
Page 1 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

!DATA ASSIMILATION SAMPLE PROGRAM (R. Stull, UBC, Nov 2000)
!Includes both Bratseth's Sucessive Correction
!-AND- Optimum Interpolation, for comparison.
!Reference:
!Bratseth 1986: "Statistical interpolation by means
!of successive corrections". Tellus, 38A,439-447.

!====================== Modules (works like common blocks)
� �
� � module gridmodule� � � � !grided analysis data (as meteorological fields)
� � integer :: nx� � � � � !max number of grid points in x direction
� � real :: dx� � � � � � !delta_x = grid increment in x direction
� � real :: xwest� � � � � !location of left edge (west-most) x grid point
� � character (len=5) :: gridunits� !example "km"
� � real, dimension (:), allocatable :: xgrid� !grid point x-locations
� � real, dimension (:), allocatable :: agrid� !analysis grid point scalar values (eg, temperature)
� � real, dimension (:), allocatable :: bgrid� !background (first-guess) scalar values (eg, temperature)
� � real, dimension (:), allocatable :: fgrid� !analysis increment (analysis - firstguess)
� � end module gridmodule
� �
� � module obsmodule� � � � !observation data (with same units as for x grid)
� � integer :: nobs� � � � � !max number of observations
� � real, dimension (:), allocatable :: xobs� !observation x-locations
� � real, dimension (:), allocatable :: sobs� !actual observation values (eg, temperature)
� � real, dimension (:), allocatable :: aobs� !analysis values estimated at obs locations
� � real, dimension (:), allocatable :: bobs� !background grid values interpolated to obs locations
� � real, dimension (:), allocatable :: fobs� !observation increment (sobs - bobs)
� � real, dimension (:), allocatable :: aobsnew� !updated analysis values at obs locations
� � real :: xo, xscale� � � � !Offset and and scaling factor: Bratseth -> reality
� � real :: so, sscale� � � � !Offset and and scaling factor: Bratseth -> reality
� � end module obsmodule
� �
� � module statmodule� � � � !correlation and error statistics
� � real :: sigmaBR� � � � � !Bratseth dimensionless radius of influence
� � real :: sigmaR,sigmaR2� � � !physical radius of influence, and its square
� � real :: sigmax� � � � � !x std deviation (assumed same for all grid points)
� � real, dimension (:), allocatable :: sigmaobs� !observation std dev at each obs station
� � end module statmodule
� �
� � module iterationmodule� � � !misc iteration variables
� � integer :: nu� � � � � !iteration counter
� � real :: sumcor� � � � � !sum of correction magnitudes
� � real :: sumf� � � � � !sum of analysis magnitudes
� � real :: epsilon� = 0.001� � !relative convergence criterion
� � character (len=1) :: tab=achar(9)� !ascii tab character
� � end module iterationmodule
� �
� � module optimumodule� � � � !only for comparison with optimum interpolation
� � real, dimension (:), allocatable :: ogrid� � !optmum analysis at grid locations
� � real, dimension (:,:), allocatable :: amatrix� !normalized covariance matrix (obs)
� � real, dimension (:), allocatable :: bmatrix� � !normalized RHS matrix (obs,grid)
� � real, dimension (:), allocatable :: vv� � � !implicit scalings for each row
� � integer, dimension (:), allocatable :: indx� � !LU decomposition vector
� � real :: TINY=1.0e-20� � � � � � � !prevention of singular matrix
� � end module optimumodule

!====================== main program ====================
� � program scmain� � � � � !successive correction main program
!declare variables
� � use gridmodule� � � � � !analysis grid info
� � use obsmodule� � � � � !observation station info
� � use statmodule� � � � � !statistics of station errors and correlations
� � use iterationmodule� � � � !misc iteration info
� � implicit none � � � � � !enforce strong typing
� � logical :: done� � � � � !true when converged

Page 2 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

!set up
� � call welcome� � � � � !welcome the user
� � call setgrid� � � � � !set up the analysis grid
� � call getobs� � � � � � !get the observation data points
� � call firstguess� � � � � !get the first-guess (background) gridded analysis
� � call getstats� � � � � !get observation-error statistics
!iterate
� � call preprocess� � � � � !set up for iterations
� � do nu=1,25� � � � � � !for each successive iteration, nu
� � � call refine� � � � � !make a better analysis estimate
� � � call savefields� � � � !save results for future display
� � � if (done()) exit � � � !leave iteration loop if converged
� � enddo
� � call optimum� � � � � !Optimum interpolation (for comparison)
� � call postprocess� � � � !do any postprocessing
� � end program scmain

!===
� � subroutine welcome� � � � !Welcome the interactive user
� � implicit none � � � � � !enforce strong typing
� � write(*,*)
� � write(*,*) "Welcome to SUCCESSIVE CORRECTION ... a Data Assimilation Method"
� � write(*,*)
� � write(*,*) "Based on Bratseth, A.M. 1986: Statistical interpolation "
� � write(*,*) "by means of successive corrections. Tellus, 38A,439-447."
� � write(*,*)
� � write(*,*) "Coded by R. Stull, UBC, Nov 2000."
� � write(*,*)
� � end subroutine welcome

!======================
� � subroutine setgrid� � � � !Set grid locations x
!Calculates evenly-spaced grid locations using location offset and scale
!values that were read from an input file.
� � use gridmodule� � � � � !common grid variables
� � implicit none � � � � � !enforce strong typing
� � integer :: ix� � � � � !dummy grid index
� � character (len=50) :: header� !text header from grid file
!Initialize
� � nx = 100� � � � � � !max number of grid locations in x direction
� � gridunits = "km" � � � � !units in x direction
� � xwest = 0.0� � � � � � !location of west (leftmost) grid point
� � dx = 1.0� � � � � � !grid increment delta_x
!Get grid-location info from a disk file (as ascii text)
� � write(*,*)
� � write(*,*) "========== SETGRID - Set up the grid"
� � write(*,*) "Hit RETURN to search for grid input file (in.GRID)"
� � read(*,*)� � � � � � !wait until user responds
� � open(1,file="",status="old")� !activates Macintosh file finder box
� � read(1,"(a50)") header ; print *, header� !this line useful in input file
� � read(1,*) nx,gridunits,xwest,dx� !numb of grid points, units, starting(leftmost) x, delta_x
� � print *, nx, gridunits, xwest, dx� !echo to screen
� � close(1)� � � � � � !de-activate the input file
� � write(*,*) "SETGRID RESULTS: nx = ",nx, ", xwest & delta_x = ",xwest,dx," (",trim(gridunits),")"
!initialize grids
� � allocate(xgrid(nx))� � � � !dynamically allocate memory for x-location grid
� � allocate(agrid(nx))� � � � !dynamically allocate memory for analysis grid
� � allocate(bgrid(nx))� � � � !dynamically allocate memory for background grid
� � allocate(fgrid(nx))� � � � !dynamically allocate memory for difference grid
� � do ix = 1,nx� � � � � !for each grid location
� � � xgrid(ix)=xwest + (ix-1)*dx� !compute the physical location
� � enddo
� � write(*,*) "...ending SETGRID" � !status report
� � end subroutine setgrid� �

Page 3 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

!======================
� � subroutine getobs� � � � !Get the observation info (locations & values)
!Observations are paired (x,s), where s is the meteorological value
!(eg, temperature) at location x. Input is the raw (dimensionless) Bratseth values,
!which we then scale into reasonable meteorological and distance values.
!Read raw observation info from file. The file format, by line, is:
!� number of observations. Eg: 2
!� scaling in x direction, where input is X0 and XSCALE. Eg: 40.0,10.0
!� scaling of s scalar, where input is S0 and SSCALE. Eg: 0.0,10.0
!� header text for scaled (not raw Bratseth) fields. Eg: x(km),F(degC)
!� first raw Bratseth "observation" as X, S: Eg: 0.0,1.0
!� more rows of raw Bratseth obs as X,S, until number of rows = number of observations
!
� � use obsmodule� � � � � !common observation variables
� � implicit none � � � � � !enforce strong typing
� � integer :: iobs� � � � � !dummy observation index
� � character (len=50) :: header� !text header (to help check units)
� � write(*,*)
� � write(*,*) "========== GETOBS - Get the observation info "
!Read the observation info from file
� � write(*,*)
� � write(*,*) "Hit RETURN to search for observation input file (in.OBS)"
� � read(*,*)� � � � � � !wait until user responds
� � open(1,file="",status="old")� !activate Macintosh file finder box
� � read(1,"(a50)") header ; print *, header� !this line useful in input file
� � read(1,*) nobs ; print *, nobs� !read and echo number of obs
� � allocate(xobs(nobs))� � � !dynamically allocate memory for obs x locatinos
� � allocate(sobs(nobs))� � � !dynamically allocate memory for obs s values
� � allocate(aobs(nobs))� � � !dynamically allocate memory for obs a values
� � allocate(bobs(nobs))� � � !dynamically allocate memory for obs b values
� � allocate(fobs(nobs))� � � !dynamically allocate memory for obs a-b values
� � allocate(aobsnew(nobs))� � � !dynamically allocate memory for new a values
� � read(1,*) xo,xscale� � ; print *, xo,xscale� !scale x Bratseth -> reality
� � read(1,*) so,sscale� � ; print *, so,sscale� !scale s Bratseth -> reality
� � read(1,"(a50)") header ; print *, " ", header
� � do iobs = 1,nobs� � � � � !for each observation point
� � � read(1,*) xobs(iobs),sobs(iobs)� !Bratseth's dimensionless "obs"
� � � print *, xobs(iobs),sobs(iobs)� !echo to screen
� � � xobs(iobs)=xo+xscale*xobs(iobs)� !Scale into physically-realistic obs x locations
� � � sobs(iobs)=so+sscale*sobs(iobs)� !Scale into physically realsitic scalar values
� � � print *, " --> Scaled (x,s):", xobs(iobs),sobs(iobs)� !echo to screen
� � enddo
!Interpolate the background first guess to the observation points
� � close(1)� � � � � � !de-activate this input file
� � write(*,*) "...ending GETOBS" � !status report
� � end subroutine getobs
� �
� �
!======================
� � subroutine firstguess
!Set the first-guess (background) analysis, usually from the previous forecast (prog)
!This first-guess info is read from a file, with one grid-point value per line.
� � use gridmodule� � � � � !common grid variables
� � use obsmodule� � � � � !common observation variables
� � implicit none � � � � � !enforce strong typing
� � write(*,*)
� � write(*,*) "========== FIRSTGUESS - Get the first guess gridded analysis "
� � write(*,*)
� � write(*,*) "Hit RETURN to search for first-guess input file (in.FIRST)"
� � read(*,*)� � � � � � !wait until user responds
� � open(1,file="",status="old")� !activate Macintosh file finder box
� � read(1,*) bgrid� � � � � !read whole first-guess (background) vector
� � close(1)� � � � � � !de-activate the input file
� � print *, "First guess is: ",bgrid(1) !echo first element of bgrid to screen
� � agrid=bgrid� � � � � � !vector equality: set first analysis = background first-guess
� � fgrid=0.0� � � � � � !initial state of difference vector (a-b)
� � call interpolate� � � � !interpolate background to obs locations

Page 4 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

� � bobs = aobs� � � � � � !copy interpolated results into background at obs points
� � fobs = sobs-bobs� � � � !find observation increment
� � write(*,*) "aobs =",aobs
� � write(*,*) "bobs =",bobs
� � write(*,*) "fobs =",fobs
� � write(*,*) "...ending FIRSTGUESS" � !status report
� � end subroutine firstguess
� �
� �
!======================
� � subroutine interpolate� � � !interpolate current gridded analysis to obs locations
!linearly interpolate the analysis from the grid points to all the obs locations
� � use obsmodule� � � � � !common observation variables
� � use gridmodule� � � � � !common grid variables
� � implicit none � � � � � !enforce strong typing
� � integer :: iobs� � � � � !dummy observation index
� � integer :: ilow� � � � � !grid index just left of obs location
� � real :: position� � � � !relative obs position between neighboring grid points
!linear interpolation
� � do iobs=1,nobs� � � � � � � � � !for each observation location
� � � ilow=floor((xobs(iobs)-xwest+1)/dx)� � � !calculate adjacent grid point location
� � � ilow=max(1,ilow) ; ilow=min(ilow,(nx-1))� !stay within grid
� � � position = ((xobs(iobs)-xgrid(ilow))/(xgrid(ilow+1)-xgrid(ilow)))� !rel.position
� � � aobs(iobs)=agrid(ilow)+(position*(agrid(ilow+1)-agrid(ilow))) � � !interpolate
� � enddo
� � end subroutine interpolate

!=======================
� � subroutine getstats� � � � !get error statistics from file
!File format is:
!� epsilon� � � !relative convergence criterion (eg, 0.001)
!� sigmaBR� � � !Bratseth's dimensionless radius of influence (eg, 1.0)
!� sigmax� � � !first-guess error std deviation at grid points (same for all grid points, eg, 1.0)
!� sigmaobs� � !array of obs-error std deviations, with each obs location on separate line (eg, 0.0)
� � use gridmodule� � � � � !common grid info
� � use obsmodule� � � � � !common observation info
� � use statmodule� � � � � !common error and correlation statistics
� � use iterationmodule� � � � !common iteration info
� � implicit none � � � � � !enforce strong typing
� � character (len=50) :: header� !text header (to help check units)
� � allocate(sigmaobs(nobs))� � !dynamically allocate memory for obs std dev
� � write(*,*)
� � write(*,*) "========== GETSTATS - Get error statistics "
� � write(*,*)
� � write(*,*) "Hit RETURN to search for statistics input file (in.STATS)"
� � read(*,*)� � � � � � !wait until user responds
� � open(1,file="",status="old")� !activate Macintosh file finder box
� � read(1,"(a50)") header ; print *, header� !this line useful in input file
� � read(1,*) epsilon� � � � !read convergence criterion
� � read(1,*) sigmaBR� � � � !read Bratseth's dimensionless radius of influence
� � read(1,*) sigmax� � � � !read std deviation at grid point x
� � read(1,*) sigmaobs� � � � !read whole array of observation std deviations
� � close(1)� � � � � � !de-active the input file
� � sigmaR = sscale*sigmaBR� � � !find physical radius of influence
� � sigmaR2 = sigmaR*sigmaR� � � !square of radius of influence
� � write(*,*) "convergence criterion = ",epsilon
� � write(*,*) "Bratseth sigmaR =",sigmaBR
� � write(*,*) "physical sigmaR = ",sigmaR," (",trim(gridunits),")"
� � write(*,*) "gridded std deviation error: ",sigmax
� � write(*,*) "array of observation std deviation errors: ",sigmaobs
� � print *, "...ending GETSTATS" � !status report
� � end subroutine getstats

!=======================
� � subroutine preprocess� � � !set up for iterations
� � use gridmodule� � � � � !common grid info

Page 5 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

� � use iterationmodule� � � � !common iteration counters and convergence info
� � implicit none � � � � � !enforce strong typing
� � integer :: ix� � � � � !dummy grid index
� � write(*,*)
� � write(*,*) "========== PREPROCESS is starting."
� � write(*,*)
� � write(*,*) "Hit RETURN to open a new OUTPUT file: "
� � read(*,*)� � � � � � !wait until user responds
� � open(2,file="",status="new")� !activate Macintosh file finder box
� � write(2,*) (tab, xgrid(ix), ix=1,nx)� � � !first row list x grid locations
� � write(2,*) " 0", (tab, agrid(ix), ix=1,nx)� !2nd row is first-guess analysis
� � open(3,status="scratch",form="unformatted")� � !open scratch file to temporarily hold obs analyses
� � write(*,*)
� � write(*,*) "Iteration, Correction Sum / Field Sum = RelativeError" !header for screen
� � end subroutine preprocess

!=======================
� � subroutine refine� � � � !improve the analysis estimate during one iteration
� � use obsmodule� � � � � !common observation variables
� � use gridmodule� � � � � !common grid variables
� � use statmodule� � � � � !common error and correlation statistics
� � use iterationmodule� � � � !common iteration variables
� � implicit none � � � � � !enforce strong typing
� � real :: correction� � � � !correction at any one point during an iteration
� � real :: axj, aij� � � � !amplification weights (maps obs error to correction)
� � real :: rxj, rij, rjk� � � !correlation coefficients
� � real :: sumw� � � � � !sum of correlation coefs
� � real :: varb� � � � � !background (first-guess) error variance (assumed homogeneous*)
� � real :: varobsi, varobsj� � !error variances of observations at locations i & j
� � real :: varratio� � � � !ratio of error variances
� � integer :: ix� � � � � !dummy grid index
� � integer :: iobs, jobs, kobs� � !dummy observation indices
� � sumcor = 0.0� � � � � !initialize sum of corrections for this iteration
� � sumf = 0.0� � � � � � !initialize sum of field values for this iteration
� � varb = sigmax*sigmax� � � !error variance of first guess (assumed homogeneous*)
!� � call interpolate� � � � !find aobs by interpolating from grided analysis to obs locations
!Update the analysis estimate at the grid points (agrid)
� � do ix=1,nx� � � � � � � � � � !for each grid point
� � � correction = 0.0� � � � � � � !initialize correction amount
� � � do jobs=1,nobs� � � � � � � � !for each obs location
� � � � varobsj = sigmaobs(jobs)*sigmaobs(jobs)� !error variance of obs at location j
� � � � sumw = varobsj/varb� � � � � � !initialize sum of the weights w
� � � � do kobs=1,nobs� � � � � � � !for each weight w
� � � � � rjk = exp(-0.5*((xobs(kobs)-xobs(jobs))**2)/sigmaR2) !correl drop-off with j-k distance
� � � � � sumw = sumw + abs(rjk)� � � � !sum of the weights w
� � � � enddo
� � � � rxj = exp(-0.5*((xgrid(ix)-xobs(jobs))**2)/sigmaR2)� !correlation drop-off with x-j distance
� � � � axj = rxj/sumw� � � � � � � !eq (15b), for optimum solution
� � � � correction = correction + axj*(sobs(jobs)-aobs(jobs))� !RHS of eq (4)
� � � enddo
� � � agrid(ix) = agrid(ix) + correction� � � !eq (4)
� � � sumcor = sumcor + abs(correction)� � � !sum of correction magnitudes, to detect convergence
� � � sumf = sumf + abs(agrid(ix))� � � � !sum of analysis field magnitudes, ditto
� � enddo
!Update the analysis estimate at the observation points (aobs)
� � do iobs=1,nobs� � � � � � � � � !for each obs point
� � � correction = 0.0� � � � � � � !initialize correction amount
� � � varobsi = sigmaobs(iobs)*sigmaobs(iobs)� � !error variance of obs at location i
� � � do jobs=1,nobs� � � � � � � � !for each obs location
� � � � varobsj = sigmaobs(jobs)*sigmaobs(jobs)� !error variance of obs at location j
� � � � sumw = varobsj/varb� � � � � � !initialize sum of the weights w
� � � � do kobs=1,nobs� � � � � � � !for each weight w
� � � � � rjk = exp(-0.5*((xobs(kobs)-xobs(jobs))**2)/sigmaR2) !correl drop-off with j-k distance
� � � � � sumw = sumw + abs(rjk)� � � � !sum of the weights w
� � � � enddo
� � � � rij = exp(-0.5*((xobs(iobs)-xobs(jobs))**2)/sigmaR2)� !correlation drop-off with x-j distance
� � � � varratio = 0.0� � � � � � � !initialize variance ratio

Page 6 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

� � � � if (iobs==jobs) varratio=varobsi/varb� !set variance ratio only for certain obs points
� � � � aij = (rij+varratio)/sumw� � � � !eq (15a), for optimum solution
� � � � correction = correction + aij*(sobs(jobs)-aobs(jobs))� !RHS of eq (4')
� � � enddo
� � � aobsnew(iobs) = aobs(iobs) + correction� � !eq (4')
� � enddo
� � aobs=aobsnew� � � � � � � � � !replace old analysis with new, at obs locations
� � end subroutine refine

!=======================
� � function done() result (converged)� !check if analysis has converged
� � use iterationmodule� � � � � !common iteration and convergence info
� � use gridmodule� � � � � � !common grid info
� � implicit none � � � � � � !enforce strong typing
� � real :: relerror� � � � � !relative error
� � logical :: converged� � � � !.true. if successive-corr has converged
� � converged = .false.� � � � � !initialize state to NOT converged
� � relerror = sumcor/(sumcor+sumf)� � !compute correction amount relative to the total value
� � write(*,*) nu,sumcor,sumf,relerror� !display iteration status report
� � write(*,*)
� � converged = (relerror .LT. epsilon)� !.true. when relative error is small enough
� � end function done

!=======================
� � subroutine savefields� � � !save results in a text file
� � use iterationmodule� � � � !common iteration variables
� � use gridmodule� � � � � !common grid variables
� � use obsmodule� � � � � !common observation variables
� � implicit none � � � � � !enforce strong typing
� � integer :: ix, iobs� � � � !dummy array indices
� � write(2,*) " ",nu, (tab,agrid(ix),ix=1,nx)� !write gridded analysis to disk, for each iteration
� � write(3) nu,aobs(1:nobs)� � !write obs analysis to scratch file, for each iteration
� � end subroutine savefields

!=======================
� � subroutine postprocess� � � !postprocessing
� � use iterationmodule� � � � !common iteration variables
� � use obsmodule� � � � � !common observation variables
� � implicit none � � � � � !enforce strong typing
� � integer :: iobs� � � � � !dummy observation index
� � integer :: ios� � � � � !input/output status flag
� � write(*,*)
� � write(*,*) "========== POSTPROCESS is starting."
� � write(*,*) "Successive correction data assimilation is finished."
� � write(*,*)
!append the original observations to the end of the file
� � write(2,*) (tab,xobs(iobs),iobs=1,nobs)� � � !obs x-locations
� � write(2,*) "Obs", (tab,sobs(iobs),iobs=1,nobs)� !actual obs values
!append the various analysis estimates at the observation points
� � rewind 3 � � � � � � !reset the scratch file (unit 3) to beginning
� � do � � � � � � � � !do for each successful iteration that was saved in scratch
� � � read(3,iostat=ios) nu,aobs(1:nobs)� !read obs values from scratch file
� � � if (ios==-1) exit � � � � � !exit loop if end of file
� � � write(2,*) " ",nu, (tab,aobs(iobs),iobs=1,nobs)� !append write obs analysis to disk, for each iteration
� � enddo
� � close(2)� � � � � � !close files and terminate
� � close(3)� � � � � � !close files and terminate
� � end subroutine postprocess

!===
!====+ the following is NOT needed for successive corrections ==============

� � subroutine optimum� � � � !statistical (optimum) interpolation
!First, this routine solves Bratseth eq (3) for linear weights p.

Page 7 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

!It does this by forming a set of linear equations A X = B ,
!where A is the obs covariance matrix, X is the vector of weights p,
!and B is the vector of grid vs. obs correlations.
!(Uses LU decomposition for solution, modified from Num. Recipes, to solve for X)
!Then, the weights p are used in Bratseth (1) to solve for the analysis field.
� � use obsmodule� � � � � !common observation variables
� � use gridmodule� � � � � !common grid variables
� � use statmodule� � � � � !common statistical variables
� � use optimumodule� � � � !common optimum interp variables
� � implicit none � � � � � !enforce strong typing
� � integer :: ix, iobs, jobs� � !dummy indices
� � real :: rij, rxj� � � � !correlation coefficients
� � real :: varratio� � � � !ratio of error variances
� � character (len=1) :: tab=achar(9)� !ascii tab character
� � write(*,*)
� � write(*,*) "========== OPTIMUM INTERPOLATION is starting."
� � write(*,*)
� � allocate(amatrix(nobs,nobs))� !dynamically allocate memory for covar matrix
� � allocate(bmatrix(nobs))� � � !dynamically allocate memory for RHS matrix
� � allocate(indx(nobs))� � � !dynamically allocate memory for LU index
� � allocate(vv(nobs))� � � � !dynamically allocate memory scrap matrix
� � allocate(ogrid(nx))� � � � !dynamically allocate memory for optimum gridded analysis
!Fill the symmetric matrix A of covariances. (Move this subsection to inside the ix loop if sigmax varies)
� � do iobs = 1,nobs� � � � !for each i observation location
� � � do jobs = iobs,nobs� � � !for each j obs location
� � � � rij = exp(-0.5*((xobs(iobs)-xobs(jobs))**2)/sigmaR2)� !correl drop-off with dist
� � � � varratio = 0.0� � � � � � � � !initialize variance ratio
� � � � if (iobs==jobs) varratio = (sigmaobs(iobs)*sigmaobs(iobs))/(sigmax*sigmax) !ratio of error variances
� � � � amatrix(jobs,iobs) = rij + varratio� � � !fill upper triangle of A matrix
� � � � amatrix(iobs,jobs) = amatrix(jobs,iobs)� � !fill bottom triangle. symmetric.
� � � enddo
� � enddo
� � call ludcmp� � � � � � !replace amatrix with LU decomposition
!Compute the gridded analysis
� � do ix=1,nx� � � � � � !for each grid point
!Fill the B matrix
� � � do jobs = 1,nobs� � � !for each observation point
� � � � rxj = exp(-0.5*((xgrid(ix)-xobs(jobs))**2)/sigmaR2)� !correl drop-off with distance
� � � � bmatrix(jobs) = rxj� � !B matrix
� � � enddo
!Solve A X = B for solution vector X, which represents the weights p
� � � call lubksb� � � � � !solve for the linear weights, which are returned in bmatrix
!Use these weights to find the gridded analysis
� � � ogrid(ix) = 0.0� � � � !initialize analysis increment
� � � do iobs = 1,nobs� � � !for each observation point
� � � � ogrid(ix)=ogrid(ix)+bmatrix(iobs)*fobs(iobs)� !accumulate the analysis increment
� � � enddo
� � � ogrid(ix) = bgrid(ix) + ogrid(ix)� !get analysis by adding first-guess and increment
� � enddo
� � write(2,*) "OPTIMUM", (tab,ogrid(ix),ix=1,nx)� !write optimum analysis to disk
� � print *, "...ending OPTIMUM" � !status report
� � end subroutine optimum

!=================
� � SUBROUTINE ludcmp� � � � !Lower-upper matrix decomposition
!Based on Numerical Recipes routine. (Modified to take I/O via modules.)
!Solves a set of linear algebraic equations: A X = B.
!This routine takes matrix A as input, and overwrites it with a LU decomposed matrix
!This LU version of A is then used by subroutine lubksb to solve for X.
!(for details: Press et al, 1992, Numerical Recipes in FORTRAN, 2Ed, Cambridge U Press)
� � use obsmodule� � � � � !common observation variables
� � use optimumodule� � � � !common optimum interp variables
� � implicit none � � � � � !enforce strong typing
� � INTEGER :: i,imax,j,k
� � REAL :: aamax,dum,sum
� � do i=1,nobs
 � aamax=0.

Page 8 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

� � � do j=1,nobs
� � � � if (abs(amatrix(i,j)).gt.aamax) aamax=abs(amatrix(i,j))
� � � enddo
 if (aamax.eq.0.) pause 'singular matrix in ludcmp'
 vv(i)=1./aamax
� � enddo
� � do j=1,nobs
� � � do i=1,j-1
� � � � sum=amatrix(i,j)
� � � � do k=1,i-1
� � � � � sum=sum-amatrix(i,k)*amatrix(k,j)
� � � � enddo
� � � � amatrix(i,j)=sum
� � � enddo
� � � aamax=0.
� � � do i=j,nobs
� � � � sum=amatrix(i,j)
� � � � do k=1,j-1
� � � � � sum=sum-amatrix(i,k)*amatrix(k,j)
� � � � enddo
� � � � amatrix(i,j)=sum
� � � � dum=vv(i)*abs(sum)
� � � � if (dum.ge.aamax) then
� � � � � imax=i
� � � � � aamax=dum
� � � � endif
� � � enddo
� � � if (j.ne.imax)then
� � � � do k=1,nobs
� � � � � dum=amatrix(imax,k)
� � � � � amatrix(imax,k)=amatrix(j,k)
� � � � � amatrix(j,k)=dum
� � � � enddo
� � � � vv(imax)=vv(j)
� � � endif
� � � indx(j)=imax
� � � if(amatrix(j,j).eq.0.) amatrix(j,j)=TINY
� � � if(j.ne.nobs)then
� � � � dum=1./amatrix(j,j)
� � � � do i=j+1,nobs
� � � � � amatrix(i,j)=amatrix(i,j)*dum
� � � � enddo
� � � endif
� � enddo
� � end subroutine ludcmp

!==============
� � SUBROUTINE lubksb� � � � !Lower-upper matrix back substitution
!Based on Numerical Recipes routine. (Modified to take I/O via modules.)
!Solves a set of linear algebraic equations: A X = B.
!Uses as input the LU decomposition from subroutine ludcmp, which was overwritten into amatrix.
!bmatrix holds eq RHS vector as input, but returns solution vector X as output
!(for details: Press et al, 1992, Numerical Recipes in FORTRAN, 2Ed, Cambridge U Press)
� � use obsmodule� � � � � !common observation variables
� � use optimumodule� � � � !common optimum interp variables
� � implicit none � � � � � !enforce strong typing
� � INTEGER :: i,ii,j,ll
� � REAL :: sum
� � ii=0
� � do i=1,nobs
� � � ll=indx(i)
� � � sum=bmatrix(ll)
� � � bmatrix(ll)=bmatrix(i)
� � � if (ii.ne.0)then
� � � � do j=ii,i-1
� � � � � sum=sum-amatrix(i,j)*bmatrix(j)
� � � � enddo

Page 9 of 9untitled text
Printed: Tuesday, January 16, 2007 8:01:37 PM

� � � else if (sum.ne.0.) then
� � � � ii=i
� � � endif
� � � bmatrix(i)=sum
� � enddo
� � do i=nobs,1,-1
� � � sum=bmatrix(i)
� � � do j=i+1,nobs
� � � � sum=sum-amatrix(i,j)*bmatrix(j)
� � � enddo
� � � bmatrix(i)=sum/amatrix(i,i)
� � enddo
� � end subroutine lubksb

