
1

ATSC 212

FORTRAN - part 1

Roland Stull
rstull@eos.ubc.ca

2

Goals for Today’s Lab

!! Intro to evolution of fortran

!! Learn the “emacs” text editor.

!! Write & run a simple fortran program -- the start

of a larger program to calculate wind power.

!! Learn about compiler error messages, and tips

for debugging.

!! Get experience with fortran syntax and control

structures.

!! Learn & use version control.

!! Learn & use top-down programming.

3 M (m/s)

 z

(m)

sounding

Discussion on blackboard

of plan of attack for the

wind power calculation = 0.5!"!A!M3

Area = A

= wind speed

4 M (m/s)

 z

(m)

M (m/s)

 z

(m)

Break total area

into sum of small

rectangles.

zhub

r =

radius

L = chord

!z

Discussion on blackboard

of plan of attack for the

wind power calculation = 0.5!"!A!M3

5

Useful Formulas:

Power (W) = 0.5 " #air(kg/m3) " A(m2) " [M(m/s)]3

where A is disk area swept out by the turbine blades

M is wind speed

#air is air density.

#air = #o " e
–z/H

 where #o = 1.225 kg/m3, and scale height H = 8550 m

The length L of a circle's chord that is distance B from

the circle center is: L = 2 " [r2 – B2]1/2

where r = circle radius, and B = zhub(agl) – z(agl).
(agl = above ground level).

6

FORTRAN =

FORmula TRANslation

!! Designed to solve scientific equations.

!! Was the first high-level language (HLL). Reads like English.

!! Is independent of the particular processor (i.e., is
portable). Differs from Assembly Language.

!! Is an “imperative” language. Do this. Then do that.

!! Is a “procedural” language. Breaks tasks into subroutines & fnts.

!! A compiler reads the standard FORTRAN code (ascii

text, written by humans) as input, and produces specialized
machine code (binary) as output. (Each processor needs a

different compiler.)

!! We then “run” or “execute” the compiled code.

!! Modern compilers “optimize” the code. Make it run fast.

7

FORTRAN evolution

!! FORTRAN I (released in 1957 by IBM)

!! FORTRAN II (1958, separate compile & link)

!! FORTRAN IV (1961. Machine independent.)

!! FORTRAN 66 (First ASA standardized version.)

!! FORTRAN 77 (ASA standardized in 1977)

!! FORTRAN 90 (a major upgrade. Modern.

Includes array math. Adopted as standard by ANSI and ISO.)

!! FORTRAN 95 (a minor change from F90)

!! FORTRAN 2003 (a moderate upgrade, with oop)

!! FORTRAN 2008 (a minor change; not yet official)

(see timeline of programming languages)

(see a nice summary in Wikipedia)

8

The old days…thru F77

!! Input was via computer cards.

!! Output was to a line printer.

!! Batch jobs. Not interactive.

!! Programmers served the computer, not the

computer served the programmers.

!! Column alignment of code

The new days… F90/95/2003

P = 100*exp(y)

9

FORTRAN Tutorial

!! An excellent FORTRAN tutorial was created by

Stephen Brooks, Univ. of St. Andrews, Scotland.

!! Copies of his tutorials are presented on our web

page.

!! You can find the original link at:

http://www-solar.mcs.st-and.ac.uk/%7Esteveb/

course/course.html

!! See the Resources link on our course web page

for access to a full FORTRAN language manual.

!! Also see Wikipedia "Fortran language features"

10

Steps in FORTRAN

programming

!! Design algorithms and program flow "

(e.g., using a flow chart).#

!! Write/Edit the FORTRAN code (which is just an ascii text

file) on a text editor, & save as a “source” code file.#

!! Compile the source code into binary “object” files, by

running a FORTRAN compiler program. #

!! Link the compiled object files to other compiled subroutines

or libraries, if needed, to create an “executable” binary file.

(“Make files” are scripts that tell the computer which

compiled files and libraries to combine and link together.)#

!! Run the resulting executable.#

11

Editing: Program Editors

Some ascii text editors use GUI interface (g) with mouse.

“Program editors” are ascii text editors that can color-code (cc)
statements for different programming languages.

Examples of editors for different computer systems:

!! MacOSX: TextEdit(g), TextWrangler(g,cc)

!! PC Windows: NotePad(g) [DON’T use WordPad]

!! Linux: VI(cc), Emacs(g,cc) [We will use both in this course.]

Some commercial software provides a full “programmers
environment” (editors, compilers, debuggers, profilers)

!! Visual Studio (MicroSoft, for Windows machines)

!! CodeWarrior (for many systems)

!! Absoft (for Mac, Windows, and linux)

12

Editing: An example

Then, save the file with suffix “.f95”

 For example: wp01.f95

Notes:
Comments start with an exclamation point.

 [Good programming practice to document WHILE you write your code.]

FORTRAN is case insensitive. X and x are the same variable.
Hit the “Return” or “Enter” key at the end of each line. No

 special character is used at the end of each line.
Each line can be up to 132 characters long.

If you need a longer line, end the first line with &

& and start the continuation line also with the ampersand.

First, write the “source” code. Follow along with the instructor. Open

emacs to do this.

! Estimate wind power!

program windpowermain!

 write(*,*) "Welcome to Wind Power" !welcome user!

end program windpowermain!

13

Compiling: Compiler Programs

!! FORTRAN compilers exist for almost all computers,

including desktop PCs and Macs.

!! Some are VERY expensive, but have VERY nice

editing and debugging environments.

!! Some free FORTRAN compilers that run on most

platforms (linux, Mac, PC) are available:

!! http://ftp.g95.org/!

!! http://gcc.gnu.org/wiki/GFortran

 produced by the GNU organization.

!! We will use gfortran in this course.

14

Compiling & Running under linux

"! gfortran wp01.f95 -o runwp01 #invoke the compiler!

"! ./runwp01! ! ! !#run the executable"

Welcome to Wind Power ! !#this is the output!

"! ! ! ! ! !#the next linux prompt!

Notes:

 “gfortran” is the name of the fortran 95 compiler.

 It takes the text file “wp01.f95” as input.
 The “-o” option tells the compiler that you will provide a

 name for the output file.

 I have named the output executable file “runwp01”.

 (Although not needed, some programmers like to name

 executable files with suffix “.exe”. Such as “runwp01.exe”)

Example. You should follow along:

15

Some Elements of FORTRAN

!! Variables (including array variables)

!! Operators (assignment, math, logical)

!! Conditionals

!! Loops

!! Functions & subroutines (& built-in functions)

!! I/O: input from keyboard & output to screen

!! File Handling

16

Order of Statements

Source: PGI Fortran Reference Manual, downloaded 29 Feb 07 from http://www.pgroup.com/resources/docs.htm

17

Variables: Type Declarations

Although FORTRAN does not require that variables be declared before you use them,
it is VERY good practice to do so. To enforce such “strong typing” of variables, you
should always declare “implicit none” first.

Reals are floating point numbers (with a decimal 3.14 and optionally with as scientific
notation 8.99E-6 which means 8.99 x 10-6 .

Integers are whole numbers.

Characters are strings of ascii characters of length 0 or more, in quotes. “line”

Logicals are boolean variables such as .false. or .true.

implicit none! !!impose strong typing!

real :: e ! ! !!vapour pressure (kPa)!

real :: p = 101.325!!total pressure (kPa), initialized.!

real, parameter :: epsilon = 0.622 !constant. Can’t change.!

integer :: nlevel ! !number of sounding levels!

character (len=80) :: inputline !string of input characters!

logical :: done = .false. !a flag indicating if done!

Try it – Type declarations
First, do "save as" with name "wp02.f95". This allows us to create a

new version of the code.

 Version Control is Good Programming Practice.

Next, add code as shown (follow along with instructor), and save.

18

! Estimate wind power !

!========= main program =============!
program windpowermain!

! declare variables!
 implicit none ! ! !!enforce strong typing!
 real :: power = 0.0 ! !!power (W) outout from turbine!

!set up!
 write(*,*) "Welcome to Wind Power" !!welcome user!

!save results!
 write(*,*) "power = ", power !!display result!

end program windpowermain!

19

Try it. Compile and run.

"! gfortran wp02.f95 -o runwp02 #invoke the compiler!

"! ./runwp02! ! ! !#run the executable"

Welcome to Wind Power ! !#this is output!

power = 0.000000 ! !#this is more output!

"! ! ! ! ! !#the next linux prompt!

Good.

Next, lets look at error messages and debugging.

Try it – Finding & fixing errors
First, do "save as" with name "wp03.f95", to create a new version.

Next, change the code as shown, save, compile, & execute.

20

! Estimate wind power !

!========= main program =============!
program windpowermain!

! declare variables!
 implicit none ! ! !!enforce strong typing!
 real :: power = 0.0 ! !!power (W) outout from turbine!

!set up!
 write(*,a) "Welcome to Wind Power" !!welcome user!

!save results!
 write(*,*) "power = ", power !!display result!

end program windpowermain!

Try it – Error Messages

wp03.f95:11!

 write(*,a) "Welcome to Wind Power" !welcome user!

 1!

Error: Symbol 'a' at (1) has no IMPLICIT type!

21

Your output might look like:

It tells you:

1) which program had the error: which line of code (line

11) had the error.
2) it displays a copy of the offending line, and then

under it uses "1" to point to the error.

3) it explains the reason for the error.

Try it – Debugging
Next fix that first error. Then make a different error by

forgetting to write the ending set of quotes. Change the

code as shown, save, compile, & execute.

22

! Estimate wind power !

!========= main program =============!
program windpowermain!

! declare variables!
 implicit none ! ! !!enforce strong typing!
 real :: power = 0.0 ! !!power (W) outout from turbine!

!set up!
 write(*,*) "Welcome to Wind Power !!welcome user!

!save results!
 write(*,*) "power = ", power !!display result!

end program windpowermain!

Try it – More Error Messages

wp03.f95:11!

 write(*,*) "Welcome to Wind Power !welcome user!

 1!

Error: Unterminated character constant beginning at (1)!

23

Your output might look like:

It tells you:

1) which program had the error: which line of code (11) had

the error.
2) it displays a copy of the offending line, and then under it

uses "1" to point to start of the section that had the error.

3) it explains the reason for the error.

Note: These errors can be caught in editors with colored

highlighting of syntax.

24

Version Control – good

programming practice

One of the reasons for saving previous working versions of

the code, is that you can always revert back to a

previous good version if you screwed up the new version
so bad that you can't fix it easily.

Also, by making only small changes to the new version, you

can more easily isolate the likely places where the error

could be. This speeds debugging.

Lets do it. Just delete the version 3 (wp03.f95) from your

editor, and open version 2 (wp02.f95). Then immediately

save it as a new version 3 (wp03.f95).

To encourage this, the markers for this course will need to

see ALL versions in your directory, for you to earn full

marks.

25

Variables: Arrays

!Here is how you can declare 1-D array variables:!

real, dimension(16) :: temperature!

integer, dimension(10) :: digits!

character (len=100), dimension(120) :: poem!

!Or, for a 2-D array:!

real, dimension(120,2) :: sounding!

!Then, you can reference any array element in a 1-D array
by:!

integer :: i, d!

real :: T!

character (len=100) :: line!

i = 3!

T = temperature(i)!

d = digits(i)!

line = poem(i)

Wind Energy

71109 YZT Port Hardy Observations at 12Z 29 Jan 2007!

---!

 PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT THTA THTE THTV!

 hPa m C C % g/kg deg knot K K K !

---!

 1025.0 17 0.0 -0.4 97 3.64 245 2 271.2 281.1 271.8!

 1018.0 73 3.6 2.0 89 4.36 203 3 275.3 287.3 276.1!

 1000.0 218 3.0 1.2 88 4.19 95 4 276.1 287.8 276.9!

 997.0 242 2.8 1.0 88 4.14 91 4 276.2 287.7 276.9!

 989.4 305 4.5 -1.4 66 3.50 80 4 278.5 288.4 279.1!

 978.0 399 7.0 -5.0 42 2.71 61 4 281.9 289.8 282.4!
26

This program will read the wind data from a

meteorological sounding as shown below. Thus, we

can anticipate that we will need to have arrays of
heights, wind directions, wind speeds, and lines in

the sounding.
column numbers

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

Try it ...

27

Add the following type declarations to the "declare

variables" part of your wp03.f95 code, save,

compile, and run.

integer, parameter :: maxlines = 120 !max sounding lines that can be captured!

real, dimension(maxlines) :: zmsl! !array of heights MSL (m)!

real, dimension(maxlines) :: speed! !array of wind speed (knots)!

character (len=100), dimension(maxlines) :: sounding !holds the whole sounding!

Your output from ./runwp03 should still say:

Welcome to Wind Power!
 power = 0.000000 !

28

Operators

Operators allow you to perform actions on variables.

Assignment: =!

Mathematical: !+ , – , * , / , ** (unary + , –)!

Logical: == ! or ! .eq.!

! ! !/= ! or !.ne.!

! ! !> ! or !.gt.!

! ! !>= ! or !.ge.!

! ! !< ! or !.lt.!

! ! !<= ! or !.le.!

! ! !.and.!

! ! !.or.!

! ! !.not. (unary)!

! ! !.eqv. (logically equivalent...)!

! ! !.neqv. ... or not)!

29

SUBROUTINES

 program somemath!

 implicit none ! ! !Enforce strong typing !

 real :: x,y,f,p ! !Declare variables !

! . . . ! ! !!prompt user to enter x and y!

 call factorial(x,f) !find the factorial of x !

 call power(x,y,p) ! !find x to power y!

! . . . ! ! !!display results on screen!

 end program somemath!

 subroutine factorial(x,f)!

 real, intent(in) :: x ! !the input variable !

 real, intent(out) :: f = 1.0 !initialize factorial !

! . . . !calculate f as x factorial!

 end subroutine factorial ! !returns factorial in f !

Try it ...

30

First, Save As "wp04.f95" to create a new version. As

an example of "top-down" good programming practice,

add the following subroutine calls to your main
program. Save.

!set up!

 call welcome!

 call getturbinespecs!

 call getsounding!

!compute wind power!

 call findpower!

!save results!

 call saveresults!

Try it ...

31

Next, add subroutine "stubs" that don't do anything

except announce that they've been called (to help

you debug the program). For example:

 !=======================================!

subroutine welcome!

 implicit none !enforce strong typing!

 write(*,*)!

 write(*,*) "Welcome to Wind Power"!

end subroutine welcome!

!=======================================!

subroutine getturbinespecs!

 implicit none !enforce strong typing!

 write(*,*)!

 write(*,*) "getturbinespecs: Get specs of the wind turbine."!

end subroutine getturbinespecs!

You can write the other stubs. Then save into wp04.f95, compile, run, fix,

and save again.

Try it...

 Your output from runwp04 should say:

 Welcome to Wind Power!

 getturbinespecs: Get specifications of the wind turbine.!

 getsounding: Get the file holding the input sounding!

 findpower: Calculate the wind power.!

 saveresults: Write to disk and screen the wind power.!

 power = 0.000000 !

32

33

FUNCTIONS

!Will be discussed next week.!

34

READ from keyboard and

WRITE to screen

READ (*,*) variable1, variable2, etc.!

WRITE (*,*) variable3, variable4, etc.!

!The first * in the read/write statement

defaults to the standard input (keyboard) or
output (screen). The second * specifies

“list directed”, unformatted, reads and

writes.!

35

WRITE (more details)

In a write statement, the arguments in the parentheses are:
 write (unit number, format) stuff, to, be, written

Some examples:
 write (*,*) “Wind speed (m/s)= “, M, “ Temp(K)= “, T !
! ! !where * unit number = default = computer screen, !
! ! !and * format = list directed (format is based on!
! ! !the type declarations of the stuff to be written)!

 write(*,”(F8.2)”) T!
! ! !Writes a real number to the screen, formatted to print !
! ! !into 8 columns, with 2 digits right of the decimal point.!
! Example: bb273.15 where “b” is a blank space!

 write(1,”(a)”) “Hello world”!
! ! !Which writes to a previously-opened file (unit 1), !
! ! !in an alphanumeric (character string) format.!
! ! !File Handling will be explained next week in class.

36

Useful Code Segment for

Prompting User to Enter Input

 character (len=50) :: name!

 …!

 …!

 write(*,”(a)”,advance=“no”) “Type in your name: ”!

 read(*,*) name!

!This code segment prompts the user to type in something, !

!and allows the user to respond by typing on the same line.!

!!

!The extra advance=“no” specification in the write statement!

!prevents the automatic line-feed from happening. It applies!

!only to the one write statement in which it is specified. !

Try it ...

37

First, Save As "wp05.f95".

Modify subroutine getturbinespecs to prompt the user for

the hub height "zhub" and turbine radius "r".

After reading "zhub" and "r", echo (write) those value to the

screen (to keep the user happy by confirming the values).

You can either start on your own, or follow along as I

write the code.

Hint: Don't forget to declare the new variables in this

subroutine before you use them.

Save, compile, debug, run, save.

Try it ...

38

First, Save As "wp06.f95".

Modify subroutine getsounding to prompt the user

to enter the name "soundingfilename" of the file
holding the sounding.

 Also, echo (write) the filename to the screen.

You start on your own, and I will follow along later.

Hint: Don't forget to declare any new variable in this
subroutine before you use it.

Save, compile, debug, run, save.

39

Read from a file (on disk, etc.)
INTEGER :: ero,err!

OPEN(1,FILE=“filename”, STATUS=“old”, ACTION="read", IOSTAT=ero)!
IF (ero .NE. 0) STOP “Can’t open file.”!

READ(1,*, IOSTAT=err) variable1, variable2, etc.!
IF (err .NE. 0) BLAH !e.g., EXIT a loop!

CLOSE(1)!

!(ero=0 if successful, positive if failure).!
! In the OPEN statement, instead of a character string !
! “filename”, you can have a character variable there, !
! which holds the file name. !
!(err=0 if successful, -1 if end of file, -2 end of record,!
! positive if failure)!
! For example:!
 integer :: ero!
 character (len = 30) :: studentroster!
 …!
 studentroster = “ubc_atsc212_classlist.txt”!
 open(1,file=studentroster,status=“old”, action="read", iostat=ero)!
 if (ero .ne. 0) stop “Can’t open file.”!

40

More File Commands & Info
For the OPEN statement:!

ACTION can be "read" or "write". (If the ACTION word !
!is missing, than both read & write is assumed.) Good
programming practice: for input files, specify "read" !
!only, to avoid accidently overwriting any important info.!

STATUS can be "old", "new", "replace", "scratch", or
"unknown". Use old for input files, and replace for output
files.!

More file commands:!

WRITE(1,*) "blah" !!for writing to a disk file that you had!
! ! ! ! ! previously opened as unit 1.!

REWIND(1) ! !!move to beginning of the file that you!
! ! ! ! ! had previously opened as unit 1.!

BACKSPACE(1) ! !!move back one line in the file that you!
! ! ! ! ! had previously opened as unit 1.!

Try it ...

41

First, Save As "wp07.f95".

Modify subroutine getsounding to open the old file

that the user specified, then write to the screen the
value of the error flag (don't do the "if" test yet), and

finally close the file.

You start on your own, and I will follow along later.

Hint: Don't forget to declare any new variable in this
subroutine before you use it. (such as the error flag

variable, which is an integer)

Save, compile, debug, run, save.
Hint: If your program can't open the file, be sure that the file (such as
darwin.txt) is in the same folder as your program, and don't forget to

type the .txt suffix as part of the file name the user types in.

42

Control Structures:

 CONDITIONALS
Version 1:!

 if (logical expression) blah!

! ! !!

Version 2:!

 if (logical expression) then!

! blah!
! blah ! ! !!this is a “block” of statements!

! blah!
 end if!

 Examples:!

 if (T < 273.) write(*,*) “It’s cold outside.” !
! ! ! !

 if (i == 5) then!

! !T = temperature(i) + 273.15 !!temperature in K!
! !E = sigma * (T**4) ! !!Stefan Boltzmann!

! !write(*,*) E ! ! !!output to screen!
 endif!

43

More Conditionals

The IF THEN ELSE statement. The ELSE IF is optional:
if (logical expression) then!
!blah!
!blah!

else if (different logical expr) then!
!blah!
!blah!

else if (different logical expr) then!
!blah!
!blah!

else!
!blah!
!blah!

end if!
! ! !Example:!

 if (T<0.) then!
 write(*,*) “It’s cold.”!
 elseif (T>40.) then!
 write(*,*) “It’s warm.”!
 else!
 write(*,*) “It’s mild.”!
 endif!

Try it ...

44

First, Save As "wp08.f95".

 Modify subroutine getsounding to check the file-opening

error flag after trying to open the file, and if OK than write to the

screen that the file successfully opened. If not OK, then write

to the screen about this failure, offer a hint on what to do next

time, and stop the execution.

You can follow along as I code it.

Save, compile, debug, run, save.

 if (ero .ne. 0) then!!can't open the file!
 write(*,*) " Sorry. Can't find the file: ", soundingfilename!
 write(*,*) " Don't forget to add a suffix .txt if needed."!
 stop "Bye."!
 else ! ! ! !!successfully opened the file!
 write(*,*) " Good. Successfully opened file: ", soundingfilename!
 write(*,*)!
 endif!

Try it ...

45

First, Save As "wp09.f95".

 Modify subroutine getturbinespecs to check that the

turbine radius is less than the hub height, because if the turbine

blade is too long, then it will hit the ground. [Good

programming practice to check for unphysical or unreasonable

values.] If r is greater than or equal to zhub, then tell what

the problem is to the user, and allow the user to enter a new

radius r.

You can code this on your own, and I will follow later.

Save, compile, debug, run, save.

46

…and More Conditionals

An example of the CASE statement:

integer :: T ! !!temperature (°C)!

select case (T)!
case (:-1)!
!blah ! ! !!for T # -1!

case (0)!
!blah ! ! !!for T = 0!

case (1:20)!
!blah ! ! !!for 1 # T # 20!

case (25, 32, 47)!
!blah ! ! !!for any of the listed T!

case default!
!blah ! ! !!for all other T!

end select !

47

Control Structures: Loops
Loops allow us to take repeated

actions untill a condition is met.

do! ! !!This is a “while” loop!
!blah!
!blah!
!if (logical expression) exit!
!more blah!
!more blah!

end do!

!Example:!

 rh = 80. ! !!Initialize the relative humidity (%) !
 do ! ! !!Repeat the following statement block!
! rh = rh - 25. !!Decrement the relative humidity !
! if (rh<=0) exit!!Stop repeating if humidity is invalid !

 y = x / rh !!Perform some calculation !
 enddo!

Condition

Statements

true

true

More

Statements

Try it ...

48

First, Save As "wp10.f95".

 Modify subroutine getsounding to read each line of the

sounding file, and display the line to the screen as it reads it.

Hint: read each line as a character string called "line".

You can follow along as I code it. Save, compile, debug, run, save.

 character (len=100) :: line!!one line in the sounding file!
 integer :: err ! ! !!error flag for reading a file!

 . . .!

 write(*,*) "======================================="!
 do ! ! ! ! !!read all lines in the file!
 read(1,"(a)", iostat=err) line !!try to read a line!
 if (err .ne. 0) exit ! !!couldn't read the line!
 write(*,"(a)") trim(line)! !!echo the line that was read!
 enddo!
 write(*,*) "======================================="!
 write(*,*)!

Note: the "trim" function removes any trailing blanks from the string.

49

Control Structures: more Loops

Loops allow us to take repeated

actions till a condition is met.

!This is a “do while” loop!
do while (logical expression)!
!blah!
!blah!

end do!

!Example:!

 rh = 80. ! !!Initialize the relative humidity (%) !
 do while (rh >= 0)!Repeat the following statement block!
! rh = rh - 25. !!Decrement the relative humidity !

 y = x / rh !!Perform some calculation !
 enddo!

Condition
true

true

Statements

Try it ...

50

First, Save As "wp11.f95".

 Modify subroutine getturbinespecs to replace the r < zhub

conditional statements with a do while loop that allows the user

to keep entering r values until a good r value is finally

entered.

You can code it. I will follow along later.

Save, compile, debug, run, save.

51

…and More Loops: the "counting do" loop

For repeated calculations where some

index or value increases or decreases

with uniform increments:!
!(if increment is missing, 1 is assumed)!

do index = istart, iend, increment!
!blah!

!blah!

!blah!
!blah!

end do!

 Example:!

 jend = 25 ! !!number of grid points across BC !
 do j=1,jend,2 !!for every second grid point!

! M = wind(j) !!extract the wind speed from the array !
! accumDrag = accumDrag + CD*(M**2) !!accumulated air drag!

 enddo!

Within

range of

istart to
iend?

Statements true

false

incrementor

initializer

Try it ...

52

First, Save As "wp12.f95".

 Modify subroutine getsounding so that after the whole file

was read (but before you close the file), you rewind the file

back to the beginning, and then read and display only the first 5

lines of the file. These are the header lines that don't have

sounding numbers in them.

You can code it. I will follow along later.

Save, compile, debug, run, save.

53

Loop Control Structures:

CYCLE & EXIT

A loop with known starting and ending values and increments,

but from which you might want to skip some calculations, or

exit the loop early.

do index = istart, iend, increment!

!blah!

!blah!
!if (conditional expr) cycle !skip remaining statements!

! ! ! ! ! !!but remain inside loop!
!blah!

!blah!

!if (conditional expr) exit !exit immediately from loop!
!blah!

!blah!
end do!

54

Summary

!! FORTRAN 2003 is a programming language.

!! It is designed for scientists and engineers.

!! It is multi-paradigm: imperative, procedural,

structural & object-oriented.

!! It is a compiled language.

!! It is used extensively in NWP & other number-

crunching jobs in meteorology, physics, & engr.

!! You can use any ascii text editor to write the

FORTRAN code -- we use emacs here.

Any Questions so far?

