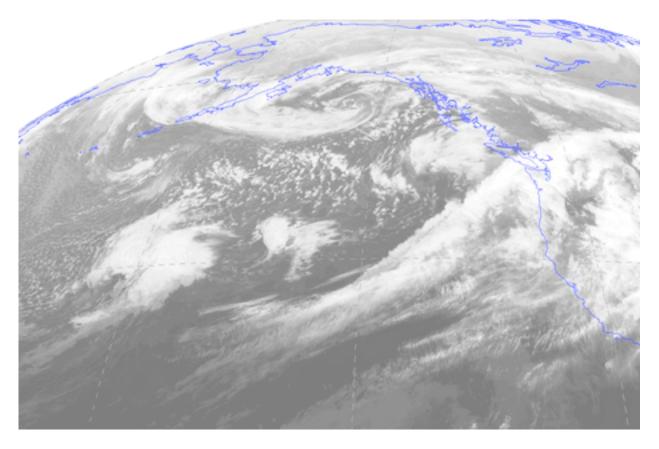
ATSC 201	Final Exam
Prof. Stull	(open books, notes, calculator)
Fall 2015	(90 points \approx 1 minute/point)

Name: _____

Student Number: _____


1) (3 points)

a) What type of cloud was over UBC at the start of this exam?

b) What features or characteristics of the cloud lead you to this determination?

c) Based on this cloud and other weather characteristics you observed outside, what is your forecast for 6 hours after the start of the exam?

- 2) (3 points) **On** the IR satellite image below, do the following:
 - a) Write "L-old" at the low-pressure center of a dying cyclone (cyclolysis).
 - b) Write "L" at the low-pressure center of an intensifying cyclone (cyclogenesis).
 - c) For the old low, draw the occluded front that corresponds to the satellite image.
 - d) For the old low, draw the cold front that has become detached from the low.
 - e) Draw an arrow on the atmospheric river showing the wind vector of the pre-frontal jet.
 - f) Circle an isolated thunderstorm.

ATSC 201	Final H	Exam		Name:			
The f) (1 point)	Draw isob Write "H" t Use a thick At every s Based on y en draw the Write the tw left corner of	bars every 1 to label any c line to drav tation on thi your answer appropriate vo-letter airr of the map,	kPa from 96 high-pressur w the front (s map, draw to (d), name frontal sym nass abbrevi and - the	e kPa to 101 h re centers, an there is only a short vector that front: bols on the ap tation for the lower right c	cPa. d "L" for any one) or showing the cold , warn ppropriate si likely airma orner of the	y low-pressune surface w n , stationar de(s) of that ss at map.	ind direction y (circle one). frontal line.
- Pressure w	ill		and ther	ı			
- Temperatur	e will			and then			
- Wind direct - This type of	tion will shi f which shif	ft from t is called:	veering ,	backing (ci	to trcle one)		
- The clouds	and precipit	tation are					and will
later change	e to be						
	98.5	98	98	98.5	99	99.6	100.2
	97.5	95	96	97	98.2	99.2	99.9
	98	97	98	98.2	98	99	99.7

99 99 99.1 99.2 98.7 99 100.2 100 100 99.8 99 <u>99.5</u> 100.5 101.5 100.2 100 99.5 100

100.1

100.2

100.5

100

100.2

100.5

Name:

4) (6 points) Compare the location of peak wind (latitude and altitude) and driving mechanism (i.e., what causes them to exist) for the following jets:

Subtropical jet		
Polar jet		
African easterly jet		

5) (10 points) Regarding the polar jet:

What is a Rossby wave?
Why do Dogshy moving aviet?
Why do Rossby waves exist?
Relative to the ground, toward which direction (north, east, south, west) and how fast (fast, slow, near-zero)
do Rossby waves move for :
- short wavelength waves

- very long wavelength waves _____

Why are Rossby waves important for extratropical cyclogenesis, and where would the surface low form relative to the upper-level trough? (a sketch might be good)

Name:

6) (5 points)

Suppose the earth was shaped like a cylinder, with its column axis in the vertical. If this cylinder was rotating about its axis, could hurricanes exist in the atmosphere of this cylindrical earth? If they exist, would they be stronger or weaker than on the real earth? Why? (ignore the top and bottom ends of the cylinder). Hint, draw a sketch of this earth first, before answering.

7) (5 points)

When a cold front over the Pacific Ocean in winter approaches British Columbia, it often encounters colder air over the land. This results in a warm occlusion at the coastline. Draw a vertical cross section of a warm occluded front. Label the Warm, Cool, and Cold airmasses. What type of clouds and weather would you expect over land near the British Columbia coast in this situation (sketch it on your cross section)?

8) (3 points)

Suppose very cold ($\Delta\theta = 10^{\circ}$ C) shallow (300 m) air is flowing through a short gap in a mountain range. What maximum wind speed would you expect, given $|g| / T \approx 0.0333$ m s⁻² K⁻¹. Assume dry air. Name:

9) (3 points)

If sea-level pressure in the eye of a typhoon is 15 kPa lower than the surrounding air outside of the typhoon, then what max tangential wind speed would you expect, and what is the Saffir-Simpson category of that storm?

10) (30 points) The table below lists Stull's top 5 atmospheric relationships. It also lists some of the textbook chapters covered after the midterm exam. For each empty cell in the table, write the name of a phenomenon or application associated with that chapter and that atmospheric relationship. (Do NOT fill in any cell that is crossed out.) As an example, I have already filled in two cells.

Chapter ->	Chapter 10 Forces &	Chapter 11 General	Chapter 12 Fronts &	Chapter 13 Extratropical	Chapter 16 Tropical
1) Hypsometric eq.	Winds	Circulation	Airmasses	Cyclones	Cyclones
2) <u>Geostrophy</u> (steady winds blow parallel to isobars)	Geostrophic & Gradient Winds				
<u>3)</u> <u>Conservation</u> <u>of potential</u> <u>vorticity</u>					
 <u>4) Adiabatic</u> <u>cooling</u> as air rises & <u>5) saturation</u> mixing ratio is less in cold air than in warm air 		Cloud formation at ITCZ			

-end-