ATSC 201 Fall 2023 Total marks out of 42 Chapter 15: A15e, A16e, A25e, A27e, A29e, A33e, A36e

Chapter 15

A15e) 5.5 marks)	Given a lightning discharge current (kA) below and a voltage difference between the beginning to end of the lightning channel of 10^10V, find (1) the resistance of the ionized lightning channel and (2) the amount of charge (C) transferred between the cloud and the ground during the 20 micro second lifetime of the lightning stroke. e) 10				
	Given:	Δt = 20 μs V = 100000000 V I = 10 kA			
	Convert	Δt = 2.00E-05 s I = 10000 A			
	1)	Use eqn from "INFO: Electricity in a Channel" $V = I \cdot R$			
	2)	Rearrange to R = V / IR =1.00E+06 ohmsUse eqn from "INFO: Electricity in a Channel" $I = \Delta Q / \Delta t$ Rearrange to $\Delta Q = I * \Delta t$ $\Delta Q =$ 0.20 C			
	Check: Discussion:	Units ok. Physics ok. Lightning strikes are one of the most fatal weather hazards in North America. 0.20 C is a huge charge.			
6e) 5 marks)		shtning in (1) dry air, and (2) cloudy air, what voltage difference is ven a lightning stroke length (km) of: e) 1			

Given: $\Delta z = 1 \text{ km}$

Find:	ΔV_dry =	?	V
	∆V_cloudy=	?	V

Use eqn. 15.16: $\Delta V_{lightning} = B \cdot \Delta z$

where	Bdry =	3.00E+09 V/km
	Bcloudy =	1.00E+09 V/km

ΔV_dry =	3.00E+09 V
ΔV_cloudy =	1.00E+09 V

Check: Units ok. Physics ok.Discussion: Lightning can be deadly, regardless of the type of air we are looking at. The longer the stroke, the more dangerous.

A25e) (3 marks)

What is the minimum inaudibility distance for hearing thunder from a sound source 7km high in an environment of T = 20 deg C with no wind. Given a lapse rate (degC/km) of: e) 7.5

Given:	z =		7.00 km
	T =		20.00 deg C
	γ =		7.50 degC/km
Find:	xmax =	?	km

Use eqn. 15.38:

$$x_{\max} \cong 2 \cdot \sqrt{T \cdot z / \gamma}$$

xmax =	8.64 km

Check: Units ok. Physics ok.

Discussion: The position of T in the equation indicates

that warmer air propogates sound better.

A27e) For a Rankine Combined Vortex model of a tornado, plot the pressure (kPa) and tangential wind speed (m/s) vs radial distance (m) out to 125m, for a tornado of core radius 25m and core pressure deficit (kPa) of: e) 0.5

(13 marks split into 7 for the answers, 5 for the plot, 1 for check+disc)

Given:
$$Ro = 25 \text{ m}$$

 $\Delta P (at \text{ core}) = 0.5 \text{ kPa} 500 \text{ Pa}$
Find: $P (kPa) \text{ and } Mtan (m/s) \text{ for } R = 0 \text{ to } 125 \text{ m}$
 $M_{tan} = \frac{K}{R_o}$ $\Delta \frac{\Delta P}{\Delta P_{max}} = 1 - \frac{1}{2} \left(\frac{R}{R_o}\right)^2$ Outer
region:
It is evident from eqns 15.40-15.43 that we
need to find ΔP max and Mtanmax.
First, we can see in eqn 15.41 that at the core
 $\Delta P = \Delta P$ max = 500 Pa $\Delta P = \frac{M_{tan}}{M_{tan} max} = \frac{R_o}{R} (1542)$
 $\frac{\Delta P}{\Delta P_{max}} = \frac{1}{2} \left(\frac{R_o}{R}\right)^2 (1543)$
We can then use eqn 15.44 to calculate Mtanmax

$$\Delta P_{\max} = \rho \cdot (M_{\tan \max})^2 \qquad \qquad \bullet (15.44)$$

where rho =

1 kg/m^3

Mtanmax = 22.36 m/s (at R = Ro = 25m)

We can now calculate our Mtan values for our plot: Use eqn. 15.40 for R < Ro:

Mtan = Mtanmax*(R/Ro)

Use eqn. 15. 42 for R > Ro:

$$\frac{M_{\text{tan}}}{M_{\text{tan max}}} = \frac{R_o}{R}$$

And our ΔP values: Use eqn. 15.41 for R<Ro:

$$\Delta P = \Delta Pmax^*(1 - 0.5^*(R/Ro)^2)$$

Use eqn. 15.43 for R>Ro:

(see above screenshot)

R (r	n)	Mtan (m/s)	ΔP (Pa)	ΔP (kPa)	
	 0	0.00	500	0.500	
	5	4.47	490	0.490	
Core region	10	8.94	460	0.460	
Core region	15	13.42	410	0.410	
	20		340	0.340	
	- 25	22.36	250	0.250	
	30	18.63	173.61	0.174	
	35	15.97	127.55	0.128	
	40	13.98	97.66	0.098	
	45	12.42	77.16	0.077	
	50	11.18	62.50	0.063	
	55	10.16	51.65	0.052	
	60	9.32	43.40	0.043	
	65	8.60	36.98	0.037	
	70	7.99	31.89	0.032	
	75	7.45	27.78	0.028	
Outer region	80	6.99	24.41	0.024	
	85	6.58	21.63	0.022	
	90	6.21	19.29	0.019	
	95	5.88	17.31	0.017	
	100	5.59	15.63	0.016	
	105	5.32	14.17	0.014	
	110	5.08	12.91	0.013	
	115	4.86	11.81	0.012	
	120	4.66	10.85	0.011	
	125	4.47	10.00	0.010	

Check: Units ok. Physics ok. Looks like Fig. 15.33

Discussion: Those core winds are not very strong compared to a tornado with a larger core pressure deficit.

A29e) (2.5 marks)		What are the Enhanced Fujita and TORRO intensity indices for a tornado of max wind speed (m/s) of: e) 60		
	Given:	Mmax =	60 m/s	
	Find:	EF and TORRO ratings.		
	Use Tables 1	5-3 and 15-4:		
	A tornado with max wind speed of 60 m/s would be rated an EF2. A tornado with max wind speed of 60 m/s would be rated a T4.			
	Discussion:	A tornado of EF2 and T4 can considerabledamage. Roofs of windows would break, and ca scale T4, cars can be lifted of	could be ruined, walls cou ars and trucks could be bl	•
A33e) (4 marks)	(20 m/s)/(2k	one at 38N is in an environmer (m). Find the rate of voticity s ve voriticity (/s) of: e) 0.0010.		
	Given:	$\Delta W = \\ \Delta z = \\ \varphi = $	20 m/s 2 km 38 deg	2000 m
		ζr = 0.	.001 /s	

Find: $\Delta \zeta r / \Delta t (/s^2)$ due to stretching only.

Use stretching portion of eqn 15.51:

 $\Delta \zeta r / \Delta t = (\zeta r + fc)^* (\Delta W / \Delta z)$

where fc = $2^*\Omega^* \sin \phi$ Ω = 7.29E-05 /s

Δζr/Δt =	1.09E-05 /s^2

Check: Units ok. Physics ok.

Discussion: Stretching is only part of the ingredient for tornadic rotation. Stretching results in an increase in the amount of spin in the atmosphere.

A36e) (11 marks)	Given the hodograph of winds in Fig.15.40a. Assume W=0 everywhere. Calculate helicity H based on the wind-vectors for the following pairs of heights (km): e) 4,5						
	Given:	W =		0 m/s			
		zf =		5 km	5000 m		
		zi =		4 km	4000 m		
	Find:	H =	?	m/s^2			
	W = 0 everywhere simplifies eqn 15.52 to 15.53: H = -Uavg*(ΔV/Δz) + Vavg*(ΔU/Δz)						
	where Uavg = 0.5*(Uf + Ui) and Vavg = 0.5*(Vf + Vi)						
	From Fig. 15.40a:						
	Mi (@z=3	km) =		15 m/s			
	Mf (@z=4	·km) =		20 m/s			
	αi (@z=3km)=			190 deg			
	αf (@z=4)	km)=		220 deg			
	From eqns. 1.3 and 1.4:						
		U = -M*si	n(α)				
			- *				

 $V = -M^* cos(\alpha)$

Ui =	2.60 m/s
Vi =	14.77 m/s
Uf =	12.86 m/s
Vf =	15.32 m/s
Uavg =	7.73 m/s
Vavg =	15.05 m/s
$\Delta V = Vf - Vi =$	0.55 m/s
$\Delta U = Uf - Ui =$	10.25 m/s
$\Delta z = zf - zi =$	1000 m
H =	0.15 m/s^2

Check: Units ok. Physics ok.

Discussion: Since there are no vertical winds, this value represents the streamwise-vorticity contribution to the total helicity.