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Aspects of Daily Wind-Power Forecasting

1. Ensemble of many numerical weather (NWP) models

* Reduces random errors associated with chaotic atmosphere

2. Post-processing of individual ensemble members

* Reduces systematic errors (biases) associated with local terrain

3. Combine into deterministic & probabilistic wind fcsts.

 (Gives the best forecasts, and has most economic value

4. Verity the hub-height wind forecasts

 Measures skill & identifies potential problems

5. Convert to wind power forecasts

 |ncludes variations across each wind farm

6. Case studies

* Enables discovery of alternative / better forecast methods

/. Recommendations

* To enable more-accurate wind-power forecasts




1. Ensemble Approach

Reduces random errors associated with chaotic atmosphere

Generic Method: Run numerical weather prediction (NWP)
models solving the fluid-dynamics eqgs. for the full 3-D

atmosphere over W. Canada.

But no single NWP model is
always the best over all seasons
and all wind farms, because of the
sensitive dependence to initial
conditions and to model
approximations (i.e., chaos).

Instead, the best practice is to
run multiple models daily to get
an ensemble of forecasts for each
wind farm.
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1. Ensemble Approach
Reduces random errors associated with chaotic atmosphere

UBC Example: 26 ensemble members run each day on our
448 core computer cluster + additional members run on cloud
computers

— A/AIT\\ \f/
S RN o0

L

R R R R _E_FLE

R e R R Y

U U CUC U
SO, NN R

Y

RN LGt
TR R L S L
SRR
—
b ) PN R U AR
. (0))]
w E 3
= 0))
O
O c >
= ~— (L - -
= 0O s @
n=z <O P
c OS ~ 9
D o =W D ©
N +— >
O o n_Vu O © . &£ ¢
— = < - TO
> O == @ . <
all S o &
o< [®) 5
= W & W St O% 9O
=7 =5- 50 =7 B>
S S S S S
> = = = =
o ° ° o o

photo credit: Greg West

(UBC: 9 members with 7-day fcst horizon, remainder with 3.5 day horizon )



1. Ensemble Approach

Reduces random errors associated with chaotic atmosphere

Sample: ensemble of hub-height wind forecasts at one site
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2. Post-Processing

Reduces systematic errors (biases) associated with local terrain

Generic Methods:

e Use statistics of past errors
to calculate biases.

e Apply these biases to
correct future forecasts for
each individual ensemble
member BEFORE you use
them in ensemble averages.
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3a. Ensemble Average or Median

Gives the best deterministic forecasts

Generic Methods:
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3a. Ensemble Average or Median

Gives the best deterministic forecasts
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4a. Veritfication

Measures skill & identifies potential problems

For Deterministic Forecasts:

e Mean absolute error (MAE)

e Root mean squared error (RMSE)
e Bias

e Correlation coefficient

e Accumulated absolute error (AAE)
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Accumulated Absolute Error AAE (km/h)
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4a. Veritfication

Measures skill & identifies potential problems
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3b. Ensemble Spread

Gives one estimate of forecast uncertainty.
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3C. Ensemble Probabilities

Next, sort into bins to get raw probabilities:

(But uncalibrated probabilities have little value.)
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3C. Ensemble Probabilities

Finally, calibrate the probabilities:

Calibration means the predicted probability matches the observed frequency.
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(Calibrated using the Nipen method: based on a mapping of past forecast
cumulative frequencies vs. past observed frequencies.)
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3d. Economic Value of Wind
Probability Forecasts

e Predicting wind threshold exceedance (to avoid
equip. failure) by wind-farm operators.

e \/aluable for utility companies to anticipate
reasonable bounds on incoming power.
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Simplified cost / loss example for blade-replacement

malntenance decision:

Issue: Should you schedule the
blade replacement for 18 local time
today when 4 m/s winds are
predicted deterministically?

Next slow winds in 2 days.

Assumptions: 2 MW turbine costs
$4M installed. Blades = 18%.
Crane rental = $80,000/day. If
selling at 5¢/kWh, then downtime
cost = $2,400/day. Max wind speed
for crane safety ~ 5 m/s.

http://www.windustry.org/community_wind_toolbox_8_costs
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Simplified cost / loss example for blade-replacement maintenance decision:

Solution:

Cost to protect the blades (postpone the replacement) =~ $165k.
Loss if blades damaged during attempt = $970Kk.

Cost/Loss ratio R = 0.17

P >R, Therefore do not replace today.
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4b. Verification

Measures skill & identifies potential problems

For Probabilistic Forecasts;

e Mean of continuous ranked probability score (CRPS)

e Reliability diagram

e Relative operating characteristic (ROC) diagram of
hit rate vs. false-alarm rate

e Probability integral transform (PIT) histogram (Talagrand diagram)

e Taylor diagram

photo credit: Mark Stull
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UBC Examples:

Reliability
Diagram

photo credit: David Siuta & Thomas Nipen

4b. Verification

For Probabillistic Forecasts:
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UBC Examples:

PIT

photo credit: David Siuta & Thomas Nipen
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4b. Verification

For Probabilistic Forecasts:

Calibrate
Dev: 00140 '
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4b. Verification

UBC Examples: For Probabilistic Forecasts:
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5. Convert to Wind Power

Includes variations across each wind farm

Generic Methods:
|dealized power curve for one turbine

(normalized to 1 MW)

Output Power (MW)

0 10 20 4 30
_ cut-out
Wind Speed (m/s)

photo credit: Roland Stull



5. Convert to Wind Power

Includes variations across each wind farm

UBC Examples:

Average power curve for whole wind farm
(normalized to 1 MW)

Wind Farm Power Curve ° Synthetic Data
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6. Case Studies

Enables discovery of alternative / better forecast methods
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6. Case Studies

Enables discovery of alternative / better forecast methods

|dealized Rockies Only Both Idealized Ranges

Cross-Section: (1,63) to (101,63) ; center=(57

,62) ; angle=90 Cross-Section: (1,63) to (101,63) ; center=(57,62) ; angle=90

~~~~~~
L

(
IV VT A

Height (km)
Height (km)

6.5
43 -
M s more
2o accurate for
' this wind-
00 - Rockies™ | _ ramp event
0 20 40 60 c 180_ pr01 525b1500 0 20 40 60 80 100
ontours: (o} y phOtO credit Jesse Mason Contours: 270 to 545 by 5
colours indicate wind speed (m/s) colours indicate wind speed (m/s)
BT [ [ s
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Inference: need sufficiently large NWP forecast domain to capture upwind effects.
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6. Case Studies

Enables discovery of alternative / better forecast methods

Actual terrain (for 4 km WRF run)

Cross-Section: (1,63) to (101,63) ; center=(57,62) ; angle=90
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/. Recommendadations

1. Use ensemble forecasts from multi-model
Numerical Weather Prediction (NWP) runs.

a. Bias correct each individual ensemble member first.

b. Then calculate the ensemble average (or weighted
ensemble average) to get the best deterministic
forecast.

c. Create probability forecasts from the ensemble, and
calibrate them to get more reliable probability values.

d. Use the probability forecasts to make economically
optimal decisions.

photo credit: Roland Stull 20



/. Recommendadations

To enable more-accurate wind-power forecasts

2. The more info wind operators give to weather
forecasters, the more accurate will be the forecasts.

Give forecast providers real-time hourly observations of:
a) Wind and power from each turbine or feeder

b) Temperature profile in the bottom 10 to 20 m
(to estimate atmos. static stability)

c) Solar radiation from inexpensive sunshine
sensor (for static stability)

d) Outage / shut-down flag at same detail
as for 1a.

photo credit: Roland Stull
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/. Recommendadations

To enable more-accurate wind-power forecasts

3. Deploy a denser network of
permanent atmos.-sounding
stations to routinely measure wind,
temperature & humidity vertical

profiles in whole troposphere.

(to aid forecasting of mountain waves, downslope
windstorms, low-level jets, and wind-ramp events)

a) New rawindsonde launch sites on
land & in the near-Pacific

b) CEATI might have the political
clout to motivate the Canadian
Gov't

c) Other sensors: satellites, lidar,
drones, tethersondes, etc.
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/. Recommendadations

To enable more-accurate wind-power forecasts

4. For the NWP model runs:

a) Each model domain must extend tar enough upwind to

capture terrain and land-use influences.
(100 km upstream helps short-range forecasts.
Greater distances are needed for medium-range forecasts.)

b) More NWP ensemble members generally give better
forecasts. .

c) Ultra-fine resolution forecasts
(less than about 9 km horizontal

grid spacing) are not necessarily
more accurate.

Copyright University of British Columbi o http://weather.cos.ubc.ca/wxfest
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Model /IBC: WRF3/GF3gcO1 Coloured Surface Winds Grid initialized: 3UTC, 29 OCT 2013

9 km gridN Forecast valid 17:00PDT 29 OCT (18:00MDT 29 OCT) [00:00UTC 30 OCT] 2015
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Operational Forecasting of  « Ensemble average

: : probability & economics
Wind and Wind Power « Verification
* Wind power
Prof. Roland Stull, ccwm, cri  Case studies
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University of British Columbia (UBC)
2020-2207 Main Mall

Vancouver, BC V6T 174 We will provide two months of free daily
Canada real-time hub-height wind-speed forecasts
as a sample to wind-farm operators.

rstull@eos.ubc.ca For info on our research team, go to:
004-822-5901 Www.e0s.ubc.ca/research/geodisaster_cfd/
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Glossary

Operational Models run at UBC

 Weather Research & Forecast (WRF)
- Advanced Research WRF (ARW) core
- Nonhydrostatic Mesoscale Model (NMM) core

 Mesoscale Model version 5 (MM5)
« Short-range Ensemble Forecast system (SREF)

Initial & boundary conditions from:
o Global Forecast System (GFS)
e North American Mesoscale (NAM)

o Global Environmental Multiscale (GEM) =Global Deterministic
Prediction System (GDPS)

Boundary-layer physics schemes:
e Yonsei Univ. (YSU)

* Asymmetrical Convective Model - v2 (ACM2)
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