
Handout Five

March 13, 2006

1 Internal Functions & Subroutines

The main program unit can ‘contain’ two types of, what can be described as, sub-programs. Sub-programs
can be used to beak up a large program and structure it into a more ‘readable’ and less messy form.
They can be repeatedly called to execute a series of statements that describe an often used task. This
saves typing a sequential set of statements repeatedly in your code. Sub-programs, or procedures as they
are often called, come in two different forms a ‘SUBROUTINE’ or a ‘FUNCTION’. They are positioned inside
the main program unit after the program execution statements and after a ‘CONTAINS’ statement. The
following now details the syntax of the main program unit.

PROGRAM <name>

< Specification section >
< Executable Statements >

CONTAINS
!*** Internal Procedures Follow

< Internal Procedure One >
< Internal Procedure TWO >
: : :

< Internal Procedure n >

END PROGRAM <name>

1.1 Subroutines

A subroutine, just like the main program, must have a ‘name’ and this name is used to ‘call’ the subroutine
during program execution. Inside the subroutine you can declare data types just as you have been doing
in the specification section of the main program unit. You can pass information from the main program

1

to the subroutine through an ‘argument list’ to the subroutine.

Exercise One : An example of a simple subroutine without any arguments is given below.
In ‘handout5/exercise1’ directory type in and compile the following code.

PROGRAM internal1
! **** Example of a Program with an internal subroutine

IMPLICIT NONE

REAL :: a,b,c

CALL calc
PRINT ’("Answer = ",f10.4)’,c

CONTAINS

SUBROUTINE calc
PRINT*,"Enter number one"
READ*,a
PRINT*,"Enter number two"
READ*,b
c=SQRT(a**2+b**2)

END SUBROUTINE calc

END PROGRAM internal1

The program has one procedure in the form of a subroutine called ‘calc’. The main program unit declares
three ‘REAL’ data types a,b & c and then calls the subroutine ‘calc’ using the Fortran keyword ‘CALL’.
Then program execution moves into the subroutine ‘calc’ which prompts the user to input the two
variables a & b and then calculates

√
a2 + b2. Execution then moves back into the main program (after

the ‘CALL calc’) and continues on the next line where the result of the calculation is written to the
screen. If we wanted to we could call ‘calc’ many times from the main program execution section. This
would of course be useful if we needed to calculate ‘SQRT(a**2+b**2)’ several times.

1.2 Argument lists

The example code above ‘internal1’ can also be written so it uses an argument list to pass the variables
a, b & c through to the subroutine calc. This is done by appending a pair of brackets to the subroutine
name in the ‘CALL’ statement, and the arguments placed inside the brackets as a comma separated list.
The arguments are received into the procedure declaration in the same way using parenthesis. The
variables that are received into a procedure in this way are called ‘dummy variables’. See the example

2

below;

Exercise Two : In a ‘handout5/exercise2’ directory copy the code from ‘exercise1’ edit
it to the following code and compile.

PROGRAM internal2
! **** Example of a Program with an internal subroutine

IMPLICIT NONE

REAL :: a,b,c

CALL calc(a,b,c)
PRINT ’("Answer = ",f10.4)’,c

CONTAINS

SUBROUTINE calc(a,b,c)
REAL :: a,b,c !*** Dummy variable declaration

PRINT*,"Enter number one"
READ*,a
PRINT*,"Enter number two"
READ*,b
c=SQRT(a**2+b**2)

END SUBROUTINE calc

END PROGRAM internal2

Notice that the dummy arguments in the subroutine have the same name as the actual
arguments passed out of the main program. This does not need to be the case and they could
have been given completely different names. If using internal procedures it is recommended
to always pass variables from the program unit through to the procedure and declare the
dummy variables with the same names as those in the calling program unit (in this case the
main program). This prevents you being able to access the same variable via two different
names, one name from the main program and also one from the dummy argument name
passed through the argument list.

1.3 Local, Dummy Variables & Call by Reference

• Local Variables : are variables that have NOT been passed into a program unit are and are
declared inside that program unit. This means they are local only to the program unit where they
were initially created. So variables declared in the main program unit are called local variables in
that unit.

• Dummy Variables : are variables that can only exist in procedures. They are accepted into
the procedure via an argument list. The ‘dummy argument list’ in the procedure’s header does not
have to declare the variable with the same name as that in the calling argument list e.g.

3

CALL calc(a,b,c)

SUBROUTINE calc(d,e,f)

Dummy variables ‘always’ have an associated ‘local variable’ declared in another program unit
elsewhere in the code. They can be seen as an alias to this local variable.

• Call by Reference : In fortran when you pass a variable name through an argument list from
the calling unit to a procedure you are actually passing the address in memory (memory location)
where the computer stores the value of the variable. This means that fortran does NOT make a
new copy of the variable for the procedure being called instead the procedure accepts the address
of the local variable passed in from the calling program unit. The address is then used to create a
dummy variable which in turn can directly access the value or make changes to the original local
variable it is associated with. So, whenever you use a dummy variable it is identical to using the
local variable associated with it from the calling program unit. Therefore, any changes you make to
the dummy variable will also be made to the associated variable from the original calling program
unit.

• Call by Value : Fortran does not use call by value but uses instead ‘call by reference’ explained
above. There are other languages that use call by value “c” and “c++” are two which spring to
mind and use ‘Call by Value’ as their default method for passing arguments to ‘sub-programs’. In
call by value a new copy of every variable in the argument list is made for the procedure being called
and any changes made to the variables are not passed back into the calling procedure. Some ‘Call
by Value’ implementations allow the programmer to force the variable to be copied back afterwards
but this is a example of poor programming methodology!

• Advantages of Call by Reference : Why does fortran use ‘Call by Reference’? Remember
fortran is designed for numerical computation! This demands speed and efficiency. ‘Call by Ref-
erence’ is very much faster than ‘Call by Value’ especially when using massive multi dimensional
arrays. ‘Call by Reference’ also uses far less memory, this is because the code is not creating a new
copy of every variable being passed in through the argument list.

1.4 Scope

In the example code ‘internal2’ above the variables a,b & c are declared in the main program. They
are however ‘visible’ in any internal procedures of the main program unit unless some variables of exactly
the same name are declared locally in the internal procedure. By ‘visible’ we mean the variable’s value
can used and/or changed. This range of visibility of the variables a,b & c is referred to as their scope. It
is often desirable to limit the scope of data objects and this can be done using Fortran ‘modules’ which
we will cover later in the course. Until then when using internal procedures it is a good idea to pass
any data objects that are needed in the procedure through as arguments to that procedure. This makes
the procedure more ‘independent’ and ‘self contained’ and could be transferred to other codes without
needing modification. Also note that any variables declared locally in an INTERNAL procedure that
have the same name as a declared variable in the main program unit (‘NOTE’ Not dummy variables) will
supersede the data in the main program unit. By superseding we mean that the variable in the internal
procedure has absolutely nothing to do with the variable of the same name in the calling program unit.

4

Consider the example below

Exercise Three : In a ‘handout5/exercise3’ directory copy the code from ‘exercise2’
edit it to the following code and compile.

PROGRAM internal3

IMPLICIT NONE

REAL :: a,b,c ! ! *** Declare Local a,b,c to main program unit

PRINT*,"Enter number one"
READ*,a
PRINT*,"Enter number two"
READ*,b

CALL calc(a,b,c)

PRINT ’(/,"IN MAIN PROGRAM"," a =",f5.2," b =",f5.2," c=",f5.2)’,a,b,c

CONTAINS

SUBROUTINE calc(d,e,f)

REAL :: d,e,f ! *** Dummy variables
REAL :: a,b,c ! *** Declare a,b,c local to subroutine

f=SQRT(d**2+e**2)
a=d/2 ; b=e/2 ; c=f/2
PRINT ’(/,"IN SUBROUTINE "," a =",f5.2," b =",f5.2," c=",f5.2)’,a,b,c

END SUBROUTINE calc

END PROGRAM internal3

The variables a,b & c are declared as local in both the main program unit and the internal
subroutine calc. The variables are now read from the keyboard into the main program,
however changing the value of a,b & c in the subroutine has no effect on the value in the
main program. This is because a,b & c in the subroutine supersede a,b & c in the main
program and are separate local objects.

.

5

Exercise Four : In a ‘handout5/exercise4’ directory copy the code from ‘exercise3’
edit it so the subroutine ‘calc’ looks like it does below.

SUBROUTINE calc(d,e,f)

REAL :: d,e,f ! *** Dummy variables

f=SQRT(d**2+e**2)
PRINT ’(/,"[1] IN SUBROUTINE "," a =",f5.2," b =",f5.2," c=",f5.2)’,a,b,c
a=d/2 ; b=e/2 ; c=f/2

PRINT ’(/,"[2] IN SUBROUTINE "," a =",f5.2," b =",f5.2," c=",f5.2)’,a,b,c

END SUBROUTINE calc

Do you notice any difference in the results. If so why?

1.5 Functions

Functions behave identically to subroutines except, as suggested by their name, they return a value. This
value is returned to the calling program unit using the functions name. The function name is declared
as a data-type inside the body of the function just as you would any other variable. Inside the function
the function name is then assigned the value that needs to be returned to the calling program unit. As a
function returns a value it could be used in a mathematical expression, just like an intrinsic function ie
SIN(x), or in a ‘PRINT’ statement. The simple program used earlier, to demonstrate how a subroutine
works, could be written as a function in the following way.

6

Exercise Five : In a ‘handout5/exercise5’ Copy the code from exercise two and edit it
to use a function instead of a subroutine.

PROGRAM internal5
! *** Program to demonstrate a function
IMPLICIT NONE

REAL :: a,b,c ! *** Declare a,b,c

PRINT*,"Enter number one"
READ*,a
PRINT*,"Enter number two"
READ*,b

c=calc(a,b)

PRINT ’("Answer = ",f10.4)’,c

CONTAINS

FUNCTION calc(d,e)

REAL :: d,e ! *** Dummy variables
REAL :: calc ! *** Local Variables

calc=SQRT(d**2+e**2)

END FUNCTION calc

END PROGRAM internal5

1.6 The ‘INTENT’ attribute

As mentioned in ‘handout2’ variable declarations can have ‘attributes.’ Dummy variables in a function
or subroutine can be given an ‘INTENT’ attribute in their declaration statement. This is useful as it allows
us to provide more information to the compiler with respect to what the dummy variable is intended for
in the procedure. This allows the compiler to do more checking and maybe in some situations produce
faster code. From now on you should use these attributes in ALL your programs that have procedures!!
There are three possibilities for the ‘INTENT’ attribute.

1. ‘INTENT(IN)’ : This means that the variable must have been assigned a value before the subroutine
or function is called. Also the subroutine or function is not allowed to change that value.

2. ‘INTENT(OUT)’ : The dummy argument must not be used inside the procedure until it has been
assigned a value inside the procedure.

3. ‘INTENT(INOUT)’ : The dummy argument must hold a value on entry into the procedure and that
value may be changed by the procedure.

7

So for example the internal5 example program above could use the INTENT attribute inside its function
as follows;

REAL, INTENT(IN) :: d,e ! *** Dummy variables

1.7 Assumed shape arrays

Arrays can be passed to procedures just as any other data object. One of the neatest ways to do this is
using an ‘assumed shape’ in the dummy argument declaration. This is done in the ‘DIMENSION’ attribute
part of the declaration. For each rank in the ‘DIMENSION’ attribute, instead of explicitly giving a size
for that dimension a colon is explicitly written instead. Please do exercise six on the next page before
reading the next section.

1.8 Automatic arrays

Arrays, inside a procedure, can also be declared where their extent in any dimension can depend on
dummy arguments. These are called automatic arrays ie.

FUNCTION example(mat1,mat2,m,n)
REAL, DIMENSION(:,:), INTENT(IN) :: mat1 !** Dummy
REAL, DIMENSION(:,:), INTENT(IN) :: mat2 !** Dummy
INTEGER :: m,n !** Dummy

REAL, DIMENSION(SIZE(mat1,1),SIZE(mat2,2)) :: mat3
REAL, DIMENSION(m,n) :: mat4

So the local array ‘mat3’ is declared such that its extent in the 1st dimension is the same as the extent of
the 1st dimension of the dummy variable ‘mat1’ and its extent in the 2nd dimension is the same as the
extent of the 2nd dimension of the dummy variable ‘mat2’

The ‘SIZE’ function

The ‘int=SIZE(arr,dim)’ function returns an integer that holds the extent in the dimension dim of the
array arr. This is very useful as it can be used in local declarations to base the extents of local arrays
on the size of dummy variables.

8

Exercise Six : In a ‘handout5/exercise6’ Type in the following code to demonstrate the
use of assumed shape arrays.

PROGRAM assume
! *** Example Program to demonstrate assumed shape arrays

IMPLICIT NONE

INTEGER :: i,j
INTEGER, PARAMETER :: m=5,n=6
REAL, DIMENSION(m,n) :: array ! Create an array
REAL :: ans

DO i=1,m ! *** Assign the array elements a value
DO j=1,n
array(i,j)=i+j !** Value equals sum of indices.

ENDDO
ENDDO

ans=sumarr(array,m,n)

PRINT ’("Summation of all elements = ",f10.4)’,ans

CONTAINS

FUNCTION sumarr(aa,k,p)

REAL, INTENT(IN), DIMENSION(:,:) :: aa ! *** Dummy variable
INTEGER, INTENT(IN) :: k,p ! *** Dummy variables
REAL :: sumarr !** Function declaration

sumarr=0 ! *** Set initially to be zero
DO i=1,k
DO j=1,p

sumarr=sumarr+aa(i,j)
ENDDO

ENDDO

END FUNCTION sumarr

END PROGRAM assume

.

9

Class Project :: Part Two : In a new directory ‘class project/part2’ copy your code from
‘class project/part1’ and edit it so that the array input, output and array multiplication are
all done in appropriate separate procedures. Call the three required procedures MULMAT, GETMAT
& OUTMAT.

Hints :

1. You should make use of automatic arrays and the SIZE function.

2. Build the new code up bit by bit. ie. write the GETMAT (function to read in a matrix) first
and make sure it works before going on to the MULMAT function

10

