
Recursion

Recursion

Recursion has a meaning in mathematics, computing,
philosophy, and language.	

Generally speaking, the idea behind recursion is that a given
element or idea is based upon a prior element or idea, which in
turn is based upon a prior element or idea, and so forth. In
mathematics and computing, recursive functions are those
which relate all elements of a set by a step algorithm and base
cases.	

Recursion

Base cases are like axioms. They define values for the
algorithm which are accepted rather than calculated.	

The step algorithm defines a series of actions that determine
what the next element of a set is based on a given element.	

An example of a recursive definition for natural numbers
would look like:	

1 is in N	

If n is in N, then n+1 is also in N.	

Recursion

From that definition we can find all the elements in the set of
natural numbers by starting at 1 and then running the
recursive step over and over.	

Functions define set mappings so they can also have a
recursive definition that looks very similar to the one for
natural numbers. You need all the base cases and the
recursive step. The recursive function for factorial is:	

F(0) = 1	

F(n) = n * F(n-1)	

Recursion

Let’s translate this into C.	

First we’ll define how F(n) looks as a C function. Since
factorial is only recursively defined for integers, we’ll keep
things as int.	

int factorial(int n)	

{	

}	

Recursion

Next, we need to check to see if the function is called with a
base case. If so, we simply return the value dictated by the
recursive definition. In our case, F(0) = 1, so factorial(0)
should return 1.	

int factorial(int n)	

{	

 if (n == 0) { return 1; }	

}	

Recursion

We only have the one base case, so now we need to add the
recursive step algorithm. It is F(n) = n * F(n-1). So we just
return n * F(n-1).	

int factorial (int n)	

{	

 if (n == 0) { return 1; }	

 else { return n * factorial(n-1); }	

}	

Recursion

That’s it. That probably seemed pretty easy. Is it easy to
understand how the code works? Most people tend to find
recursive code easier to read once they understand the
process. So why don’t we use it?	

The problem stems from how compilers and computers
handle functions. Most compilers handle each function call
with a special process. They break out of the main program
and create a new space in memory (called the stack) for the
function. Data is copied into the stack that tells the computer
where the function came from, along with any parameters.	

Recursion
Thus, a recursive function will create as
many copies of itself on the stack as
dictated by the step algorithm (ie
factorial(5) would create six copies of
itself on the stack). This takes up more
memory on the stack than a single
function call.	

Moreover, each call requires setup and
tear down time to create the stack. So
recursive functions are actually slower
and more memory intensive than regular
iterative functions.	

Factorial(0)
N = 0

Factorial(1)
N = 1

Factorial(2)
N = 2

Factorial(3)
N = 3

Factorial(4)
N = 4

Factorial(5)
N = 5

…

Recursion

In fact, any recursive function can be defined as an iterative
loop, so there is never a need to write recursive functions.
(You all wrote loop versions of factorial for example).	

All that said, some languages, like Scheme, handle function
calls differently and can be more efficient, or as efficient,
handling recursive functions as regular functions. In those
languages, most programmers do use recursive functions.
However, most of these languages are not used for application
or scientific programming.	

