Final Exam
Open books, notes, laptop, ipad, calculator.
Form A

Name: \qquad

Student Number: \qquad

Put your answers on the "bubble sheet", unless otherwise instructed in the question. Turn in ALL question and answer sheets.
120 points total, or roughly 1 point per minute. The bubble sheet will be marked by computer.

Exercise	points	
1	2	The most dominant clouds over UBC at the start of
	A) cirrus, cirrostratus, and/or cirrocumulus	
		C) stratus and/or nimbostratus \quad D)
		E) clear, sky obscured, stratocumulus, or oth
2	2	The dominant storm feature in the weather radar reflectivity image at right is:
A) Bow echo		
B) Weakly-forced (airmass) thunderstorm		
C) Bright Band		
D) Squall Line		
E) Hurricane		

E) Hurricane

3 \square A radar reflectivity value of 50 dBZ is how many times stronger than a dBZ value of 30 dBZ ?
A) 2
B) 20
C) 30
D) 50
E) 100

4 \qquad If the Doppler radar image at right is showing an anticyclonically rotating supercell thunderstorm centered at location E, then where is the radar likely located? (assume Northern Hemisphere)
A
B
C
D
E

5 \square Using the satellite image below, the Low-pressure center is likely located at

A B

4 Using the satellite image below, warm-frontal clouds are most likely located at:

A B C
C
D
E

Final Exam
Open books, notes, laptop, ipad, calculator. Form A

Name: \qquad

Student Number: \qquad

Exercise points

$7 \quad 4$ In the weather-map image above, a non-frontal trough axis is indicated at which location?

A B C D E
\square
2 In the weather-map image above, a stationary front is at which location?
A B C D E
\qquador the weather observation data circled in green on the map above, which is correct regarding the reported temperature and dewpoint (T, Td). (Note, both are in ${ }^{\circ} \mathrm{F}$ on this map)
A) 46,39
B) 46,35
C) 39,35
D) $46,17.3$
E) $39,17.3$

For the weather observation data circled in green on the map above, which is correct regarding the wind direction and speed (alpha, M). Assume the respective units are (knots, ${ }^{\circ}$).
A) 90,35
B) $90,15.5$
C) 173,35
D) $270,15.5$
E) 270,35
$12 \quad 4$
For the weather observation data circled in green on the map above, which is correct regarding the reported pressure P in units of (kPa) ?
A) 917.3
B) 91.73
C) 939.0
D) 101.73
E) 1017.3
\square Suppose the sea-level pressure in the eye of a typhoon is 91 kPa , compared to surrounding ambient sea-level pressure of 100 kPa . For an idealized tropical cyclone model, what value of tangential wind speed (Mtan , in m / s) would you expect at a radial distance (R) of 4 times the eyewall radius (Ro)?
A) 15
B) 30
C) 45
D) 60
E) 120

14 \qquad Comparing tropical and extratropical cyclones in the Northern Hemisphere, which statement is FALSE?
A) both have low central pressure at sea level
B) both have winds that circulate counterclockwise around the center of the cyclone
C) both require divergence of air aloft to maintain the central pressure at sea level
D) both have warm cores
E) both can be triggered and strengthened by waves in the atmosphere
\square Which corresponds to the fastest surface winds, comparing the Enhanced Fujita (EF) scale with the Saffir-Simpson (SS) wind scale?
A) EF2
B) EF3
C) EF4
D) SS4
E) SS 5

Final Exam
Open books, notes, laptop, ipad, calculator.
Form A

Name: \qquad

Student Number: \qquad

GFS 250mb Wind Speed/Streamlines (kt) \& MSLP Extrema (mb)

164 For the N. Hemisphere wind \& streamline 25 kPa weather map above, mostly zonal flow is at/near $\begin{array}{lllll}A & B & C & D & E\end{array}$
\qquad For the weather map above, the location of strong north-to-south meridonal flow is at/near A B C D D
\square For the weather map above, a ridge axis is located at/near
$\begin{array}{lllll}A & B & C & D & E\end{array}$

19 \qquad For the weather map above, a trough axis is located at/near $\begin{array}{lllll}A & B & C & D & E\end{array}$

20 \qquad For the weather map above, a likely location for cyclogenesis is
$\begin{array}{lllll}A & B & C & D & E\end{array}$
\qquad Suppose the geostrophic wind is zero at sea level, and is $100 \mathrm{~m} / \mathrm{s}$ from the west at $\mathrm{z}=10 \mathrm{~km}$ altitude. Assume dry air of temperature $0^{\circ} \mathrm{C}$ at a latitude where the Coriolis parameter is $f_{c}=1 \times 10^{-4} \mathrm{~s}^{-1}$.
The likely horizontal temperature gradient that caused this shear in the geostrophic wind is approximately
A) $\Delta \mathrm{T} / \Delta \mathrm{x}=28^{\circ} \mathrm{C} / 1000 \mathrm{~km}$
B) $\Delta \mathrm{T} / \Delta \mathrm{y}=28^{\circ} \mathrm{C} / 1000 \mathrm{~km}$
C) $\Delta \mathrm{T} / \Delta \mathrm{x}=-28^{\circ} \mathrm{C} / 1000 \mathrm{~km}$
D) $\Delta \mathrm{T} / \Delta \mathrm{y}=-28^{\circ} \mathrm{C} / 1000 \mathrm{~km}$
E) $\Delta \mathrm{T} / \Delta \mathrm{Z}=2.8^{\circ} \mathrm{C} / \mathrm{km}$
,

22 \qquad If a tropical cyclone were to translate to the equator, then
A) the storm would strengthen, due to the warmer ocean waters there
B) the storm would die, due to the light winds and calm seas
C) the storm would strengthen, due to the Ekman transport in the ocean
D) the storm would die, due to the zero Coriolis force there
E) the storm would strengthen, because it would be fed by moisture from both the N. and S. hemispheres.

Final Exam
Open books, notes, laptop, ipad, calculator. Form A

Name: \qquad

Student Number: \qquad
Exercise points
\square At location F4, the surface wind direction is roughly
A) 330°
B) 150°
C) 175°
D) 250°
E) (no direction, or variable direction, because the wind speed is nearly calm)
\qquad Cold air advection is happening near cell
A) H 2
B) I6
C) G 9
D) B 6
E) J 1 A warm front is near cell
A) C 4
B) H 7
C) E4
D) J 4
E) C10

30 \square 8 At $60^{\circ} \mathrm{N}$, a barotropic Rossby wave has a wavelength of $10,000 \mathrm{~km}$. It is embedded within a general circulation with winds from the west at $U o=20 \mathrm{~m} / \mathrm{s}$. Find the phase speed of the Rossby wave relative to the ground (c).
A) $20 \mathrm{~m} / \mathrm{s}$
B) $9 \mathrm{~m} / \mathrm{s}$
C) nearly $0 \mathrm{~m} / \mathrm{s}$
D) $-9 \mathrm{~m} / \mathrm{s}$
E) $-20 \mathrm{~m} / \mathrm{s}$

Final Exam Open books, notes, laptop, ipad, calculator. Form A

Name: \qquad

Student Number: \qquad

Pressure (kPa): Draw isobars for 106, 104, 102, 100, 98 kPa.

| A | B | C | D | E | F | G | H | I | J | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | 102.5 | 102.1 | 102.2 | 102.5 | 103.0 | 104.0 | 104.6 | 105.2 | 106.0 | 107.0 |
| $\mathbf{2}$ | 102.3 | 101.0 | 101.0 | 102.0 | 102.5 | 103.0 | 104.0 | 104.8 | 105.8 | 106.0 |
| $\mathbf{4}$ | 102.1 | 101.0 | 100.0 | 100.2 | 101.5 | 102.6 | 103.0 | 104.0 | 104.8 | 105.0 |
| $\mathbf{5}$ | 102.0 | 101.0 | 99.9 | 99.0 | 100.0 | 101.0 | 102.0 | 102.8 | 103.8 | 104.0 |
| $\mathbf{7}$ | 102.0 | 100.9 | 99.7 | 98.0 | 96.5 | 98.0 | 99.0 | 100.4 | 101.8 | 102.2 |
| $\mathbf{7}$ | 102.1 | 101.0 | 100.0 | 98.5 | 97.5 | 97.8 | 98.0 | 99.5 | 101.0 | 102.1 |
| $\mathbf{8}$ | 102.2 | 101.5 | 100.5 | 100.0 | 99.5 | 99.8 | 100.0 | 101.0 | 101.7 | 102.3 |
| $\mathbf{9}$ | 102.5 | 102.0 | 101.7 | 101.6 | 101.5 | 101.6 | 101.7 | 102.0 | 102.3 | 102.5 |
| $\mathbf{1 0}$ | 103.0 | 102.5 | 102.3 | 102.2 | 102.1 | 102.2 | 102.3 | 102.4 | 102.5 | 102.6 |

Temperature $\left({ }^{\circ} \mathrm{C}\right)$: Draw isotherms for $+4,+2,0,-2,-4,-6,-8,-10{ }^{\circ} \mathrm{C}$

	A	B	C	D	E	F	G	H	1	J
1	-2.0	0.3	1.0	1.5	2.0	2.7	3.3	4.0	4.5	5.0
2	-3.5	-2.0	0.5	1.0	1.5	2.0	2.7	3.3	4.0	4.5
3	-4.5	-4.3	-2.0	0.0	1.0	1.5	2.0	2.7	3.3	4.0
4	-5.0	-6.5	-5.0	-1.9	-0.3	0.3	1.0	1.8	2.2	3.0
5	-6.0	-7.1	-6.8	-5.0	-1.8	-1.0	-0.2	0.7	1.4	2.0
6	-7.0	-7.8	-8.0	-8.0	-4.0	-2.2	-1.0	-0.2	0.5	1.0
7	-8.0	-8.5	-9.0	-8.5	-6.0	-4.0	-3.0	-2.0	-1.5	0.0
8	-9.0	-9.8	-10.0	-9.5	-9.0	-8.5	-8.0	-7.0	-6.0	-5.0
9	-10.0	-10.5	-10.5	-10.0	-9.5	-9.0	-8.5	-8.0	-7.0	-6.0
10	-10.5	-11.0	-11.0	-11.0	-10.0	-9.4	-8.7	-8.0	-7.2	-6.7

