Handout Three

February 20, 2006

1 Arithmetic Expressions with Integers \& Reals

Mostly you will find that typing in arithmetic expressions is intuitive and does not really cause any problems. However, there are situations that can occur where uncertainty arises and so you need to be aware of certain rules that exist to remove any confusion.

1.1 Expression Evaluation

In section 2.2 of handout two the intrinsic numeric operators and their order of precedence were listed in a table, for convenience, here is the table again; note that the ' $/$ ' \& ' $*$ ' operators have the same precedence. Then below that the dyadic minus (-) operator has the same level of precedence as the plus (+) operator

$[1]$	$* *$: Exponentiation operator, dyadic
$[2]$	$/$: Division operator, dyadic
$[2]$	$*$: Multiplicative operator, dyadic
$[3]$	-	: minus operator monadic for negation
$[4]$	+	: additive operator, dyadic
$[4]$	-	: minus operator, dyadic

An example was given to demonstrate how the order is important when writing down numeric expressions in Fortran. The 'left to right' rule was introduced for cases where there was ambiguity as to which order to evaluate sub expressions involving operators with the same level of precedence. There is however 'one' exception to this 'left to right' rule. The exception involves a special case of the exponentiation operator. The exponentiation operator has a precedence 'right to left'. For example consider the expression

$$
\begin{gathered}
21 \\
\mathrm{a} * * \mathrm{~b} * * \mathrm{c}
\end{gathered}
$$

The numbers above the operators in the expression indicate the order in which that sub-expression will be evaluated. First ' $b * * c$ ' would be calculated and the result used as the exponent in the operation with ' a '. Consider the following two lengthy expressions, again, above each of the operators is a number identifying the order in which that operator is executed during the calculation of the overall expression.

$$
\begin{array}{ccccccc}
6 & 3 & 2 & 1 & 4 & 7 & 5 \\
a-b / c * * d * * e * f+g * h
\end{array}
$$

$$
\begin{array}{ccccc}
6 & 3 & 1 & 2475 \\
\mathrm{a}-\mathrm{b} /(\mathrm{c} * * \mathrm{~d}) & * * e * \mathrm{f}+\mathrm{g} * \mathrm{~h}
\end{array}
$$

For the expression on the left, the first calculation is ' $d * * e$ ' and the result used as the exponent in the exponentiation operation on ' c ' then the result divided into ' b ' etc. and so on. Work through the above expression and make sure you understand it before moving on! Also, although it is important that you know about correct 'expression evaluation' if you are in doubt you can use parentheses () to remove any uncertainty! See how for the expression on the right the inclusion of parentheses around the 'c**d' alter the default order of the 'right to left' rule for exponentiation. Remember sub-expressions inside parentheses have the highest precedence so will be evaluated first!

NOTE : No two numeric operators can co-exist side by side. For example ' $4 *-3$ ' would fail during compilation. You need to include parentheses around the monadic expression : ' $4 *(-3)$ '. You could however have written ' $-3 * 4$ ' .

1.2 'INTEGER' Division

There is one main problem involving integer arithmetic and it occurs when dividing one integer into another. Consider the following few lines of code and try to predict what you think will be printed to the screen.

```
PROGRAM integer_test
!**
!** Program to highlight problems in integer arithmetic
!**
    IMPLICIT NONE
    INTEGER :: a=1, b=2,answer1
    REAL :: answer2,answer3
    answer1=a/b
    answer2=a/b
    answer3=REAL(a)/b
    PRINT*,"When evaluated as integer =",answer1
    PRINT*,"When assigned to a real =",answer2
    PRINT*,"When a is casted first =",answer3
END PROGRAM integer_test
```

Exercise One: In a directory 'handout3/exercise1' Code up the few lines above and run the compiled executable. The result may not be what you expected to see. The reason is that any numeric operation built up from a 'numeric intrinsic operator' ' ($* *, *,-,+$) ' and operands of the same intrinsic data type will always give a result of the same data type as the two operands. Therefore dividing one integer by another integer must result in an integer. This is why in integer arithmetic the operation ' $1 / 2$ ' gives an answer of zero, even when the result is assigned to a data type that has been declared as a REAL. NOTE that for integer division the result is simply 'truncated', so the fractional part is removed, it is not 'rounded' to the nearest integer.

1.3 Data type casting

Note that a single 'dyadic operation' is defined as the result of the evaluation of an operand and its two operators, ie. ' a / b ', here ' a \& b ' are the operands and the operator is division. In fact in Fortran the only monadic operator is the negation operator ('-') as in 'b=-a'. So for the purpose of discussing the casting of an 'operand' the associated operator can always be assumed to be dyadic.
When you are typing in any numeric expressions that involve different data types, often referred to as 'mixed mode expressions', then you need to be aware that Fortran will automatically 'convert' data types to allow it to evaluate any operation in the expression as it sees fit. Remember that in order for an operation to be completed the operands must be of the same type. 'Casting' means that, if the two
operands are of different type, one of the operands will temporarily converted to the operand of more general type in the operation. The order of casting is

INTEGER \rightarrow REAL \rightarrow COMPLEX

So if ' a ' is declared 'INTEGER and ' b ' is declared 'REAL' then the operation ' a / b ' would result in a 'REAL'. This is because ' a ' would temporarily be cast to a 'REAL' for the purpose of the operation. We can also force an expression or operand to result in a certain data type by using the intrinsic functions 'INT', 'REAL' and 'CMPLX', see the next section.

2 Intrinsic functions

Some mathematical functions are used so commonly that they are built into the Fortran language. The conversion between real and integer using 'REAL()' or 'INT()' are examples. One can take the sine of a real variable ' x ' and assign the answer to ' y ' by typing
$\mathrm{y}=\operatorname{SIN}(\mathrm{x})$
In this case x is called the 'argument' of the SIN function. Functions you should be aware of are;

The Trigonometric Functions

$\operatorname{SIN}(\mathrm{x})$	$:$ Returns the sine of x
$\operatorname{COS}(\mathrm{x})$	$:$ Returns the cosine of x
$\operatorname{TAN}(\mathrm{x})$	$:$ Returns the tangent of x
$\operatorname{ASIN}(\mathrm{x})$	$:$ Returns the arcsine of x
ACOS (x)	$:$ Returns the arccosine of x
ATAN (x)	$:$ Returns the arctangent of x
ATAN2 (x, y)	: Returns the arctangent of a complex number $x+i y$
$\operatorname{SINH}(\mathrm{x})$	$:$ Returns the hyperbolic sine of x
$\operatorname{COSH}(\mathrm{x})$	$:$ Returns the hyperbolic cosine of x
$\operatorname{TANH}(\mathrm{x})$	$:$ Returns the hyperbolic tangent of x

Other Mathematical Functions

```
EXP(x) : Returns the e raised to the power of x
LOG(x) : Returns the natural logarithm of x
LOG10(x) : Returns the logarithm to the base 10 of x
SQRT(x) : Returns the square root of x
ABS(x) : Returns the absolute of x
INT(x) : Returns an integer part of x by truncation
REAL(x) : Returns the conversion of x to be data type REAL
DBLE(x) : Returns the conversion of }x\mathrm{ to data type DOUBLE
CMPLX(x) : Returns the conversion of }x\mathrm{ to data type COMPLEX
AIMAG(x) : Returns the imaginary part of the complex data type x.
NINT(x) : Returns the nearest integer to x
MAX (x,..) : Returns the maximum of a comma separated list
MIN (x,..) : Returns the minimum of a comma separated list
```

In functions such as $\operatorname{SIN}(x), \operatorname{COS}(x)$ etc. the argument x is to be given in radians. Note that these functions return a value so will behave just like any other operand if used in an arithmetic operation ie ' $x * * 2+\sin (x)$ '.

3 A Few Odds and Ends

3.1 Data Type Limitations

Fortran has to store all numbers internally in the computers memory. It is inevitable therefore that there will be restrictions in the numeric range of the various data types. We will not go into detail here but simply present the values to you. For the Linux machines you are working on

```
'INTEGER' : -2147483648 }->214748364
'REAL' : }-1\mp@subsup{0}{}{38}->1\mp@subsup{0}{}{38
```

So any calculations you do must ensure that any calculations do not exceed these limits.

3.2 Complex arithmetic

To declare a complex data type in Fortran you give the real part and the imaginary part separated by a comma in brackets. ie.

```
COMPLEX :: cmp1=(4,3)
```

There are a few intrinsic functions that are specifically for complex numbers they are;

```
AIMAG(c) : Returns the imaginary part of c
CONJG(c) : Returns the complex conjugate of c
CMPLX(x) : Returns the conversion of x to data type COMPLEX
```

To extract the real part from a complex number use the 'REAL' function.

Exercise Two : Rewrite your Quadratic program using the type 'COMPLEX' so that you do not need to test the discriminant for the different cases. Do this in the directory 'handout3/exercise2'.

3.3 The true meaning of ' $=$ ' in Fortran

The ' $=$ ' in Fortran means assign the result of the expression on the to the variable on the left. Variable names are names of locations in memory. They hold whatever you put in them like pigeon holes. Thus the seemingly strange line ' $m=m * n$ ' does the following

1. Get the contents of ' m ' and ' n ' from memory.
2. Multiply ' m ' by ' n '.
3. Assign the value ' $m * n$ ' to be held as a new value in the memory location ' m '. Thus arithmetic in Fortran involves computing whatever is on the right hand side of the ' $=$ ' sign and then storing the result in the variable on the left hand side. Thus ' $\mathrm{n}=\mathrm{n}+1$ ' means increase the number ' n ' by 1 .

3.4 Blank spaces and continuation lines

Notice that there are spaces between the operators and their operands in the statement ' $\mathrm{m}=\mathrm{m} * \mathrm{n}$ ' yet no extra spaces in ' $m=m * n$ '. You are at liberty to use as much 'spacing' as you think is necessary to make the line easier to read. The Fortran compiler ignores these spaces. Like the indentation of lines they are
for the benefit of the reader. Get into the habit of typing in the way that you are most happy with BUT make sure you are consistent.

If a line of Fortran code gets so long that it doesn't fit on a line in the pico editor then you need to use the 'line continuation character'. This involves ending the line you are typing with the ' $\&$ ' symbol. The next line of text is then taken as a continuation of the previous line e.g. the two lines

```
a=a+b+c+d+e &
    +f+g
```

are treated by Fortran 90 as though they were the single line

$$
a=a+b+c+d+e \quad+f+g
$$

Notice that all of the spaces at the start of the second line have also been included in the new extended line. Since F90 ignores these spaces this isn't a problem here. This would be a problem if the line you are continuing is part of a character string. This is one of the few places where F90 doesn't ignore spaces. In this case you must place an \& before the text on the second line as well as at the end of the line you wish to continue e.g.

```
PRINT*,"If you want to split a sentence onto more than &
    &one line then you should use the line continuation &
    &character like this."
```

This forces the compiler to ignore the extra spaces. If you have long strings then you must remember to always have the second ' $\&$ ' otherwise your program will not compile.

3.5 Simple Input and Output

In their most simple form the 'READ*' and 'PRINT*' statements allow us to read in data from the default input device, normally the keyboard, and output data to the default output device, normally the display.

3.5.1 The list directed 'PRINT*' command

The 'PRINT*' command has the simplified form,

```
PRINT*,<expr1>[,<expr2>,<expr3>....]
```

some examples of the 'PRINT*' command are;

```
PROGRAM example
! ** Demonstrate some PRINT statements to the screen
    IMPLICIT NONE
    INTEGER :: a=3,b=7,mult,add,minus
    REAL :: divide
    mult=a*b
    add=a+b
    minus=a-b
    divide=REAL(a)/b
    PRINT*,"3*7=",mult
    PRINT*, "3+7=", add
    PRINT*,"3-7=",minus
    PRINT*,"3/7=",divide
    PRINT*,'3^2=',a**a
    PRINT*,'7^2=', b**b
END PROGRAM example
```

From the example code you can see that strings (the text inside quotes) can be output straight to the screen along with numeric variables or expressions. Note the use of the 'REAL' function to convert one of the integers in the operation to a real value so the result returned will be the correct fractional value.

3.5.2 The list directed 'READ*' command

The list directed 'READ*' command has the simplified form;
READ* , <var1 $>[,<$ var2 $>,<$ var3 $>\ldots .$.
It is used for 'reading' in information from the keyboard to the program. The following small piece of
code demonstrates how the command works.

```
PROGRAM test
    IMPLICIT NONE
    INTEGER : : a,b,c
    PRINT*,"Please input a"
    READ*,a
    PRINT*,"Please input b"
    READ*, b
    c=a*b
    PRINT*,"a*b=",c
END PROGRAM test
```

Exercise Three: A radioactive isotope of an element is a form of the element that is unstable. It spontaneously decays into another element over a period of time. This process of decay is exponential. If ' Q_{0} ' is the initial amount of radioactive substance at time ' $t=0$ ' then the amount of radioactive substance at any time t in the future is given by,

$$
Q(t)=Q_{0} e^{(-\lambda t)}
$$

Where ' t ' is the time in years and λ is the decay constant for carbon 14 : 0.00012097 per year. When a living being dies the amount of carbon 14 in the body decays from its constant value during life. We can measure the amount that has decayed and from that estimate the time since death. To do this we assume we know the normal amount in such a living being and we can measure the amount in the current sample and so calculate the fraction or percentage left from the time of death. The above equation can be rearranged to give,

$$
t=-\frac{1}{\lambda} \log \left(\frac{Q}{Q_{0}}\right)
$$

Write a computer code to calculate the age of a sample of material. Input from the keyboard the amount of radioactive material left in the sample as a percentage of the original and use this to output its age. Note the percentage can be used to calculate the fraction $\left(\frac{Q}{Q_{0}}\right)$.

Exercise Four: The Maclaurin (or Taylor) expansion for $\sin (x)$ gives

$$
\sin (x)=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!-\ldots
$$

PART ONE

Write a program to calculate the approximation to $\sin (x)$ given by the series expansion and compare it with the exact value of $\sin (x)$, i.e compare your expansion result with the exact value of $\sin (x)$ for various values of x. Take your time over this exercise and make sure you understand what you are doing! Experiment with ranges of values of x and the number of terms n. Use an indexed ' DO ' construct that loops from ' 3 ' to ' $2 * \mathrm{n}-1$ ' with a 'stride' of ' 2 ' to give you the odd powers of ' x '. Build up the factorial inside the 'DO' loop structure as you loop ie 'fact=fact*i*(i-1)', you need the '(i-1)' as you are looping with a stride of two.
Use the 'READ*' command to input the value of ' x ' to approximate and the number of terms ' n ' you want to use for the approximation. At the end of your code print out your results as follows

```
PRINT*,'The approximation is for x=',}\textrm{x
PRINT*,'Number of terms in the approximation = ',n
PRINT*,'The approximation =',sinx
PRINT*,'The true value is =',}\operatorname{SIN(x)
```

where 'sinx' is your approximation.
HINT: Use your factorial program as a basis for this code and store your calculated factorial in a 'REAL' data type not an integer. This is because the 'REAL' data type can hold much larger numbers than the 'INTEGER' type.

PART TWO

What do you get for $x=1.2$ with 20 terms? Do you get an error? Why do you think this is? Can you think of a way to correct it? HINT how big is factorial 20 ?

