Handout Six

March 21, 2006

1 Fortran 90 Modules

So far you have only been introduced to one type of ‘program unit’, that is, the main program unit. At
first, in the main program unit, you were shown how to write simple executable code and then later how
to use a ‘CONTAINS’ statement to include your own functions and subroutines. There is another form of
program unit in Fortran 90 and it is called a ‘MODULE’. A module has a range of applications in Fortran
90 and it is good practice to use them. A module can be seen as a related collection of entities that can
be made available to one or more other program units. In this case an entity could be data, functions or
subroutines. So, for example, you could have a module that contains all the ‘functions’ and ‘procedures’
you have written that relate to matrices. This matrix module could then be ‘USED’ by any other program
you write that makes use of matrices, this provides a neat and structured way of including code you have
already written into new code.

1.1 The structure of a module

like a program unit a module has a ‘typical’ structure. This structure is similar to the main program
unit.

MODULE <module name>
<USE [other modules]>
IMPLICIT NONE

<Specification Section>

CONTAINS

<module procedure one>
<module procedure two>

<module procedure n >

END MODULE <module name>

A module has its own name like any other program unit.

e A module can also make use of any entities in other modules, so you could have a ‘USE’ statement
between the module header and the ‘IMPLICIT NONE’ statement.

A module has its own ‘IMPLICIT NONE’ statement.

In the specification part of a module you can declare any data that you want to be ‘globally’ visible
to all the procedures defined later in the module.

e A module can contain functions and subroutines just like a main program unit by placing them
between a ‘CONTAINS’ statement and the ‘END MODULE’ statement.

e Modules are compiled separately from the main program unit so you should put them in a separate
file. You can group more than one module in a single file but in most cases it is sensible to use a
separate file for each module. So, for example, you could call the matrix module ‘matrix mod.f90’.

1.2 Making ‘USE’ of a module

The last section explained what a fortran ‘MODULE’ is, explained its structure and how to write one in
fortran 90 code. In this section you will learn how to ‘USE’ a fortran module in your programs so you can
gain access to its ‘SUBROUTINES’, ‘FUNCTIONS’ and data.

Any declared entities in a module that are intended to be used externally can be accessed by Fortran
90’s ‘USE’ statement. The ‘USE’ statement can be included in any program unit, function or subroutine
of a Fortran 90 code. Its syntax can be described in two forms.

1.2.1 The simple ‘USE’ statement

USE <module_name>

This makes accessible all the available entities of the module, so every procedure or item of data
declared in the module would be made available. So in an example code this would look like,

PROGRAM modtest

Ixx* Get access to "fact" and "bisect" in module
USE moduletest

IMPLICIT NONE

REAL :: fact_local

LOGICAL :: bisect_local=.TRUE.
INTEGER :: a=b5

REAL :: b=0,c=1

fact_local=fact(a)
IF (bisect_local) CALL bisect(b,c)

END PROGRAM modtest

Note that the ‘USE’ statement is included before the ‘IMPLICIT NONE’ statement.

In some cases this could cause problems, if a local data type in the main program was declared with
the same name as an entity declared in the specification section of a module it was using, this would
cause a name conflict. For example if we had a module that ‘CONTAINS’ a procedure called ‘fact’ and a
subroutine, that has a data type declared with the name ‘fact’, then ‘USE’ of this module as in the line
above will result in a conflict! To get round this problem Fortran 90 uses a re-name symbol ‘=>’ as in;

USE <mod_name>, <new_local_ name> => <new_name_mod>[, <new_local name2 > => <new_name_mod2>]

The small example program below uses the module ‘moduletest’ and renames the function ‘fact’ in the
module to be called ‘factorial’ locally. It also renames the subroutine ‘bisect’ in the module to be

called ‘bisection’ locally. It does this as both ‘fact’ and ‘bisect’ already exist as local variables in the
main program unit and hence avoids any name conflicts!

PROGRAM modtest
USE moduletest, factorial => fact, bisection => bisect
IMPLICIT NONE
REAL :: fact
LOGICAL :: bisect=.TRUE.
INTEGER :: a=b
REAL :: b=0,c=1

fact=factorial(a)
IF (bisect) CALL bisection(b,c)

END PROGRAM modtest

1.2.2 The ‘USE, ONLY :’ statement

It is clear that it would be advantageous if there was a way to ‘select’” which entities we would like ‘USE’
from a module. Not surprisingly there is an easy way of doing this and it involves including the ‘ONLY’
attribute inside the ‘USE’ statement.

USE <module_name>, ONLY : <namel>[<name2>,.....]

So for the above example we could have.

USE moduletest, ONLY : fact, bisect

Note that the renaming ‘=>’ can also be used in the comma separated list, for example

USE moduletest, ONLY : factorial => fact, bisection => bisect

This means we make available from the module ‘moduletest’ only the entities fact and bisect and, in

the process, rename them locally factorial and bisection.

1.3 Modules used to hold common data

Modules can be used to pass data between program entities. This is done by declaring the commonly
used data in the specification section of the module. It is then simply included in the desired procedure

or program unit using the ‘USE’ statement.

MODULE commondata
IMPLICIT NONE
SAVE
REAL :: pi=3.14159
INTEGER :: married=10, age=45
END MODULE commondata
D koo ok ok KoKk ok ok ok ok ok ok ok ok o o o o K K KKK oK oK oK ok ok ok ok ok ok o o o K K K oK oK oK oK ok ok ok ok ok ok ok o o K K
PROGRAM example
USE commondata, ONLY : age, married, pi
IMPLICIT NONE
PRINT*,age,married,pi

END PROGRAM example

This method of common data transfer between different sections of code should be not be liberally used
instead of argument lists. However, it is often the case that many argument lists in the same code can
get very long and complicated and full of the same common data elements. It is in cases like this that
common data can be passed to the different sections through modules in this way.

Note that following the ‘IMPLICIT NONE’ statement there is a ‘SAVE’ statement. This is recommended in
Fortran 90 to avoid the data being forgotten by the module! You should always include it in a module
when you declare data.

1.4 An Example Code

MODULE series_routines !s***x example module ****x*
IMPLICIT NONE

CONTAINS
FUNCTION expand_sine(x) !*** Finds series expansion

REAL, DIMENSION(:) :: x
REAL, DIMENSION(SIZE(x)) :: expand_sine

expand_sine=x-x*+*3/factorial (3)+x**5/factorial(5)-&
x**x7/factorial (7)+x**9/factorial (9)

END FUNCTION expand_sine

D skokoskookok ok ook ok ok o ok ok ok ok s ok ok sk ok ok sk sk sk ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok sk ok ok ok ook ok ok ok ok ok ok ok
FUNCTION factorial(n)
Ix%* calculates factorials

INTEGER, INTENT(IN) :: n
REAL :: factorial, a
INTEGER :: i

a=1.0
DOi=1,n
a = axi
END DO
factorial=a

END FUNCTION factorial
END MODULE series_routines
I sksrookokokokskokokok sk skokosk ok ok skokosk ok skskok ok skeskook sk ok skskok sk ok skskok ok skskok ok sk skok ok ok ok ok
PROGRAM sine_expansion

USE series_routines, ONLY : expand_sine

IMPLICIT NONE

REAL, PARAMETER :: pi = 3.14159265359
REAL, DIMENSION(20) :: x, series

INTEGER :: i

DO i=1,20 !xxx Define the range of x values to use
x(1)=2.0%pi*(i-1)/ 19

END DO

series=expand_sine(x) !**x*x sin(x) up to five terms
!**x*x* Prints the results to the screen
PRINT’ (2e12.4)’, (x(i), series(i), i = 1, 20)

END PROGRAM sine_expansion

NOTE in the code that the function ‘expand_sine’ uses the expression

5

expand_sine=x-x**3/factorial (3)+x**5/factorial (5)-x*x7/factorial (7)+x**9/factorial(9)

This is an example of array arithmetic, there is nothing complicated here. Arrays of the same shape
and size can be added together, subtracted from each other and raised to a power just like scalar numeric
data types. When array arithmetic takes place like this each element in each operand operates on the
corresponding element in the other operand. This is often referred to as an array element by element
operation, for example.

(1,2,4,3)+(2,5,2,1)=(3,7,6,4)
(2,1)x(4,2)=(8,2)

If for example ‘matl, mat2 and mat3’ were matrices of the same size and shape then the following would
be legitimate operations in fortran 90.

matl=mat2+mat3
matl=mat2-mat3
matl=mat2*mat3

NOTE the expression ‘mat2+*mat3’ is NOT the same as normal matrix multiplication i.e. as done by the
intrinsic function ‘MATMUL’. Instead each element in ‘mat2’ is multiplied by the corresponding element in
‘mat3’ and the result stored in the corresponding element of ‘mat1’. If an array is operated on by a scalar
then the scalar operates on all the elements in that array eg.

(1,2,3)%3=(3,6,9)

The above code demonstrates how you can use Modules to build a code in a modular fashion. You can
copy this code, and any files needed to compile it, to a directory in your home area by typing

cp /info/examples/sinmod/* .

[

in the directory you want to copy the files to. Do not forget the dot (‘.”) at the end to indicate you want
the file to be copied to the directory you are sitting in. To compile and run the code you will have to
read the next section that introduces the ‘Makefile’ at a very basic level.

1.4.1 Compiling more than one file : ‘Makefile’

If you copied the files as directed in the above section you will now have in the directory a file called
‘Makefile’. This file allows you to compile the two source code files and link together the object files
(created by the compilation) into a single executable by just using a single command ‘make’. Try it,
just type ‘make’ and hit [Return]. You can look at the file ‘Makefile’ in ‘pico’. You do not need to
understand any of the main part you just have to know how to change the first section that contains the

lines ‘main=sin_main’ and ‘modl=sin_module’.

L s s s s s s s s s s s s s s s s s s
REPLACE the main_prg_name below with the name of

your main program without the ".f90" extension

REPLACE the module_name below with your module

name without the ".f90" extension

PROGRAM NAME (no .£f90)

main=sin_main

MODULE NAME (no .£90)

modl=sin_module

HEHBHHAFHEHAFH AR B HAFHEH B SR EFHEH RS HAFHEH RS R AR RS H RS R H RS T
cmplr=£90

objectsl = $(modl) .o $(main).o

$(main) : $(objectsl)
$(cmplr) -o $(main) $(objectsl)

$(mod1) .0 : $(mod1) .£90
$(cmplr) -c $(modl).£90

$(main) .o : $(main).f90 $(modl).£f90
$(cmplr) -c $(main).f90

clean :
rm -f *.mod *.pcl *.pc *.o0 $(main) *.inc *.vo *.d

The ‘Makefile’ contains ‘required’ tabs at the beginning of certain
lines so please copy ‘cp’ this file around instead of typing it in
yourself!

This makefile will compile and link any code that has a main program file and a module. At the
moment the ‘Makefile’ is setup for a main program file called ‘sin_main.f90’ and a module file called
‘sin_module.f90’. You will want to compile and link codes that have different names for the main
program unit and the ‘Makefile’. To do this you must copy the ‘Makefile’ to the directory containing the
main program file and the module it uses. Then change the lines ‘main=sin main’ and ‘mod1=sin module’
to ‘main=<newnamel>’ and ‘modl=<newname2>’. Where ‘newnamel’ and ‘newname2’ are your main
program file name and your module file name without the ‘.f90’ extension.

1.5 Some reasons for using Fortran 90 modules

e Modules help organise programs into groups of related procedures.
e Modules help keep the main program file at a tidy manageable size.

e Modules allow for better ‘data protection’ by limiting the scope of main program variables.

e Modules can be used to provide commonly used data to different program units and procedures.

Class Project :: Part Three :

Create a new directory for your matrix library code and copy your class project fortran file into it,
this is so you will still have a copy of the old one. Rearrange your matrix fortran source code file
into two ‘new’ files, one main program file and the other a ‘MODULE’ file containing all the procedures
you have written so far. Call the module ‘matrix mod.f90’ and in addition to the procedures you
have already written, add the two following procedures to your ‘matrix_mod.f90’ file.

— Write a Function called ‘transmat’ to return the transpose of a matrix. The transpose of a
matrix A is written A" and is simply A with the rows and columns swapped round. So row
one in Al is column one in A etc.

— Write a Function called ‘normtwo’ to return the Euclidean norm, (|| v||z) of a vector v. The
Fuclidean norm is often referred to as the length of a vector and is the square root of the sum
of the squares of all the elements in the vector.

— Write a Function to return the Infinity norm, (]| v ||) of a vector v. The || v || is simply the
modulus of the element in v with the largest absolute value.

Let A be an m x m real matrix with m real eigenvalues. Moreover, assume that A has precisely one
eigenvalue (A1) that is ‘dominant’ (largest in absolute magnitude) with a corresponding eigenvector
(x). Then x and A; can be calculated using the ‘power method’ for approximating eigenvalues.
The ‘power method’ is an iterative method and calculates a new estimate of the eigenvector x(*+1)
from the previous estimate x(").

[Q] How does the ‘power method” work?

X = c€1V]+cvat,...... s +FemVim (1)

Ax = g MVi+ vt ... s FCmAmVim (2)

A(Ax) = A’x = A2vi+cAvot, ... s FCm A2 Vi (3)
A"x = ATV 4 cA\vaot, ... s FemA Vin (4)

The equations 1 — 4 show how repeatedly premultiplying x with A builds up the m terms involving
the m eigenvectors. Now since the first term on the RHS of (4) contains A1, the dominant (largest
in absolute value) eigenvalue, as n gets larger this first term will start to dominate the other terms
in absolute value. So the RHS will eventually converge to our dominant eigenvector as the first
term containing v; is providing the largest contribution to the summation. There is a problem,
however, that as n gets large A" gets very large in fact too large for the computer to accurately
represent its value. So, to solve this problem, after each time we premultiply by A we normalise the
result to keep our new estimate of the dominant eigenvector of order one. Remember that dividing
an eigenvector by a scalar still leaves the same eigenvector but simply rescaled.

The main iterative body of power method can be written as;

— Take a normalised estimate of the eigenvector x(™ and calculate y(™ = A - x(").

— Calculate the new estimate of the dominant eigenvalue)\gn) = y}cn)/xlin), where k € {1,2,..,m}

— Calculate the new normalised (n + 1)** estimate of the dominant eigenvector from the (n)*"

estimate of y

(n+1) _ y(n)

< __yv
| y™ [loo

— Repeat the above three steps until a termination criterion has been satisfied. Note that x(™)
means the n? iterative estimate not x raised to the power n.

(a) In your matrix library* MODULE’ add three Fortran 90 procedures, described in (i),(ii) and (iii)
below, that together can be used to implement the ‘power method’.

(i) First write a ‘FUNCTION’ called ‘infnorm’ that calculates and returns the ‘infinity’ norm
of a vector v € R™. The infinity norm, || v ||, is simply the modulus of the element in v
with the largest absolute value.

(ii) Write a ‘FUNCTION’ called ‘cont’ that accepts only the four dummy arguments
‘(y,x,tol,max_iters)’

and returns ‘.FALSE.’ if a given tolerance has been met or a maximum number of iterations
has been exceeded else it returns ‘. TRUE.’. Use for the tolerance condition,

| () — x| < tol

use tol = 0.001.
HINT : Declaring a variable inside a procedure with the attribute ‘SAVE’, means that the
value of that variable will be retained between calls to that procedure.

INTEGER, SAVE :: count=1

declares ‘count’ to be initialised with the value ‘1’ only on the first call to the procedure
it is declared in, from then on it retains its value between calls.

(iii) Write a ‘SUBROUTINE’ called ‘power’ that has as its argument list;
(mat,x,tol,eigv,conv)

Where ‘mat’ is the matrix for which the dominant eigenvalue is to be found, ‘x’ is to
input the initial eigenvector estimate and return the final estimate, ‘tol’ is the measure
of convergence, ‘eigv’ is to hold the returned eigenvalue and ‘conv’ is of type ‘LOGICAL’
and returns ‘. TRUE.’ only if the method converged.

(iv) You will need a function ‘mulmatvec(mat,vec) that pre-multiplies a vector by a
matrix’

Use you code to calculate the dominant eigenvalue and corresponding eigenvector of the matrix;
1 5 3
6 3 5
2 8 5

You should have a dominant eigenvalue of 13.063. with a corresponding eigenvector of

0.6039
0.8569
1.0000

