ATSC 201 Fall 2025

Total marks out of 40

Chapter 15: A1g, A3g, A26g, A27g, A29g, A33g, A36g

Chapter 15

A1g)4.5 marks

If a thunderstorm cell rains for 0.5 h at the precipitation rate (mm h–1) below, calculate both the net

latent heat released into the atmosphere, and the average warming rate within the

Given: rr= 200 mm/h

 $\Delta t = 0.5 h$

Convert:

 $\Delta t = 1800 \text{ s}$

Find:

H= ? J $\Delta T/\Delta t$ = ? K/h

Δ1/Δt = :

Use eq. 15.2 Hrr=a*RR

a= 694 Js-1m-2/(mm/h)

Hrr= 138800 Js-1m-2

H= $Hrr^*\Delta t$ = 249840000 Jm-2

Use eq. 15.3 $\Delta T/\Delta t = b*RR$

b= 0.33 K/(mm of rain)

 $\Delta T/\Delta t = 66 \text{ K/h}$

Check: Units ok. Physics ok.

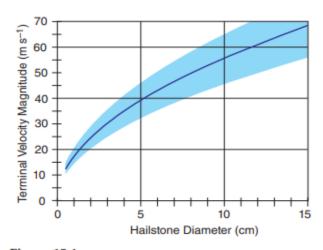
Discussion: The total warming over the tropospheric depth is about

249 840 000 J/m 2 and the warming rate over the troposphere is 66 K/h which signifies that over half an hour the troposphere

would have warmed by about than 33°C.

A3g) 2.5 marks

Graphically estimate the terminal fall velocity of hail of diameter (cm): g) 2.7


Given:

d= 2.7 cm

Find:

wt= ? m/s

Use Fig. 15.4

Figure 15.4 Hailstone fall-velocity magnitude relative to the air at pressure height of 50 kPa, assuming an air density of 0.69 kg m^{-3} .

Based on Fig. 15.4

wt= 30 m/s

Check: units ok

Discussion: A hailstone with a diameter of 2.7cm is about the size of a walnut,

this hailstone can reach a terminal velocity of 30m/s which is equal to 90km/h which is almost as fast as a moving car on the highway.

HW 5 Answer Key

A26g) (2.5 marks)

How low below ambient 100 kPa pressure must the core pressure of a tornado be, in order to support max tangential winds (m s-1) of: g) 80

Given: P0= 100 kPa

Mtanmax= 80 m/s rho= 1 kg/m3

Find: $\Delta P = ?$ kPa

Use eqn. 15.44: $\Delta Pmax = rho^*(Mtanmax)^2$

 $\Delta P = 6400.00 \text{ Pa}$

 $\Delta P =$ 6.40 kPa

Check: Units ok. Physics ok.

Discussion: According to the TORRO scale, this pressure

difference would yield a moderately devastating

(T6) tornado.

A27g) 13 marks

For a Rankine Combined Vortex model of a tornado, plot the pressure (kPa) and tangential wind speed (m/s) vs radial distance (m) out to 125m, for a tornado of core radius 25m and core pressure deficit (kPa) of: g) 0.7

Given:

 ΔP (at core) =

0.7 kPa

700 Pa

(15.42)

(15.43)

Find:

P (kPa) and Mtan (m/s) for R = 0 to 125 m

Inner region:

Outer region:

Outer Region $(R > R_s)$:

First, we

$$\Delta P = \Delta Pmax = 700 Pa$$

We can then use eqn 15.44 to calculate Mtanmax

$$\Delta P_{\max} = \rho \cdot (M_{\tan \max})^2$$

 \bullet (15.44)

where rho =

1 kg/m^3

Mtanmax =

26.46 m/s

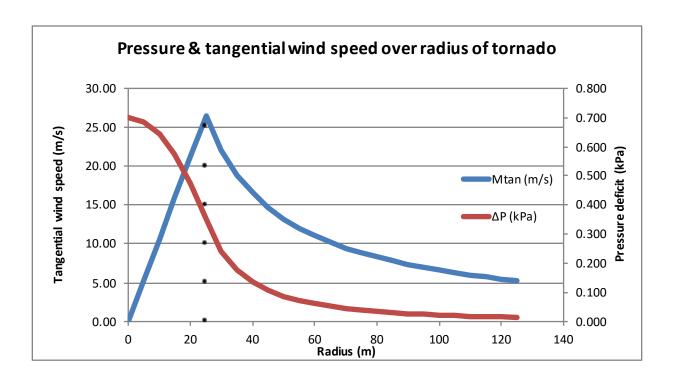
(at R = Ro = 25m)

We can now calculate our Mtan values for our plot: Use eqn. 15.40 for R < Ro:

Mtan = Mtanmax*(R/Ro)

Use eqn. 15. 42 for R > Ro:

$$\frac{M_{\rm tan}}{M_{\rm tan\,max}} = \frac{R_o}{R}$$


And our ΔP values:

Use eqn. 15.41 for R<Ro:

$$\Delta P = \Delta Pmax^*(1 - 0.5^*(R/Ro)^2)$$

Use eqn. 15.43 for R>Ro:

		R (m)	<u>N</u>	ltan (m/s)	ΔP (Pa)	ΔP (kPa)
	1		0	0.00	700	0.700
Core Region	- 1		5	5.29	686	0.686
3eg			10	10.58	644	0.644
ā	\neg		15	15.87	574	0.574
ට	- 1		20	21.17	476	0.476
	Ĺ	_	25	26.46	350	0.350
			30	22.05	243.06	0.243
			35	18.90	178.57	0.179
			40	16.54	136.72	0.137
			45	14.70	108.02	0.108
			50	13.23	87.50	0.088
			55	12.03	72.31	0.072
			60	11.02	60.76	0.061
Outer Region			65	10.18	51.78	0.052
Reg			70	9.45	44.64	0.045
e.			75	8.82	38.89	0.039
)t			80	8.27	34.18	0.034
	J		85	7.78	30.28	0.030
			90	7.35	27.01	0.027
			95	6.96	24.24	0.024
			100	6.61	21.88	0.022
			105	6.30	19.84	0.020
			110	6.01	18.08	0.018
			115	5.75	16.54	0.017
			120	5.51	15.19	0.015
			125	5.29	14.00	0.014

Check: Units ok. Physics ok. Looks like Fig. 15.33

Discussion: Those core winds are not very strong compared to a tornado with a larger core pressure deficit.

A29g) (2.5 marks)

What are the Enhanced Fujita and TORRO intensity indices for a tornado of max wind speed (m/s) of: g) 80

Given: Mmax = 80 m/s

Find: EF and TORRO ratings.

Use Tables 15-3 and 15-4:

A tornado with max wind speed of 80 m/s would be rated an EF4. A tornado with max wind speed of 80 m/s would be rated a T6.

Discussion: A tornado of EF4 and T6 can be expected to produce devastating

damage. Homes could be damaged/destroyed, cars could be thrown, and wind-blown missles could pose a substantial

threat.

A33g) (4 marks)

A mesocyclone at 38N is in an environment where the vertical stretching $(\Delta W/\Delta z)$ is (20 m/s)/(2km). Find the rate of voticity spin-up due to stretching only, given an initial relative voriticity (/s) of: g) 0.0014.

Given: $\Delta W = 20 \text{ m/s}$

 $\Delta z = 2 \text{ km}$ 2000 m

 $\begin{array}{ll} \varphi = & 38 \text{ deg} \\ \zeta r = & 0.0014 \text{ /s} \end{array}$

Find: $\Delta \zeta r/\Delta t$ (/s^2) due to stretching only.

Use stretching portion of eqn 15.51:

$$\Delta \zeta r / \Delta t = (\zeta r + fc)^* (\Delta W / \Delta z)$$

where fc = $2*\Omega*\sin\phi$ Ω = 7.29E-05 /s

fc = 8.98E-05 /s

 $\Delta \zeta r/\Delta t = 1.49E-05 /s^2$

Check: Units ok. Physics ok.

Discussion: Stretching is only part of the ingredient for tornadic rotation.

Stretching results in an increase in the amount of spin in the

atmosphere.

A36g) (11 marks)

Given the hodograph of winds in Fig.15.40a. Assume W=0 everywhere. Calculate helicity H based on the wind-vectors for the following pairs of heights (km): g) 0,2

W =0 m/s Given: zf = 2 km 2000 m zi =

0 km

0 m

Find: ? m/s^2 H =

W = 0 everywhere simplifies eqn 15.52 to 15.53:

 $H = -Uavg^*(\Delta V/\Delta z) + Vavg^*(\Delta U/\Delta z)$

where Uavg = 0.5*(Uf + Ui) and Vavg = 0.5*(Vf + Vi)

From Fig. 15.40a:

Mi(@z=0km) =0 m/s Mf(@z=2km) =10 m/s $\alpha i (@z=0km)=$ 0 deg αf (@z=2km)= 150 deg

From eqns. 1.3 and 1.4:

 $U = -M*sin(\alpha)$

 $V = -M*cos(\alpha)$

Ui = 0.00 m/sVi = 0.00 m/s

Uf = -5.00 m/s Vf = 8.66 m/s

Uavg = -2.50 m/s Vavg = 4.33 m/s

 $\Delta V = Vf - Vi =$ 8.66 m/s $\Delta U = Uf - Ui$ -5.00 m/s $\Delta z = zf - zi =$ 2000 m

H = -0.022 m/s^2

Check: Units ok. Physics ok.

Discussion: Since there are no vertical winds, this value represents

the streamwise-vorticity contribution to the total helicity.