
ATSC 212 – HTML

1!

ATSC 212

ATSC 212 – HTML

2!

1.  What is HTML?
2.  Webpage Basics
3.  Formatting
4.  Fonts
5.  Colors
6.  Style Sheets (CSS)
7.  Images
8.  Anchors and Links
9.  Tables
10.  Lists
11.  Forms
12.  Dynamic Webpages

Section Overview

ATSC 212 – HTML

3!

HTML stands for HyperText Markup Language. It was
originally designed so that military and academic users
could publish electronic documents in a more readable
format.

With the changes to the internet came changes to the
publishing demands of its users. Nowadays, internet
publishing involves more than documentation and includes
the use of pictures, animation, and sound. It is no longer
just about sharing text documents but a media unto itself.
Despite that, HTML still forms the basis for most web
development today.

What is HTML?

ATSC 212 – HTML

4!

HTML documents in their simplest form are simply text
documents with some special tags to tell browsers how to
interpret and display the text.

All HTML tags surround sections of text or files enclosed
in <> brackets. Most HTML tags have a beginning tag
and an ending tag which will be the same as the
beginning tag but include a / before the tag name. For
example, <html> and </html> are tags that indicate an
HTML document.

Webpage Basics

ATSC 212 – HTML

5!

All HTML documents begin with <html> and end with
</html>. These tags tell the browser that it should
interpret the document as an HTML document. The only
text that can occur outside these tags are comments.

In HTML, single line comments can be declared like this

<! YOUR COMMENT GOES HERE >

Multiple line comments can be declared like this

<!– YOUR COMMENT
GOES HERE -->

Webpage Basics

ATSC 212 – HTML

6!

Once you have a the document tags in place, there are
two primary sections to define for your document: the
head and the body. The head is specified using the
<head></head> tags and the body using the
<body></body> tags.

The head of the document normally contains information
about document style, imbedded scripts, the title, and
other meta information. This is normally where style
sheets and javascript go.

The body contains the actual document contents.

Webpage Basics

ATSC 212 – HTML

7!

There are a lot of things that can be specified in the
head, but we will only focus on two tags; <title> and
<style>. The title tag allows you to specify the
document title which appears in the browser title bar.

<title>Emergency Weather Net Canada</title>

Webpage Basics

ATSC 212 – HTML

8!

The style tag allows you to set characteristics for how the
webpage looks (ie fonts, colors, background). We will
examine this in more detail in the Style Sheets section.
So far, our standard webpage looks like:

<html>
 <head>
 <title>YOUR TITLE</title>
 </head>
 <body>
 STUFF
 </body>
</html>

Webpage Basics

ATSC 212 – HTML

9!

Although we have not come across it yet, it is worth
noting that many tags can also be supplied with
attributes that affect how the tag operates. For example

...stuff...

will specify that everything between the tags should have
the Tahoma typeface and be three sizes larger than
the browser default.

Most of the tags we see from now on will have attributes
that you will need to set.

Webpage Basics

ATSC 212 – HTML

10!

Anything we add to the body will appear in the webpage
itself. We can just type in whatever we want, but if we
do not specify the layout, the browser will use its defaults
to decide how the page looks. We can give information
to the browser about how we would like the content to
appear.

Changing fonts is the most common formatting change.
We can specify a particular typeface, text size, and color
using the font tag.

Formatting

ATSC 212 – HTML

11!

Bold facing type can be done using the flag.

THIS IS BOLD

Italics are done via the <i> flag.

<i>Italicized</i>

Underlining is done via the <u> flag.

<u>Underlined</u>

Formatting

ATSC 212 – HTML

12!

Keep in mind, these changes are only suggestions to the
browser. If the user has the browser override websites,
or the browser does not support a particular format (like
a typeface), it will ignore the formatting and go with a
default.

There are pre-defined header tags which can be used to
format headings for different sections of the webpage.
These tags are <h1>, <h2>, ... <h6>. <h1>
indicates a top level header while subsequent numbers
indicated nested section headers. Typically they affect
the size and boldness of the test.

Formatting

ATSC 212 – HTML

13!

Different sections of text can be separated into
paragraphs using the <p> tag. This tag has attributes
for justifcation (align=“center|left|right”) and width
in pixels (width=“250”). By separating sections into
paragraphs, we can have text displayed as paragraphs
onscreen.

There are lots of other formatting tags, but we will cover
only one more of note, the <hr> tag. This tag has no
closing </hr> tag, does not enclose text, but instead
indicates to the browser to draw a horizontal line on the
screen. It takes attributes for justification (align), color
(color), thickness (size), and width on the screen in
pixels (width).

Formatting

ATSC 212 – HTML

14!

Example:

<html>
 <head>
 <title>Our Webpage</title>
 </head>
 <body>
 <h1>Main Document</h1>
 <hr color=“#00FF00” size=“4” width=“250”>
 <p>This is the main portion of our document.</p>
 <h2>Sub-Document</h2>
 <p>This is the sub-document.</p>
 <p>Important information!</p>
 </body>
</html>

Formatting

ATSC 212 – HTML

15!

Formatting

ATSC 212 – HTML

16!

The
 tag acts like a carriage return. Browsers do
not recognize returns within the document as formatting
for the webpage, so you need to specify when you want a
line to be separate. With paragraphs, this is most easily
done using the <p> tag, but if you just want to put a
return between any two lines, use
.

Formatting

ATSC 212 – HTML

17!

We mentioned the tag earlier, let’s take a look at
it in more detail. This tag is used to suggest the font that
the browser should use to display text contained between
the beginning and ending font tags. If the browser does
not support some aspect of the font, it will use its default
setting.

The main attributes of the tag are color, face,
and size. The color attribute and accepts a #RRGGBB
string and sets the color of the font. We will look at the
color string more closely in the next section.

Fonts

ATSC 212 – HTML

18!

The size attribute determines how large the text should
be. You can set it to a number from 1 (smallest) to 7
(largest) or you can specify an offset from the default (ie
+1 for one size larger or -2 for two sizes smaller). Most
browsers have a default of 3.

The face attribute determines the typeface for the
browser to use. This is a string of one or more comma
delimited typefaces. Common examples are Helvetica,
Sans Serif, Times New Roman, Tahoma, and Arial. The
browser will normally attempt to display using the first
typeface in a list, going to each subsequent typeface if
not supported.

Fonts

ATSC 212 – HTML

19!

Many tags in HTML have an attribute which will take a
color code and use this to set a background, foreground,
border, or text color. The standard color format is
#RRGGBB.

The color strings always start with #. Beyond that, you
have pairs of hexadecimal numbers representing the
amount of red (RR), green (GG), and blue (BB) within the
color. Hexadecimal numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F (taking values from 0 to 15).
Therefore the number pairs represent a value from 0 (00)
to 255 (FF). The higher the value, the more a color
appears.

Colors

ATSC 212 – HTML

20!

For example, #FF0000 is pure red, #00FF00 is pure
green, and #0000FF is pure blue.

The colors are determined by color adding, and while any
combination is valid, most monitors cannot display subtle
differences nor can most people see them. (ie #F00000
looks exactly like #F10000).

Most commonly used or ‘safe’ colors are created through
combinations of the digits 0, 3, 6, 9, C, and F.

Colors

ATSC 212 – HTML

21!

#000000 – white
#660000 – dark red
#CC0000 – red
#FF0000 – bright red
#006600 – dark green
#00CC00 – green
#00FF00 – bright green
#000066 – dark blue
#0000CC – blue
#0000FF – light blue

#666600 – moss
#CCCC00 – mustard
#FFFF00 – yellow
#006666 – dark aqua
#00CCCC – aqua
#00FFFF – cyan
#660066 - dark purple
#CC00CC – purple
#FF00FF - fuschia

Colors

Here are some example colors.

ATSC 212 – HTML

22!

Adding all these different formatting tags to your
document makes it a bit cluttered and difficult to deal
with. For that reason, style sheets (usually referred to
as cascading style sheets or CSS) were introduced.

Style sheets let you define formatting for various
elements of your webpage once so that you can easily
apply them later, like a theme in a word or powerpoint
document. This removes clutter from your document and
ensures consistency in appearance. You can override
style sheet definitions using the formatting techniques we
have already discussed.

Style Sheets (CSS)

ATSC 212 – HTML

23!

There are four ways you can add style sheet information
to your webpage.

1.  You can add the style sheet within your <head>
section.

2.  You can link or import the style sheet from a separate
file.

3.  You can apply style sheets to specific sections.
4.  You can inline style definitions.

Both points 3 and 4 are achieved by using the style
attribute within different tags.

Style Sheets (CSS)

ATSC 212 – HTML

24!

You can add a style sheet to your <head> section by
using the <style> tags. Anything that appears between
the <style> and </style> tags forms the style sheet for
the webpage. The <style> tag does not take any
attributes.

Nowadays, most browsers properly interpret the <style>
tag and style sheet information, but for portability to
older browsers and to ensure complete compatibility, the
style sheet is usually listed as a comment between the
<style> tags. (ie <style><!-- ... --></style>)

Style Sheets (CSS)

ATSC 212 – HTML

25!

If you put the style sheet definitions between the style
tags, it will apply to the webpage. However, if you are
designing a website with many pages sharing the same
style or having alternative site styles, storing the style
sheet in separate files makes it easier to share and
improves site consistency. Style sheet files simply contain
the style definitions normally found in the commented
section and have the extension .css.

To import a style sheet file, simply add @import url
(‘...’); between your style tags (in the commented
section to be safe). The URL can be absolute or relative
to the webpage file.

Style Sheets (CSS)

ATSC 212 – HTML

26!

Alternatively you can link the style sheets into your
webpage. Linking can give you the option of choosing
between different style sheets for different purposes (ie
one style sheet for viewing and another for printing).

Linking is achieved with the <link> tag. This tag has
three attributes you will need to set: rel, type, and href.
rel should be set to ‘StyleSheet’. type should be set to
‘text/css’. Together, these attributes tell the browser what
type of file is being linked. href specifies the URL for the
file, absolute or relative. Unlike importing, <link> tags do
not have to appear between <style> tags but can be
used anywhere within the webpage.

Style Sheets (CSS)

ATSC 212 – HTML

27!

However, there is an important caveat to importing or
linking multiple style sheets. If the various files contain
style definitions for the same element(s) (ie making all
paragraph text a particular color), the then last style
definition in the webpage will be the one the browser will
use.

Now let’s look at how we create style definitions. For
portability, our style sheet files will have <style> tags and
html commenting around our definitions. A definition
consists of selectors|classes { declarations } .

Style Sheets (CSS)

ATSC 212 – HTML

28!

Selectors are HTML elements and often correspond to
HTML tags which have a style attribute (ie P is the
selector for the <p> tag and would apply to all <p>
tags). Classes refer to a particular style element, such
as a color, and can belong to either a selector (ie P.red) or
the general document (ie .red).

Declarations are specifications of the properties of that
selector or class (ie P { color : red } would make the text
of all <p> tagged sections red). Declarations are always
pairs of properties and specifications separated by a
colon. Multiple declarations can be made within the {}
provided the are separated by semicolons.

Style Sheets (CSS)

ATSC 212 – HTML

29!

Before delving too deep into types of declarations, it is
worth noting that some declarations require a measure,
some distance on the screen. In these cases, you can
supply set measures (ie 2px) or percentages (ie 90%).

The standard measures are em, ex, in, cm, mm, px,
pt, and pc. An em is the width of a capital M in the used
typeface. ex is the height of a lowercase x in the used
typeface. in is inches. cm is centimeters. mm is
millimeters. px is pixels. pt is points which is a
typographic measure equal to 1/72 of an inch. pc is picas
which is also a typographic measure, equal to 1/6 of an
inch.

Style Sheets (CSS)

ATSC 212 – HTML

30!

It is worth noting that real measures (in, cm, mm, pt, pc)
do not relate well to screen space, but are very useful in
specifying how the webpage will print. Vice-versa, screen
measures (em, ex, px) do not relate well to real space,
but are very useful in specifying how a webpage will
appear in a browser.

Colors also can be specified in multiple ways.

1.  #RRGGBB format specified earlier.
2.  Standard color (ie red, green, blue)
3.  rgb(R, G, B) where R, G, B are numbers 0-255
4.  rgb(R, G, B) where R, G, B are percentages 0%-100%

Style Sheets (CSS)

ATSC 212 – HTML

31!

Time to take a closer look at selectors. You have already
seen tags like <body>, <p>, and <h1>. Soon you will
see anchor tags (<a>), table tags (<table>), and list
tags (,). All of these tags can be selectors.
Typically they are listed as selectors using the tag name
in uppercase. For example:

BODY { font-size : x-large ; color : blue}

would make the font size of all text in the document extra
large (about 20 pixels) and the color of all text blue.
Most any tag we discuss can be a selector.

Style Sheets (CSS)

ATSC 212 – HTML

32!

Now that we know about selectors, let’s look at
declarations. A declaration is a combination of a
property/attribute and a value (most all tag attributes can
be in declarations). One of the most common things to
set is the font. Font properties include font-family,
font-style, font-variant, font-weight, and font-size.

font-family is like a typeface (ie Sans Serif, Times New
Roman). font-style can be normal, italic, or oblique.
font-variant is rarely used but can specify small-caps.
font-weight specifies the boldness (normal, bold, bolder,
lighter, or 100, 200, ... 800, 900). Finally font-size goes
from xx-small, x-small, small, medium, large, x-large, xx-
large or a number in pixels.

Style Sheets (CSS)

ATSC 212 – HTML

33!

Although using font declarations will do a lot to change
the appearance of text, there are more text properties
you can declare: word-spacing, letter-spacing, text-
decoration, vertical-align, text-transform, text-
align, and text-indent.

Word-spacing and letter-spacing are declared as
measurements and do what you would expect, space out
words or letters by the specified measurement.

Text-decoration has the options underline (like <u>),
overline, line-through, and blink. All the options are self-
explanatory, but blink should be used sparingly.

Style Sheets (CSS)

ATSC 212 – HTML

34!

Text-indent is a measurement or percentage that
specifies the amount to indent.

Text-align can be right, left, or center justified.

Vertical-align can be baseline, super, sub, top, text-top,
middle-bottom, or text-bottom. Super and sub are the
most useful a they allow for superscripts and subscripts.

Finally, text-transform can be capitalize, uppercase, or
lowercase.

Style Sheets (CSS)

ATSC 212 – HTML

35!

Outside of text, color and background are the most
commonly set properties. The possible declarations are
color, background-color, background-image,
background-repeat, and background.

Color lets you set the color of something, usually text,
and can be specified in any of the ways mentioned
previously (ie P { color : rgb(255, 0, 255) }).

Background can be used to set background-color,
background-image, and background-repeat, although
they can also be done separately.

Style Sheets (CSS)

ATSC 212 – HTML

36!

Background-color is specified in the same way as color
and will alter the background color of whatever selector
you have chosen.

Background-image allows the background to show an
image, instead of a single color, specified by url(‘...’). If
the background area is smaller than the image, only part
of the image will be shown. If the background area is
larger, the entire image will be shown and may be tiled to
cover the area (depending on the browser default).
Background-repeat allows you to specify that the image
be tiled to cover the entire background (or up to a set
number of times).

Style Sheets (CSS)

ATSC 212 – HTML

37!

We will be looking at anchors and links shortly which are
created using the <a> tag. You can style links using
three different selectors; A:link, A:active, and
A:visited. A:link is used to alter the appearance of
typical, untaken links. A:active is used to alter the
appearance of a link currently in use. A:visited changes
the appearance of a link that has been clicked.

You can alter the link appearance in any ways we discuss
later in the links section, but the most common use is to
change the color of the link to make it stand out. Most
browsers have a default of blue for links and active links,
and a default of purple for visited links.

Style Sheets (CSS)

ATSC 212 – HTML

38!

The last thing we will cover are declarations for lists.
Later on we will see that we can create ordered lists
() and unordered lists (). There are four
properties we can set specific to lists: display, line-
height, list-style-type, and list-style-image.

Display can be set to inline, block, or list-item and
controls how the list displays. Inline makes each element
display on its own line without an index marker. Block
and list-item organize the elements vertically and on
some browsers do nothing.

Line-height takes a measurement and sets each bullet to
be that high.

Style Sheets (CSS)

ATSC 212 – HTML

39!

Finally, list-style-type and list-style-image control how list
markers appear.

List-style-image allows you to specify an image via url
(‘...’) that acts as the list marker.

List-style-type allows you to choose a pre-set marker
from disc, circle, square, decimal, lower-roman, upper-
roman, lower-alpha, upper-alpha, and none. Some types
are for bullets (ie disc, circle, square), while the others
are for ordered list markers.

Style Sheets (CSS)

ATSC 212 – HTML

40!

Adding images or video to your webpage adds flair and is
simple and you can do it via the tag. The tag
has several important attributes: align, alt, border,
controls, height, hspace, ismap, loop, src, start,
usemap, vspace, and width.

Height and width specify the size the image appears as in
pixels. If height and/or width are not specified, the
browser will default to the actual size of the image.

Hspace and vspace are used to produce a margin of
whitespace in pixels around the image (horizontally and/
or vertically).

Images

ATSC 212 – HTML

41!

The align attribute allows the image to be inlined (for text
to wrap around it). align can be LEFT, RIGHT, TOP,
MIDDLE, and BOTTOM (where the image appears on the
screen relative to the text).

The alt attribute allows you to give some text description
that appears in lieu of the image in browsers that do not
support displaying images.

The border attribute specifies the width of the border
around the image in pixels. Normally, no border is
displayed around images (so border=0 is not necessary).
The color of the border is the same as the surrounding
text.

Images

ATSC 212 – HTML

42!

Ismap and usemap indicate that the image is to be
treated as a clickable map object. We will not cover map
objects, but essentially they are places on the webpage
which can be moused over and clicked with results
depending where on the area the click occurred. Ismap
requires that map object be handled by the server (so an
anchor will need to wrap the image). Usemap specifies a
URL that the browser uses to determine how to handle
the map.

Images

ATSC 212 – HTML

43!

Controls, loop, and start are all used for video. Controls
ensures that playback controls are made available for the
video (otherwise the user will have no control over
playback).

Loop indicates the number of times the video will
playback before stopping. Loop=INFINITE will
continually play the video over and over. By default, most
browsers will play a video once.

Start indicates when the browser should start playing the
video. The options are FILEOPEN (which begins play
once the file is downloaded) or MOUSEOVER (which plays
when the user mouses over the video).

Images

ATSC 212 – HTML

44!

The final attribute, src, is also the most important. This is
the URL where the image or video file is located. The
URL can be relative to the webpage containing the
 tag or absolute (the complete path to the file on
the website). Let’s take a look at a couple examples...

Images

ATSC 212 – HTML

45!

Putting some text around the image, just to see how it handles it.
<img src="IMG_0014.JPG" border=2 hspace=10 vspace=10
height=200 width=300>
Oh, look at that, it goes in the middle.

Also note, the real image is much bigger than 200x300, but height
and width shrunk it down.

Images

ATSC 212 – HTML

46!

Putting some text around the image, just to see how it handles it.
<img src="IMG_0014.JPG" border=2 hspace=10 vspace=10
align=RIGHT>
Things have changed now. The image is huge and all the text is
appearing to the right of it.

Images

ATSC 212 – HTML

47!

One of the primary elements of webpages is the ability to
go directly to another spot within the same document or
to a different webpage altogether. When going to a spot
within the same document, the element is called an
anchor. When going to a different webpage, it is called
a link. For simplicity, and because the approach to both
behaviours is achieved with the same tag, the <a> tag,
we will hereafter refer to them as links.

The tag has several important attributes you will use:
href, name, title, and coords. There are others, but
these will give you the key functionality.

Anchors and Links

ATSC 212 – HTML

48!

The title attribute allows you to specify text that will
appear as a tooltip when someone mouses over the link.

The name attribute gives you a way to identify the link
within a document. This is the key to creating links to
other places within the same document.

The coords attribute allows you to specify a clickable
area for the link. Normally, it would be text in the tags,
but you can create a link over an image or area of the
document using coords.

Finally, href allows you to specify where to go.

Anchors and Links

ATSC 212 – HTML

49!

Example:

<h1>Main Document</h1>
<p>Check out the Sub-Document</p>
<p>Just some stuff to fill in some space before the sub
 document.</p>
<hr>
<hr>
...add 500 <p> </p>...
<h2>Sub-Document
 </h2>

Anchors and Links

ATSC 212 – HTML

50!

Anchors and Links

ATSC 212 – HTML

51!

Example:

<h1>HTML Basics</h1>
<p>For more information, check out
 W3 Schools HTML</p>

Anchors and Links

ATSC 212 – HTML

52!

Organizing data on your webpage is key to making it
readable and recognizable. A useful element for this is
the table.

Tables are rows and columns of data built up cell by cell
within row by row. There are three tags used for building
tables: <table>, <tr>, and <td>.

The <table> tag indicates a table is being started. The
key attributes we will consider for this tag are align,
background, bgcolor, border, bordercolor,
cellpadding, cellspacing, cols, and width.

Tables

ATSC 212 – HTML

53!

Align and width work as they do with other tags, allowing
you to specify how the table aligns itself within the
document and how wide it appears.

The background attribute allows you to specify a URL to
an image that will appear as the background to the table.
If you prefer for the table to have a solid color instead,
you can use the bgcolor attribute which takes a
“#RRGGBB” color. If neither attribute is specified, the
table will have the same background color or image as
the rest of the document.

Tables

ATSC 212 – HTML

54!

The border attribute allows you to specify the thickness
of the cell borders in pixels and bordercolor lets you
specify the color of the borders. If you set border=0,
then no borders will appear, which is a nice trick for
organizing data within a document using a table without
it appearing as a table.

Cellpadding determines how much space, in pixels,
should go between a cell’s contents and its border.
Cellspacing specifies the number of buffer pixels
between cell borders. These two attributes can be used
to make a table appear less crowded.

Tables

ATSC 212 – HTML

55!

Finally, cols allows you to specify the number of columns
in a table. Normally, tables will have a number of
columns equal to the maximum number of cells in any of
its rows. This attribute ensures cells appear, particularly
where there is no data.

Tables

ATSC 212 – HTML

56!

The <tr> flag is used to add a row to the table. It has
align, bgcolor, and bordercolor which override the
same attributes within the table for that row. It also has
a couple other useful attributes: nowrap and valign.

Nowrap prevents text from wrapping within cells to form
new lines. This forces each cells’ contents to be
displayed as a single line.

Valign allows you to specify the vertical alignment within
cells of that row to be either at the ‘top’, in the ‘middle’,
or at the ‘bottom’.

Tables

ATSC 212 – HTML

57!

Finally, the <td> flag is used to create individual cells
within the table. It is between the <td> and </td> flags
that table content goes. This flag also has align,
background, bgcolor, bordercolor, nowrap, valign,
and width attributes that work as described for the other
tags you have seen. These override the same flags as
specified in either <tr> or <table>. In addition, it has
two other useful attributes: colspan and rowspan.

Colspan allows you to create a cell which covers multiple
columns within the row (appearing as a single cell).
Rowspan allows you to create a cell which will cover
multiple, subsequent rows within a single column.

Tables

ATSC 212 – HTML

58!

Example:

<table bgcolor=“#55FFAA” border=3 cols=5>
 <tr bordercolor=“#FF0000” align=“center” valign=“bottom”>
 <td colspan=3>DATE</td>
 <td width=150>MONEY</td>
 <td>ITEM</td>
 </tr>
 <tr bordercolor=“#00FF00” valign=“middle”>
 <td>2012</td>
 <td>01</td>
 <td>21</td>
 <td align=“right”>$12.50</td>
 <td>Gasket</td>
 </tr>
</table>

Tables

ATSC 212 – HTML

59!

Notice how the table only extends as large as it needs to
be for the contents (not across the entire document) with
the exception of the MONEY column where we specified
the width of the header cell (which adjusted the entire
column).

Tables

ATSC 212 – HTML

60!

Example:

<table border=0 width=800>
 <tr>
 <td colspan=2>We will have some kind of header paragraph here.
 Discussing various things about the topic in
 general.</td>
 </tr>
 <tr>
 <td>More discussion, but perhaps more relevant to the
 photo.</td>
 <td></td>
 </tr>
 <tr>
 <td colspan=2>Just a bit more fluff...</td>
 </tr>
</table>

Tables

ATSC 212 – HTML

61!

We will see the tag later, but as you can see, the
table invisibly organizes the page when the border=0.

Tables

Also notice that
the table has a
set width of 800
pixels, so it
covers that much
of the browser
window. With
the width of the
image set to
600, it limits the
text to the left.

ATSC 212 – HTML

62!

Although we could use a table and some fancy formatting
to make a nicely appearing list in a webpage, there is an
easier way. We can create ordered lists (ie 1. ..., 2. ...)
using the tag and unordered lists (ie bullet points)
using the tag.

We add elements to the list between the opening and
closing tags using the tag. Anything that appears
between tags will be added to the list. Anything
between or tags that is not between
tags, will not be added to the list, but will be indented as
much as the list elements. Let’s see an example.

Lists

ATSC 212 – HTML

63!

<p>We are going to do an unordered list</p>

 <p>Here is some text that is not in the list</p>
 Our first bullet point.
 <p>Some more non-list text.</p>
 Another bullet point.

<p>Now for an ordered list.</p>

 <p>Again, let’s open with some text.</p>
 Point one.
 <p>More text...see how it is indented.</p>
 Point two.

Lists

ATSC 212 – HTML

64!

Lists

ATSC 212 – HTML

65!

Most of the properties for lists can be set with style
sheets as we have seen. However, for ordered lists, if
you wish the list to begin at something other than the
default (ie 1, A, a), then you need to use the start
attribute. For example

<ol start=4>

will begin an ordered list whose first element is 4
(subsequent elements are 5, 6, ...).

Lists

ATSC 212 – HTML

66!

Thusfar, we have seen how we can organize and format
data in webpages, but we cannot interact with someone
viewing the webpage. They have no means of input.
Forms provide a framework for interactive content. The
form instructs the browser on what information to provide
and how to provide it, as well as telling the server that
serves the webpage what to do with the information it
receives back.

Forms are begun with the <form> tag. Important
attributes for this tag are action and method. It will
also take attributes like name which function as they do
for other tags.

Forms

ATSC 212 – HTML

67!

The action attribute specifies a URL that processes the
data sent by the form. This typically will be a script on
the server which may return a webpage once the data is
processed. This attribute is what allows data to be
passed from forms.

The method attribute can be either POST or GET and
tells the browser how to send the data to the server.
Unless you want to control the specific method for data
transfer (which can be useful at times), then it is not
important to specify this attribute (the browser will simply
choose its default).

Forms

ATSC 212 – HTML

68!

Between the form tags, we need ways of collecting
information. We use the <input> tag to do this. This
tag does not have an end tag (</input>) and
encapsulates one type of data. Important attributes
include checked, disabled, maxlength, notab,
readonly, src, tabindex, type, and value. It also
takes attributes like name, align, and size which works as
defined for other tags. However, we will say more about
name shortly.

The type attribute is the most important. It defines the
the kind of input and how it will appear. Acceptable types
are text, password, radio, checkbox, submit, reset,
image, file, hidden, and button.

Forms

ATSC 212 – HTML

69!

Most of these types are obvious. Text defines a text box
that people can type anything into. Password queries
for an encrypted password. File allows for any generic
file to be uploaded. Radio and checkbox are types of
pre-defined choices. Submit, image, and reset are the
buttons you normally see that allow you submit your data
or reset the form to defaults. Image works like submit
except you can specify how the button appears. Button
allows you to define a selectable button that indicates
data should be sent (pressed) or not (not pressed).
Finally the hidden type allows you to send data of which
the user is unaware. This is a useful way to carry data
from form to form or page to page without the user
having to constantly re-send it.

Forms

ATSC 212 – HTML

70!

The checked attribute is only relevant to radio and
checkbox inputs and specifies that the particular input is
selected by default.

The disabled attribute prevents that input from being
shown or used (depending on the browser). This can be
useful when going through multiple inputs which rely on
previous entries which may make particular inputs invalid.

The maxlength attribute defines the number of
characters you can enter into a text or password type.
This is not the same as the size attribute which affects
how big the text box will appear on the screen.

Forms

ATSC 212 – HTML

71!

The notab and tabindex attributes control how you can
tab through input selections. notab prevents that input
from being selected with the tab key while tabindex
determines the order in which inputs will be selected by
the tab key.

Readonly is similar to disabled except that the input is
shown, a value can be submitted and selected, but it
cannot be changed by the user. This can be useful for
showing locked-in selections.

Forms

ATSC 212 – HTML

72!

The value attribute allows you to specify a default value
that is submitted if the input is chosen.

Finally, the src attribute works with the type=“image” to
indicate the image file that should be used to replace the
submit button. This attribute is only applicable if type is
image, otherwise it does nothing.

The <input> tag, by itself, does not necessarily display
information in the form. Anything else we type between
the <form> tags will appear as text within the form (and
we can format this text using the tags seen so far).

Forms

ATSC 212 – HTML

73!

There is one last caveat and that is the name attribute.
Normally we would use this attribute to help define a tag
within a document (particularly for linking), however, for
forms, the name attribute also defines the name (or
parameter) the data will be passed under when
submitted. So every input tag should have a name
attribute, even though some may be the same name (as
in the case of radio buttons or checkboxes).

Let’s take a look at an example...

Forms

ATSC 212 – HTML

74!

<form method=“POST” action=“../get_text.pl”>
 Input your name and address.

 <input type=“TEXT” name=“NMA” size=“150” maxlength=“125”
value=“Name and Address”>
 <input type=“Submit” value=“Send”>
</form>

Forms

ATSC 212 – HTML

75!

Here is another example:

<form method="POST" action="../get_text.pl">
 Input your name and address.

 <input type="TEXT" name=“NMA” size="150" maxlength="125" value=“NMA">

 <input type="RADIO" name=“GetForm” value="PreAuth" checked>Pre-
Authorized

 <input type="RADIO" name=“GetForm” value="ReqForm">Request Form

 <input type="CHECKBOX" name=“Options” value="LowInt">Low Interest

 <input type="CHECKBOX" name=“Options” value="AnnualPay">Annual
Payments

 <input type="CHECKBOX" name=“Options” value="HighBal">High Balance

 <input type="CHECKBOX" name=“Options” value="Monthly">Monthly
Statements

 <input type="Submit" value="Send">
</form>

Forms

ATSC 212 – HTML

76!

Notice that only one radio button can be clicked but
multiple checkboxes can be selected. This is the primary
difference between these two types of input.

Forms

ATSC 212 – HTML

77!

Now that you have seen how to add forms to webpages,
how do you deal with that data? How do you create an
interactive experience for the user?

Thusfar we have been creating .html files, static content
that the browser interprets directly. However, it is
possible for a web server to send html content to a
browser based on a script. Using forms, the browser can
send data to the web server which can be used in a script
to dynamically generate new web content which can be
sent to the browser.

Dynamic Webpages

ATSC 212 – HTML

78!

There are many approaches to dynamically generating
web content. Pre-compiled code (such as code in C) or
scripted code in languages like PERL or PHP can be
executed by the web server when instructed by the
browser (via a link). This pre-compiled or scripted code
can parse form data and then generate new web content
on the fly and send it back to the browser.

Learning how to script dynamic web content could be a
course unto itself, but we will take a look at some basic
elements using PHP.

Dynamic Webpages

ATSC 212 – HTML

79!

PHP can be inserted directly into HTML or can be scripted
entirely on its own. Whether inserting a section of script
into a webpage or creating a stand alone file, we enclose
PHP code with

<?php
...
?>

Typically, files containing PHP scripts are given the
extension .php to let the server know that it needs to use
the PHP interpreter to handle the script.

Dynamic Webpages

ATSC 212 – HTML

80!

PHP is a functional language with a lot of predefined data
structures, so most of what you do is make function calls.
Two very useful functions are header(...) and echo(...).

Both functions take a string as an argument. header()
takes the string and embeds that string into the <head>
section of your document. Thus, whatever string you put
into header should match the usual things you would see
in that section.

echo() simply sends the string to the browser (like a print
to browser command). You can use echo to compose
HTML directly.

Dynamic Webpages

ATSC 212 – HTML

81!

Getting at the data from forms is handled through some
predefined data structures called $_GET, $_POST, and
$_REQUEST. All variables and data names begin with a
$.

Recall that in forms you can specify the method that the
data is sent from the browser. Data sent using method
GET ends up in the $_GET data structure, while data sent
using the method POST ends up in the $_POST data
structure. These two data structures are dictionaries, or
hashes. They are indexed using the <input> name
attribute. For example, $_POST[“NMA”] will get the value
sent by the input named NMA.

Dynamic Webpages

ATSC 212 – HTML

82!

Let’s take a look at an example. Here is a webpage with
a simple textbox form that will accept typed data.

<html>
 <body>
 <form method=POST action=“handleform.php”>
 <input type=TEXT name=“info” size=50>

 <input type=SUBMIT>
 </form>
 </body>
</html>

Dynamic Webpages

ATSC 212 – HTML

83!

Now let’s create a PHP script (called “handleform.php”)
that reads that data and echoes it on a new webpage.

<?php
 $textbox = $_POST[“info”];
 echo(“<html>\n <body>\n”);
 echo(“ <p>You typed

$textbox

into the box, is that
correct?</p>\n”);
 echo(“ <form method=POST action=\”confirmed.php\”>\n”);
 echo(“ <input type=HIDDEN name=\”info\” value=\”$textbox\”>\n”);
 echo(“ <input type=RADIO name=\”confirm\” value=\”YES\”
checked>Yes
\n”);
 echo(“ <input type=RADIO name=\”confirm\” value=\”NO\”>No

\n”);
 echo(“ <input type=SUBMIT value=\”CONFIRM\”>\n”);
 echo(“ </form>\n”);
 echo(“ </body>\n</html>\n”);
?>

Dynamic Webpages

ATSC 212 – HTML

84!

Here is what our script is doing. First it is getting the
data from our textbox and storing it in the variable
$textbox. It does this by going to the $_POST data
structure (since we used the POST method in our form)
and looking up ‘info’ which was the name of our text box.

After that, it creates an HTML page using echo that
includes a radio button form for confirming the text
entered.

Dynamic Webpages

ATSC 212 – HTML

85!

A couple things of note regarding handleform.php. First,
notice the radio button form in this new page is designed
to call a different PHP script called confirmed.php. The
form also passes the contents of the previous textbox
along in a hidden input still called ‘info’.

Every argument supplied to echo() was a string which
meant that if we wanted quotes to appear within our
string we had to escape them using the backslash.

Finally, newlines were added to the end of every echoed
line, but they are not required. Browsers disregard
newlines, so they are only included to make it easier to
view the source for testing purposes.

Dynamic Webpages

ATSC 212 – HTML

86!

AND THAT IS IT...
This barely scratches the surface. A quick search online will yield a
multitude of information regarding HTML and PHP. HTML has many
great pages, although a good way to get an idea how HTML looks is
to view the source of pages you visit on the web. This can usually
be done by right clicking within a page and then looking for an
option like ‘View Source’.

For PHP, I recommend the developers site, www.php.net.

