rd}=0.287053 \mathrm{kPa} \mathrm{m}^{\wedge} 3 / \mathrm{K} * \mathrm{~kg}$ gas constant for dry air
$\rho=\quad 1.20165096 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$

Checks: Units ok. Physics ok.
Discussion:
At 200m, the air not noticeably colder and has a similar pressure

