ATSC 201 - Study Guide for Fall 2007
Roland Stull

Midterm Exam

1. Thunderstorms
 Characteristics: appearance, associated clouds, cells & evolution, movement, climatology
 Thunderstorm types & organization:
 - Basic storms: air-mass storms, multicell storms, orographic storms,
 - Mesoscale convective system: MCS, squall line, bow echo, MCC, MCV
 - Supercells: LP, classic, HP
 Key altitudes: zi (ML), LCL, LFC, EL. Also determination of tropopause depth (Ch 6)
 Conditions needed for Tstorm convection
 - High humidity in the ABL
 - Nonlocal Instability and CAPE (SBCAPE, MLCAPE, MUCAPE, nCAPE, etc.)
 - Wind shear in the Environment: shear vector, mean shear, total shear, mean wind (storm motion),
 supercell storm motion (right and left-moving storms), bulk Richardson number
 Triggering mechanisms vs. convective inhibition CIN
 Tstorm hazards
 - Heavy rain
 - Hail: nomenclature, sizes, formation, forecasting, damage, locations, mitigation, BWER
 - Downbursts: characteristics, forces, precipitation drag, evaporative cooling, DCAPE, pressure
 perturbation, microbursts, affect on aircraft
 - Outflow winds & gust fronts: characteristics and forcings, haboob, arc cloud
 - Lightning: electrical charge formation, behavior, appearance, detection, hazards, safety
 - Thunder: shock front, sound wave, ray paths, audibility distance
 - Tornadoes: tangential velocity (Rankine combined vortex), core pressure deficit, Fujita scale,
 TORRO scale, tornado components, types of tornadoes and vortices, outbreaks, storm-relative
 winds, vorticity (both Ch 12 & 16), mesocyclones & helicity, storm-relative helicity, swirl ratio &
 multi-vortex tornadoes
 Tstorm forecasting
 - Outlooks, watches, warnings
 - Stability indices for Tstorms: new, old
 - Storm chasing, photography, and safety

2. Meteorological Tools (covered in Labs, Tutorials, and Stull course pack):
 - Hodographs (basics: p29-42; tornadoes: 87-88, 90-94) - be able to plot and use hodograph
 - Weather radar - fundamentals (wavelengths, operations, scans, displays, beam propagation,
 Reflectivity: dBZ, radar equation, bright band, how to interpret radar images, storm tracking
 Doppler velocity: radial velocities, VAD, max range & velocity, tornado & downburst signatures
 - Polarimetric: uses
 - Soundings/Thermo diagrams (all except θ-z) - be able to plot soundings and use thermo diagrams

3. General Meteorology
 Atmosphere Basics - meteorological conventions, earth frameworks & time zones, processes.
 - Thermodynamic state (P, T, p), structure/layers,
 - Equations: Ideal gas law, hydrostatic, hypsometric
 Radiation - orbital factors, seasonal effects, daily effects,
 - Radiation principles: propagation, emission, distribution, absorption, reflection, transmission, Beer's law,
 - Surface radiation budget: solar, IR, net.
 Actinometers (radiometers)
 Heat - Sensible and latent
 - Lagrangian heat budget for unsaturated air (from Ch 3): air parcels, first law thermo, adiabatic processes,
 dry lapse rate, potential temp.
 - Lagrangian heat budget for saturated air (from Ch5): moist lapse rate, liquid-water pot. temp,
 equiv. pot. temp, wet-bulb pot. temp.
Eulerian heat budget: advection, conduction, turbulence, radiation, body sources, net budget
Surface heat budget, Bowen ratio

Moisture - saturation
Variables: vapour pressure, mixing ratio, specific humidity, absolute humidity, relative humidity,
dew-point, LCL, wet-bulb temperature,
Total mixing ratio
Lagrangian water budget: conservation of r_T on thermo diagram
Eulerian water budget: advection, precipitation, surface fluxes, turbulent transport

Static Stability –
Thermo diagrams: components, pseudoadiabatic assumption, identification of diagram type.
Thermo diagram types: emagram, Stuve, Skew-T, Tephigram
Thermo diagram applications: state, processes (dry, moist), precipitation, radiative heating/cooling
Parcels vs. environment: soundings, buoyancy, Brunt-Vaisala freq.
Flow stability vs. turbulence: parcel method, layer method,
extension of nonlocal parcel method for Tstorms (Ch 16).

Dynamics - Newton’s 2nd law, Lagrangian momentum budget
Eulerian momentum budget, eq. of motion
Forces: advection, pressure gradient, centrifugal, Coriolis, Turb. Drag
Winds: geostrophic, gradient, boundary-layer, BL-Gradient, cyclostrophic
Mass conservation, continuity, incompressible assumption, boundary-layer pumping
Measuring winds.

B. **Textbook Readings** (in numerical order)

1. Rauber, Walsh, & Charlevoix 2nd Edition Chapters:
 - Ch 1. Atmosphere - all
 - Ch 2. Measurements - all
 - Ch 3. Vorticity - p54 (Focus box 3.1)
 - Ch 6. Forces & Winds - p 115-124
 - Ch 17. Thunderstorms - all
 - Ch 18. Tornado - all
 - Ch 19. Hail - all
 - Ch 20. Lightning - all
 - Ch 21. Downbursts - all

2. Stull Chapters (from Course Material Pack.):
 - Ch 1. Atmosphere - all
 - Ch 2. Radiation - all
 - Ch 3. Heat - all except wind chill and heat indices
 - Ch 5. Moisture - all
 - Ch 6. Static Stability – (all except: θ-z diagrams, dynamic stability)
 - Ch 9. Weather Radar - 22-41
 - Ch 10. Dynamics - all
 - Ch 12. Vorticity - p34-36
 - Ch 16. Thunderstorms - all
 - Appendix A. Science - all
 - Errata (from web page [home page/textbooks]) - all for the Chapters we covered

C. **Friday Videos & DVDs** (I do NOT test content from these videos. Just reminding what you saw.)
 Supercell storms, Tstorm types,
 Art of storm chasing
 Tornado Spotters Guide, Extreme tornadoes, Violent Prairie Tornadoes, Tornadoes 2002
 Multi-vortex tornadoes;
 Mesocyclones
 Hail
 Lightning
 Downbursts, gust fronts