
12/7/10	

1	

ATSC 212 - C

1	

ATSC 212 - C

2	

The C programming language was originally designed and
implemented by Dennis Ritchie to be a flexible and versatile
programming language that could blend low level machine
mechanics with high level language concepts. C has endured as a
programming language because of its unique suitability for
programming operating systems.

With recent algorithmic and hardware advances, C compilers have
been able to catch up to Fortran compilers for efficient,
computationally focused applications. This has made C the
forerunner for current imperative programming.

C was also expanded to allow for object-oriented programming in
the 1980’s. C++ remains one of the most widely used object-
oriented programming language today.

12/7/10	

2	

ATSC 212 - C

Compiling	 C	

3	

Like Fortran, and other high level languages, your program must
be compiled into a binary before it can be executed. To do this,
you have to invoke a C compiler on your source files. There are
many C compilers on the market with different options and
capabilities, but the one we will be using in this course is GNU C
(gcc). To compile a file, simply type gcc <source file> on the
command line. This will produce a binary executable named
a.out. a.out can be executed like any other program (ie ./a.out).

Always producing an executable named a.out is not that
convenient. You can change the name of the executable with the
-o option. (gcc <source file> -o <executable name>)

 gcc myProgram.c -o myProgram.exe

ATSC 212 - C

Compiling	 C	

4	

If you are writing a complex program, it is sometimes more
convenient to write your code in chunks in different files. To
compile your program in this case, you will need to first compile all
the individual source files into object files. Object files are
machine encoded binary files with a special table listing of all the
variables in the file (which is used in linking). Once you have
created object files of all your code, you need to link the files
together to make a program (essentially mesh all the bits into a
single executable file).

To compile an object file, use the -c option (gcc -c <source file>).
You need to do this for every file in your program. The result of
doing this is that a file will be created with the same name as your
source file, but with .o as the extension. (ie gcc –c function.c
would create function.o).

12/7/10	

3	

ATSC 212 - C

Compiling	 C	

5	

To link object files together, you just have to invoke gcc with the
list of object files (gcc <object files>).

Much usable code has already been written into modules available
as part of most compiler suites. If you are including modules in
your code, you will need to instruct the compiler where to find the
header files. Use the -I option for this when compiling source files
(gcc -I<header path> <source file> ...) You can use the -c and
-o options with -I. For more complicated compilations, it is
customary to use makefiles, but this is outside the scope of this
course.

 gcc -I./myfiles -c myFunction1.c
 gcc -I./myfiles -c myProgram.c
 gcc myFunction1.o myProgram.o -o test.exe

ATSC 212 - C

Compiling	 C	

6	

Here are some examples:

 gcc mySource.c
this creates your program as a.out
 gcc mySource.c -o myProgram
this creates your program as myProgram
 gcc -c mySource.c
this creates an object file from mySource.c (mySource.o)
 gcc -I/home/me -c mySource.c
this creates an object file and includes any header files
located in /home/me
 gcc -c mySource1.c
 gcc -c mySource2.c
 gcc mySource1.o mySource2.o -o myProgram
this compiles myProgram from the object files mySource1.o
and mySource2.o

12/7/10	

4	

ATSC 212 - C

Se,ng	 Up	 a	 C	 Program:	 Main	 Func6on	

7	

Now that you understand how to compile a C program, we are
going to start building up a C program piece by piece. First, we
need the program framework – the main function.

All C programs require a main function. The C compiler recognizes
the main function as forming the body of an executable binary (in
other words, the framework of your program). The main function
forms the outermost scope of the program, and so is the primary
function you will declare in your program source file.

To declare the main function, use the line;

int main (int argc, char* argv[])

Following the line, all instructions between { and } form the body
of your program. We will cover function syntax in more detail
shortly and this line will make more sense.

ATSC 212 - C

Commen6ng	 a	 C	 Program	

8	

Commenting is always important for you and other people using
your code!

In C, you create a comment using /* and */. Anything that
appears between these character combinations is treated by the
compiler as a comment and ignored. This is true, even if /* and
*/ occur on different lines. This can sometimes cause bugs in
code where programmers accidentally comment out sections
because they forget to close a comment with */.

Comments can appear on lines with or without code, before or
after code on the same line.

In standard ANSI C, you can also comment out the remainder of a
line using //. However, this form of commenting is not well
supported by all C compilers (ie Portland Group).

12/7/10	

5	

ATSC 212 - C

Adding	 Modules:	 Include	 Statements	

9	

If you design a program with many functions defined in other
source files you wrote, or you wish to use standard modules built
in to C, you will need to include them in your program otherwise
the compiler will be confused by any references you make to
them.

To include additional source code, we include header files like this;

#include <header file>

If you are including standard C modules, then you should put <
and > around the header file name. This tells the compiler to look
in the usual places on the system for the header file. If you are
using your own functions, put your header file name in double
quotes (“), which tells the compiler to look in other locations you
specify with the –I flag.

ATSC 212 - C

Adding	 Modules:	 Include	 Statements	

10	

Here are some common C module include statements you might
find useful.

#include <math.h> /* For C math functions */
#include <stdio.h> /* For file handling functions */
#include <stdlib.h> /* Has some conversion functions */
#include <limits.h> /* Integer size parameters */
#include <float.h> /* Float size parameters */

Include statements always appear outside of the main function
and usually at the very beginning of source files. The functions for
a given header are only available after the include call!

12/7/10	

6	

ATSC 212 - C

What	 We	 Have	 So	 Far	

11	

Here is what a sample C program would like like so far.

/* myCprogram.c */

#include <math.h> /* Math library */
#include <stdio.h> /* File handling library */
#include <stdlib.h> /* Standard library */
#include “myCfunctions.h” /* My special functions */

int main (int argc, char* argv[])
{
 /* Where my code will go */
}

ATSC 212 - C

Adding	 Modules:	 Header	 Files	

12	

With the talk of include statements, you were probably wondering
what a header file was. Because we do not want to have to write
huge, single files containing an entire program and might like to
put additional functions in their own files, we need a way to tell
the compiler what these additional functions look like. We do this
with header files.

Header files are files that contain function prototypes and
constants. Header file names end with a .h instead of a .c to
signify that they contain only prototypes and constants. Header
files are never compiled. They are used by the compiler to
build symbol tables. The –I flag we mentioned earlier is used to
tell the compiler where to look for these files (if the files are not in
the usual places on the system – ie /usr/local/include).

12/7/10	

7	

ATSC 212 - C

Adding	 Modules:	 Func6on	 Prototypes	

13	

A function declaration shows what the function returns, what
variables it expects, and contains the code for the function. A
function prototype shows only what the function returns and what
variables it expects. Function prototypes are terminated with a
semicolon. For example;

int power(int x, int y);

would be a function prototype for the function power.

You do not explicitly have to name the parameters in the function
prototype (ie int power(int, int) is acceptable), however most
people do for clarity.

ATSC 212 - C

Coding	 and	 Syntac6cal	 Standards	

14	

Now that we know how some basics for setting up C program files,
it is time to cover some programming standards.

In C, blocks of code are encapsulated in curly brackets { }. The
bodies of functions. and code blocks following conditionals and
loops always occur in these brackets.

It is common practice to indent lines that occur in code blocks to
help make different levels of scope stand out.

All regular statements are terminated by a semicolon. Forgetting
to put a semicolon after a statement is a common bug. Code
blocks ({}), include statements, and comments are not
terminated by a semicolon.

12/7/10	

8	

ATSC 212 - C

Variables	

15	

Variables in C serve the same purpose as in other languages.
However, there are several important aspects to C variables that
can be different from languages we have seen.

Variables are strongly typed in C, so we must declare the variable
and its type before we can use the variable. The available types in
C are int, float, char, short, long, double, and void. int, short, and
long are integer types. The difference is only in the range of
values they will take and this dependent upon the system. float
and double are real number types and differ in range of values like
integer types. char is the character type, used to create strings.
void is a null type that is used in sophisticated pointer code.

ATSC 212 - C

Variables	

16	

To declare a variable, use;

<type> <variable name>;

<type> is any of the types listed. <variable name> is the variable
name. For example,

int air_temp;

Variables can also be assigned values when declared.

We reference and declare variables in C by their name (no need to
use special symbols like $ or @ such as in PERL or bash).

Variable scope can sometimes give new programmers some
trouble. A variable is only accessible within the code block where
it was declared. So if you put a variable in a function outside your
main program, you cannot access it in main.

12/7/10	

9	

ATSC 212 - C

Variables	 –	 Explicit	 Type	 Conversion	

17	

Because variables are strongly typed in C, you usually cannot use
a variable of one type where another is expected, or set a variable
to a value of another type. However, you can change how a
variable or result is treated by casting it as another type. To do
this, you preface the variable or result with (<type>). For
example;

int a;
float b;
b = 2.5;
a = (int)b;

This method of casting is called explicit type conversion because
you are telling the compiler to do the conversion. Some types of
casting (such as float to char) will have unexpected results or are
not possible.

ATSC 212 - C

Variables	 –	 Implicit	 Type	 Conversion	

18	

Type conversion can also be implicit between floats and integers.
That is to say, you can assign an integer value to a float variable,
and vice versa, without explicitly casting the value. If you assign a
float value to an integer variable, the value will be truncated to the
integer portion. This can lead to some roundoff errors in
calculations if you are not careful. Otherwise, integers are treated
as floats in calculations where a float is present. Results of
calculations are always converted to the type of variable they are
assigned to.

int a;
float b;
a = 5;
b = 3.2;
a = b; /* a = 3 */
a = a * b; /* a = 9 */

12/7/10	

10	

ATSC 212 - C

Scope	

19	

The term scope has been mentioned several times. Scope literally
means ‘where something can be seen’. This applies primarily to
variables but can also apply to functions. When a variable is out
of scope, the program or function does not know the variable
exists. It is possible to have two variables with the same name in
different scopes (although this often becomes confusing when
reading the code).

Code blocks define scope. A variable defined within a code block
can be seen everywhere in that code block but not outside it. For
this reason, variables defined within functions cannot be seen by
the main program and we will have to use some special tricks to
get variables into and out of functions.

Scope is one area where programmers can trip themselves up. If
you are running into problems with a variable, chances are it is out
of scope.

ATSC 212 - C

Arrays	

20	

C also has arrays for data sets like the other languages we have
seen. Arrays can be built up from any type, and can be multi-
dimensional. To declare an array of a fixed size, use;

<type> <variable name>[size];

size tells how many elements the array can hold. Arrays declared
in this fashion are static and cannot be made larger or smaller, so
it is important to never attempt to add or read elements from an
array greater than its size. For example, lets make a 10 element
air temperature array.

float air_temp[10];

To reference an array element use <variable name>[index]. In C,
the indices go from 0 to (size - 1).

12/7/10	

11	

ATSC 212 - C

Arrays	

21	

Any element of an array can be changed or set, as if they were a
simple variable, by referencing that index. Here is an example:

int a[2];
a[0] = 1;
a[1] = a[0] + 2;

Multi-dimensional arrays can also be used in C. To declare them,
add more [size] parts to the declaration. For example:

int a[12][5][7];

creates a three dimensional array of integers (12 x 5 x 7).

ATSC 212 - C

Arrays	

22	

One of the biggest differences between Fortran and C is the
manner in which arrays are handled in memory. Fortran stores
arrays in column-major format while C stores them in row-major
format (usually). You do not really have to worry about this for
coding pure C or Fortran programs, nor does it affect performance.
However, as we will see later, this presents a large problem for
interfacing C to/from Fortran code.

A final note, strings in C are arrays of characters. The strings.h
code adds additional functionality and a type for strings, but most
C programmers simply handle strings as character arrays.

12/7/10	

12	

ATSC 212 - C

Operators	

23	

Now that we have variables, it is time to do something with them.
Operators are like built in functions that will perform an action on
variables. There are two types of operators in C, mathematical
and logical. All operators can be used on integers, floats, and
characters, and to some extent, pointers.

Mathematical operators include =, -, --, +, ++, *, /, %, -=, +=,
*=, and /=. The % operator is the modulus. -=, +=, *= and /=
apply the mathematical operator to the value on the left with
whatever is on the right (ie a *= b; is the same as a = a * b;).
Care must be taken when using anything but = with characters
and pointers. Results are system dependant. These operators
work with regular variables or array elements. The ++/--
operators increment/decrement a variable by 1.

Logical operators include <, <=, ==, !=, >=, >. There are no
logical operators for strings, however, there are functions for
comparing strings as we will see.

ATSC 212 - C

Condi6onals	

24	

It is all about choice. Just as with other languages, sometimes we
would like to choose what actions we take. C has one conditional
– the if statement:

if (<condition>) { …code block… }
else if (<condition>) { …code block… }
else { …code block… }

The else if and else portions are optional. C is different from some
other languages in that it does not have a true boolean type. Any
condition that evaluates to 0 is false, all others are true.
The logical and mathematical operators can be used to form
conditions. This includes assignment (=) and equality (==). A
big pitfall of programmers is accidentally using assignment where
they mean to compare two things. The condition a == b checks if
a and b are the same. The condition a = b sets the value of a to
the value of b and returns true.

12/7/10	

13	

ATSC 212 - C

Condi6onals	

25	

Here is an example:

if (air_temp < 0)
{
 /* some code to handle negative temperatures */
}
else if (air_temp == 0)
{
 /* handle the special case of 0C */
}
else
{
 /* air_temp must be greater than 0 in this case */
}

ATSC 212 - C

Loops	

26	

There are two types of loops in C, while and for. While functions
loop until a condition is false (or the loop is broken out of). The
for loop works similar to the for loop in Fortran, iterating a number
of times. The syntax for the loops are:

while (<condition>) { …code block… }

for (<variable> = <start>; <condition>; <alteration>)
{ …code block… }

To make a for loop, you need a variable that you can set to a
starting value, <start>. Typically, the for loop iterates until some
condition dependant upon the variable is met. Each iteration of
the loop makes an alteration, usually to the variable.

12/7/10	

14	

ATSC 212 - C

Loops	

27	

Here’s an example of a for loop:

int i;
for (i = 0; i < 12; i++)

This sets i to 0. Each loop adds 1 to i. For will continue looping
until i = 12 at which point the condition will be false. By changing
the condition, starting point, and alteration, for loops can count up
or down by a variety of values from any starting value.

You can do the same thing in a while loop like this:

int i = 0;
while (i < 12) { … i++; }

ATSC 212 - C

Loops	

28	

There are two additional keywords in C that can affect loop
behaviour, break and continue.

If you want to immediately leave a loop, you can add the line:

break;

This will cause your program to exit the loop and continue running
the program just after the loop code. This can be used to add
extra conditions to how a loop terminates other than those in the
for or while declaration.

continue; allows you to skip to the next iteration of a loop without
running the rest of the code within the loop. This can be useful if
there is a particular condition in which you do not want to run that
code but want to continue looping.

12/7/10	

15	

ATSC 212 - C

Loops	

29	

Here are some examples;

i = 13;
while (i >= 12) /* Keep looping as long as i >= 12 */
{
 ... /* Some instructions in the loop, one

 of which sets i to a new value */
 if (i < 0) { break; } /* Check if i < 0, if so, quit looping */
}

for (i = 0; i < 5; i++) /* Loop from i = 0 to i = 4 */
{
 if (i == 3) { continue; } /* If i = 3, skip to next loop */
}

ATSC 212 - C

Func6ons	

30	

Functions are like Fortran subroutines. They allow us to break
larger programs into smaller pieces, and to encapsulate re-useable
code into discrete sections. You have already seen one function
that occurs in every C program, the main function.

To declare a function, use:

<type> <function>(<list of parameters>) { …code block… }

Functions can only return one value in C. <type> determines the
type of the value returned. <function> is the name of the
function. The list of parameters is a comma delimited list of
<type> <variable> pairs that show everything the function
expects to be called with.

12/7/10	

16	

ATSC 212 - C

Func6ons	

31	

For example;

int power(int x, int y)

declares the function power to return an integer value, and take
two integer parameters x and y.

After the function declaration, the code block describes the
function. The parameters listed in the function declaration are
accessible variables within the code block. So in the example
above, x and y are already declared variables that can be used in
the function code block.

ATSC 212 - C

Func6ons	

32	

To call a function in C, you put a statement with the function
name, and values or variables of the appropriate type for each
parameter. If you do not supply the appropriate values or
variables for the parameters, the code will not compile. For
example, we would use the power function like this.

int a, b, c;
a = 5;
b = 4;
c = power(a, b);

12/7/10	

17	

ATSC 212 - C

Func6ons	

33	

In C, it is possible to have several functions with the same name
but different parameter listings. This is referred to as function
overloading. When you compile, the compiler will look for a
function declaration that matches the list of parameters you
supplied, and use that function. You cannot declare functions of
the same name with the same parameter listing.

As mentioned, functions return one value. They way they do this
is with a return statement inside the code block.

return <value>;

ATSC 212 - C

Func6ons	

34	

<value> must be of the same type as the function was declared
as, otherwise implicit type casting may occur. You can have
multiple return statements within a code block. The first time a
return statement is executed, the function will exit.

But what if we want to return more than one value? The usual
way around this problem in any language is to change the
variables that are passed as parameters to the function. The
problem with C functions is that they pass-by-value. What this
means is that when we make a function call, the parameters we
pass to the function are copied into the variables in the function
declaration. The original variables passed in are not changed by
the function.

12/7/10	

18	

ATSC 212 - C

Func6ons	

35	

To get around this, we need to pass-by-reference, which is what
Fortran does. Passing by reference means that instead of passing
actual values, we pass locations of values (called addresses). The
trick to accomplishing this in C is pointers, which we will discuss
shortly.

Finally, you need to be careful about scope when composing
functions. You cannot call a function in a program unless the
declaration or prototype appears before the function call. This is
why we use header files and put #include statements at the top of
source files. This allows function prototypes to appear at the
beginning of a source file before we attempt to use them. Failure
to declare a function or prototype before calling a function will
cause the compiler to fail.

ATSC 212 - C

Func6ons	

36	

Here is an example function;

int power(int x, int y)
{
 /* This function returns the value of x to the power of y, y >= 0 */
 /* The variables x and y are set by the parameters passed in on
 the function call */
 int counter; /* A loop counter. Only valid within this function. */
 int result = 1; /* The result of x to the power of y */

 for (counter = 1; counter <= y; counter++)
 {
 result *= x;
 }
 return result;
}

12/7/10	

19	

ATSC 212 - C

String	 Func6ons	

37	

Because strings are arrays of characters, we cannot simply assign
a quoted string to a character array using standard assignment or
compare two strings using == or eq.

char myname[20];
myname = “George”; /* THIS DOES NOT WORK */
if (myname == “George”) /* THIS ALSO DOES NOT WORK */

However, there are functions built into stdio.h and string.h that will
allow us to do these things.

ATSC 212 - C

String	 Func6ons	

38	

To put a string into a character array, we can use the function
sprintf.

sprintf(<array>, “<string>”, <variables>);

<array> is our character array. It should be at least one character
larger than the number of characters in the string we are going to
store in it. <string> is a specially formatted string. It will contain
all the text we want to appear in our string, plus special format
characters for any variable values we want in the string.
<variables> is just a comma delimited list of variables appearing
in <string> in the order in which they appear.

12/7/10	

20	

ATSC 212 - C

String	 Func6ons	

39	

In C, we cannot simply put variables into the format string and
have them dereferenced as their values. To tell the function that a
particular value goes in the string, we use the following codes:

%f this tells sprintf to put a float value here
%d this tells sprintf to put an integer value here
%s this tells sprintf to put a string (character array) here

%f can also take numbers specifying how to print the float. %x.yf
would indicate that the float should be written as having x
characters (including the decimal) and should have y digits after
the decimal. So %6.4f would write out 1.5 as 1.5000.

ATSC 212 - C

String	 Func6ons	

40	

%xd can also be used to specify the number of characters to be
printed for a given integer. Here’s an example.

int a = 5;
float b = 10.5;
char output[30];
char more[50];

sprintf(output, “A is %d and B is %4.1f.\n”, a, b);
sprintf(more, “%s And A/B is %f.\n”, output, (a/b));

12/7/10	

21	

ATSC 212 - C

String	 Func6ons	

41	

To compare two strings, we use the strcmp function. The function
call looks like:

strcmp(<string1>, <string2>)

This function sometimes confuses new programmers because it
returns 0 if the strings match and a non-zero integer if the strings
are not equal (the number you get back is based on a character by
character comparison and is case sensitive). So if we wanted to
check if two strings match, we would use if (strcmp(<string1>,
<string2>) == 0). For example,

if (strcmp(var, “Air Temperature”) == 0) { ... }

would do something if var was the string “Air Temperature”.

ATSC 212 - C

String	 Func6ons	

42	

Although there are many useful string functions, we only have
time for one more, printf. printf allows you to print a string to the
screen.

printf(<format string>, <variables>);

The <format string> and <variables> are handled just as with
sprintf. For example:

printf(“The wind speed is: %7.2f\n”, wind_spd);

would print a line like The wind speed is: 25.30 to the screen.

12/7/10	

22	

ATSC 212 - C

File	 Handling	

43	

To use files in C, we need to make sure we include the stdio.h.
This contains the function and type definitions.

To work with a file we need a filehandle. In C, filehandles are
regular variables with the type FILE* (this is a special type defined
in stdio.h). You declare filehandles with other variables at the
beginning of a code block.

To open a file, we use the fopen function:

<filehandle> = fopen(<filename>, <mode>);

For example we could open input.txt for reading,

FILE* myfile;
myfile = fopen(“input.txt”, “r”);

ATSC 212 - C

File	 Handling	

44	

<filehandle> is the variable we declared to hold the filehandle.
<filename> is the string for the filename. This should be the full
path to the file. If it is not, then the program will assume the file
is located within the directory the program is run from. <mode>
is a string that tells how the file is opened. The different modes
are:

“r” opens the file in read-only mode
“w” opens the file in write-only mode, clears the contents
“a” opens the file in write-only mode, appends to the end
“r+” opens the file for reading and writing

Normally, fopen opens a file for reading/writing in ASCII format. If
we want to treat the file as a binary, we add b to the mode. (ie
“rb”, “wb”)

12/7/10	

23	

ATSC 212 - C

File	 Handling	

45	

Once we are done using a file, we need to close it. To close a file,
use the fclose function.

fclose(<filehandle>);

fclose does return 0 if the file closed successfully and a non-zero
integer if it failed to close the file properly. However, programmers
rarely check the status of closing files because it is usually difficult
or impossible to correct a failed file closure.

Continuing the previous example, we can close myfile like this,

fclose(myfile);

ATSC 212 - C

File	 Handling	

46	

To write to a file in ASCII format, we use fprintf. This is almost
exactly like sprintf and printf.

fprintf(<filehandle>, <format string>, <variables>);

FILE* myfile;
int air_temp = 25;

myfile = fopen(“output.txt”, “w”);

fprintf(myfile, “This is my output file!\n”);
fprintf(myfile, “Air Temperature is %5d\n”, air_temp);

fclose(myfile);

12/7/10	

24	

ATSC 212 - C

File	 Handling	

47	

Reading from a file is somewhat more difficult. There are three
functions commonly used for reading in ASCII formatted data into
strings; fscanf, fgets, and fgetc.

fscanf is similar to fprintf. It takes a <format string> that defines
what we expect to read in, and then puts the data it finds into the
<variables> listed.

fscanf(<filehandle>, <format string>, <variables>);

For example, suppose we want to read air temperature, relative
humidity, and wind speed off a line (assuming temperature and
humidity are integers and wind speed is a float),

fscanf(myfile, “%d %d %f”, &air_temp, &rel_hum, &wind_spd);

ATSC 212 - C

File	 Handling	

48	

The main difference between fprintf and fscanf is that each
variable must be a pointer. We will discuss these later.

fgets will read in a string from a file of up to n characters in
length. fgets stops reading if it reads a newline. Newlines are
included in the string if read.

fgets(<array>, n, <filehandle>);

<array> is the character array we have declared to hold the
string. <array> must be at least n+1 characters in size. If the
line from <filehandle> is larger than n, then only n characters are
read from the filehandle.

12/7/10	

25	

ATSC 212 - C

File	 Handling	

49	

For example, suppose the filehandle myfile points to a file
containing (with newlines ‘\n’ explicitly indicated);

These are the contents of my file.\n
There are no other contents.\n

Now if we had a character array buffer[30], then

fgets(buffer, 29, myfile);
// buffer would be “These are the contents of my “

fgets(buffer, 29, myfile);
// buffer would be “file.\n”

fgets(buffer, 29, myfile);
// buffer would be “There are no other contents.\n”

ATSC 212 - C

File	 Handling	

50	

fgetc reads the next character from a file and returns it as an
unsigned integer (which can be recast directly or implicitly as a
character).

<character> = fgetc(<filehandle>);

This function can be extremely tedious to use for files that have
single records on each line as it can take many calls to pull the
entire line out one character at a time. It is usually used to
implement specialized token retrieval.

12/7/10	

26	

ATSC 212 - C

Ge,ng	 Under	 the	 Hood:	 Pointers	

51	

So far, C has probably looked a lot like other programming
languages you have seen, with slight differences in syntax or
particular functions to perform things like file handling. Now we
reach the most significant difference between C and many other
high level programming languages, pointers.

Pointers expose some of the underlying machine mechanics to us
to allow us to perform some very powerful, and potentially
disastrous, code tricks.

A pointer is an address in memory. You can think of memory
in a computer as being a city. Each house holds a particular
amount of data (bytes). The data could be any type.

ATSC 212 - C

Ge,ng	 Under	 the	 Hood:	 Pointers	

52	

Each house has an address, just as it would in a real city. When
the computer is performing a calculation, it needs to go to the
relevant houses and get the data contained there. When the
calculation is done, it goes to the house that stores the result and
puts it there.

All of this has been abstracted behind variables in other
programming languages. This is equally true in C when you are
using a variable of a particular type like integer. Essentially, when
you declare a variable in C, you are saying to the computer to
associate a house with that variable that will hold a particular type
of data. You do not care which house, and you never worry about
that. The computer handles all that for you.

12/7/10	

27	

ATSC 212 - C

Ge,ng	 Under	 the	 Hood:	 Pointers	

53	

Okay, I get it...pointers are addresses in memory. So an integer
pointer would be a location in memory that holds an integer. That
is precisely correct!

But why would I want to know the address rather than the value?
What can pointers do for me?

Pointers can be used for many tricks in memory but the two
important uses we will focus on are dynamic memory allocation,
and multi-value functions (also called procedures).

ATSC 212 - C

Declaring	 Pointers	 and	 *	

54	

Before we get into how to use pointers, lets look at how to declare
them. To declare a variable as a pointer, we use:

<type> * <name>;

The * acts as a dereferencing keyword in this context. It tells C
that our variable is a pointer. * is also used to get at the value of
a pointer when used outside of type declaration (remember,
pointers are addresses).

For example;

int * x; /* x is a pointer to an integer */
char * me: /* me is a pointer to a character */
float * result; /* result is a pointer to a float */

12/7/10	

28	

ATSC 212 - C

Declaring	 Pointers	

55	

Pointers variables can be made to any type. For added clarity,
programmers usually put the * symbol adjacent to either the type
or the variable name when declaring the variable. Either format is
acceptable, although syntactically it is not necessary.

int* x; /* These declarations all create an
int * x; integer pointer called x */
int *x;

The main thing to keep in mind is that the value a pointer variable
holds is an address. If you change the value of a pointer variable,
you are changing the address it stores (or as we say, points to).
Pointer variables can be used to point to different areas of
memory, but to point to the address of an existing piece of
memory, we have to know what the address is. We use the
reference keyword & to get the address of a variable. Lets look at
an example.

ATSC 212 - C

Pointers	

56	

Consider the following code:

int x; /* x is an integer */
int* y; /* y is an integer pointer */
x = 5; /* x has a value of 5 */
y = &x; /* y now points to x */
printf(“%d\n”, *y); /* we print the value of the

 the address y points to by
 using the ‘*’ before y, this
 prints ‘5’ */

x = 7; /* x now has a value of 7 */
printf(“%d\n”, *y); /* y points to x, so it prints 7 */

12/7/10	

29	

ATSC 212 - C

Dynamic	 Memory	 Alloca6on	

57	

Thusfar, you have seen that if you want to create an array, you
have to declare it as a certain size. This is not very flexible. If
you do not know how big the array might be, you would have to
guess in your code and make the array at least as big as you
imagine it could be. This can make your program take a lot of
memory.

Dynamic memory allocation allows you to ask the computer to
give you memory as you need it. A pointer can then be used to
show you where the memory you asked for is and act as an array.

The function that gets memory for you is malloc (short for
memory allocation). The function that frees memory you are done
using is free.

ATSC 212 - C

Dynamic	 Memory	 Alloca6on	

58	

Here is how you use them:

<pointer> = (<type cast>*)malloc(sizeof(<type>) * <size>);

free(<pointer>);

<pointer> is your variable that you want to hold the location of
memory.

<type cast> is the type you want to treat the memory as. For
example, if we are creating an array of integers, we want to type
cast as int. <type> is the same type as <type cast>. <size> is
the size of the array you wish to create.

12/7/10	

30	

ATSC 212 - C

Dynamic	 Memory	 Alloca6on	

59	

The sizeof function is a special function that tells you how many
bytes there are for a given type. The value it returns is system
dependant, so it allows you to write flexible code that will always
get as much memory as you need for an array of the type you
want. Here is an example,

int* air_temp;
int num_values;
...
fscanf(myfile, “%d”, &num_values);
air_temp = (int*)malloc(sizeof(int) * num_values);
...
free(air_temp);

ATSC 212 - C

Dynamic	 Memory	 Alloca6on	

60	

It is possible to dynamically allocate multi-dimensional arrays. To
do this, we need to use pointers that point to pointers.

For example, to get a two dimensional array, we would need to
allocate a single dimensional array (like a column) of pointers.
Each pointer in this array would point to a row. Like this:

12/7/10	

31	

ATSC 212 - C

Dynamic	 Memory	 Alloca6on	

61	

The way we do this in code is that we dereference each
dimension. So two dimensional arrays would have pointers like
int** x and float** y. Three dimensional arrays would have
pointers like int*** x.

To allocate memory for these arrays, we have to do them one
dimension at a time, looping over each dimension but the
outermost. Say we have a two dimesional array that is x by y.

int** myArray;
int x, y, i;

myArray = (int**)malloc(sizeof(int*) * x);
for (i = 0; i < y; i++)
{
 myArray[i] = (int*)malloc(sizeof(int) * y);
}

ATSC 212 - C

Dynamic	 Memory	 Alloca6on	

62	

Freeing the array works in reverse. First we need to free each
row, then free the overall array.

for (i = 0; i < y; i++)
{
 free(myArray[i]);
}
free(myArray);

Higher dimensional arrays simply add more loops and more
dereferencing.

12/7/10	

32	

ATSC 212 - C

A	 Simple	 Example	

63	

Bringing it all together:

/* Declare the pointer */
int* x;

/* Get space for an array of 100 integers */
x = (int*)malloc(sizeof(int) * 100);

/* Set some values */
x[0] = 1; /* [0] is the first element */
x[99] = 100; /* [size-1] is the last element */

/* Prints “First 1, Last 100” */
printf(“First: %d, Last: %d\n”, x[0], x[99]);

/* Free the array */
free(x);

ATSC 212 - C

Pass-‐by-‐Reference	

64	

The other important area is multi-value functions. Remember that
functions in C only return one value and parameters passed to
functions are passed-by-value (copied). The way to return
multiple values is to change the parameters passed to functions.
The way to do this is to pass-by-reference. We will use pointers
as parameters.

If we use pointers (addresses) as parameters, then what is copied
in to the function is the addresses of values we would like to
change. The addresses are immutable, but we can change
whatever is at those addresses (circumventing the pass-by-value
paradigm of C). For example, we could have the power function
return the result in a variable called result.

int power (int x, int y, int* result);

12/7/10	

33	

ATSC 212 - C

A	 Simple	 Example	

65	

Let’s look at a multi-value function example. Suppose we alter the
power function so that it returns 0 if successful, and 1 if it fails.
The value of x to the power of y is returned in the parameter
result.

ATSC 212 - C

Mul6-‐Valued	 Power	 Func6on	

66	

int power(int x, int y, int* result)
{
 /* Calculates x^ y (y >= 0) and returns the result in the parameter result. */
 int counter; /* A counter for looping */

 /* Check if y < 0 since we won’t calculate a result if it is. If y < 0, return 1. */
 if (y < 0) { return 1; }

 /* y >= 0. Set the result to 1 to start. */
 result = 1; / This has changed the value at the address pointed to by result.

 Even the main program will see this change. */

 /* Multiply result by x, y times. */
 for (counter = 1; counter <= y; counter++)
 {
 *result *= x;
 }

 /* We are finished, and successful, so return 0 */
 return 0;
}

12/7/10	

34	

ATSC 212 - C

C	 vs	 Fortran	

67	

You have seen the key elements and syntax that make up C. How
does it compare to Fortran?

Both languages have similar looping and conditional structures.
Both languages have types for integers, floats, and characters.
However, C is strongly typed while Fortran can be context based.

Both languages have arrays for data. Fortran 95 also has dynamic
memory allocation like C.

Both languages have built-in functions and libraries that perform
such things as mathematical calculations or file handling.

ATSC 212 - C

C	 vs	 Fortran	

68	

Until probably about ten years ago, Fortran was still the premier
language for large-scale calculation based computation. However,
with improvements in compilers, many high level languages,
including C, now boast the calculation throughput of Fortran.

Thus the primary difference between C and Fortran is pointers. C
has them, while Fortran does not fully support them. For scientific
programming purposes, this actually is not important. Fortran 95
supports dynamic memory allocation and multi-valued subroutines
while abstracting away the underlying pointer mechanics which
makes it an equal to C for most programmers.

Fortran was the primary language of calculation based
programming and so there is considerable old code still being used
today written in Fortran. As a result, much of the new code being
written to interface with this older code is also in Fortran. C is one
of the most widely used programming languages today, but not
within these environments.

12/7/10	

35	

ATSC 212 - C

Meshing	 C	 with	 Fortran	

69	

Most languages gradually change over time to improve
performance or add new features. Fortran did not have dynamic
memory allocation until Fortran90 (a version of Fortran rarely
used). Fortran95, originally released in 1995, has added much of
the functionality of C missing from previous versions of Fortran.
However, it was not until 2003 that non-proprietary Fortran95
compilers became available.

Prior to that time, if programmers or scientists wanted to add
dynamic memory allocation to their code, or other functionality
through pointers, they would have to write C code and then link
that code to existing Fortran code. As a result, there now exists a
lot of scientific code written in both C and Fortran.

ATSC 212 - C

Meshing	 C	 with	 Fortran	

70	

Normally, this is done by compiling all code into object files and
then using a special program called a linker to put the files
together. (Linkers are usually part of compilers).

To make this work, we have to understand a bit about how Fortran
works under the hood, because the Fortran compiler will do things
when compiling that the C compiler will not. As such, we are
going to have to do things in C to accommodate Fortran.

First, recall that Fortran functions always pass-by-reference. This
means that if we write a function in C that is called in Fortran, all
of its parameters must be pointers.

12/7/10	

36	

ATSC 212 - C

Meshing	 C	 with	 Fortran	

71	

If we want to call a Fortran function in C, we must pass in
pointers. As far as Fortran is concerned, parameters and returned
values are just standard types.

The next difference is how the compilers build their symbol tables.
When Fortran compiles functions into machine code, it converts
the name to lowercase and adds an underscore to the end of
function names. (ie the function POWER becomes power_) C
compilers do not do this. To accommodate Fortran, we need to
make function names lowercase and add an underscore to the end
of functions written in C to be called by Fortran. We also need to
make Fortran function calls in C in lowercase with an appended
underscore.

ATSC 212 - C

Meshing	 C	 with	 Fortran	

72	

I have been mixing the concept of Fortran subroutines and
functions together here because C regards both ideas as functions.
As far as C is concerned, Fortran functions are regular C functions
(with the noted differences above). Fortran subroutines are
treated by C as functions with a return value of void (void is a
special type with no value).

The final difference is how C and Fortran treat arrays. Fortran
starts array indexing at 1 and C starts array indexing at 0. For
example, the first element of an array data in Fortran is data[1]
while in C is data[0]. Coincidentally, the last element of the array
in Fortran is the size of the array, while it is the size-1 in C. This is
one of the single biggest causes of confusion and errors in cross
coding between the languages.

12/7/10	

37	

ATSC 212 - C

Meshing	 C	 with	 Fortran	

73	

One dimensional arrays in C and Fortran look pretty much the
same other than the indexing issue. However, multi-dimensional
arrays look different in memory. C is row-major meaning that it
will store arrays in memory row by row. Fortran is column-major.
Here is an example to demonstrate the problem.

data =

In memory, C writes data out as 4 18 3 12 5 1, while Fortran
writes data out as 4 12 18 5 3 1.

4 18 3
12 5 1

ATSC 212 - C

Meshing	 C	 with	 Fortran	

74	

In general, C writes arrays out by last index first while Fortran
writes arrays out by first index first.

In practice, this means if you want to pass multi-dimensional
arrays between C and Fortran, you need to write your C code with
the indices in reverse. So if we wanted to represent the data
array from the previous slide in C, we would make it 3x2 instead
of 2x3 and treat the first index as the column rather than the row.

In Fortran In C

data(1,1) data[0][0]

data(1,2) data[1][0]

data(1,3) data[2][0]

In Fortran In C

data(2,1) data[0][1]

data(2,2) data[1][1]

data(2,3) data[2][1]

12/7/10	

38	

ATSC 212 - C

75	

Although you probably feel overwhelmed by what we have
covered, we have only just scratched the surface of C. I highly
recommend Kernighan and Ritchie’s book The C Programming
Language if you intend to do extensive C programming. You can
also find more detailed information and examples of meshing C
and Fortran at http://www.aei.mpg.de/~jthorn/c2f.html.

