
‘SELECT CASE’ Construct & Exam

Handout Nine

1 ‘SELECT CASE’ Construct

The ‘SELECT CASE’ Construct is another decision making or branching construct to control the flow of
your codes.

1.1 The ‘IF THEN ELSEIF’ construct revisited.

Earlier in the course you were introduced to the ‘IF’ construct. The ‘IF’ construct allows ‘overlap’
of ranges in tests made in the segments of the construct. For example consider the following rather
meaningless piece of code.

PROGRAM example_if
!** Silly piece of code to simply demonstrate the importance
!** of ordering and the allowed overlapping of the test ranges
!** in an IF construct.

IMPLICIT NONE

INTEGER :: i

PRINT*,"Enter an INTEGER"
READ*,i !*** Get the user to input i

!**** IF construct with no overlapping of test ranges.
!**** Therefore ORDERING is important

IF (i .EQ. 2) THEN
PRINT*,"Integer = 2"

ELSEIF (i .EQ. 7) THEN
PRINT*,"Integer = 7"

ELSE IF (i .GE. 2 .AND. i .LE. 8) THEN
PRINT*,"Integer is greater than one and less than nine"

ELSE IF (i .GE. 6 .AND. i .LE. 10) THEN
PRINT*,"Integer is larger than five and less than eleven"

ELSE
PRINT*,"No Match"

END IF
END PROGRAM example_if

The execution of this construct involves testing each branches logical expression from top to bottom
in turn. If one of the logical expressions evaluates to ‘.TRUE.’ then the statements in that branch are
executed and the construct exited. Note how the ranges overlap so the order that the programmer places
the branches in the construct are critical.

1



Now consider the following piece of code.

PROGRAM example_if2
!**
!** 2nd Silly piece of code to simply demonstrate the importance
!** of ordering and the allowed overlapping of the test ranges
!** in an IF construct.
!**

IMPLICIT NONE

INTEGER :: i

PRINT*,"Enter an INTEGER"
READ*,i !*** Get the user to input i

!**** IF construct with no overlapping of test ranges.
!**** Therefore ORDERING is NOT important

IF (i .EQ. 2) THEN
PRINT*,"Integer = 2"

ELSE IF (i .EQ. 7) THEN
PRINT*,"Integer = 7"

ELSE IF (i .GT. 2 .AND. i .LT. 7) THEN
PRINT*,"Integer is greater than 2 an less than 7"

ELSE IF (i .GT. 7 .AND. i .LE. 10) THEN
PRINT*,"Integer is greater than 7 and less than 11"

ELSE
PRINT*,"No Match"

END IF
END PROGRAM example_if2

Exercise One : In a ‘handout9/exercise1’ directory copy the above two codes from;

fortran1 exercise1> cp ~/info/examples/2004/handout9/exercise1/example_if.f90 .
fortran1 exercise1> cp ~/info/examples/2004/handout9/exercise1/example_if2.f90 .

Remember the ‘period’ at the end is required as it tells Linux you want to copy the file to
your current directory. Compile and run the codes making sure you understand the results .

Notice how in the second code there is no overlapping of the ranges for the logical test expressions for the
various branches of the construct, so each test is unique. As there is no overlapping, the order in which
the programmer chooses to place each branch in the construct is no longer an issue. In such a situation
the ‘SELECT CASE’ construct can be used instead of the more general ‘IF THEN ELSEIF’ construct.

2



2 ‘SELECT CASE’ Construct

The ‘SELECT CASE’ Construct is particularly useful if one of several paths through an algorithm must be
chosen based on the value of a particular expression.

SELECT CASE < case-expression >
CASE < case-selector >

< exec-statements >
CASE < case-selector >

< exec-statements >
CASE DEFAULT

< exec-statements >
END SELECT

The above construct shows two case blocks however you can have as many as you need but ONLY one
default block. The default block is actually optional and if left out if none of the conditions to enter a
‘CASE’ block is met then the ‘CASE’ construct does nothing.

• the < case-expression > must be scalar and ‘INTEGER’, ‘LOGICAL’ or ‘CHARACTER’ valued;

• there may be any number of general ‘CASE’ statements but only one ‘CASE DEFAULT’ branch;

• the < case-selector > must be a parenthesised single value or a range (section with a stride of
one), for example, ‘(.TRUE.)’ or ‘(99:101)’. A range specifier is a lower and upper limit separated
by a single colon. One or other of the bounds is optional giving an open ended range specifier.

• the < case-expression > is evaluated and compared with the < case-selector >s in turn to see
which branch to take.

• if no branches are chosen then the ‘CASE DEFAULT’ is executed (if present).

• when the < exec-statements > in the selected branch have been executed, control jumps out of
the ‘CASE’ construct (via the ‘END SELECT’ statement).

• as with other similar structures it is not possible to jump into a ‘CASE’ construct.

Consider the example below where the ‘< case-expression >’ is simply an ‘INTEGER’ i. The construct
simply picks out any prime numbers for that are less than ten. Note how the first ‘CASE’ demonstrates
the use of a comma separated list.

SELECT CASE (i)
CASE (3,5,7)
PRINT*,"i is prime"

CASE (10:)
PRINT*,"i is > 10"

CASE DEFAULT
PRINT*, "i is not prime and is < 10"

END SELECT

The next example is slightly more complicated. Note the ‘< case-selector>’, for the third ‘CASE’ block,
‘(100:)’ means any integer greater than 100.

SELECT CASE (num)
CASE (6,9,99,66)
! IF(num==6.OR. .. .OR.num==66) THEN
PRINT*, "Woof woof"

CASE (10:65,67:98)

3



! ELSEIF((num.GE.10.AND.num.LE.65) .OR. ...
PRINT*, "Bow wow"

CASE (100:)
! ELSEIF (num.GE.100) THEN
PRINT*, "Bark"

CASE DEFAULT
! ELSE
PRINT*, "Meow"

END SELECT
! ENDIF

Exercise Two : In a ‘handout9/exercise2’ directory rewrite the second code from ‘ex-
ercise one’ using a ‘SELECT CASE’ construct instead of an ‘IF THEN ELSEIF’ construct.

3 The Exam

Take your time with the exam, do not rush through and try to finish first! Programming is different
than many other areas of mathematics in that you can be convinced you have done it correctly until the
compiler spits error messages at you. In the exam there is no compiler, only you, so try not to loose easy
marks with careless typos!
I will not be ‘overly’ strict with trivial syntax errors or spelling mistakes but you must try to make sure
that the logical structure of your statements is correct. For example in the declaration of an ‘2D’ array
to hold a matrix.

REAL, DIMENION(4,4) :: matrix1

is logically correct but has a trivial spelling error, ‘DIMENION’ instead of DIMENSION so, in a case like this,
you would not lose marks, however,

REAL, DIMENSION(4) :: matrix1

is logically incorrect because a matrix is a two dimensional array.

3.1 Exam Structure and Hints

• Your exam is on Wednesday May 17th at 9:30 → 11:30 in the Old Union Diner.

• The exam is the same for both MT4112 & MT5612 and at the same time.

• There are three questions. The first is for ten marks the second and the third are both for twenty
marks. ‘Exercise three’ : write a Fortran code to calculate the maximum marks you can make in
your exam :-).

• The first question is written deliberately for you to attempt first and you ‘may’ find it easier than
questions two and three. So I recommend you start with question one it should help ease you into
the paper.

• In all questions where you are required to write code you should follow the rules you have been
taught for neat, structured and indented code. You should also use ‘IMPLICIT NONE’ where appro-
priate and all dummy arguments should be declared with the correct ‘INTENT’ attribute.

• Remember you are not typing into pico or nano, there are NO [Backspace] or [Delete] keys. This
means you should be sure of something when you write it down, use rough paper to test your
thoughts. There is no substitute for practice here.

4



• Leave plenty of space between the lines of your written code (two or even three blank lines) so if,
later on, you wish to change something or add something you can do so with less hassle.

• Do ‘NOT’ give in, you would be surprised at how easy it is to pick up marks. Even just writing
down the ‘PROGRAM’ and ‘MODULE’ names and the ‘FUNCTION’ and ‘SUBROUTINE’ headers will get you
marks. Declaring the variables needed and, if dummy variables, their correct ‘INTENT’ will also get
you marks. If you know you need a ‘DO’ loop or an ‘IF’ structure but are not sure what to put in
the structure body, just putting in the empty ‘DO’ loop and ‘IF’ structures will get you marks.

• Easy to say now but try not to ‘panic’ if you are finding that you are really hitting a brick wall
with a question, it may be worth moving onto another question and then returning to the tricky
one. It is often the case that temporarily switching your train of thoughts to another problem does
the trick.

3.2 Revision

You should revise:

• ALL the work covered in the all the handouts except the non-Fortran sections of handout one. That
is you will not be examined on Linux, pico or nano and the ‘PRINT’ formatting descriptors.

• Anything on Fortran I have mentioned to you in class.

• Everything you have been asked to do in your class-projects.

• All of the exercises in the all of the handouts after and including ‘handout2’.

• All of the work set in and notes handed out with your assignments.

• You may be asked to code a method you have not seen in this course but it will be well described
in the exam.

• I recommend that you read through the papers from 2002 and 2004. The papers before that were
not set by me and I do no really see you gaining too much from them but feel free to go through
them if you like.

• Make sure you understand the numerical methods underlying all the codes you have seen and
written through the duration of the course. Understanding the methodology is crucial to clear,
correct and efficient programming.

• Make sure you practice writing down your codes on paper!! Then go through it carefully with a
printout or set solutions to see where you seem to make mistakes and be aware of these mistakes
in the exam.

• I will not examine you on the ‘PRINT’ statement in detail only the default formatting ‘*’. This
means you do not need to learn all the ‘formatting’ descriptors!

4 Revision Check List

Here is a list of what you could be examined on, it is not necessarily comprehensive but covers
nearly everything you have done.

– Main program structure - Handout [2] page [1]

– Numeric declarations - Handout [2] page [2]

– Numeric operators - Handout [2] page [3], in particular make sure you know the order of
precedence of the operators.

– Character declarations - Handout [2] page [3]

5



– Logical declarations - Handout [2] page [4]

– Programming Style - Handout [2] page [4]

– The ‘IF’ statement and construct - Handout [2] page [4 & 7] ALL the forms of this!

– Relational & Logical Operators & Expressions - Handout [2] page [5]

– The Looping ‘DO’ Construct - Handout [2] page [8]

– The Conditional ‘DO’ Construct - Handout [2] page [9]

– The ‘DO WHILE’ Construct - Handout [2] page [10]

– Intro to Numeric Arrays - Handout [2] page [10]

– Expression evaluation - Handout [3] page [1]

– Integer division - Handout [3] page [2]

– Data Casting - Handout [3] page [2,3]

– Intrinsic Functions - Handout [3] page [3]

– Data Type Limitations - Handout [3] page [4]

– Complex Arithmetic - Handout [3] page [4]

– The true meaning of = in Fortran - Handout [3] page [4]

– Use of the ‘&’ character and blank spaces - Handout [3] page [4]

– Simple Input & Output (PRINT* READ*) - Handout [3] page [5]

– Characters & Strings : declaration - Handout [4] page [1]

– Characters & Strings : declaration - Handout [4] page [1]

– Concatenation & substrings - Handout [4] page [1]

– Character intrinsic functions - Handout [4] page [1]

– Internal functions and subroutines - Handout [5] page [1]

– Argument lists - Handout [5] page [2]

– Local, Dummy Variables & Call by Reference - Handout [5] page [3]

– Scope - Handout [5] page [4]

– Functions - Handout [5] page [6]

– The ‘INTENT’ attribute - Handout [5] page [7] Learn all three aspects of this attribute
including where and how they should be used!

– Assumed shape arrays - Handout [5] page [8]

– Automatic arrays - Handout [5] page [8] : Learn also the use of automatic arrays in conjuc-
tion with the ‘SIZE’ function.

– ‘SIZE’ Function - Handout [5] page [8]

– CODE : ‘transmat’ - You should be able to write a function to find and return the transpose
of an ‘m,n’ matrix.

– CODE : ‘mulmat’ - You should be able to write a function to find and return the product of
two matrices ‘(m,n) x (n,k)’.

– CODE : ‘mulmatvec’ - You should be able to write a function to find and return the product
of a matrix and a vector ‘(m,n) x (n)’.

– CODE : ‘getmat & outmat’ - Function ‘getmat’ to read in a matrix from the keyboard and
subroutine ‘outmat’ to output a matrix to the screen.

– ‘MODULE’s (essential) - Handout [6] page [1] Essential part of the course

– module structure - Handout [6] page [1]

6



– ‘USE’ statement - Handout [6] page [2,3] Learn not only its basic use but also how to ‘limit’
the entities made available by the ‘USE’ statement. Also make sure you know how to ‘rename’
entities within the ‘USE’ statement.

– Modules to hold common data - Handout [6] page [3] : Remember ‘MODULES’ can be used
to hold data (REAL, INTEGER, arrays etc) and they can be made visible to other program
units via the ‘USE’ statement.

– Array element by element arithmetic - Handout [6] page [6] (top of page)

– CODE : Power Method - class project part three

– Initial value problems for ODE’s - Handout [6] : Make sure you know how to code up
the methods introduced here. If you are asked write code for these in the exam the required
formulae will be given but if you practice coding up the methods you will benefit greatly in
the exam.

– Eulers Method - Handout [6 (II)] page [1,2]

– Heun’s Method - Handout [6 (II)] page [2]

– Nystom’s Method - Handout [6 (II)] page [2] : Remember this method is ‘not’ self starting!

– 3rd & 4th Order Runge-Kutta Method - Handout [6 (II)] page [4]

– 2,3,4 step Adams-Bashforth Methods - Handout [6 (II)] page [4,5]

– Simple Predictor Corrector 2nd Order Method - Handout [6 (II)] page [4]

– Milne’s’s Method - Handout [6 (II)] page [5]

– Hammings’s Method - Handout [6 (II)] page [6]

– Array Terminology - Handout [7] page [1]

– Array references - Handout [7] page [1]

– Array construction - Handout [7] page [2]

– The RESHAPE intrinsic function - Handout [7] page [2]

– Array Syntax and Expressions - Handout [7] page [3]

– Some Array Intrinsics - Handout [7] page [4]

– Dynamic Allocation of Arrays - Handout [7] page [5]

– Keyword arguments - Handout [7] page [6]

– Optional arguments - Handout [7] page [7]

– Basic file I/O : ‘OPEN’ Statement - Handout [8] page [1]

– The CLOSE statement - Handout [8] page[2]

– The INQUIRE Statement - Handout [8] page[2]

– Formatted Files (text files) - Handout [8] page[3]

– Unformatted Files (binary files) - Handout [8] page[3]

– All your exercise, assignment and class project codes : Quadratic, Maclaurin,
Isotope Code etc

+++++ THE END +++++
Best of luck in the exam and I hope you gained some useful programming experience from the course.

7


