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Peculiarities of CFD of Weather

Peculiarities of weather CFD relative to engineering CFD.

X43A - Mach 7. By NASA - Armstrong Flight Research Center. Photo ID: ED97-43968-1.,
Public Domain, https://commons.wikimedia.org/w/index.php?curid=717133

https://www.gfdl.noaa.gov/fv3/

Weather Disasters that can be simulated/forecast?
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Large Range of Length Scales (L)

Special relationship between 05 _ _ _ ldecade  _ _ _ _ _
time and space scales of
weather phenomena.
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v = kinematic viscosity, € = TKE dissipation rate. 3



Superposition of All Length-scales.

No spectral gap.
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Predictability is Limited by Time Scale (t)

Predictability: Realistic vs. Real

Example: Starting with a real cyclone
ICs as observed in the atmosphere,
forecast skill for that real cyclone

global
circulation
& climate
variations

diminishes to nil after about 1 week. ——1-52 ———————————

Beyond 1 week, realistic-looking
cyclones still appear in the forecast,
but at the wrong locations and times

and intensities.

But realistic forecasts are useful for a
different reason: on average these
phenomena transport realistic amounts
of heat, moisture, momentum on larger
scales. (Good for climate models &
other simulations.)

Similar limits of predictability for
phenomena of all time scales.
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Turbulence is Not a Function of Reynolds Number

...because the Reynolds Number (Re) is so
large, due to large length scales and small
molecular viscosity

_pUL

Re="—"-=10"-10"
u

¢ Thus, atmosphere would always turbulent
If we considered only inertia & viscosity.
¢ \We can neglect molecular viscosity.

But atmos. turbulence is a modulated by
the Richardson number (Ri)

g AOB/Az

Ri :
6 (AU /Az)

...Indicating the damping effect of static stability
[vertical potential temperature (6) structure] vs.
the TKE generation by wind shear (AU/Az).

p = air density, U = wind speed, L = length scale, p = molecular viscosity, g = accel. due to gravity, T = temperature, z = height, 8=T+(9.8K/km)-z.
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Large range of scales requires
more computing power than is
available / affordable

Weather CFD is called
Numerical Weather Prediction (NWP)

Thus we are forced to approximate
(parameterize) the effects of small scales.
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e 19/0s-present:
NWP forecast skill increased
with growth in computer
power, as described
by Moore’s law.

Parameterization is being pushed
to smaller scales.

PMSL = atmospheric Pressure at mean sea level 7
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Divide & Conqguer

Climate Projections. BCs important

(simulates net effect of many scales)

Weather Forecasts. [ICs important

(real-time operational forecasts)

Storm Simulations. Not real time

(but getting closer to real-time)

Atmos.Boundary Layer Simulations

(bottom 2 km of atmosphere)

Engineering Simulations

BCs = boundary conditions, ICs = initial conditions. DNS = Direct Num. Simulation. Atmos. Boundary Layer (ABL) = bottom 2 km of atmosphere 8



&climate
104 - — — lyear variations|. .

—_— e e T Y e — A — — —

Time Scale (h)
S

turbulence
production

turbulence
cascade
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Climate Projections. BCs important

(simulates net effect of many scales)

Weather Forecasts. [ICs important

(real-time operational forecasts)

Storm Simulations. Not real time

(but getting closer to real-time)

Atmos.Boundary Layer Simulations

(bottom 2 km of atmosphere)

Engineering Simulations

BCs = boundary conditions, ICs = initial conditions. Atmos. Boundary Layer (ABL) = bottom 2 km of atmosphere 9



Large Eddy Simulation (LES) - realistic looking, but not real

 Boundary Layer Observations

LES: Developed 50 years ago .
by Jim Deardorff at NCAR for JalMAL e = e R N - bl
convection in the atmospheric
boundary layer (ABL). = it R

Smallest resolvable scales were o i
limited by computer power (i.e.,
were not very small).

Ax = Ay = 125 m nd Az = 50 m

in domain (X, y, Z) = 5 X 5 X 2 km
(40)3 grid points #{6.4x104 grid ==

points.

x|

Not trying to forecast each thermal
or turbulent eddy. But trying to
forecast their net effect on
transport of heat, pollutants, etc.
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Disasters: 2017 Forest Fire Season in British Columbia

Bishop Bluffs fire in central BC - 13 Aug 2017

Image courtesy of BC Wildfire Service. https://www.facebook.com/BCForestFirelnfo/videos/10155384746680673/

Over 65 provincial parks closed. Dozens of highways closed. Dozens of towns evacuated.
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Large-Eddy Simulation (LES) Community Models - present day

DALES = Dutch
Atmospheric LES

WRF-SFIRE = coupled Weather
Research & Forecast and FIRE-spread

Non-hydrostatic
Boussinesq approximation
FFT Pressure solver
Imposed net zero vertical velocity
Cartesian height levels
Subgrid Turb.: K theory based on TKE
Handles multiple tracers
Flat terrain or simple linear slope only
55 layers in vertical, up to 2.8 km
Cyclic lateral boundary conditions

Fireline approximated by
enhanced surface heat flux

Infinitely long fireline

800 x 300 x 55 grid points in x, y, z £ 1.32x107 total

Non-hydrostatic
Fully compressible

Prognostic P eq.

Pressure eta levels
Subgrid Turb: 3-D 1.5 order TKE closure
Moisture is surrogate for smoke emissions

Complex terrain

or WRF, with 4 m for SFIRE

50 layers in vertical, up to 2.5 km

Cyclic lateral boundary conditions
Models fire spread & heat & H20

Finite length fireline

300 x 150 x 50 grid points in x, y, z £ 2.25x106 total
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Model Comparison of PBL Evolution

LES spin-up comparison by Frans Liqui Lung at UBC & Delft
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Large-Eddy Simulation (WRF-SFIRE): first experiments

Research by Nadya Moisseeva at UBC.

e Simulating the prescribed burn: RxCADRE 2012 (Nov 10, 2012 - Elgin Air Force Base, Florida)
two large lots (shrub/forest). .Surface/air measurements of emissions, including H,O vapor

14



WRF-SFIRE

Convective-Structures.

LES runs by Nadya Moisseeva. Analysis by Rosie Howard at UBC

Case: W6S400F3R0 = wind = 6 m/s, H = 400 W/m2, fuel = tall grass, no background pollutants

Along-wind averaged smoke att = 20 mins
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WRF-SFIRE

Convective-Structures. LES runs by Nadya Moisseeva. Analysis by Rosie Howard at UBC

Crosswh'd-avefaged u-wind at t'=mr'nhs ' ' Crosswind-averaged w-wind at t = 10 mins
!\/ind (M/s). | W Vertical Velocities (m/s).
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|6 boundary-layer thermals

=
3
=
3

‘ ' - 0
0 ' Downwind Dist. (km) 12 0 ' Downwind Dist. (km)
Ambient Wind Ambient Wind
Fire Fire
wind wind
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DALES

Fire-convection Structures. Analysis by Frans Liqui Lung at UBC & Delft

Runtime is 1650 seconds
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DALES

Region of Influence. Analysis by Frans Liqui Lung at UBC & Delft

Horizontal velocity in the mean wind direction, t = 30 min
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DALES

Convective-Structures.  Analysis by Frans Liqui Lung at UBC & Delft

Runtime is 1650 seconds

S RGB image local passive scalars averaged over x T Maximum potential temperature in x direction 08
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Climate Projections. BCs important

(simulates net effect of many scales)

Weather Forecasts. [ICs important

(real-time operational forecasts)

Storm Simulations. Not real time

(but getting closer to real-time)

Atmos.Boundary Layer Simulations

(bottom 2 km of atmosphere)

Engineering Simulations

BCs = boundary conditions, |Cs = initial conditions. Atmos. Boundary Layer (ABL) = bottom 2 km of atmosphere 20



Disaster: EF5 Tornado in Oklahoma

24 May 2011, Calumet-El Reno-Piedmont-Guthrie

Image provided courtesy of Mike Furrer

Kingfisher ~—
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R e

All images from: https://www.weather.gov/oun/events-20110524-tornado-b2
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Tornadic Thunderstorm Simulation

Leigh Orf, U. Wisc. CIMSS. |Images from his presentations. See https://www.youtube.com/watch?v=7UjdFg4UWpk

CM1 model: 3-D, non-hydrostatic,
non-linear, time-dependent.

Run on "Blue Waters"' Cray XE/XK
hybrid machine at Nat'l Ctr for
Supercomputing Applications, UIUC
using over 20,000 cores.

Ax = Ay = Az = 15 m}Jsotropic inner
domain

imbedded in larger domain
120x120x20 km.

18.4x10° grid points total

For more, see http://orf.media 22



Tornadic Thunderstorm Simulation

Visualization by David Bock, NCSA. See http://lantern.ncsa.illinois.edu/Vis/XSEDE/XSEDE15/Bock_Leigh.mov

Cloud ice

Cloud water

a0

Tornado on ground ——



Tornado Simulation

Leigh Orf, U. Wisc. CIMSS. |Images from his presentations. See https://www.youtube.com/watch?v=7UjdFg4UWpk

X w




Tornado Simulation

Leigh Orf, U. Wisc. CIMSS. Images from his presentations. See https://Www.youtube.Com/watch’?v:7Udeg4Uka
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BCs = boundary conditions, |Cs = initial conditions. Atmos. Boundary Layer (ABL) = bottom 2 km of atmosphere 20



... but for Operational
Weather Prediction

® The need for speed

* Must finish the CFD calculations
(i.e., the weather forecast) before
the weather happens...

e The need for ICs

* ... but cannot start the CFD until we
have the ICs (called the "analysis" or
the "initialization”)...

e The need for weather
observations

* ... but cannot create the [Cs until
worldwide weather observations
have been made & communicated.
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18 24

(Wall Clock) Real Time (UTC)

Figure 20.12

Hypothetical forecast schedule, for a 00 UTC initialization.

A: wait for weather observations to arrive.

B: data assimilation to produce the analysis (ICs).

C: coarse-mesh forecast.

D: fine-mesh forecast, initialized from 00 UTC.

E: fine-mesh forecast initialized from coarse forecast at 12 h.

F: post-processing and creation of products (e.g., weather maps).
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Trade-off: Accuracy, Resolution, Timeliness, Domain Size, Fcst. Horizon

HIGH-RESOLUTION TEMPERATURE ANALYSIS (2M) | 0400UTC 17-03-2016 | MD DA
{ W T /) = T - VA — -

For any fixed computer power and ;
orescribed run time, there is a Trade Off: i

: : : i ¢
e Can have fine grid resolution to capture b /y}&w/
small scales, but limited to small domain. .

Nowcast by
Nadya
Moisseeva

e Can have large domain, but limited to .y
coarse grid resolution. e

e Can have large domain & fine resolution,
but limited to short time horizon (nowcast)

____

-35 -30 -25 -20 -15 -10 -5 0
temperature[C]




Compromise Solutions: Nested or Variable Grids

NCAR WRF model: NCAR MPAS model: NOAA/Princeton FV3 model:
Cubed sphere with an

Nesteql grids, as run Unstruqtured Cehtrmdal analytic Schmidt (1977)
operationally at UBC. Voronol tessellation. fransformation
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WRF = NCAR Weather Research & Forecast model

https://mpas-dev.github.io/atmosphere/atmosphere.html https://www.gfdl.noaa.gov/fv3/fv3-grids/

NCAR = Nat'l Center for Atmospheric Research; MPAS = Model for Prediction Across Scales; FV3 = Finite Volume vers.3 29



(b) Resolved: advection (convection)

co
slow

dry

grid cell

L

X

(c) Subgrid: parameterized

IR IR
Radiation Rad. \
2.0to 2.5t0
2.5pum 2.7 ym

N i
grid cell

2.0to
2.5 uym ? rain

Resolved vs. Subgrid Scales

Unresolved (parameterized) microphysics
(cloud & precip. droplet evolution) in resolved
temperature & humidity environments

‘convective

:

R. Stull, 2017: UBC ATSC 113

Unresolved in horizontal, but spanning multiple
vertical layers. Causes resolvable effects:

e Subgrid convective clouds

e Subgrid turbulent fluxes in atm.boundary layer

30



Scale-Aware Params. vs. Grey Zone

Experiments by Julia Jeworrek, 2018.

f% Julla Jeworrek, 2018.
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Multi-scale operational forecast models being developed:
NCAR MPAS model & NOAA/Princeton FV3:

Designed to utilize scale-aware parameterizations.

NOAA = Nat'l Oceanic & Atmos. Admin.;

MPAS = Model for Prediction Across Scales; FV3 = Finite Volume vers.3



Grey Zone Ax

_ GF (km) GF Most]
WRF Experiments by L . ostly
Julia Jeworrek, 2018. . o7 ‘ parameterized
by subgrid
Disasters: flooding, blizzards Fgrreegi?)St cumulus
' param.
30
* Precipitation
Rate (mm/h)
15 - L 0.3
. Mostly
’° resolved on
grid scale by
©s  microphysics
(rain, snow,
1 etc.) param.

GF = Grell-Freitas cumulus parameterization. Julia Jeworrek & Stull, 2018: Mon. Weather Rev. (submitted) 32



Model Bottom Boundary Issues -> lerrain
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Model Bottom Boundary Issues -> Terrain

Terrain Elev. (m)
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Terrain Elevation, zoomed on British Columbia

z (m)

O Response 1
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Nonlocal Flow Effects

Simulations by Jesse Mason

Numerical Simulations of
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: | | ___ Idealized Terrain
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e Rocky Mountains (add / remove)
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50°N
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55°N better forecast methods
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40°N photo credit: Jesse Mgson
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Nonlocal Flow Effects

Simulations by Jesse Mason
Enables discovery of alternative / better forecast methods

|dealized Rockies Only Both |dealized Ranges

Cross-Section: (1,63) to (101,63) ; center=(57,62) ; angle=90 Cross-Section: (1,63) to (101,63) ; center=(57,62) ; angle=90
——T——T — 3 \\\X‘\J\\v///‘_’_
17.3 =
15.1
s 12.9
3 3 10.8
g g
:°:’ :0E> 8.6
6.5 6.5
43 | ' 43
’/'\/_’\/ Is more
2o 2o acc.;uralte for
this wind-
00 - Rockies™ 00 _ ramp event
0 20 40 60 80 100 0 20 40 60 80 100
Contours: 270 to 525 by 5 ) Contours: 270 to 545 by 5
photo credit: Jesse Mason
colours indicate wind speed (m/s) colours indicate wind speed (m/s)
B | s
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Inference: need sufficiently large NWP forecast domain to capture upwind effects.
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Chaos: Predictability vs. Scale

Ed Lorenz: Deterministic non-periodic motions. ==> Chaos. Sensitive dependence on ICs.
50

40 | -
[ Prediction of smaller-scale weather

30 | phenomena loses skill sooner.
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20 1
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e Atmos. has more degrees of freedom than the
Lorenz system. More chaotic.

@)
Horizontal Scales (km)

e CFD models only approximate atmos. physics,
thus forecast evolves incorrectly. 5000

e o create the ICs, assimilate weather
observations (have big gaps) into a previous
forecast (has errors). Superposition of all scales still appears in

e Thus, ICs are guaranteed to be off. the forecast, but the smaller-scale

phenomena are bad.

Forecast Range (days)

e Thus, forecasts diverge from reality;
namely, skill decreases with fcst. horizon.

ICs = Initial Conditions 38



Use ensembles to mitigate chaos

Wind Speed-KF (km/hr)
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— Dblack line shows ensemble average

Ensemble = many CFD forecasts of the same location and event, with different models, parameterizations, ICs, etc. 39



Ensemble Average is Usually Best

Accumulated
Absolute Error
of Wind Speed
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Ensemble Spread -> Calibrate into Probability Fcsts.
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Simplified cost / loss example for blade-replacement
maintenance decision:

Issue: Should you schedule the
olade replacement for 18 local time TRMSR L WA
today when 4 m/s winds are - R
oredicted deterministically?
Next slow winds in 2 days.

Assumptions: Max wind speed
for crane safety ~ 5 m/s. 2 MW
turbine costs $4M installed. Blades
= 18% of cost. Crane rental =
$80,000/day. If selling at 5¢/kWh,
then downtime cost = $2,400/day.

http://www.windustry.org/community_wind_toolbox_8_costs ‘ photo credit: Mark Stull

\




Simplified cost / loss example for blade-replacement maintenance decision:

Solution:

Cost to protect the blades (postpone the replacement) =~ $165k.
Loss if blades damaged during attempt = $970Kk.
Cost/Loss ratio R~ 0.17

P > R, Therefore do not replace blades today.
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&climate
104 - — — lyear variations|. .

105 tmon . Climate Simulations

—_— e e T Y e — A — — —

Weather phenomena for all
simulated scales are realistic,
but none are real

Time Scale (h)
S

turbulence
production

turbulence
cascade

R. Stull, 2017: Practical Metgorology.

1 (except for global scales that are driven

10 107 10° 101 102 10° 10%* 10° by persistent boundary conditions).

turb.
microscale
Horizontal Scale (km)

* Climate Projections. BCs important
(simulates net effect of many scales)

 Weather Forecasts. |Cs important

imiatio (real-time operational forecasts)

Jmposed o Storm Simulations. Not real time
(but getting closer to real-time)

Imposed  Atmos.Boundary Layer Simulations
(bottom 2 km of atmosphere)

mosed * Engineering Simulations

BCs = boundary conditions, |Cs = initial conditions. Atmos. Boundary Layer (ABL) = bottom 2 km of atmosphere 44



Coupled atmos-, cryo-, hydro-, anthro-spheres

NOAA/Princeton GFDL - FV3 Simulation at 3 km, by Shian-Jiann Lin & colleagues.

2016-08-24 12:00Z 3 3 ; X » .
564 Forecast Hours N > i ; i - Visualization
FV3 3km R, _— g Xi Chen@FV3 team

https://www.gfdl.noaa.gov/fv3

NOAA = Nat'l Oceanic & Atmos. Admin.; GFDL = Princeton Geophysical Fluid Dynamics Lab.; FV3 = Finite Volume model version 3. 45




Model /IBC:

WRF3 /GFSgcO1 Coloured Surface Winds Grid initialized: 3UTC, 29 OCT 2013

9 km gridN Forecast valid 17:00PDT 29 OCT (18:00MDT 29 OCT) [00:00UTC 30 OCT] 2015
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Conclusion: Numerical Weather Prediction
NWP) is chall | f |
( ) Is challenging, fun and rewarding.
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colour bar: Wind Speed marked in knots above bar and km/hr below bar
arrows: Wind Direction photo credit: David Siuta & Henryk Modzelewski

128 km at 55 latitude
143 km at 50 latitude
157 km at 45 latitude
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Geophysical Disaster Computational Fluid Dynamics Center

* University of British Columbia — Vancouver e Dept. of Earth, Ocean & Atmospheric Sciences ® Weather Forecast Research Team e Directed by Prof. Roland Stull e

Peculiarities & Disasters In Topics:

1. Peculiarities of
Weather CFD I\/IeeCtL;!JiglloegSic(:)al vs.

Engineering CFD

CFD2018 - 26th Annual Conference of the 2. Sqme weather
Canadian CFD Society Disasters:
10 - 12 June 2018 e thunderstorms

e tornadoes
e forest-fire smoke

Roland Stull . floods
Dept. of Earth, Ocean & Atmos. Sciences e hurricanes
University of British Columbia (UBC) :
e climate ch
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e hazards to wind turbines
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