Geophysical Disaster Computational Fluid Dynamics Center

University of British Columbia – Vancouver • Dept. of Earth, Ocean & Atmospheric Sciences • Weather Forecast Research Team • Directed by Prof. Roland Stull •

Peculiarities & Disasters in Weather CFD

CFD2018 - 26th Annual Conference of the Canadian CFD Society 10 - 12 June 2018

Roland Stull Dept. of Earth, Ocean & Atmos. Sciences University of British Columbia (UBC) Vancouver, BC, V6T 1Z4, Canada

Topics:

- 1. Peculiarities of Meteorological vs. Engineering CFD
- 2. Some weather Disasters:
 - thunderstorms
 - tornadoes
 - forest-fire smoke
 - floods
 - hurricanes
 - climate change
 - blizzards
 - hazards to wind turbines

Colleagues:

Chaimae Alaoui James Campbell Tim Chui Dominique Cook Alison Deere Anthony DiStefano Rosie Howard Bryan Jansens Julia Jeworrek Chris Jing Frans Liqui Lung Jesse Mason Henryk Modzelewski Nadya Moisseeva Pedro Odon Marjolein Ribberink Kyle Sha Roland Schigas Greg West Eve Wicksteed Tatjana Zenker

Peculiarities of CFD of Weather

Peculiarities of weather CFD relative to engineering CFD.

https://www.gfdl.noaa.gov/fv3/

X43A - Mach 7. By NASA - Armstrong Flight Research Center. Photo ID: ED97-43968-1., Public Domain, https://commons.wikimedia.org/w/index.php?curid=717133

Weather Disasters that can be simulated/forecast?

Visualization by David Bock, NCSA. See http://lantern.ncsa.illinois.edu/ Vis/XSEDE/XSEDE15/Bock_Leigh.mov

Large <u>Range</u> of Length Scales (L)

Special relationship between time and space scales of weather phenomena.

Weather has same **small** scale (Kolmogorov microscale) as in engineering for air ...

Superposition of All Length-scales. No spectral gap.

Scales of Motion in the Atmosphere

Predictability: Realistic vs. Real

Example: Starting with a real cyclone ICs as observed in the atmosphere, forecast skill for that **real** cyclone diminishes to nil after about 1 week.

Beyond 1 week, <u>realistic</u>-looking cyclones still appear in the forecast, but at the wrong locations and times and intensities.

But realistic forecasts are useful for a different reason: on average these phenomena transport realistic amounts of heat, moisture, momentum on larger scales. (Good for climate models & other simulations.)

Similar limits of predictability for phenomena of all time scales.

Turbulence is Not a Function of Reynolds Number

...because the Reynolds Number (Re) is so large, due to large length scales and small molecular viscosity

$$\operatorname{Re} = \frac{\rho UL}{\mu} \approx 10^7 - 10^{10}$$

- Thus, atmosphere would always turbulent if we considered only inertia & viscosity.
- We can neglect molecular viscosity.

But atmos. turbulence is a modulated by the Richardson number (Ri)

$$Ri = \frac{g}{\theta} \frac{\Delta \theta / \Delta z}{\left(\Delta U / \Delta z\right)^2}$$

...indicating the damping effect of static stability [vertical potential temperature (θ) structure] vs. the TKE generation by wind shear ($\Delta U/\Delta z$).

Large range of scales requires more computing power than is available / affordable

Weather CFD is called Numerical Weather Prediction (NWP)

Thus we are forced to approximate (parameterize) the effects of small scales.

 1970s-present: NWP forecast skill increased with growth in computer power, as described by Moore's law.

Parameterization is being pushed to smaller scales.

Divide & Conquer

- Climate Projections. BCs important (simulates net effect of many scales)
- Weather Forecasts. ICs important (real-time operational forecasts)
- Storm Simulations. Not real time (but getting closer to real-time)
- Atmos.Boundary Layer Simulations (bottom 2 km of atmosphere)
- Engineering Simulations

Large Eddy Simulation (LES) - realistic looking, but not real

Boundary Layer Observations

observed by laser radar (lidar). red = more pollution/ scatterers

LES: Developed 50 years ago by Jim Deardorff at NCAR for convection in the atmospheric boundary layer (ABL).

Smallest resolvable scales were limited by computer power (i.e., were not very small).

$$\Delta x = \Delta y = 125$$
 m and $\Delta z = 50$ m
in domain (x, y, z) = $5 \times 5 \times 2$ km.
(40)³ grid points = 6.4×10^4 grid
points.

Deardorff, 1974, Bound. Layer Meteorology, 7, 199-226.

• Boundary Layer Simulations

Moeng, 1984, NCAR/AR-83, 57-58.

Not trying to forecast each thermal or turbulent eddy. But trying to forecast their net effect on transport of heat, pollutants, etc.

Disasters: 2017 Forest Fire Season in British Columbia

Image courtesy of BC Wildfire Service. https://www.facebook.com/BCForestFireInfo/videos/10155384746680673/

Over 65 provincial parks closed. Dozens of highways closed. Dozens of towns evacuated.

Large-Eddy Simulation (LES) Community Models - present day

DALES = Dutch Atmospheric LES	WRF-SFIRE = coupled Weather Research & Forecast and FIRE-spread
DALES	WRF-SFIRE
Non-hydrostatic	Non-hydrostatic
Boussinesq approximation	Fully compressible
FFT Pressure solver	Prognostic P eq.
Imposed net zero vertical velocity	
Cartesian height levels	Pressure eta levels
Subgrid Turb.: K theory based on TKE	Subgrid Turb: 3-D 1.5 order TKE closure
Handles multiple tracers	Moisture is surrogate for smoke emissions
Flat terrain or simple linear slope only	Complex terrain
Δx = 10 m	$\Delta x = 40$ m or WRF, with 4 m for SFIRE
55 layers in vertical, up to 2.8 km	50 layers in vertical, up to 2.5 km
Cyclic lateral boundary conditions	Cyclic lateral boundary conditions
Fireline approximated by enhanced surface heat flux	Models fire spread & heat & H2O
Infinitely long fireline	Finite length fireline
800 x 300 x 55 grid points in x, y, z 1.32x10 ⁷ total	300 x 150 x 50 grid points in x, y, z = 2.25x10 ⁶ total

Model Comparison of PBL Evolution

LES spin-up comparison by Frans Liqui Lung at UBC & Delft

Large-Eddy Simulation (WRF-SFIRE): first experiments

Research by Nadya Moisseeva at UBC.

• Simulating the prescribed burn: RxCADRE 2012 (Nov 10, 2012 – Elgin Air Force Base, Florida) two large lots (shrub/forest). Surface/air measurements of emissions, including H₂O vapor

WRF-SFIRE

Convective-Structures. LES runs by Nadya Moisseeva. Analysis by Rosie Howard at UBC

WRF-SFIRE

Convective-Structures. LES runs by Nadya Moisseeva. Analysis by Rosie Howard at UBC

DALES

Fire-convection Structures. Analysis by Frans Liqui Lung at UBC & Delft

Runtime is 1650 seconds

305

300 (Y

295

1500

y (m)

2000

2500

DALES

Region of Influence. Analysis by Frans Liqui Lung at UBC & Delft

DALES

Convective-Structures. Analysis by Frans Liqui Lung at UBC & Delft

Runtime is 1650 seconds

Relative (percentage) Concentration. Reveals backflow toward fireline at surface

Disaster: EF5 Tornado in Oklahoma

24 May 2011, Calumet-El Reno-Piedmont-Guthrie

Tornadic Thunderstorm Simulation

Leigh Orf, U. Wisc. CIMSS. Images from his presentations. See https://www.youtube.com/watch?v=7UjdFg4UWpk

120 km

CM1 model: 3-D, non-hydrostatic, non-linear, time-dependent. Run on "Blue Waters" Cray XE/XK hybrid machine at Nat'l Ctr for Supercomputing Applications, UIUC using over 20,000 cores.

Tornadic Thunderstorm Simulation

Visualization by David Bock, NCSA. See http://lantern.ncsa.illinois.edu/Vis/XSEDE/XSEDE15/Bock_Leigh.mov

Cloud ice

A San C

Cloud water

Tornado on ground →

seconds: 0

Tornado Simulation

Leigh Orf, U. Wisc. CIMSS. Images from his presentations. See https://www.youtube.com/watch?v=7UjdFg4UWpk

Tornado Simulation

Leigh Orf, U. Wisc. CIMSS. Images from his presentations. See https://www.youtube.com/watch?v=7UjdFg4UWpk

Real-time Weather Forecasts

Climate Projections. BCs important (simulates net effect of many scales)

Weather Forecasts. ICs important (real-time operational forecasts)

- Storm Simulations. Not real time (but getting closer to real-time)
- Atmos.Boundary Layer Simulations (bottom 2 km of atmosphere)
- Engineering Simulations

... but for Operational Weather <u>Prediction</u>

- The need for speed
 - Must finish the CFD calculations (i.e., the weather forecast) before the weather happens...
- The need for ICs
 - * ... but cannot start the CFD until we have the ICs (called the "analysis" or the "initialization")...
- The need for weather observations
 - * ... but cannot create the ICs until worldwide weather observations have been made & communicated.

Figure 20.12

Hypothetical forecast schedule, for a 00 UTC initialization.

- A: wait for weather observations to arrive.
- B: data assimilation to produce the analysis (ICs).
- C: coarse-mesh forecast.
- D: fine-mesh forecast, initialized from 00 UTC.
- E: fine-mesh forecast initialized from coarse forecast at 12 h.
- *F*: post-processing and creation of products (e.g., weather maps).

Trade-off: Accuracy, Resolution, Timeliness, Domain Size, Fcst. Horizon

-35

-30

-25

-20

-15

-10

-5

0

temperature[C]

10

5

15

20

25

35

30

Compromise Solutions: Nested or Variable Grids

NCAR WRF model:

Nested grids, as run operationally at UBC.

NCAR MPAS model:

Unstructured centroidal Voronoi tessellation. NOAA/Princeton FV3 model:

Cubed sphere with an analytic Schmidt (1977) transformation

https://mpas-dev.github.io/atmosphere/atmosphere.html

https://www.gfdl.noaa.gov/fv3/fv3-grids/

29

(b) Resolved: advection (convection)

(c) Subgrid: parameterized

Resolved vs. Subgrid Scales

Unresolved (parameterized) microphysics (cloud & precip. droplet evolution) in resolved temperature & humidity environments

Unresolved in horizontal, but spanning multiple vertical layers. Causes resolvable effects:

- Subgrid convective clouds
- Subgrid turbulent fluxes in atm.boundary layer

global

Scale-Aware Params. vs. Grey Zone

Grey

Zone

1 decade

10⁵

Parameterize

Multi-scale operational forecast models being developed: NCAR MPAS model & NOAA/Princeton FV3:

• Designed to utilize scale-aware parameterizations.

10⁵

Direct

Simulation

Model Bottom Boundary Issues -> Terrain

• West-East terrain cross section through Whistler (50.12°N)

Model Bottom Boundary Issues -> Terrain

• West-East terrain cross section through Whistler (50.12°N)

Terrain Elevation, zoomed on British Columbia

Nonlocal Flow Effects

Simulations by Jesse Mason

Numerical Simulations of Idealized Terrain

for a wind-ramp event at a wind farm:

- Rocky Mountains (add / remove)
- Coast Range (add / remove)

Enables discovery of alternative / better forecast methods

Nonlocal Flow Effects

Simulations by Jesse Mason

Enables discovery of alternative / better forecast methods

Both Idealized Ranges

Inference: need sufficiently large NWP forecast domain to capture upwind effects.

Ed Lorenz: Deterministic non-periodic motions. ==> Chaos. Sensitive dependence on ICs.

- Atmos. has more degrees of freedom than the Lorenz system. More chaotic.
- CFD models only approximate atmos. physics, thus forecast evolves incorrectly.
- To create the ICs, assimilate weather observations (have big gaps) into a previous forecast (has errors).
- Thus, ICs are guaranteed to be off.
- Thus, forecasts diverge from reality; namely, skill decreases with fcst. horizon.

Prediction of smaller-scale weather phenomena loses skill sooner.

Superposition of all scales still appears in the forecast, but the smaller-scale phenomena are bad.

Use ensembles to mitigate chaos

black line shows ensemble average

Ensemble Average is Usually Best

Accumulated Absolute Error of Wind Speed

Ensemble Spread -> Calibrate into Probability Fcsts.

Simplified cost / loss **example** for blade-replacement maintenance decision:

Issue: Should you schedule the blade replacement for 18 local time today when 4 m/s winds are predicted deterministically? Next slow winds in 2 days.

Assumptions: Max wind speed for crane safety ~ 5 m/s. 2 MW turbine costs \$4M installed. Blades = 18% of cost. Crane rental = \$80,000/day. If selling at 5¢/kWh, then downtime cost = \$2,400/day.

photo credit: Mark Stull

http://www.windustry.org/community_wind_toolbox_8_costs

Simplified cost / loss **example** for blade-replacement maintenance decision:

Solution:

Cost to protect the blades (postpone the replacement) \approx \$165k.

Loss if blades damaged during attempt \approx \$970k.

Cost/Loss ratio $R \approx 0.17$

P > R, Therefore do not replace blades today.

Climate Simulations

Weather phenomena for all simulated scales are realistic, but none are real

(except for global scales that are driven by persistent boundary conditions).

- Climate Projections. BCs important (simulates net effect of many scales)
- Weather Forecasts. ICs important (real-time operational forecasts)
- Storm Simulations. Not real time (but getting closer to real-time)
- Atmos.Boundary Layer Simulations (bottom 2 km of atmosphere)
- Engineering Simulations

Coupled atmos-, cryo-, hydro-, anthro-spheres

NOAA/Princeton GFDL - FV3 Simulation at 3 km, by Shian-Jiann Lin & colleagues.

NOAA = Nat'l Oceanic & Atmos. Admin.; GFDL = Princeton Geophysical Fluid Dynamics Lab.; FV3 = Finite Volume model version 3.

2016-08-24 12:00Z 564 Forecast Hours

FV3 3km

Geophysical Disaster Computational Fluid Dynamics Center

• University of British Columbia – Vancouver • Dept. of Earth, Ocean & Atmospheric Sciences • Weather Forecast Research Team • Directed by Prof. Roland Stull •

Peculiarities & Disasters in Weather CFD

CFD2018 - 26th Annual Conference of the Canadian CFD Society 10 - 12 June 2018

Roland Stull Dept. of Earth, Ocean & Atmos. Sciences University of British Columbia (UBC) Vancouver, BC, V6T 1Z4, Canada

rstull@eoas.ubc.ca

Any Questions?

Topics:

- 1. Peculiarities of Meteorological vs. Engineering CFD
- 2. Some weather Disasters:
 - thunderstorms
 - tornadoes
 - forest-fire smoke
 - floods
 - hurricanes
 - climate change
 - blizzards
 - hazards to wind turbines

Colleagues:

Chaimae Alaoui James Campbell Tim Chui Dominique Cook Alison Deere Anthony DiStefano Rosie Howard Bryan Jansens Julia Jeworrek Chris Jing Frans Liqui Lung Jesse Mason Henryk Modzelewski Nadya Moisseeva Pedro Odon Marjolein Ribberink Kyle Sha Roland Schigas Greg West Eve Wicksteed Tatjana Zenker