ATSC 201 Fall 2023
Chapter 1: A7e, A10b, A11e, A12e
Chapter 8: A10e, A11, A12d, A13d, A18d, A19d
Total mark out of 35

Chapter 1:
A7e)
Find the virtual temperature (degC) for air of
(3 marks)
e) $T(\operatorname{deg} C)=50, r(g / \mathrm{kg})=60$.

Given: $\quad \mathrm{T}=\quad 50 \mathrm{deg} \mathrm{C}$
$r=\quad 60 \mathrm{~g} / \mathrm{kg}$
Find: $\quad \mathrm{Tv}=\quad$? $\quad \operatorname{deg} C$

Using: $\quad \mathrm{Tv}=\mathrm{T}^{*}\left(1+\left(\mathrm{a}^{*} \mathrm{r}\right)\right) \quad$ eq. 1.21
where $\quad a=\quad 0.61 \mathrm{~g} / \mathrm{g}$ dryair/watervapor
Convert T to Kelvins:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{~K})=\mathrm{T}(\operatorname{deg} \mathrm{C})+273.15 \\
& \mathrm{~T}=\quad 323.15 \mathrm{~K}
\end{aligned}
$$

Convert r to g / g :

$$
\mathrm{r}(\mathrm{~g} / \mathrm{g})=\mathrm{r}(\mathrm{~g} / \mathrm{kg}) *(1 \mathrm{~kg} / 1000 \mathrm{~g})
$$

$$
r=\quad 0.06 \mathrm{~g} / \mathrm{g}
$$

Tv = | 334.97729 K |
| ---: |
| |
| |
| |

Check: Units ok. Physics ok.
Discussion The virtual temperature is more than
10degC higher than the actual temperature.
The moisture in the air is having a large effect.

A10b) What is the temperature $\left({ }^{\circ} \mathrm{C}\right)$ of air, given
(3 marks)
b) $P=90 \mathrm{kPa}$ and $\rho=1.0 \mathrm{~kg} \cdot \mathrm{~m}-3$?

Given:	$P=$	90 kPa
	$\rho=$	$1 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge}-3$

Find: $\quad \mathrm{T}=$

Using: $\quad T=P /\left(\rho^{*} R d\right)$
where $\quad \mathrm{Rd}=\quad 0.286053 \mathrm{kPa} \mathrm{K}^{\wedge}-1$ * $\mathrm{m}^{\wedge} \mathrm{e}^{*} \mathrm{~kg}^{\wedge}-1$

$T=$	314.62701 K
$\mathrm{~T}(\operatorname{deg} \mathrm{C})=$	41.4770097 deg C

Check: Units ok. Physics ok.
Discussion: BC reached 40 deg C for the first time ever recorded in 2023

A11e)
(3 marks)
At a locationin the atmosphere where the air density is
$1 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$ find the change of pressure (kPa) you would feel if
your altitude increases by 11 km .

Given: \quad rho $=$
$1 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
$\Delta z=$
11 km

Find: $\quad \Delta \mathrm{P}=\quad$? kPa

Using: $\quad \Delta \mathrm{P}=\mathrm{rho}^{*} \mathrm{~g} * \Delta z$
where $\mathrm{g}=$
eq. 1.25 a
$-9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Convert $\Delta \mathrm{z}$ to m :

$$
\begin{array}{ll}
\Delta z(\mathrm{~m})=\Delta \mathrm{z}(\mathrm{~km}) * & 1000 \\
\Delta \mathrm{z}= & 11000 \mathrm{~m}
\end{array}
$$

$\Delta \mathrm{P}=$

Check: Units ok. Physics ok.
Discussion If $1 \mathrm{~atm}=101.325 \mathrm{kPa}$, an increase in altitude of 11 km causes a loss of more than 1 atm of pressure.

A12e)
(3 marks)

At a location in the atmosphere where the average virtual temperature is 5 degC, find the height difference (ie. The thickness in km) between the following two pressure levels (kPa): 60, 50.

Given: \quad P1 =
P2 =
avg Tv=

Find: $\quad \Delta z=z 2-z 1=$? $\quad k m$

Using: $\quad \Delta z=z 2-z 1=a * T v * \ln (P 1 / P 2)$
where $a=\quad 29.3 \mathrm{~m} / \mathrm{K}$

Convert Tv into Kelvins:

$$
\begin{aligned}
& \operatorname{Tv}(K)=\operatorname{Tv}(\operatorname{deg} C)+273.15 \\
& \operatorname{Tv}=\quad 273.15 \mathrm{~K}
\end{aligned}
$$

$\mathrm{zz}=\mathrm{z2}-\mathrm{z1}:$	1459.17 m
	1.46 km

Check: Units ok. Physics ok.
Discussion Because of the log profile, the thickness between pressure levels expands higher in the atmos.

Chapter 8:

A10e) $(3 \mathrm{marks})$	Find the beamwidth angle for a radar pulse for the following sets of [wavelength (cm), antenna dish diameter $(\mathrm{m})]:$ e) $[10,3]$.

Given:	$\lambda=$	10 cm
	$\mathrm{~d}=$	3 m

Find: $\Delta \beta=\quad$? deg

Using: $\quad \Delta \beta=a * \lambda / d$ eq. 8.13
where $\mathrm{a}=\quad 71.6 \mathrm{deg}$

Convert d to cm :
$d(c m)=d(m) * 100$
$d=\quad 300 \mathrm{~cm}$
$\Delta \beta=\quad 2.39 \mathrm{deg}$

Check: Units ok. Physics ok.
Discussion The antenna dish diameter is fairly small, so the beamwidth is larger.

A11)
(2 marks)
What is the name of the radar band associated
with the wavelengths of the previous exercise?
$\lambda=10 \mathrm{~cm}$

Given: $\lambda=\quad 10 \mathrm{~cm}$

Find: \quad Name of radar band for λ

From p. 242 in Stull (2011), wavelengths λ between
7.5 cm and 15 cm are designated as in the:
S band.

Check: Units ok. Physics ok.
Discussion Must have an antenna dish diamter of at least 9 m to enable long range detection capabilities.

A12e)
(3 marks)
Find the range to a radar target, given the roundtrip (return) travel times ($\mu \mathrm{s}$) of: e) 50.

Given: $\mathrm{t}=\quad 50 \mu \mathrm{~s}$

Find: $\quad \mathrm{R}=$
?
m

Using: $\quad R=c^{*} t / 2 \quad$ eq. 8.16
where $\mathrm{c}=\quad 3.00 \mathrm{E}+08 \mathrm{~m} / \mathrm{s}$

Convert t to s:

$$
\begin{aligned}
& \mathrm{t}(\mathrm{~s})=\mathrm{t}(\mu \mathrm{~s}) * 10^{\wedge}-6 \\
& \mathrm{t}=\quad 5.00 \mathrm{E}-05 \mathrm{~s}
\end{aligned}
$$

\square
$R=$
7500 m

Check: Units ok. Physics ok.
Discussion In a fraction of a second the beam has
traveled over 7km.

A13e) Find the radar max unambiguous range for pulse
(2.5 marks repetition frequencies (\mathbf{s}^{\wedge}-1) of: e) 600.

Given: PRF = $600 / \mathrm{s}$

Find: \quad max $=\quad$? $\quad m$

Using: \quad Rmax $=c /(2 * P R F) \quad$ eq. 8.17
where $\mathrm{c}=3.00 \mathrm{E}+08 \mathrm{~m} / \mathrm{s}$

Rmax $=\quad 250000$ m

Check: Units ok. Physics ok.
Discussion The higher the pulse repetition frequency, the larger Rmax is.

A18e)
(9 marks)

For a radar with 0.5 deg elevation angle mounted on a 10 m tower, calculate and plot the height of the radar-beam centerline vs. range from 0 to 500 km , for the following beam curvature factors ke, and name the type of propagation: e) 1.33

Given: $\quad \Psi=\quad 0.5 \mathrm{deg}$
$\mathrm{z1}=\quad 10 \mathrm{~m}$
$R=\quad 0-500 \mathrm{~km}$

Find: $\quad \mathrm{z}=\quad$? km

Using: $\quad \mathrm{Rc}=\mathrm{ke}$ * Ro
eq. 8.21
where ke = 1.33
Ro $=\quad 6371 \mathrm{~km}$
$z=z 1-R c+\operatorname{sqrt}\left(R^{\wedge} 2+R^{\wedge} \wedge 2+2^{*} R^{*} c^{*} \sin \Psi\right)$
eq. 8.22

Convert $\mathrm{z1}(\mathrm{~m})$ to $\mathrm{z1}(\mathrm{~km})$:

$$
\mathrm{z} 1(\mathrm{~km})=\mathrm{z} 1(\mathrm{~m}) / 1000
$$

$$
\mathrm{z} 1=\quad 0.01 \mathrm{~km}
$$

Rc = $\quad 8473.43 \mathrm{~km}$

To determine the radar propagation type, re-arange eq. 8.21 to find $\Delta N / \Delta z$ $\Delta n / \Delta z=(1 / R c)-(1 / R o)$

$\Delta \mathrm{n} / \Delta \mathrm{z}=$	$-3.9 \mathrm{E}-05 / \mathrm{km}$
$\Delta \mathrm{N} / \Delta \mathrm{z}=$	$-38.945268 / \mathrm{km}$

Table 8-7 for $\Delta N / \Delta z$ between 0 and $-79 \mathrm{~km} \wedge(-1)$:
The type of propagation is called normal range.

A19d) descriptive intensity category used by pilots and air traffic controllers, given the following observed radar echo dBZ values: e) 58

Given: reflectivity $=\quad 58 \mathrm{dBZ}$

Find: $\quad \mathrm{RR}=\quad$? $\quad \mathrm{mm} / \mathrm{hr}$
intensity category

Using: $\quad R R=a 1^{*} 10^{\wedge}\left(a 2^{*} d B Z\right) \quad$ eq. 8.29
where a1 $=\quad 0.017 \mathrm{~mm} / \mathrm{hr}$
$\mathrm{a} 2=\quad 0.0714 / \mathrm{dBZ}$

```
From Fig. 8.28, intensity category for 45 dBZ is: Heavy
\(R R=\quad 235.314626 \mathrm{~mm} / \mathrm{hr}\)
```

Checks: Units ok. Physics ok.
Discussion 27 mm of rain in 1 hour is quite a lot.
This would rarely happen in Vancouver.

