
Handout Four

March 2, 2006

1 Characters & Strings in Fortran

1.1 Declaration

In handout two of your notes (section 2.3) you were briefly shown how to declare various character types.
A table similar to the following was given as correct examples of character declarations. There are two
types of character declarations, a ‘single’ character or a ‘string’ of characters. The ‘string’ of characters is
achieved by including the (‘LEN’) length specifier to the declaration statement. You should also be aware
that when dealing with ‘CHARACTER’ types the single quote character (’)or the double quote character
(") can be used as the delimiters for the character type.

1. CHARACTER :: char1,char2,letter="I"
2. CHARACTER, PARAMETER :: a="a",b="b",c="c"
3. CHARACTER (LEN=6) :: class1=’MT3501’, class2=’MT3502’,class3=’MT3503’
4. CHARACTER (LEN=*), PARAMETER :: headline="Man United will win the league?"
5. CHARACTER (LEN=5), PARAMETER :: name="Steve"

• The first declaration declares three single ‘CHARACTER’ variables the third of which is initialised to
be the letter ‘I’.

• The second declaration statement declares three single ‘CHARACTER’ objects and declares them with
the ‘PARAMETER’ attribute setting them to the first three letters of the alphabet. Remember data
types declared with the ‘PARAMETER’ attribute can not have there contents changed anywhere in the
program, often referred to as constants.

• The third declaration statement declares three ‘CHARACTER’ string variables of length six characters.

• The fourth declaration declares a ‘CHARACTER’ string parameter. The use of the asterisk denotes
that the length of the string parameter will be determined by the compiler, this basically boils down
to you not having to count the letters and explicitly supply the number.

• The fifth and final declaration is also a ‘CHARACTER’ string parameter but the length of the string is
specified as five and the length not assumed by the compiler (note an asterisk could have also been
used here).

1.2 Concatenation & substrings

In Fortran there is only ‘one’ intrinsic operator for the ‘CHARACTER’ type and it is dyadic (requires two
operands). The operator is the ‘concatenation’ operator ‘//’ (two front slashes) and is used to append
one ‘CHARACTER’ type to another ie. "abc"//"def" takes the string "def" and appends it to the string
"abc" to give a single string "abcdef". This is made clear in the next example code.
‘Substrings’ can also be extracted from strings by indexing the strings through a pair of appended
brackets. So consider the example declaration ‘four’ above for the string parameter ‘headline’. Then
‘headline(5:10)’ would reference the fifth to the tenth (inclusive) characters of the string which would
be ‘United’. The colon can be seen as globally referencing all possible characters in the extent of the

1

string but is then limited by the integer delimiters ‘5’ and ‘10’. Consider the next bit of code, what do
you think will be printed out to screen? Try running it to check if you were correct.

Exercise One : Consider the next bit of code. what do you think will be printed out to
screen? Type it up and run it to check if you were correct. If you were wrong make sure
you work out why.

PROGRAM characters

IMPLICIT NONE

CHARACTER (LEN=*), PARAMETER :: headline="Man United will win the league?"
CHARACTER (LEN=*), PARAMETER :: fname="Steve", lname="Smith"
CHARACTER (LEN=11) :: fullname

! *** Example of concatenation of two strings ***
fullname=fname//lname
PRINT*,fullname

!*** Concatenation of a string a character and a string ***
fullname=fname//" "//lname
PRINT*,fullname

! *** Example of a substring ***
PRINT*,headline(5:10)

END PROGRAM characters

1.3 Character intrinsic functions

Fortran has a set of intrinsic functions for dealing with ‘CHARACTER’ data types. Described below are
some you may find useful.

• ‘str1=TRIM(str2)’ : Inputs a string ‘str2’ and returns a string ‘str1’ which is the same as the
input string but with any trailing blanks removed. ie TRIM("Hello ") would return "Hello". .

2

Exercise Two : Consider the following code. What do you think will be printed out to
screen? Type it up and run it to check if you were correct. If you were wrong make sure
you work out why.

PROGRAM characters2

IMPLICIT NONE

CHARACTER (LEN=*), PARAMETER :: fname="Wayne", lname="Rooney"
CHARACTER (LEN=20) :: fullname !** NOTE 20 characters!!!

fullname=fname//" "//lname !** Concatenation
PRINT*,fullname," will score in Euro-2004!"
PRINT*,TRIM(fullname)," will score in Euro-2004!"

END PROGRAM characters2

In the above exercise the character string variable ‘fullname’ is declared to have a length
of ‘20’ characters but the name ‘"Paul Scholes"’ uses only twelve of these characters, the
eight remaining characters in ‘fullname’ are trailing blanks but will still be printed to the
screen unless removed with the ‘TRIM’ function.

• ‘str1=ADJUSTL(str2)’ : Inputs a string ‘str2’ and returns a string ‘str1’ which is the same as the
input string but with any ‘leading blanks’ removed and appended as ‘trailing blanks’.

.

3

Exercise Three : Consider the following code. What do you think will be printed out to
screen? Type it up and run it to check if you were correct. If you were wrong make sure
you work out why.

PROGRAM characters3

IMPLICIT NONE

CHARACTER (LEN=*), PARAMETER :: fname=" Paul", lname="Scholes"
CHARACTER (LEN=20) :: fullname

fullname=fname//" "//lname
PRINT*,fullname," will score in Euro-2004!"
PRINT*,TRIM(fullname)," will score in Euro-2004!"
PRINT*,TRIM(ADJUSTL(fullname))," will score in Euro-2004!"

END PROGRAM characters3

In the above exercise the string ‘fname’ has been declared with a series of ‘leading blanks’.
The ‘nested’ function calls of ‘ADJUSTL’ and ‘TRIM’ are used in combination to remove all
blanks!

• ‘str1=ADJUSTR(str2)’ : Inputs a string ‘str2’ and returns a string ‘str1’ which is the same as the
input string but with any ‘trailing blanks’ removed and inserted as ‘leading blanks’.

• ‘int=LEN(str2)’ : Inputs a string ‘str2’ and returns the length of the string (Including trailing
blanks) as an integer.

• ‘int=LEN TRIM(str2)’ : Inputs a string ‘str2’ and returns the length of the string (Excluding
trailing blanks) as an integer and will have the same effect as the statement ‘int=LEN(TRIM(str))’.

• ‘int=INDEX(str1, str2)’ : Inputs two strings ‘str1’ & ‘str2’. The function checks to see if ‘str2’
is a ‘substring’ of ‘str1’. If ‘str2’ is a substring of ‘str1’ then ‘INDEX’ returns an integer which is
the starting index of ‘str2’ in ‘str1’ else it returns the integer zero.

Other intrinsic functions, for string & character manipulation, exist in Fortran but are not needed for
this course.

2 The ‘PRINT’ Statement In Detail

So far some of your programs will, at most, have produced a rudimentary table of numbers. You can
create programs that produce better looking output by using some of the formatting features of the
‘PRINT’ statement. In all the examples so far you have created output by using the command ‘PRINT*’.
The asterisk tells the code to write the output using Fortran’s default formatting. This is called ‘free
format’ output. The default formatting rules are not always the best way to look at the output so you
need to know how to control the output format. You can replace Fortran’s default ‘free format’ formatting
with your own by replacing the asterisk with a ‘formatting string’. There are a lot of options available
for formatting output.

4

2.1 Descriptor Symbols

A formatting string is built up of descriptor statements and/or sub-strings to be written to the output
device, normally the screen. A descriptor statement is a group of characters that allow you format a
particular data item. You can tailor the structure of the data output to your taste to improve the visual
appearance. For the purpose of this course the output will be to the screen or to a text file. The common
descriptor symbols are given in the table below.

• ‘d’ - Number of digits to the right of decimal place of a real

• ‘m’ - Minimum number of ‘digits’ to be displayed

• ‘n’ - Number of spaces to skip

• ‘r’ - Repeat Count No of times a descriptor is to be repeated

• ‘w’ - Field Width Number of characters wide to use for data

2.2 The ‘INTEGER - I -’ Descriptor

This takes the form ‘rIw.m’ where the meanings of r, w and m are given in section 2.1. Integer values are
right justified in their fields. If the field width is not large enough to accommodate an integer then the
field is filled with asterisks. Not all the descriptor symbols have to be used in a descriptor statement.
Typical usage would be in a statement like:

PRINT "(3I6)",i,j,k

Which would print each of the ‘INTEGERS’ i,j and k in fields of width six characters.

2.3 The ‘REAL - F -’ Descriptor

This takes the form ‘rFw.d’ where the meanings of r, w and d are given in section 2.1. Real values are
right justified in their fields. If the field width is not large enough to accommodate the real number then
the field is filled with asterisks. Not all the descriptor symbols have to be used in a descriptor statement.
If a ‘d’ symbol is given and then the real number will be rounded off if necessary (not truncated) or
padded with zeros if there are not enough digits. Typical usage would be in a statement like:

PRINT "(F12.3)",pi

Which would print the constant ‘pi’ in a field of width 12 characters with three decimal places.

2.4 The ‘REAL - E -’ Descriptor

Real numbers in fortran can be displayed in exponential notation. This is where a number is displayed
as a value between 0.1 and 1 (with appropriate sign) and multiplied by a power of 10. The ‘E’ descriptor
statement takes the form ‘rEw.d’ where the meanings of r, w and d are given in section 2.1. Real values are
right justified in their fields. If the field width is not large enough to accommodate the real number then
the field is filled with asterisks. Not all the descriptor symbols have to be used in a descriptor statement.
If a ‘d’ symbol is given and then the real number will be rounded off if necessary (not truncated) or
padded with zeros if there are not enough digits. You have to be more careful when working with ‘E’
descriptors regarding the ‘w’ width symbol. For example to print out a real with four decimal places a
field width of at least eleven is needed. One for the sign of the mantissa, two for the zero, four for the
mantissa and two for the exponent itself ie.

-0.xxxxExx

In general the width field must satisfy the expression

w ≥ d + 7

Typical usage would be in a statement like:

5

PRINT "(E10.3)",123456.0

which gives

‘0.123E+06’

2.5 The ‘REAL - ES -’ Descriptor

This takes the form ‘rESw.d’ where the meanings of r, w and d are given in section 2.1. The ‘E’ descriptor
described above differs slightly from the traditional well known ‘scientific notation’. Scientific notation
has the mantissa in the range 0.1 to 1.0. The ‘ES’ form is the same as the traditional ‘scientific notation’
regarding its mantissa, otherwise, it is identical to the ‘E’ form above. Real values are right justified in
their fields. If the field width is not large enough to accommodate the real number then the field is filled
with asterisks. Not all the descriptor symbols have to be used in a descriptor statement. If a ‘d’ symbol
is given and then the real number will be rounded off if necessary (not truncated) or padded with zeros
if there are not enough digits. You have to be more careful when working with ‘ES’ descriptors regarding
the ‘w’ width symbol. In general the width field must satisfy the expression

w ≥ d + 7

Typical usage would be in a statement like:

PRINT "(E10.3)",123456.0

which gives

‘1.235E+05’

2.6 The ‘CHARACTER - A -’ Descriptor

This takes the form ‘rAw’ where the meanings of r and w are given in section 2.1. Character types are
right justified in their fields. If the field width is not large enough to accommodate the character string
then the field is filled with the first ‘w’ characters of the string. Not all the descriptor symbols have to
be used in a descriptor statement. Typical usage would be in a statement like:

PRINT "(a10)",str

Which would print out the character string ‘str’ in a field width of 10 characters.

2.7 The ‘Space - X -’ Descriptor

This takes the form ‘nX’ where ‘n’ is the number of desired spaces.
Typical usage would be in a statement like:

PRINT "(5X, a10)",str

Which would print out five blank spaces then the character string ‘str’ in a field width of 10 characters.

2.8 The ‘Newline - / -’ Descriptor

This takes the form ‘/’ and forces the next data output to be on a new line. Typical usage would be in
a statement like: PRINT "(/,5X, a10)",str

Which would print out a blank line then five blank spaces then the character string ‘str’ in a field width
of 10 characters. NOTE how descriptor statements are separated with commas in the format string!!!

6

’

Exercise Four : Type in the example code below and work out
what is happening with the help of the explanations in the bullet
points following the code.

PROGRAM output_formats

IMPLICIT NONE

REAL :: c = 1.2786453e-8, d = 0.6574893e2
INTEGER :: n = 200289, k = 45, i = 2
CHARACTER (LEN=5) :: str="Hello"

!*** Example of PRINT statements. Explanations in main text below.
!*** Note the next to lines are to help you judge which column
!*** the output is in on the screen.

PRINT "(’ 5 10 15 20 25 30 35’)"
PRINT "(’----|----|----|----|----|----|----|’)"

PRINT "(i6)", k
PRINT "(i6.3)", k
PRINT "(3i10)", n, k, i
PRINT "(i10,i3,i5)", n, k, i
PRINT "(a10)",str
PRINT "(f12.3)", d

PRINT "(’----|----|----|----|----|----|----|’)"

PRINT "(e12.4)", c
PRINT ’(/,3x,"n = ",i6, 3x, "d = ",f7.4)’, n, d

END PROGRAM output_formats

Note that ALL of the formatting information is enclosed in par-
entheses and then held in a string.

• ”(i6)” means that an integer is going to be written and 6 columns are set aside to write the integer
into. Always make sure that you have enough columns set aside for the integer to fit into and note
that if the integer uses less than six columns then it is right justified, that is its right most digit is
in the sixth column!

• ”(3i10)” means that 3 integers are going to be written and each is going to have 10 columns set
aside for it. Since none of the integers are that long each is placed as far right in these 10 columns
as they can go i.e. right justified.

• ”(i10, i3, i5)” means that the first integer is going to be placed into 10 columns, the second
into 3 and the last into 5.

7

• ”(a10)” means ‘CHARACTER’ data is to be output in a right justified field of 10 columns.

• ”(f12.3)” : here the ‘f’ means that it’s a floating point number i.e. a real number. 12 columns
will be allocated for the display of the number in its natural form with 3 digits after the decimal
place e.g. 0.6574893e2 would be written as 65.748. The number is truncated after the 3rd decimal
place.

• ”(e12.4)” : the e also means that the number is a real number but this time the output will be in
exponential format. This means that the output will be in 12 columns and to 4 significant figures
e.g. 1.2786453e-8 is output as 0.1279E-07. Note that here although there are only 4 significant
figures in the mantissa a minimum of 10 columns are needed.

• ’(/,3x,"n = ",i10, 3x, "d = ",f12.4)’ : here the ‘/’ (front-slash) means start a new line
before outputting the next item. Both 3x’s mean leave 3 blank spaces. The i10, f12.4 have been
explained above. Anything enclosed by " " in a format statement is written to the output exactly
as written. Note that the symbol " is not the same as typing ’ twice but is a separate character.
You get this symbol by holding down the shift (⇑) key and pressing the quotes key (top left of the
shift key). As a result the last ‘PRINT’ statement will produce n = 200289 d = 65.7489.

Common errors are not allowing enough columns and trying to write a real number using an integer
format etc. so be careful about these points.

Exercise Five : : Copy your McLaurin (sin(x)) series code into your ‘handout4/exercise5’.
Change it so that it prints out at each iteration the number of terms used so far, the approximation
and the error in the approximation. Also before any iterations, print out headings for the columns.
Your output should look similar to the output below.

Enter the value of x you require:
3.0
Enter the number of terms you require:
10

Terms Approx Error

1 3.000000 2.85888
2 -1.500000 1.64112
3 0.525000 0.38388
4 0.091071 0.05005
5 0.145313 0.00419
6 0.140875 0.00025
7 0.141131 0.00001
8 0.141120 0.00000
9 0.141120 0.00000

10 0.141120 0.00000

The approximation is for x = 3.000000
Number of terms in the approximation = 10
The approximation = 0.141120
The true value is = 0.141120

8

