ATSC 2012023
Total mark out of 44
Ch2: A5g, A13e, A15e.
Ch10: A1e, A4e, A5e, A6a, A8e, A9e.

Chapter 2

A5g)
(10.5 marks)

Plot the local solar elevation angle vs. local time for 22 December, 23 March, and 22 June for the following city: g) Montreal, Canada

Given: The location Montreal, Canada
d (22-Dec) $=\quad 356$
$d(23-M a r)=\quad 82$
d (22-Jun $)=173$

Find: $\quad \Psi(\mathrm{deg})=\quad$?

Use eq. 2.5: $\delta s=\Phi r^{*} \cos \left(C^{*}(d-d r) / d y\right)$
where: $\quad \Phi r=\quad 0.40910518 \mathrm{rad}$
$\mathrm{C}=\quad 6.28318531 \mathrm{rad}$
$\mathrm{dr}=\quad 172$ for 2023
$d y=\quad 365$

	22-Dec	23-Mar	22-Jun
$\boldsymbol{\delta s}$ (rads)	-0.4089688	0.00880235	0.40904456
$\boldsymbol{\delta} \boldsymbol{s}$ (deg)	-23.4321862	0.50433732	23.4365271

Use eq. 2.6: $\quad \sin (\Psi)=\sin (\phi) * \sin (\delta s)-\cos (\phi)^{*} \cos (\delta \mathrm{~s}) * \cos \left(\left(C^{*} \mathrm{tUTC} / \mathrm{td}\right)+\lambda e\right)$
where: $\quad \phi=\quad 45.5019 \mathrm{degN}=\quad 0.794157971 \mathrm{rad}$
$\lambda e=\quad-73.5674 \mathrm{deg}=\quad-1.28399335 \mathrm{rad}$
$t d=\quad 24.0 \mathrm{~h}$
time zone of Montreal:
tUTC $=\mathrm{t}+4$ hours
(for Mar23 and Jun22)
tUTC $=\mathrm{t}+5$ hours
EST
(for Dec22)

t(h) | $\boldsymbol{\Psi}$ (deg) | | | |
| ---: | ---: | ---: | ---: |
| | 0 | 22-Dec | 23-Mar | 22-Jun

Check: Units ok. Physics ok.
Discussion: Montreal's winters are a similar to Vancouver's

A13e)
(2.5 marks)
(W/m^2): e) 600.

Given: \quad FH $=\quad 600 \mathrm{~W} / \mathrm{m}^{\wedge} 2$

Find: $\quad \mathrm{FH}=\quad$? $\quad \mathrm{K}^{*} \mathrm{~m} / \mathrm{s}$

Use eq. 2.11: $\mathrm{FH}=\mathrm{FH} / \mathrm{rho}^{*} \mathrm{Cp}$
where rho * $\mathrm{Cp}=\quad 1231\left(\mathrm{~W} / \mathrm{m}^{\wedge} 2\right) /\left(\mathrm{K}^{*} \mathrm{~m} / \mathrm{s}\right)$
$\mathrm{FH}=\quad 0.487408611 \mathrm{~K} * \mathrm{~m} / \mathrm{s}$

Check: Units ok. Physics ok.
Discussion: This amount of heat flux is just slightly higher than the advective heat flux of a $1 \mathrm{~m} / \mathrm{s}$ wind blowing air with a temperature excess of about 0.5 C

A15e)
Plot Planck curves for the following blackbody temperatures (K): e) 2500.
(5 marks)
Given: $\quad \mathrm{T}=\quad 2500 \mathrm{~K}$

Find: Planck curve of blackbody object with temp T.

Use eq. 2.13: $\mathrm{E} \lambda^{*}=\mathrm{c} 1 /\left(\lambda^{\wedge} 5^{*}\left(\mathrm{e}^{\wedge}\left(\mathrm{c} 2 / \lambda^{*} \mathrm{~T}\right)-1\right)\right)$

where $\mathrm{c} 1=$	$3.74 \mathrm{E}+08 \mathrm{~W}^{*} \mu \mathrm{~m}^{\wedge} 4 / \mathrm{m}^{\wedge} 2$
$\mathrm{c} 2=$	$1.44 \mathrm{E}+04 \mu \mathrm{~m}^{*} \mathrm{~K}$

| $\lambda(\mu \mathrm{m}) \quad \mathrm{E} \lambda^{*}$ | |
| :--- | :--- | :--- |
| 0 | 0 |

$0.2 \quad 3.63 \mathrm{E}-01$
$0.3 \quad$ 7.06E +02
$0.4 \quad 2.04 \mathrm{E}+04$
0.5 1.19E+05
$0.6 \quad 3.26 \mathrm{E}+05$
0.7 5.94E+05
$0.8 \quad 8.53 \mathrm{E}+05$
$0.9 \quad 1.05 \mathrm{E}+06$
$1 \quad 1.18 \mathrm{E}+06$
1.1 1.24E+06
$1.2 \quad 1.25 \mathrm{E}+06$
1.3 1.21E+06
$1.4 \quad 1.15 \mathrm{E}+06$
$1.5 \quad 1.08 \mathrm{E}+06$
$1.6 \quad 1.00 \mathrm{E}+06$
1.7 9.21E+05
$1.8 \quad 8.41 \mathrm{E}+05$
1.9 7.66E+05
$2 \quad 6.95 \mathrm{E}+05$
2.1 6.30E+05
$2.2 \quad 5.71 \mathrm{E}+05$
$2.3 \quad 5.17 \mathrm{E}+05$
$2.4 \quad 4.69 E+05$
2.5 4.25E+05
2.6 3.86E+05
2.7 3.50E+05

Check: Units ok. Physics ok.
Discussion: The temperature of this object (2500K) is about the temperature of an incandescent light bulb The peak wavelength is higher energy than visible light.

Chapter 10

A1e)
(3 marks)
Plot the wind symbol for winds with the following directions and speeds:
e) S at 48kt.

Given: $\quad M=\quad 48 \mathrm{kt}$
direction $=S$

Find: Applicable wind symbol.

From Table 10-1:
Pennant 50 speed units

48 knots its closer to 50 than 45 , so draw the symbol for 50.
$48 \mathrm{kt}=$ shaft with one pennant

Check: direction and symbol ok.
Discussion: If only the pressure
gradient force was acting here, high pressure would be to the S and low pressure would be to the N

A4e)
(4 marks)

Find the advective "force" per unit mass given the following wind
components (m/s) and horizontal distances (km): e) $V=3, \Delta U=10, \Delta y=10$.

Given:

$V=$	$3 \mathrm{~m} / \mathrm{s}$
$\Delta U=$	$10 \mathrm{~m} / \mathrm{s}$
$\Delta y=$	10 km

Find:

$\mathrm{FxAD} / \mathrm{m}=$	$?$	$\mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{FyAD} / \mathrm{m}=$	$?$	$\mathrm{~m} / \mathrm{s}^{\wedge} 2$

Use eq. 10.8a:

$$
\mathrm{FxAD} / \mathrm{m}=-\mathrm{U}^{*}(\Delta \mathrm{U} / \Delta \mathrm{x})-\mathrm{V}^{*}(\Delta \mathrm{U} / \Delta \mathrm{y})-\mathrm{W}^{*}(\Delta \mathrm{U} / \Delta \mathrm{z})
$$

Use eq. 10.8b:

$$
\mathrm{FyAD} / \mathrm{m}=-\mathrm{U}^{*}(\Delta \mathrm{~V} / \Delta \mathrm{x})-\mathrm{V}^{*}(\Delta \mathrm{~V} / \Delta \mathrm{y})-\mathrm{W}^{*}(\Delta \mathrm{~V} / \Delta \mathrm{z})
$$

Convert $\Delta x(k m)$ to $\Delta x(m)$:

$$
\Delta y=\quad 10000 \mathrm{~m}
$$

Since ΔV is not given, we can assume $\Delta V=0$. Therefore, $F y A D / m=0$.

Since U and W were not given, we can assume that $\mathrm{V}=0$ and $\mathrm{W}=0$.
Hence:

$$
\mathrm{FxAD} / \mathrm{m}=-\mathrm{V}^{*}(\Delta \mathrm{U} / \Delta \mathrm{y})
$$

FyAD $/ \mathrm{m}=$	$0 \mathrm{~m} / \mathrm{s}^{\wedge 2}$
FXAD $/ \mathrm{m}=$	$-0.003 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Check: Units ok. Physics ok.
Discussion: The advective force is negative, therefore advection is accelerating the wind to the West.
(slowly)

A5e)
(4 marks)

Town A is 500 km west of town B. The pressure at town A is given below, and the pressure at town B is 100.1 kPa . Calculate the pressure-gradient force/mass in between these two towns: e) 99.4 kPa .

$\Delta \mathrm{x}=$	500 km
P @ $=$	99.4 kPa
P @ $=$	100.1 kPa

Find:

$\mathrm{FxPG} / \mathrm{m}=$	$?$	$\mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{FyPG} / \mathrm{m}=$	$?$	$\mathrm{~m} / \mathrm{s}^{\wedge} 2$

Use eq. 10.9a: FxPG/m =-(1/p)*($\Delta \mathrm{P} / \Delta x)$
where $\rho=$
$1.2 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$

Convert $\Delta x(k m)$ to $\Delta x(m)$:

$$
\Delta x=\quad 500000 \mathrm{~m}
$$

Convert P@A(kPa) to P@A(Pa) and P@B(kPa) to P@B(Pa):

$\mathrm{P} @ \mathrm{~A}=$	99400 Pa
$\mathrm{P} @ \mathrm{~B}=$	100100 Pa
$\Delta \mathrm{P}=$	700 Pa

Since town A is 500 km to the west of town B, there is no pressure change in the North - South direction.

```
FxPG/m = -0.00116667 m/s^2
```

Check: Units ok. Physics ok.
Discussion: The PGF is negative because air flows east to west from town B to town A.
The force is very small because the pressure difference is very small.

Suppose that $\mathrm{U}=8 \mathrm{~m} / \mathrm{s}$ and $\mathrm{V}=-\mathbf{3} \mathrm{m} / \mathrm{s}$, and latitude $=45 \mathrm{deg}$. Calculate

Given:

$\mathrm{U}=$	$8 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}=$	$-3 \mathrm{~m} / \mathrm{s}$
lat $=$	45 degS
$\mathrm{R}=$	500 km

Find: $\quad \mathrm{FxCN} / \mathrm{m}=\quad$? $\quad \mathrm{m} / \mathrm{s}^{\wedge} 2$
$\mathrm{FyCN} / \mathrm{m}=$? $\mathrm{m} / \mathrm{s}^{\wedge} 2$

Use eq. 10.13a: $\mathrm{FxCN} / \mathrm{m}=+\mathrm{s} *(\mathrm{~V} * \mathrm{M}) / \mathrm{R}$
Use eq. 10.13b: $\mathrm{FyCN} / \mathrm{m}=-\mathrm{s}^{*}(\mathrm{U} * \mathrm{M}) / \mathrm{R}$
where $M=\left(U^{\wedge} 2+V^{\wedge} 2\right)^{\wedge} 1 / 2$

North Hemisphere, low pressure:
The force is 90° to the wind's right in the N.H so the coriolis force will be towards the east

Convert R(km

$$
R=\quad 500000 \mathrm{~m}
$$

$$
\mathrm{M}=\quad 8.54400375 \mathrm{~m} / \mathrm{s}
$$

FxCN $/ \mathrm{m}=$	$-5.1264 \mathrm{E}-05 \mathrm{~m} / \mathrm{s}^{\wedge 2}$
FyCN $/ \mathrm{m}=$	$-0.0001367 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Check: Units ok. Physics ok.
Discussion: These components correspond
to a force pointing SSW.

A8e)
(4 marks)
What is the magnitude and direction of Coriolis force/mass in Los Angeles,
USA, given: e) $U(m / s)=0, V(m / s)=-5$.

Given:
$\mathrm{U}=$
$\mathrm{V}=$
lat $=$
$0 \mathrm{~m} / \mathrm{s}$
34.0522 degN of Los Angeles, USA

Find: $\quad|\mathrm{FCF} / \mathrm{m}|=\quad$? $\quad \mathrm{m} / \mathrm{s}^{\wedge} 2$
Direction of FCF/m.
Use eq. 10.18a: $|F C F / m|=2^{*} \Omega^{*}\left|\sin (\phi)^{*} M\right|$
or
use eq. 10.18b: $|\mathrm{FCF} / \mathrm{m}|=|\mathrm{fc} * \mathrm{M}|$
and eq. 10.16: $\mathrm{fc}=2^{*} \Omega^{*} \sin (\phi)$
where $M=\left(U^{\wedge} 2+V^{\wedge} 2\right)^{\wedge} 1 / 2$

$$
M=\quad 5 \mathrm{~m} / \mathrm{s}
$$

and

$$
\Omega=\quad 7.29 \mathrm{E}-05 \mathrm{~s}^{\wedge}-1
$$

\mid FCF $/ \mathrm{m} \mid=\quad 4.08 \mathrm{E}-04 \mathrm{~m} / \mathrm{s}^{\wedge 2}$

Direction is towards the West
or 270deg

Check: The wind is blowing towards north and the drag force is directly
Discussion:
opposite the wind so is therefore towards the south.

A9e)
(5.5 marks)

Same wind components as exercise A8, but find the magnitude and direction of turbulent drag force/mass in a statically neutral atmospheric boundary layer over an extensive forested region.

Given:	$U=$	$0 \mathrm{~m} / \mathrm{s}$
	$\mathrm{V}=$	$-5 \mathrm{~m} / \mathrm{s}$
	lat $=$	34.0522 degN
Find:	\mid FTD $/ \mathrm{m} \mid=$	$?$

Direction of FTD/m.

Use eq. 10.20: |FTD/m| = wt *(M/zi)
where $\mathrm{M}=\left(\mathrm{U}^{\wedge} 2+\mathrm{V}^{\wedge} 2\right)^{\wedge} 1 / 2$
and $w t=C D * M$ for statically neutral conditions

Hence:

$$
\begin{array}{lc}
\mathrm{CD}= & 0.02 \text { over forests. } \\
\mathrm{zi}= & 1 \mathrm{~km} \\
& \text { (other zi values allowed) }
\end{array}
$$

Convert zi(km) to zi(m):

$$
z i=\quad 1000 \mathrm{~m}
$$

(values of CD and zi given in Sample Application pg. 300; or could be estimated given the latitude of LA)

$$
\begin{array}{lr}
\mathrm{M}= & 5 \mathrm{~m} / \mathrm{s} \\
\mathrm{wt}= & 0.10 \mathrm{~m} / \mathrm{s}
\end{array}
$$

|FTD/m| = $0.0005 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Direction: towards North

Check: Units ok. Physics ok.
Discussion:

