ATSC 201 Fall 2023
Total marks out of 42
Chapter 15: A15e, A16e, A25e, A27e, A29e, A33e, A36e

Chapter 15

A15e) Given a lightning discharge current (kA) below and a voltage difference
(5.5 marks) between the beginning to end of the lightning channel of $10^{\wedge} 10 \mathrm{~V}$, find (1) the resistance of the ionized lightning channel and (2) the amount of charge (C) transferred between the cloud and the ground during the $\mathbf{2 0}$ micro second lifetime of the lightning stroke. e) 10

Given: $\quad \Delta t=$

$V=$	10000000000 V
$I=$	10 kA

Convert $\Delta t=\quad 2.00 \mathrm{E}-05 \mathrm{~s}$
$\mathrm{I}=10000 \mathrm{~A}$

1) Use eqn from "INFO: Electricity in a Channel"

$$
V=I \cdot R
$$

Rearrange to $\mathrm{R}=\mathrm{V} / \mathrm{l}$
$R=1.00 \mathrm{E}+06$ ohms
2) Use eqn from "INFO: Electricity in a Channel"

$$
I=\Delta Q / \Delta t
$$

Rearrange to $\Delta \mathrm{Q}=\mathrm{I}^{*} \Delta \mathrm{t}$
$\Delta \mathrm{Q}=0.20 \mathrm{C}$

Check: Units ok. Physics ok.
Discussion: Lightning strikes are one of the most fatal weather hazards
in North America. 0.20 C is a huge charge.

A16e)
(3.5 marks)

To create lightning in (1) dry air, and (2) cloudy air, what voltage difference is required, given a lightning stroke length (km) of: e) 1

Given: $\Delta z=\quad 1 \mathrm{~km}$

Find: $\quad \Delta \mathrm{V}$ _dry $=\quad ? \quad \mathrm{~V}$

Use eqn. 15.16: $\quad \Delta V_{\text {lightning }}=B \cdot \Delta z$

where	Bdry $=$	$3.00 \mathrm{E}+09 \mathrm{~V} / \mathrm{km}$
	Bcloudy $=$	$1.00 \mathrm{E}+09 \mathrm{~V} / \mathrm{km}$

$\Delta \mathrm{V}$ _dry $=$	$3.00 \mathrm{E}+09 \mathrm{~V}$
$\Delta \mathrm{~V}$ _cloudy $=$	$1.00 \mathrm{E}+09 \mathrm{~V}$

Check: Units ok. Physics ok.
Discussion: Lightning can be deadly, regardless of the type of air we are looking at. The longer the stroke, the more dangerous.

A25e)
(3 marks)

What is the minimum inaudibility distance for hearing thunder from a sound source $\mathbf{7 k m}$ high in an environment of $\mathrm{T}=\mathbf{2 0} \mathbf{~ d e g} \mathrm{C}$ with no wind. Given a lapse rate (degC/km) of: e) 7.5

Given: $\quad \mathrm{z}=\quad 7.00 \mathrm{~km}$
$\mathrm{T}=\quad 20.00 \mathrm{deg} \mathrm{C}$
$\gamma=\quad 7.50 \mathrm{degC} / \mathrm{km}$

Find: $\quad x \max =\quad$? km

Use eqn. 15.38:

$$
x_{\max } \cong 2 \cdot \sqrt{T \cdot z / \gamma}
$$

$\mathrm{xmax}=\quad 8.64 \mathrm{~km}$

Check: Units ok. Physics ok.
Discussion: The position of T in the equation indicates that warmer air propogates sound better.

A27e)
For a Rankine Combined Vortex model of a tornado, plot the pressure (kPa) and tangential wind speed $(\mathrm{m} / \mathrm{s})$ vs radial distance (m) out to 125 m , for a tornado of core radius $\mathbf{2 5 m}$ and core pressure deficit (kPa) of: e) $\mathbf{0 . 5}$
(13 marks split into 7 for the answers, 5 for the plot, 1 for check+disc)

Given: \quad Ro $=$
25 m

$$
\Delta \mathrm{P} \text { (at core) }=\quad 0.5 \mathrm{kPa}
$$

Find: $\quad P(k P a)$ and $M \tan (\mathrm{~m} / \mathrm{s})$ for $\mathrm{R}=0$ to 125 m

Inner region:

| $\frac{M_{\mathrm{tan}}}{M_{\mathrm{tan} \max }}=\frac{K}{R_{o}}$ | $\frac{\Delta P}{\Delta P_{\max }}=1-\frac{1}{2}\left(\frac{R}{R_{o}}\right)^{-}$ |
| :--- | :--- |\quad| Outer |
| :--- |
| region: |

It is evident from eqns 15.40-15.43 that we need to find ΔP max and Mtanmax.
First, we can see in eqn 15.41 that at the core

$$
\Delta \mathrm{P}=\Delta \mathrm{Pmax}=500 \mathrm{~Pa}
$$

Outer Region $\left(R>R_{o}\right)$:

$$
\begin{array}{cc}
\frac{M_{\mathrm{tan}}}{M_{\mathrm{tan} \max }}=\frac{R_{o}}{R} & \bullet(15.42) \\
\frac{\Delta P}{\Delta P_{\max }}=\frac{1}{2}\left(\frac{R_{o}}{R}\right)^{2} & \bullet(15.43)
\end{array}
$$

We can then use eqn 15.44 to calculate Mtanmax

$$
\Delta P_{\max }=\rho \cdot\left(M_{\tan \max }\right)^{2}
$$

where rho =
$1 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$

Mtanmax =
$22.36 \mathrm{~m} / \mathrm{s}$
(at $\mathrm{R}=\mathrm{Ro}=25 \mathrm{~m}$)

We can now calculate our Mtan values for our plot:
Use eqn. 15.40 for R < Ro:
Mtan = Mtanmax*(R/Ro)

Use eqn. 15. 42 for $R>R o$:

$$
\frac{M_{\tan }}{M_{\tan \max }}=\frac{R_{o}}{R}
$$

And our $\Delta \mathrm{P}$ values:
Use eqn. 15.41 for $\mathrm{R}<$ Ro:

$$
\Delta \mathrm{P}=\Delta \mathrm{Pmax} *\left(1-0.5^{*}(\mathrm{R} / \mathrm{Ro})^{\wedge} 2\right)
$$

Use eqn. 15.43 for R>Ro: (see above screenshot)

Check: Units ok. Physics ok. Looks like Fig. 15.33

Discussion: Those core winds are not very strong compared to a tornado with a larger core pressure deficit.

A29e)
(2.5 marks)

What are the Enhanced Fujita and TORRO intensity indices for a tornado of max wind speed (m / s) of: e) 60

Given: $\quad \operatorname{Mmax}=\quad 60 \mathrm{~m} / \mathrm{s}$

Find: EF and TORRO ratings.

Use Tables 15-3 and 15-4:

A tornado with max wind speed of $60 \mathrm{~m} / \mathrm{s}$ would be rated an EF2.
A tornado with max wind speed of $60 \mathrm{~m} / \mathrm{s}$ would be rated a T4.

Discussion: A tornado of EF2 and T4 can be expected to produce considerabledamage. Roofs could be ruined, walls could collapse, windows would break, and cars and trucks could be blown over. For Torro scale T4, cars can be lifted off the ground.

A33e)
(4 marks)

A mesocyclone at 38 N is in an environment where the vertical stretching ($\Delta \mathrm{W} / \Delta \mathrm{z}$) is $(20 \mathrm{~m} / \mathrm{s}) /(2 \mathrm{~km})$. Find the rate of voticity spin-up due to stretching only, given an initial relative voriticity (/s) of: e) 0.0010.

Given: $\quad \Delta \mathrm{W}=$
$\Delta z=$
$\phi=$
$\mathrm{r}=$

$20 \mathrm{~m} / \mathrm{s}$	
2 km	2000 m
38 deg	
$0.001 / \mathrm{s}$	

Find: $\quad \Delta \zeta r / \Delta t\left(/ s^{\wedge} 2\right)$ due to stretching only.

Use stretching portion of eqn 15.51:

$$
\Delta \zeta r / \Delta t=(\zeta r+f c)^{*}(\Delta W / \Delta z)
$$

where fc $=2^{*} \Omega^{*} \sin \phi$
$\Omega=$
$7.29 \mathrm{E}-05 / \mathrm{s}$

$$
\mathrm{fc}=\quad 8.98 \mathrm{E}-05 / \mathrm{s}
$$

$\Delta Z r / \Delta t=1.09 \mathrm{E}-05 / \mathrm{s}^{\wedge} 2$

Check: Units ok. Physics ok.
Discussion: Stretching is only part of the ingredient for tornadic rotation.
Stretching results in an increase in the amount of spin in the atmosphere.

A36e)
(11 marks)
Given the hodograph of winds in Fig.15.40a. Assume W=0 everywhere. Calculate helicity H based on the wind-vectors for the following pairs of heights (km): e) 4,5

Given: $\quad W=$
$\mathrm{zf}=$
$\mathrm{zi}=$
$H=$
?
$\mathrm{m} / \mathrm{s}^{\wedge} 2$
$W=0$ everywhere simplifies eqn 15.52 to 15.53:

$$
H=-\operatorname{Uavg}^{*}(\Delta V / \Delta z)+\operatorname{Vavg}^{*}(\Delta U / \Delta z)
$$

where Uavg $=0.5^{*}(U f+U i)$ and Vavg $=0.5^{*}(V f+V i)$

From Fig. 15.40a:
$\begin{array}{lr}\mathrm{Mi}(@ \mathrm{z}=3 \mathrm{~km})= & 15 \mathrm{~m} / \mathrm{s} \\ \mathrm{Mf}(@ z=4 \mathrm{~km})= & 20 \mathrm{~m} / \mathrm{s} \\ \alpha i(@ z=3 \mathrm{~km})= & 190 \mathrm{deg} \\ \alpha f(@ z=4 \mathrm{~km})= & 220 \mathrm{deg}\end{array}$

From eqns. 1.3 and 1.4:

$$
U=-M^{*} \sin (\alpha)
$$

$$
V=-M^{*} \cos (\alpha)
$$

$\mathrm{Ui}=$	$2.60 \mathrm{~m} / \mathrm{s}$
$\mathrm{Vi}=$	14.77 m/s
$\mathrm{Uf}=$	$12.86 \mathrm{~m} / \mathrm{s}$
$\mathrm{Vf}=$	$15.32 \mathrm{~m} / \mathrm{s}$
Uavg =	$7.73 \mathrm{~m} / \mathrm{s}$
Vavg =	$15.05 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{V}=\mathrm{Vf}-\mathrm{Vi}=$	$0.55 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{U}=\mathrm{Uf}-\mathrm{Ui}=$	$10.25 \mathrm{~m} / \mathrm{s}$
$\Delta z=z f-z i=$	1000 m

$\mathrm{H}=\quad 0.15 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

Check: Units ok. Physics ok.
Discussion: Since there are no vertical winds, this value represents the streamwise-vorticity contribution to the total helicity.

