ATSC 201 2023 Total mark out of 44 Ch2: A5g, A13e, A15e. Ch10: A1e, A4e, A5e, A6a, A8e, A9e.

Chapter 2

A5g) (10.5 marks)	Plot the local solar elevation angle vs. local time for 22 December, 23 March, and 22 June for the following city: g) Montreal, Canada				
	Given:	The location Mo d (22-Dec) =	ontreal, Cana 356	ida	
		d (23-Mar) =	82		
		d (22-Jun) =	173		
	Find:	Ψ (deg) =	?		
	Use eq. 2.5: & where:	δs = Φr * cos(C*(Φr = C = dr = dy =	d - dr)/dy) 0.40910518 6.28318531 172 365	rad rad for 2023	
		22-Dec	23-Mar	22-Jun	
	δs (rads) δs (deg)	-0.4089688 -23.4321862	0.00880235 0.50433732	0.40904456 23.4365271	
	Use eq. 2.6: where:	sin(Ψ) = sin(φ) ' φ = td =	* sin(δs) - cos 45.5019 -73.5674 24.0	s(φ)*cos(δs)*c degN= degE= h	os((C*tUTC/td)+λe) 0.794157971 rad -1.28399335 rad
	time zone of	Montreal: tUTC = t + 4 hou	urs	EDT	(for Mar23 and Jun22)

```
tUTC = t + 5 hours
```

EST

(for Dec22)

	Ψ(deg)		
t(h)		22-Dec	23-Mar	22-Jun
	0	-67.90	-42.46	-19.96
	1	-64.22	-43.98	-21.05
	2	-56.34	-41.76	-19.46
	3	-46.62	-36.28	-15.37
	4	-36.24	-28.47	-9.18
	5	-25.75	-19.20	-1.36
	6	-15.52	-9.10	7.63
	7	-5.84	1.36	17.44
	8	2.96	11.80	27.75
	9	10.50	21.82	38.25
	10	16.33	30.94	48.56
	11	19.97	38.45	58.05
	12	21.05	43.44	65.34
	13	19.46	44.98	67.90
	14	15.37	42.73	64.22
	15	9.18	37.18	56.34
	16	1.37	29.30	46.63
	17	-7.63	19.96	36.24
	18	-17.44	9.83	25.76
	19	-27.75	-0.64	15.52
	20	-38.24	-11.07	5.84
	21	-48.56	-21.05	-2.96
	22	-58.04	-30.10	-10.50
	23	-65.34	-37.54	-16.32
	24	-67.90	-42.46	-19.96

Check: Units ok. Physics ok.Discussion: Montreal's winters are a similar to Vancouver's

A13e)
(2.5 marks)Find the kinematic heat fluxes at sea level, given these regular fluxes
 $(W/m^2): e) 600.$ Given:FH = $600 W/m^2$ Find:FH = K^*m/s

Use eq. 2.11: FH = FH / rho*Cp where rho *Cp =

1231 (W/m^2)/(K*m/s)

FH = 0.487408611 K*m/s

Check:Units ok. Physics ok.Discussion:This amount of heat flux is just slightly
higher than the advective heat flux of a 1m/s wind blowing
air with a temperature excess of about 0.5C

A15e)	Plot Planc	k curve	es for the following blackbody temperatures (K): e) 2500.			
(5 marks)						
	Given:	T =	2500 K			
	Find:	Plar	nck curve of blackbody object with temp T.			
	Use eq. 2.2	Jse eq. 2.13: Ελ* = c1/(λ^5 *(e^(c2/λ*Τ)-1))				
	where c1 =	=	3.74E+08 W*µm^4/m^2			
	c2 =		1.44E+04 μm*K			
	λ (μm)	Ελ*				
		0	0			
	().1	3.61E-12			
	().2	3.63E-01			
	().3	7.06E+02			
	().4	2.04E+04			
	().5	1.19E+05			
	().6	3.26E+05			
	().7	5.94E+05			
	().8	8.53E+05			
	().9	1.05E+06			
		1	1.18E+06			
	1	1.1	1.24E+06			
	1	1.2	1.25E+06			
	1	1.3	1.21E+06			
	1	1.4	1.15E+06			
	1	1.5	1.08E+06			
	1	1.6	1.00E+06			
	1	1.7	9.21E+05			
	1	1.8	8.41E+05			
	1	1.9	7.66E+05			
		2	6.95E+05			
	2	2.1	6.30E+05			
		2.2	5.71E+05			
	2	2.3	5.17E+05			
	2	2.4	4.69E+05			
	2	2.5	4.25E+05			
	2	2.6	3.86E+05			
	2	2.7	3.50E+05			

2.8	3.18E+05
2.9	2.90E+05
3	2.64E+05
3.1	2.41E+05
3.2	2.21E+05
3.3	2.02E+05
3.4	1.85E+05
3.5	1.70E+05
3.6	1.56E+05
3.7	1.44E+05
3.8	1.33E+05
3.9	1.23E+05
4	1.13E+05
4.1	1.05E+05
4.2	9.73E+04
4.3	9.03E+04
4.4	8.39E+04

Check:Units ok. Physics ok.Discussion:The temperature of this
object (2500K) is about the temperature of an incandescent light bulb
The peak wavelength is higher energy than visible light.

Chapter 10

A1e)	Plot the w	Plot the wind symbol for winds with the following directions and speeds:				
(3 marks)	e) S at 48	e) S at 48kt.				
	Given:	M = direction =	S	48 kt		

Find: Applicable wind symbol.

From Table 10-1: Pennant 50 speed units

48 knots its closer to 50 than 45, so draw the symbol for 50. 48 kt = shaft with one pennant

Check:direction and symbol ok.Discussion:If only the pressure
gradient force was acting here, high pressure would be to the
S and low pressure would be to the N

A4e) (4 marks)	Find the advective "force" per unit mass given the following wind components (m/s) and horizontal distances (km): e) V = 3, ΔU = 10, Δy = 10.				
	Given:	V=		3 m/s	
		ΔU =		10 m/s	
		Δy =		10 km	
	Find:	FxAD/m =	?	m/s^2	
		FyAD/m =	?	m/s^2	
	Use eq. 10.8a: FxAD/m = -U*(Δ U/ Δ x) -V*(Δ U/ Δ y) -W*(Δ U/ Δ z)				
	Use eq. 10.8b: FyAD/m = -U*($\Delta V/\Delta x$)-V*($\Delta V/\Delta y$) - W*($\Delta V/\Delta z$)				
	Convert Δ	x(km) to Δx(m): Δy =		10000 m	

Since ΔV is not given, we can assume $\Delta V = 0$. Therefore, FyAD/m = 0.

Since U and W were not given, we can assume that V = 0 and W = 0. Hence:

 $FxAD/m = -V * (\Delta U/\Delta y)$

FyAD/m =	0 m/s^2
FxAD/m =	-0.003 m/s^2

Check:	Units ok. Physics ok.
Discussion:	The advective force is negative,
	therefore advection is accelerating the wind to the West.
	(slowly)

A5e)Town A is 500km west of town B. The pressure at town A is given below, and
(4 marks)(4 marks)the pressure at town B is 100.1kPa. Calculate the pressure-gradient
force/mass in between these two towns: e) 99.4 kPa.

Given:	Δx =		500 km
	P@A =		99.4 kPa
	P@B =		100.1 kPa
Find:	FxPG/m =	?	m/s^2
	FyPG/m =	?	m/s^2

Use eq. 10.9a: FxPG/m = $-(1/\rho)^*(\Delta P/\Delta x)$

where $\rho = 1.2 \text{ kg/m}^3$

Convert $\Delta x(km)$ to $\Delta x(m)$: $\Delta x = 500000 m$

Convert P@A(kPa) to P@A(Pa) and P@B(kPa) to P@B(Pa):

P@A =	99400 Pa
P@B =	100100 Pa
ΔP =	700 Pa

Since town A is 500km to the west of town B, there is no pressure change in the North - South direction.

HW3 Answer Key

FxPG/m = -0.00116667 m/s^2

Check:Units ok. Physics ok.Discussion:The PGF is negative because
air flows east to west from town B to town A.
The force is very small because the pressure difference is very small.

A6a)	Suppose that U = 8m/s and V = -3 m/s, and latitude = 45 deg. Calculate
(5.5 marks)	centrifugal force components around a: d) 500km radius low in N. hemisphere

Given:	U =		8 m/s
	V =		-3 m/s
	lat =		45 degS
	R =		500 km
Find:	FxCN/m =	?	m/s^2
	FyCN/m =	?	m/s^2

Use eq. 10.13a: FxCN/m = +s *(V*M)/R Use eq. 10.13b: FyCN/m = -s *(U*M)/R

where $M = (U^2 + V^2)^{1/2}$

North Hemisphere, low pressure:

The force is 90° to the wind's right in the N.H so the coriolis force will be towards the east

Convert R(km, , R =

500000 m

M = 8.54400375 m/s

FxCN/m = -5.1264E-05 m/s^2 FyCN/m = -0.0001367 m/s^2

Check:Units ok. Physics ok.Discussion:These components correspond

HW3 Answer Key

to a force pointing SSW.

A8e) (4 marks)	What is the magnitude and direction of Coriolis force/mass in Los Angeles, USA, given: e) U(m/s) = 0, V(m/s) = -5.						
	Given:	U = V =	0 m/s -5 m/s				
		lat =	34.0522 degN	of Los Angeles, USA			
	Find:	FCF/m = Direction of FC	? m/s^2 F/m.				
	Use eq. 10.18a: $ FCF/m = 2*\Omega* sin(\phi)*M $ or use eq. 10.18b: $ FCF/m = fc*M $ and eq. 10.16: fc = $2*\Omega*sin(\phi)$						
	where M = (U^2 + V^2)^1/2						
	and	M =	5 m/s				
		Ω =	7.29E-05 s^-1				
	FCF/m = Direction or 270deg	= 4.08E-04 is towards the We	m/s^2 st				

Check:The wind is blowing towards north and the drag force is directly
opposite the wind so is therefore towards the south.

A9e) (5.5 marks)	Same wind components as exercise A8, but find the magnitude and direction of turbulent drag force/mass in a statically neutral atmospheric boundary layer over an extensive forested region.					
	Given:	U = V = lat =		0 m/s -5 m/s 34.0522 degN		
	Find:	FTD/m =	?	m/s^2		

Direction of FTD/m.

Use eq. 10.20: |FTD/m| = wt *(M/zi)

where $M = (U^2 + V^2)^{1/2}$ and wt = CD*M for statically neutral conditions

Hence:

	(other zi values allowed)	
zi =	1 km	
CD =	0.02 over forests.	

Convert zi(km) to zi(m): zi = 1000 m

(values of CD and zi given in Sample Application pg. 300; or could be estimated given the latitude of LA)

M =	5 m/s
wt =	0.10 m/s

```
|FTD/m| = 0.0005 m/s^2
Direction: towards North
```

Check:Units ok. Physics ok.Discussion: