
12/7/10	

1	

ATSC 212 – UNIX

1	

ATSC 212

ATSC 212 – UNIX

2	

An operating system (OS) is a resource manager. It's task is to
schedule resources and make available resources to system
processes or programs. There have been hundreds of operating
systems implemented for computers since the 1800's.

UNIX is an operating system written around 1970 by Dennis Ritchie
and Kenneth Thompson at AT&T. In 1973, UNIX was re-written into
C code making it the first portable OS in the world.

Linux is an operating system that was initially created as a hobby by
Linus Torvalds at the University of Helsinki in Finland. Linux conforms
to the basic UNIX standard and contains many of the applications
available on UNIX systems. Version 1.0 of Linux was released in
1994 under the GNU General Public License and its source code is
freely available to everyone.

12/7/10	

2	

ATSC 212 – UNIX

3	

Most people think an OS includes the graphical user interface (GUI)
and built-in applications (such as web browsers). Operating systems
are often packaged with these features to make them more accessible
and user friendly.

In truth, an operating system is just the kernel (resource manager)
and drivers (code that help the kernel understand system resources).
Basic operating systems run on the command line. In other words,
there are no fancy interfaces, no special applications, just a prompt
that allows the user to input commands directly to the system kernel.

UNIX is a simple, modular and very portable operating system, and in
its pure form, runs on the command line. However, to make it more
user friendly, UNIX also has many GUIs and applications often
packaged with it to make it appear more like the well known Windows
systems. However, to take advantage of the power of UNIX, you have
to work at the command line.

ATSC 212 – UNIX

4	

To access the command line, we need a shell. A shell is an operating
environment that allows us to interact with the UNIX kernel. On a
UNIX system without a GUI, you would work entirely from a shell.
Nowadays, most versions of UNIX come with a GUI similar to the
Windows desktop (ie KDE or GNOME). If you are working in a GUI,
you need to invoke a shell to get command line access. This can be
done by running terminal, xterm, XDarwin, or another shell program.
This will automatically create a shell with your default environment
to work in.

Once you have a shell you can issue commands to the kernel to do
things. Typically, commands take the form

<command> [options] [arguments]

Options are special flags or selections you can make to alter the way
a command is executed. Arguments are the things the command will
execute on.

12/7/10	

3	

ATSC 212 – UNIX

5	

MAN

To get help from UNIX, use the man command. man is short for
manual. Manual pages are help pages for the commands UNIX
recognizes. To use man, type man [command]. You can even
“man man” to get help on using man.

Manual pages (often referred to as man pages) can be browsed
using the arrow keys, and quit out of using q.

You can search man pages for specific keywords using the -k option
followed by keywords. This will return a list of man pages
containing the keywords..

 man ls
 man -k files

ATSC 212 – UNIX

6	

PASSWD
One of the most important responsibilities of a user is to keep their
account secure. This begins with having a secure password. To
change your password, you simply type passwd at the prompt.

passwd may restrict the types of passwords you can have on
certain systems (ie must be longer than 8 characters, cannot be a
dictionary word, etc). Try to pick passwords you can remember, so
that you don’t have to write them down. Also try to use numbers
in your passwords. Passwords are case sensitive, so including
capitals in odd places can also be effective. But most of all,
change your password often!

 passwd

12/7/10	

4	

ATSC 212 – UNIX

7	

UNIX FILESYSTEM
In any operating system, we need a place to store data, programs,
even the operating system itself, this is called the filesystem. The
UNIX filesystem is a hierarchical structure that allows users to store
information by name. At the top of the hierarchy is the root
directory, which always has the name /.

The location of a file in the file system is called its path. Since the
root directory is at the top of the hierarchy, all paths start from /.
The '/' character is also used to indicate directories.

In UNIX, everything in the filesystem is a file, however, there are
three kinds of files. Basic files are used to contain data. They could
be a report, or an image, or even a program. Directories are files
that are used to describe the hierarchy of the filesystem. Finally,
special files are used to identify filesystem devices, the actual
hardware that stores the data. You don't need to know about
special files, and probably won't ever have access to them.

ATSC 212 – UNIX

8	

The name given to a file or directory can contain almost any
character that can be typed on the keyboard and be of almost any
length. It is common to use only letters and digits for the first
character of a filename, and use only letters, digits, periods . ,
hyphens - , and underscores _ for the remainder of the filename.
However, quotes ‘ ” , spaces, question marks ? ,, asterisks * ,
slashes / \ , and greater than or less than signs < > should not
be used in filenames as they all have special meaning to UNIX.

UNIX is also case sensitive. For example, the files ab, aB, Ab, and
AB represent four different files in UNIX. Lastly, files that begin
with a period are automatically hidden by the filesystem. These
files are usually intended to be secure configuration files only
used by the operating system or special programs.

UNIX FILESYSTEM

12/7/10	

5	

ATSC 212 – UNIX

9	

Here is an example of some filenames and filesystem structure. Let's
consider the file /home/45090883/myCfiles/project1.c

/

home

45090883

myCfiles

project1.c

/ is the root directory

home is a directory under root

45090883 is a directory under home

myCfiles is a directory under 45090883

project1.c is a file inside the myCfiles directory

UNIX FILESYSTEM

ATSC 212 – UNIX

10	

Here is another example.
The filesystem tree looks like this:

/

home

45090883 58839052

myCfiles myfiles

project1.c project2.c doodle.c

And has these files:

/home/45090883/myCfiles/project1.c
/home/45090883/myCfiles/project2.c
/home/58839052/myfiles/doodle.c

UNIX FILESYSTEM

12/7/10	

6	

ATSC 212 – UNIX

11	

There are special shorthand characters for files which include: / the
root directory, ~ your home directory, . the current directory, .. the
parent directory of the current directory. These special shorthands
can be used with UNIX commands to identify files or directories in
particular locations without specifying the entire path.

UNIX also uses special characters called wildcards to help identify
files, or groups of files with particular names. * will match any set
of characters (ie /* will match all the files in the root directory). ?
will match any single character (ie 2?.txt would match 2a.txt,
2b.txt, 2c.txt...29.txt, etc) Square brackets [] can also be used to
match characters between the brackets. This can even be
specified as a range of numbers or letters (ie [x-z] will match x, y,
or z; 2[a-c].txt would match 2a.txt, 2b.txt, or 2c.txt; 2[abc].txt will
match the same files.)

UNIX FILESYSTEM

ATSC 212 – UNIX

12	

In Windows and OSX, files are automatically given an extension
(ie .doc, .jpg) by the application that is writing the file. In UNIX, files
are not given extensions automatically although it is common practice
for the user to include them in filenames to identify the type of file.

.doc a document file (typically Word document)

.txt a text file (typically ASCII plain text)

.exe an executable binary file

.pl a perl script

.pdf a Portable Document Format file

.gif a GIF format image

.jpg a JPEG format image

UNIX FILESYSTEM

12/7/10	

7	

ATSC 212 – UNIX

13	

Now that we understand some basics about the filesystem, it is time
to look at commands. Most commands we use in UNIX are going to
affect the filesystem in some way. Practically speaking, everything we
do with a computer is about controlling the flow of data. The
commands we will be covering are:

ls
pwd

mkdir
cp
mv

chown

cat
cd

rmdir
rm
ln

chmod

grep

COMMANDS

ATSC 212 – UNIX

14	

LS

The ls command (short for list) can be used to see what files are in
a given location in the filesystem. Some common options for ls
include –l to get file permissions and ownerships, -h to get human
readable filesizes, and -a to show all files in a directory including
hidden files. If you supply a directory as an argument, it will list
the contents of the directory. If you supply a file, it will list only
the file. Wildcards can be used in filenames to get more
comprehensive or specific lists.

 ls
 ls -lh
 ls -a /home/45090883/myCfiles
 ls /home/45090883/myCiles

12/7/10	

8	

ATSC 212 – UNIX

15	

CAT

The cat <file> command (short for concatenate) can be used to see
the contents of files. The command prints the contents of the file on
the screen. These contents will only be readable if the file is in
ASCII format. Binary files will output machine code which will
appear as a bunch of gobbledy-gunk.

 cat project1.c

/* project1.c */
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char* argv[])
{
...
}

ATSC 212 – UNIX

16	

PWD

The pwd command (short for print working directory) can be used to
show what directory you are in.

 pwd
/home/45090883/myCfiles

12/7/10	

9	

ATSC 212 – UNIX

17	

CD

To change to a different directory, use the cd command (short for
change directory. This command allows you to navigate filesystems.
You can only cd into a directory you have execute permission on
(more on permissions in a moment).

 cd /home
 cd 45090883
 cd myCfiles
 pwd
/home/45090883/myCfiles

ATSC 212 – UNIX

18	

MKDIR

To make a new directory, use the mkdir <directory name> command
(short for make directory. If you do not specify the full path of the
directory you wish to make, it will make the directory within the
current directory. You must have write permission on the location
where you wish to make the directory, or mkdir will not work.

 mkdir /home/45090883/newProject
 cd /home/45090883/newProject
 mkdir files
 ls
files

12/7/10	

10	

ATSC 212 – UNIX

19	

RMDIR

To remove an existing directory, use the rmdir <directory name>
command (short for remove directory). If the directory is not empty,
rmdir (usually) will not let you remove the directory.

 cd /home/45090883
 rmdir newProject
Cannot remove newProject, directory is not empty
 cd newProject
 rmdir files
 cd /home/45090883
 rmdir newProject

ATSC 212 – UNIX

20	

CP

To copy files, use the cp <original file> <new file> command (short
for copy). If you attempt to copy a file to a filename that already
exists, you will be prompted about whether or not you wish to
overwrite the existing file. If you choose yes, the existing file will be
destroyed. Wildcards can be used in filenames to copy multiple files
at once.

 cd /home/45090883/myCfiles
 ls
project1.c
 cp project1.c project1.c.bak
 ls
project1.c project1.c.bak

12/7/10	

11	

ATSC 212 – UNIX

21	

RM

To remove files, use the rm <filename> command (short for
remove). It is important to understand that files that are removed
with rm cannot be retrieved (unless they have been backed up).
Also, rm will remove all files listed after it on the command line (ie
rm report.txt myreport.txt will remove both report.txt and
myreport.txt).

Normally, rm does not prompt the user to ensure that the file should
be removed before removing it. Some systems do set this up as a
default. However, if you want to be prompted to ensure you are
removing the correct files, you can use the -i option. If you do not
want to be prompted, even on systems where it is the default, you
can use the -f option. If you want to remove all the files within a
directory tree (subdirectories and all) you can use the -r option.
This will recursively go through all the subdirectories removing files.
This can be particularly dangerous.

ATSC 212 – UNIX

22	

RM

Wildcards can be used in filenames to remove multiple files at once,
however, this is often very dangerous and should probably be used
with the -i option.

Some examples:

 cd /home/45090883/myCfiles
 ls
project1.c project1.c.bak project2.c project3.c readme.txt
 rm -i project1.c
rm: remove regular file `project1.c’? y
 ls
project1.c.bak project2.c project3.c readme.txt
 rm -f project*.c
 ls
project1.c.bak readme.txt

12/7/10	

12	

ATSC 212 – UNIX

23	

MV

To move or rename files, use the mv <original file> <new file>
command (short for move). If you attempt to move a file to a
filename that already exists, you will be prompted about whether or
not you wish to overwrite the existing file. If you choose yes, the
existing file will be destroyed. It is important to keep in mind that
unlike cp, mv will not retain the original file in the original location.

 cd /home/45090883/myCfiles
 ls
project1.c
 mv project1.c ../project2.c
 ls ../
myCfiles project2.c

ATSC 212 – UNIX

24	

LN

One important thing we can do on a UNIX filesystem is create links
to files. Links are good for allowing files on one filesystem to be
accessed on another, and for allowing multiple applications to access
the same data at the same time. There are two kinds of links, hard
and soft. Both are created with the ln <original file> <link>
command (ln short for link). Hard links are created by default. Soft
links are created using the -s option.

Hard links are direct pointers to file data. As such, hard links cannot
be made across different filesystems. However, they allow two
different files to access the same data (this can be dangerous if two
processes are writing to the file at the same time). They also allow
access to the data even if the link or original file is deleted.

Soft links are aliases for filenames. As such, they can point across
filesystems. However, they do not allow simultaneous access, and
cannot access data for a deleted file.

12/7/10	

13	

ATSC 212 – UNIX

25	

LN

Here is an example:

 cd /home/45090883/myCfiles
 ln project1.c new.c
 ls –l
-rwxr-xr-x new.c
-rwxr-xr-x project1.c
 ln -s new.c verynew.c
 ls –l
-rwxr-xr-x new.c
-rwxr-xr-x project1.c
lrwxrwxrwx verynew.c -> new.c

ATSC 212 – UNIX

26	

FILE PERMISSIONS

Most filesystems contain information about which users own files
and which users can access files. UNIX has three levels of file
ownership; owner, group, and other (which is essentially everyone),
and three types of permissions; read, write, and execute.

You can see permissions for a file by using the -l flag with ls. This
will display ten characters to the left of the file listing. The first
character shows what type of file it is (- means a basic file, d means
a directory, l means a link). The next nine characters show the
permissions in groups of three characters. The first three characters
are the permissions for owner, the next three are the permissions for
group, and the last three are the permissions for other. Each group
of three characters is specifically r or - in the first position, w or - in
the second position, and x or - in the third position.

12/7/10	

14	

ATSC 212 – UNIX

If r is present, the file is readable by that user/group. If w is
present, the file is writeable by that user/group. If x is present, the
file is executable by that user/group. If a - is present in any of the
positions, then that permission is not given.

Directories need to be executable for users to run commands on
them (like ls or cd). Directories normally need to be writeable to
allow a user to create, move, rename, or delete files inside that
directory. Some examples:

drwxr-x--- would indicate the file was a directory that
the owner could read, write, and execute
over, and that members of the group could
read or execute over. All other users would
not have access to the directory.

FILE PERMISSIONS

ATSC 212 – UNIX

28	

A file’s owner is usually the user that created the file. Groups are
collections of users. Having a group permission level allows certain
users more access to the file while restricting all others.

FILE PERMISSIONS

---x--x--x would be a basic file that everyone has
execute privileges for, but nobody could read
or write.

lrwxrwxrwx would be a link to a file that everyone could
read, write, and execute.

12/7/10	

15	

ATSC 212 – UNIX

29	

CHOWN

To change the ownership of a file, use the chown <owner:group>
<file> command (chown short for change owner). Owner must be a
valid user and group must be a valid group on the system. You can
change just the owner by leaving out the group and colon, or you
can change just the group by leaving out the owner in the command
call. Be careful with this command. Once you change the owner to
another user, you no longer own the file.

 cd /home/45090883/myCfiles
 ls –l
-rwxr-xr-x me friends project1.c
 chown you:us project1.c
 ls –l
-rwxr-xr-x you us project1.c

ATSC 212 – UNIX

30	

CHMOD

File permissions can be changed by using the chmod <permission
string> <filename> command (chmod short for change mode).
There are two ways to give a permission string, characters and octal.

In octal format, the permissions for each level are encoded from
binary into an octal number. If a permission exists, it is given a
value of 1 and if not, then it is given a value of 0. For example, rwx
would be treated as 111 which converts from 111 in binary to 7 in
octal. r-x would be 101 which is 5 in octal. --x would be 001 which
is 1 in octal. The permission string is then formed by three numbers
indicating the permissions for each level (ie 755 would be rwxr-xr-x).

12/7/10	

16	

ATSC 212 – UNIX

31	

CHMOD

If this seems somewhat confusing, there is another way using
characters that most people find more intuitive. The characters are
r, w, x, +, -, u, g, o, and a. r, w, and x stand for the permissions
mentioned already. + indicates to add the permission. - indicates to
remove the permission. u means apply the change to the owner
level. g means apply the change to the group level. o means apply
the change to the other level, and a means apply the change to all
levels.

For example, u+r would add read permission to the owner. a-x
would remove execute permission from everyone. o+w would add
write permission for other.

ATSC 212 – UNIX

32	

CHMOD

To apply permissions, we make permission sets out of these
characters, separated by commas. For example, a+x,o+r,g+w
would add execute permission to all levels, read permission to the
other level and write permission to the group level. The octal format
is a more compact and precise way of specifying permissions,
however, the character method is more intuitive.

 cd /home/45090883/myCfiles
 ls –l
-rwxr-xr-x me friends project1.c
 chmod a-x,g+w project1.c
 ls –l
-rw-rw-r-- me friends project1.c

12/7/10	

17	

ATSC 212 – UNIX

33	

GREP

In addition to managing files, you will occasionally want to search
files for important information. Although you could use cat to look
through the contents of a file, it can be tedious to find specific
information from a file particularly if the file is quite large. grep is a
tool that can pull lines from files that match particular patterns.

Typically, you would invoke grep as follows

grep [options] <pattern> <file> [<files>]

If you examine the man page for grep you will find that it has a lot
of options for refining how it searches for matching lines. The two
most useful options are -r (which will search recursively on a given
directory) and -c (which will print the number of lines matching the
pattern instead of the lines themselves).

ATSC 212 – UNIX

34	

GREP

Normally, the output of grep is all lines of the file(s) that match
<pattern>. <pattern> can be simple text or a regular expression.
Pure regular expressions are beyond the scope of this course,
however, you can find out more about them online if you want to
use them. We will be touching upon regular expressions when we
come to the section on PERL. They are particularly powerful for
finding particular lines. Normally, <pattern> will be simple text (ie
2006-10-31, Patrick).

12/7/10	

18	

ATSC 212 – UNIX

35	

GREP

It is usually a good idea to put <pattern> in quotes. If <pattern>
contains a space, this is essential, otherwise grep will treat only the
part before the first space as <pattern> and the remainder as files.
You can have grep work on multiple files by listing them all after
<pattern> or by using wildcards. You can also have grep search
over all the files in a directory and its subdirectories by using the -r
option.

 grep main project1.c
int main(int argc, char* argv[])
/* This is the main part of the program */
 /* All that remains in this function

ATSC 212 – UNIX

36	

RUNNING PROGRAMS

Any file that has executable permission can be run. What that
means though, depends upon the file. If the file is a script, UNIX
will invoke a shell and execute the commands of the script. If the
file is a binary (ie a compiled program), it will copy your current
environment to a new part of memory and run the binary starting
from line 1.

When you run a program or script, it is often as easy as typing in
the name of the program or script. However, UNIX needs to know
where the file is exactly before it can run it. If the file is in your
PATH, a special environment variable that contains the locations of
all system executables, then you need do nothing more than type
out the program name. If the file is not in your PATH, you need to
give the location of the file as part of the command.

12/7/10	

19	

ATSC 212 – UNIX

37	

RUNNING PROGRAMS

Here are some examples:

 cd /home/45090883/myCfiles
 ls –l
-rwxr-xr-x me friends project1
 project1
project1: command not found
 /home/45090883/myCfiles/project1
 ./project1

The commands we have been talking about are also binary
programs that run by simply typing in their name because they are
located in a place that is always in your PATH by default.

ATSC 212 – UNIX

38	

THE ENVIRONMENT

Every operating system needs information about users to customize
their GUI, specify programs they can run, even to set limits on
resources. In UNIX, this information is referred to as the
environment. Your environment consists of a set of variables
specific to you that the kernel knows about. You can see what those
variables are, and what they are set to, by using the env command.

Each user has their own specialized environment. Anytime you
invoke a shell (such as when you login), the kernel loads your
environment for that shell, so it is also possible to have multiple
copies of your environment loaded for different shells, and these
environments could differ from each other if you change them.

12/7/10	

20	

ATSC 212 – UNIX

39	

THE ENVIRONMENT

There are two ways to change your environment. The first is to
change the active environment dynamically. This is done by setting
or changing environment variables within a shell. In tcsh, you can
set a variable in the environment of the current shell using

setenv <variable name> <value>

In bash, you can set a variable in the environment of the current
shell using

export <variable name>=<value>

It is important to note that bash requires the = in its syntax and that
tcsh does not.

ATSC 212 – UNIX

40	

THE ENVIRONMENT

The other way to change your environment is to change the file that
the kernel uses to load your environment whenever you invoke a
shell. For tcsh, this file is called .tcshrc or .cshrc. For bash, it
is .bashrc. Because the filenames begin with a period, these files
are hidden in your home directory. You need to use the -a flag with
ls to see them.

These files are scripts that contain commands to initialize the
environment (usually variable setting commands such as export or
setenv). They can also include commands to run other scripts such
as

. <file>

or

source <file>

12/7/10	

21	

ATSC 212 – UNIX

41	

PIPES

You may find yourself in a situation where you need the output of
one command as input to another command. Usually when you
need to do this, there is no easy way to get the output of the first
command into the second. For this reason, UNIX has a special
character called a pipe, | (shift \ on the keyboard). Pipes can be
used to direct the standard output from one command into the
standard input of another. Depending on the commands you
combine, you can have spectacularly disastrous results. For that
reason, it is usually not a good idea to use pipes with mv, rm,
chmod, and chown.

 ls -lrh /home/45090883/myCfiles | grep “rwx------”
-rwx------ me us mydata.txt
-rwx------ me us project2

ATSC 212 – UNIX

42	

REDIRECTION

So far whenever you have executed a command or program, the
command took data either from the command line, or from a
location known to its binary. If the program only knows how to take
data from the command line, and you want to give it an entire file, it
would be tedious to type it all out on the command line. Another
way to do it would be to redirect the contents of the file through
standard input. You do this using the < character.

 cd /home/45090883/myCfiles
 ls
mydata.txt project1
 ./project1 < mydata.txt

12/7/10	

22	

ATSC 212 – UNIX

43	

REDIRECTION

We can also redirect the standard output of a command/program to
a file so that we can retain it. There are two ways to redirect the
standard output to a file, > and >>. > overwrites the redirected file.
>> appends to the redirected file. Both versions will create the
redirected file if it does not exist. It is also worth noting that you
can use both input and output redirection at the same time.

 cd /home/45090883/myCfiles
 ls
mydata.txt project1
 ./project1 > output.txt
 ./project1 < mydata.txt >> output.txt

ATSC 212 – UNIX

44	

VI
Now that you understand basic commands and are ready to start
writing scripts and code, you need to know how to edit files. There
are two common ASCII text editors in UNIX, VI and emacs.

VI is a line editor, but it uses the full terminal screen, so you can
view more of the file than just the current line. VI can create, edit,
and save files in ASCII text format. Most VI installations also
recognize different files extensions (ie .c, .php, .pl) and will colour
code keywords and syntax appropriate to the type of file. To start
VI, type vi <filename>.

VI has two modes of operation, command mode and edit mode. In
edit mode, you change the text in the file. In command mode, you
can utilize commands to change the contents of the file (such as
copy and paste), save the file, or even create macros.

12/7/10	

23	

ATSC 212 – UNIX

45	

VI
When you first open a file with VI, you will be in command mode.
You can return to command mode from edit mode by hitting esc. To
execute a command in command mode, type

[count] <command> [where]

[count] is an optional number that tells VI how many times to
execute the command. If you do not supply a [count] then VI
assumes it should only do the command once. <command> is the
command name. Most commands are single letters in VI. [where]
is additional optional parameters that only apply to certain
commands. Common commands include:

a enter edit mode and insert text after the current position.
 [where] does not apply to this command. [count] specifies
 how many times inputted characters should be repeated.

ATSC 212 – UNIX

46	

VI

i enter edit mode. [where] does not apply to this command.
[count] specifies how many times inputted characters should
be repeated. This is similar to the a command but it inserts
text before the cursor position.

h move the cursor to the left.
j move the cursor down one line.
k move the cursor up one line.
l move the cursor to the right.
u undo the last change to the file. Re-issuing the command

will re-do the change.
G goto the line number specified by [count].
x delete a character.
dd delete a line.
d^ delete from the current position to the beginning of the line.

12/7/10	

24	

ATSC 212 – UNIX

47	

VI
dw deletes the current word.
yy copies the current line. [count] will copy that many lines.
y^ copies from the cursor to the beginning of the line.
y$ copies from the cursor to the end of the line.
yw copies the current word.
p pastes deleted or copied text after the cursor. [count]

increases the number of copies pasted.
P pastes deleted or copied text before the cursor. [count]

increases the number of copies pasted.
ZZ save the current file and quit VI.
:q! quit VI without saving the current file.
:w save the current file without quitting.
:wq save the current file and quit.

In edit mode, you can move about the file using the arrow keys, and
can insert text by typing it. In most versions of VI, you can delete
text by using the del and/or backspace keys. Anything typed in this
mode ends up being inserted into the file.

ATSC 212 – UNIX

48	

EMACS

The other commonly used editor for UNIX is emacs. Emacs is not as
widely supported as vi, and may not be installed on all UNIX
systems. To start emacs, type emacs. By default, emacs runs in an
X-windows graphical mode which looks somewhat like MS Word. If
you want to run emacs within your current terminal window, use the
-nw option when invoking emacs.

Emacs functions very similarly to editors like Word, utilizing keyboard
controls and mouse to cut and paste text. It also has pull-down
menus with standard cut, paste, file creation, save, and quit
features. It can also be set by the options menu to colour code text
depending on file type much in the same way vi does.

12/7/10	

25	

ATSC 212 – UNIX

49	

REMOTE COMPUTING

Most of the work you do on UNIX systems will be done remotely.
You can use your Windows or Mac machines to login to UNIX
systems and do work on them as if you were sitting at those
machines. Most research systems are large scale computers housed
in special facilities and are never interacted with physically except by
systems administrators.

In this course, you will be remotely utilizing a UNIX server called
eidolon using PuTTY and/or NX. Both PuTTY and NX provide a basic
interface that will allow you to login to the UNIX server securely.
This is commonly available freeware for Windows although there are
other commercial products that do the same thing (such as
SecureCRT). PuTTY gives a terminal interface to a computer while
NX provides a virtual desktop, allowing you to interact with eidolon
as if you were sitting at it.

ATSC 212 – UNIX

50	

REMOTE COMPUTING

There are many different ways to connect to other computers and
most depend upon the OS you are using. Within UNIX, there are
two common ways to connect to other machines through a terminal,
telnet and ssh.

Telnet creates a simple, unencrypted channel to another computer.
To do this, type telnet <address>. <address> should be the name
or IP of the machine you wish to access (ie eidolon.eos.ubc.ca or
137.82.23.188).

Although telnet is usually installed on most systems, it is typically
blocked or disabled by systems administrators because of its lack of
security. All information, including user passwords, is transferred in
plain text over the network. Telnet should not be used except in
protected, private networks.

12/7/10	

26	

ATSC 212 – UNIX

51	

REMOTE COMPUTING

The secure way to access a system is to use secure shell, ssh. To do
this, type ssh [user@]<address>. <address> is a valid name or IP,
same as telnet. [user@] is optional and specifies a valid user on
that system that you wish to connect as. If you do not supply
[user@], ssh will assume you want to login as your current user.

SSH connections are encrypted using public-key encryption methods
similar to PGP (Pretty Good Privacy). Thus all communication made
between computers is encrypted before it is sent over the network.
The encryption is very difficult to break which gives a great deal of
security to valid users (particularly in protecting passwords and
private data).

SSH can also be configured to deny certain users and networks from
accessing machines, making it more difficult for hackers to access
the computer. For example, the server we will use, eidolon, is not
accessible from networks outside of UBCNet.

ATSC 212 – UNIX

52	

FILE TRANSFERS
Besides logging into other systems, sometimes you will want to
transfer files between systems. As with remote computing, the tools
available vary considerably by OS. However, the manner in which
files are transferred, regardless of system, is almost always by file-
transfer-protocol (FTP).

In UNIX, there are two utilities that allow file transfers, ftp and sftp.
sftp is the secure (encrypted) version of ftp. To use these tools,
type (s)ftp [user@]<address>. In ftp, if you do not specify the
[user@], then it assumes you want to perform anonymous ftp. if
the system you are ftp’ing to accepts anonymous logins, you will be
asked to input a password which should be your email address. In
sftp, if [user@] is not specified then it is assumed to be your current
user. In both cases, the address must point to a computer that runs
an ftp server or accepts ftp logins, otherwise (s)ftp will fail.

12/7/10	

27	

ATSC 212 – UNIX

53	

FILE TRANSFERS

Once a connection is established, you can use the ls, pwd, and cd
commands to move about the remote filesystem. lls, lpwd, and lcd
can be used to perform the same actions on your local computer
(although it is usually a good idea to enter the local directory you
want to move things to or from before invoking (s)ftp).

To download a file from the remote system to the local one, use
 get <filename>. To upload a file from the local system to the
remote one, use put <filename>. You will need the appropriate
write permissions to upload or download files. These will be based
upon the user you logged in as, or in the case of anonymous login,
the server configuration. To end a (s)ftp session, simply type quit.

ATSC 212 – UNIX

54	

AND THAT IS IT...
Well, not really. Refer to your quickstudy guides for more
information on all the topics covered. The UNIX Programming
Environment is also good for expanding on the topics covered and
giving more advanced information.

You can also utilize the man pages and the web. www.google.ca
and www.wikipedia.com will lead you to links and information on all
the topics covered.

