ATSC 201			Nan	ne:	
Prof. Stull Fall 2015			lator)		
•••••• (2 poi 1) List the 4 c		pre-storm <u>fa</u>	vorable conditi	ons needed to form a	thunderstorm:
a)					
b)					***************************************
c)					
d)					·
Use the following sounding table to answer all the remaining questions.					
	T (°C)			1 .	z (km) approximate
100	- 1 0/				\$

P (kPa)	T (°C)	Td (°C)	Wind Dir (°)	Wind Speed (m/s)	z (km) approximate
100	32	25	120	5	0
98	28				
92	23				
90	29		150	15	1
80	21		180	20	2
70	12		210	25	3
60	3		240	30	4
50	-8		270	35	5
40	-20		300	50	6
30	-31				
20	-31				

0000000	(5	points)
---------	----	---------

2) Plot the <u>whole</u> temperature sounding on the attached full-size **skew-T diagram**, and also plot the bottom dew-point value.

Also attached is a zoomed **skew-T (ABL)** diagram, on which I already plotted the bottom portion of the temperature sounding, to save you time. You will use both the full size and zoomed diagrams below.

 (10 points) Use the plot on the zoomed skew-T a) the top of the <u>mixed layer</u> (b) 	`	kPa
b) the <u>LCL</u> is at P =	kPa	
c) the $\underline{\mathbf{LFC}}$ is at $P = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	kPa	
d) and use your own plot from	question (2): the EL is a P =	kPa

Name:	SN:
•••••• (2 points)	
× ± ′	ary layer to support thunderstorms: Yes / No (circle one).
If yes, then what category of thunderstorn	n would be possible, and what would be its characteristics?
•••••• (10 points)	
	nditional instability. Use your plot from question (2) to estimate
	reak the whole CAPE area into one large triangle and one large
	on the right side of the skew-T) to help you estimate the CAPE
	de approximate answer is OK, if you show your work here and on
your thermo diagram. (Note: 1 J/kg =	1 m / s .)
······ (3 points)	tion (5) company and to the most wasteble CADE (ATLICADE)
Is there sufficient instability to support thus	stion (5) corresponds to the most unstable CAPE (MU CAPE).
	n would be possible, and what would be its characteristics?
	12 Would be possible, with William Would be and be and because the
•••••• (2 points)	
7) List 2 processes that could trigger the thi	understorm.
7) Dist 2 processes that oddie trigger and the	and of Storin.
a)	b)
For the remainder of this exam, assume that	a trigger mechanism does exist for this storm environment.

Name:	SN:
****** (3 points) 8) Using data from the sounding table on page 1	
	an "X" to indicate the Normal Storm Motion . You can use his. Your "X" approximately corresponds to a normal storm
speed of (m/s) as	nd direction of(°).
left-moving storm). Graphically estimate the va	s at the normal storm speed. (Namely, it is NOT a right- or alue of the <u>0-3 km storm relative helicity (SRH)</u> , and show ctangle to approximate the area. Show your rectangle on the
••••••• (3 points) 11) Given the SRH from question (10), would to If yes, then what would be its likely Enhanced	here likely be a <u>tornado</u> ? Yes / No (circle one). Fujita intensity?
Why?	
12) For the environmental sounding that you us question (1) satisfied? Yes / No (circle one)	ed for all the questions above, are the 4 conditions from
-end-	
3 attachments	

Figure 14.51Blank hodograph for you to copy and use. Compass angles are direction winds are <u>from</u>. Speed-circle labels can be changed for different units or larger values, if needed.