
1

ATSC 212 - MySQL

2

ATSC 212 - MySQL

A database is any organized collection of data that fulfills some
purpose. As weather researchers, you will often have to access and
evaluate large amounts of weather data, and this data will be
organized into some kind of database.

There are at least six commonly known database types: flat,
hierarchical, network, relational, dimensional, and object.

Flat databases are just a table of data. The data can be organized
into groups either by row or column, and certain relations or
attributes exist in the corresponding columns or rows.
Spreadsheets are a good example of flat databases.

WHAT IS A DATABASE?

3

ATSC 212 - MySQL

Hierarchical databases are tree structures. Each set of data has a
single parent set to which it is related. Data sets on the same level
of the tree are sorted in some fashion. Ordered and nested data
fits nicely into hierarchical databases, such as tables of contents or
recipes.

Network databases are linked lists of related sets of data. Each set
of data can have a related link to some other set. The links form a
semi-ordered listing of database elements. Early web search
engines (and possibly current ones) used this database type.

Dimensional databases are a cross between relational databases
and hierarchical databases. A dimensional database consists of one
large table that describes dimensions and measures. Dimensions
are the context of the data and measures are the quantities of the
data. Dimensions are organized hierarchically and measures are
usually ordered.

MORE DATABASE TYPES

4

ATSC 212 - MySQL

Object databases attempt to encapsulate data in the same manner
as object-oriented programming languages. There is no set
standard for this type of database currently.

Relational databases are composed of tables of data (each similar to
a flat database). Each column in a table describes some attribute of
the rows of the table. Each row is an actual object (usually called a
record) in the database with the attributes corresponding to the
columns. Records in relational databases are unique (you cannot
have two copies of the same data in a table).

Tables are related to each other through the use of keys. Keys are
orderings of column(s) of a table.

Keys relate records from different tables to each other (hence the
name relational database). We will see more on this later.

MORE DATABASE TYPES

5

ATSC 212 - MySQL

Each type of database has its use. The type of application that
needs to access the data and the amount of data stored will
determine the best type of database to use.

Relational databases are good for large volumes of data with
predefined relationships, particularly where flexibility and speed are
necessary. A well structured relational database is also good at
saving disk space when it comes to storage due to low data
replication.

6

ATSC 212 - MySQL

To use relational databases properly, it is important to first
understand how they are created. It is important to create a good
structure when defining a relational database. This reduces the
amount of space the database will take and eliminates data
replication (places where the same data appears more than once).
Data replication creates problems when we need to update the
database (as we have to find and change every instance of a piece
of data). To demonstrate this process, we are going to create a
database for weather data.

Imagine that we have a small network of weather stations. Each
weather station reports weather data to us hourly. We need some
way to track and store this data.

CREATING RELATIONAL DATABASES

7

ATSC 212 - MySQL

To design the database, we need to identify the entities (things we
are storing data about) and the relationships (how entities tie
together). In our case, weather stations report air temperature,
relative humidity, pressure, wind speed, wind direction, total
rainfall, and solar radiation once per hour. Each weather station
also has a location, manufacturer, and maintenance record.

What are the entities we need? On first blush, we might consider
two entities; weather reports and stations. The relationship is that
each report is tied to a single station that gave the report.

ENTITIES

8

ATSC 212 - MySQL

Normalization is the removal of data redundancy from a database
design. As previously mentioned, data replication creates problems
with updating the database and also takes more space. After we
have identified our initial entities and relationships, it is important to
normalize the database structure to remove as much redundancy as
possible.

There are three stages of normalization: first normal form, second
normal form, and third normal form.

NORMALIZATION

9

ATSC 212 - MySQL

A database is in first normal form when the attributes of all the
entities are single valued.

Let’s look at the entities we have so far.

Location

Manufacturer

Maintenance Record

Weather Station

Air Temperature Wind Speed

Relative Humidity Date

Pressure Time

Wind Direction

Total Rainfall

Solar Radiation

Weather Report

FIRST NORMAL FORM

10

ATSC 212 - MySQL

Starting with weather station, we know that each station is only at
one location and has only one manufacturer, so those attributes are
single valued. The maintenance record, however, would be a log of
all the times and reasons the station was serviced. This would have
more than one value so it should be its own entity.

Consider weather report now. Each attribute of weather report
would be single valued for a given report (we would not expect
multiple values for a given variable, date or time for a single
report). So that entity is already in first normal form. Let’s look at
what we have so far.

FIRST NORMAL FORM

11

ATSC 212 - MySQL

Air Temperature Wind Speed

Relative Humidity Date

Pressure Time

Wind Direction

Total Rainfall

Solar Radiation

Weather Report

Location

Manufacturer

Weather Station

Date

Time

Reason

Maintenance Record

The crows feet connectors between the
entities show the relationships.

FIRST NORMAL FORM

12

ATSC 212 - MySQL

There are three kinds of relationships between entities in a relational
database: one-to-one, one-to-many, and many-to-many.

A one-to-one relationship is a direct link between two specific
entities. Suppose that we considered location an entity and that
there was only one station at each location. In that case, station and
location would have a one-to-one relationship (one station for each
location).

One-to-many relationships links many of one kind of entity to a single
kind of another entity. For example, stations and maintenance
records have a one-to-many relationship. A single station can have
many maintenance records.

A many-to-many relationship, as you might guess, links many of one
kind of entity to many of another kind. We will see these in the
assignment.

RELATIONSHIPS

13

ATSC 212 - MySQL

A database is in second normal form when it is already in first
normal form and all non-identifying attributes of an entity are
dependent on the entity’s unique identifier.

What this means is that different entities should not have an
attribute that shares the same values. For example, our weather
station entity has a manufacturer attribute. However, we could
have, and probably would have, different weather stations with the
same manufacturer. So we should make manufacturer its own
entity. By the same token, weather reports and maintenance
records both have dates and times that could be shared between
different reports and records.

SECOND NORMAL FORM

14

ATSC 212 - MySQL

Let’s make these changes.

Air Temperature

Relative Humidity

Pressure

Wind Direction

Wind Speed

Total Rainfall

Solar Radiation

Weather Report

Location

Weather Station

Reason

Maintenance Record

Date

Time

Datetime

Name

Manufacturer

SECOND NORMAL FORM

15

ATSC 212 - MySQL

A database is in third normal form when it is already in second
normal form and no non-identifying attributes of an entity are
dependent on any other non-identifying attributes. Once a
database structure is in third normal form, it is ready to be
translated into code.

In the example, there are no attributes we listed that are dependent
on each other, however, we can change one so that it is. Suppose
that we break down the information in a station’s location. It would
have latitutde, longitude, elevation, province, and an abbreviation
for province.

THIRD NORMAL FORM

16

ATSC 212 - MySQL

If this were the case, we would have a problem with province and
the abbreviation for province being in Weather Station. If we
changed either, we would have to change the other. In this case,
we would be best off removing province data from Weather Station
and making it an entity.

Our final model would look like:

THIRD NORMAL FORM

17

ATSC 212 - MySQL

Air Temperature

Relative Humidity

Pressure

Wind Direction

Wind Speed

Total Rainfall

Solar Radiation

Weather Report

Latitude

Longitude

Elevation

Weather Station

Reason

Maintenance Record

Date

Time

Datetime

Name

Manufacturer

Name

Abbreviation

Province

THIRD NORMAL FORM

18

ATSC 212 - MySQL

We now have a model for our database and the relationships
between the different entities. However, to facilitate the creation of
these relationships, we need to add something to the design. Each
entity in the database needs to have its own unique identifier. For
example, each of our weather stations needs a name or number
that defines it as separate from every other station.

Unique identifiers are often a number internal to the database
design (information outside users never see or care about). This
makes sorting and searching the database faster, and ensures we
never have to worry about duplicate names.

UNIQUE IDENTIFIERS

19

ATSC 212 - MySQL

ReportID

Air Temperature

Relative Humidity

Pressure

Wind Direction

Wind Speed

Total Rainfall

Solar Radiation

Weather Report

StationID

Latitude

Longitude

Elevation

Weather Station

MaintenanceID

Reason

Maintenance Record

DatetimeID

Date

Time

Datetime

ManufacturerID

Name

Manufacturer

ProvinceID

Name

Abbreviation

Province

UNIQUE IDENTIFIERS

20

ATSC 212 - MySQL

1. Entities become tables.
2. Attributes become columns in the tables. Each attribute will

have a specific data type (ie string, integer, float)
3. Unique identifiers are columns that cannot contain NULL values

and form the primary key for the table.
4. Relationships become foreign keys which are special attributes

linking tables.

Once we make these translations, we will be ready for SQL.

CODE TRANSLATION

Now that we have a design, we need to translate that into code to
create the database. The first step is to recognize what the different
elements of our design become in a coded database.

21

ATSC 212 - MySQL

Going back to the example:

Primary KeyInteger

String

String

ProvinceID

Name

Abbreviation

Province

Primary KeyInteger

String

ManufacturerID

Name

Manufacturer

Primary Key

Foreign Key

Foreign Key

Integer

Float

Float

Float

Integer

Integer

StationID

Latitude

Longitude

Elevation

ProvinceID

ManufacturerID

WeatherStation

KEYTYPECOLUMNTABLE

CODE TRANSLATION

22

ATSC 212 - MySQL

Primary Key

…

Foreign Key

Foreign Key

Integer

…

Integer

Integer

ReportID

…

DatetimeID

StationID

WeatherReport

Primary KeyInteger

Integer

Integer

DatetimeID

Date

Time

Datetime

Primary Key

Foreign Key

Foreign Key

Integer

String

Integer

Integer

MaintenanceID

Reason

DatetimeID

StationID

Maintenance
Record

KEYTYPECOLUMNTABLE

CODE TRANSLATION

23

ATSC 212 - MySQL

Now we have a series of tables and attributes to store all the data
and relationships. However, we still have not actually written code
to make the database work.

Nowadays, there are many different applications that will implement
a database; MySQL, PostGres, Oracle, and Access to name a few.
These applications merely provide the framework for creating and
querying the database. (After all, the purpose of storing the data is
getting back at it later). The language that most of these
applications use to create and query a database is SQL.

STRUCTURED QUERY LANGUAGE (SQL)

24

ATSC 212 - MySQL

The commands issued to a database are referred to as queries.
SQL defines a set of rules and keywords for how to structure
queries. Because the SQL is supported by many database
applications, it is possible to implement a database on many
different types of systems without changing the SQL code.

There are seven basic types of queries we will concern ourselves
with: use, create, delete, drop, insert, update, and select.

On a side note, SQL is not case sensitive except with names. By
convention, keywords are usually capitalized.

STRUCTURED QUERY LANGUAGE (SQL)

25

ATSC 212 - MySQL

To actually make use of a database, we need to first use it. This is
the simplest form of query.

USE <name>;

All queries are terminated by a semicolon. The <name> is what
the database is called. Names of databases and tables should not
have any spaces in them. SQL recognizes spaces as a delimiter and
will not understand names with spaces in them. Either remove
spaces, or replace them with underscores in names.

USE

26

ATSC 212 - MySQL

To create a database, and the tables that go inside it, we use the
create query. To create a database;

CREATE DATABASE <name>;

To create our observation database, we would use the query:

CREATE DATABASE Observations;

CREATE

27

ATSC 212 - MySQL

Creating tables within a database is a little trickier. First we must
issue a use query to make sure we are using the database we want
to create the tables in. Then we can issue table creation queries
that look like:

CREATE TABLE <name> (<attribute> <type> [options], …);

<name> conforms to the same rules as for database names.
<attribute> will be a column within the table, essentially the
attributes we defined in our example earlier. <type> is what type
of data that <attribute> is, like integer. [options] specify any
additional limits on the attribute.

CREATE

28

ATSC 212 - MySQL

SQL has many types, but the commonly used ones are INT for
integer, FLOAT for real numbers, DATE for any year/month/day
combinations, TIME for hour/minute/second combinations, CHAR
for fixed length strings, VARCHAR for variable length strings, and
ENUM for predefined datasets.

Like types, there are a great many options that can limit table data.
The commonly used ones are:

AUTO_INCREMENT automatically updates this field each
time data is inserted by adding one to
the previous value.

DEFAULT <value> when data is inserted, if a value for
this attribute is not specified, then it is
set as <value>

CREATE

29

ATSC 212 - MySQL

NOT NULL NULL, or an empty data string, cannot
be supplied for this attribute

NULL NULL, or an empty data string, can be
supplied for this attribute (this is the
default behaviour of most databases)

PRIMARY KEY specifies that this attribute is the
primary key for the table

UNSIGNED can be used with integer type to
specify that the integer values are only
positive (essentially doubles the
maximum integer value that can be
stored)

ZEROFILL can be used with the integer type to
pad out the integer field with zeroes
(ie 132 would be stored as 00000132)

CREATE

30

ATSC 212 - MySQL

Here is a query for creating our weather station table.

CREATE TABLE WeatherStation (
StationID INT PRIMARY KEY AUTO_INCREMENT,
Latitude FLOAT NOT NULL,
Longitude FLOAT NOT NULL,
Elevation FLOAT NOT NULL,
ProvinceID INT,
ManufacturerID INT

);

Notice how we did not specify NOT NULL for StationID. Primary
keys cannot, by definition, be NULL so we do not need to specify it.

CREATE

31

ATSC 212 - MySQL

One element of confusion is that there is no FOREIGN KEY flag for
specifying attributes as foreign keys. That is because we do not
have to. What is important is to have the attributes in the table
that match primary keys in other tables. Looking at WeatherStation

CREATE TABLE WeatherStation (
StationID INT PRIMARY KEY AUTO_INCREMENT,
Latitude FLOAT NOT NULL,
Longitude FLOAT NOT NULL,
Elevation FLOAT NOT NULL,
ProvinceID INT, <--- THIS IS A FOREIGN KEY
ManufacturerID INT <--- THIS IS A FOREIGN KEY

);

More recent versions of MySQL have a way to enforce foreign key
alignment between tables, but it is outside the scope of the course.

CREATE

32

ATSC 212 - MySQL

To remove data from a database, we use DELETE.

DELETE FROM <table> [WHERE clause];

<table> is the name of the table we want to delete data from. The
WHERE clause is optional. If we do not include a WHERE clause,
then all the data in <table> is deleted. The WHERE clause allows
us to restrict the deletion to only specified records. We will see
more about WHERE clauses when we get to SELECT statements.

It is important to use the DELETE statement with caution. Unless
the database is backed up, the data loss is permanent.

DELETE

33

ATSC 212 - MySQL

To remove a table from a database, or a database itself, we use
DROP.

DROP TABLE <name>;
DROP DATABASE <name>;

The DROP TABLE query can only be used once a database is
selected with USE. Tables and databases are permanently removed
with this command unless the database has been backed up. For
example, we could get rid of our weather station table with:

DROP TABLE WeatherStation;

DROP

34

ATSC 212 - MySQL

Of course, we need a way to put data into tables, and that is
INSERT.

INSERT INTO <table> [(<attribute>, …)] VALUES (<value>, …);

<table> is the name of the table we want to put data into. After
that, we can, optionally, include a list of attributes we want to insert
data for. When we run an insert query, it creates a new record
within <table>. If we do not want to fully specify the data within
the record (either because some fields are auto increment, or
NULL), we can list only the attributes we want to store data about.
After VALUES, we list the data. If we do not specify the attributes
we are storing for, then we must list enough values for all the
attributes in the table.

INSERT

35

ATSC 212 - MySQL

Here are some examples based on our WeatherStation table.

INSERT INTO WeatherStation VALUES (1, 48.5, -123.23, 155.0, 3,
10);

This would insert a record into WeatherStation with StationID = 1,
Latitude = 48.5, Longitude = -123.23, Elevation = 155.0,
ProvinceID = 3, and ManufacturerID = 10.

INSERT INTO WeatherStation (Latitude, Longitude, Elevation)
VALUES (54,33, -119.77, 1205.2);

This would insert a record with StationID = 2 (since StationID is
auto incremented), Latitude = 54.33, Longitude = -119.77,
Elevation = 1205.2, ProvinceID = NULL, and ManufacturerID =
NULL.

INSERT

36

ATSC 212 - MySQL

Sometimes we want to change the data in an existing record. To
do this, we use the UPDATE query.

UPDATE <table> SET <attribute>=<value>, … [WHERE clause];

<table> is the name of the table where the record(s) reside.
<attribute> is the column we want to change in the record(s) and
<value> is the new value. We can change multiple columns by
having a comma delimited list of <attribute>=<value>. The
WHERE clause is optional and allows us to select the particular
records we want to update. If the WHERE clause is not used, all
records in the table are updated with the new value(s).

UPDATE

37

ATSC 212 - MySQL

Now we come to the most powerful, common, and complex query,
SELECT. SELECT queries are how we get data from database
tables.

The form of SELECT queries looks like this:

SELECT [DISTINCT] <attribute>[, <attribute> …] FROM <table>[,
<table>…] [WHERE clause];

That probably looks pretty complex, so let’s break it down. We
start the query with SELECT. We can then, optionally, include the
DISTINCT keyword. This tells the database not to return duplicates
of the attribute that follows. By default, the database will normally
return all data available.

SELECT

38

ATSC 212 - MySQL

After that we have a list of attributes that we would like to have
returned comma delimited. For example, we could query our
WeatherStation table for just the Latitude and Longitude of stations.
At least one attribute must be specified in a SELECT query. To
specify all attributes in a table, rather than listing all attributes we
can put * instead of the attribute list. Attributes can be specified
just by name or by <table>.<name>, or even
<database>.<table>.<name>.

After this comes the FROM keyword (to let the database know that
we are not listing anymore attributes) followed by a comma
delimited list of tables to draw the data from. If we are gathering
data from related tables, we must list all tables we plan to use.

SELECT

39

ATSC 212 - MySQL

Finally, we can include a WHERE clause. If we do not include this
clause, the SELECT query will pull every record from all the tables
listed (which on a sizeable database can be millions or billions).
More than any other query, WHERE clauses are crucial to making
useful SELECT queries.

SELECT

40

ATSC 212 - MySQL

Simply put, WHERE clauses are a series of conditions. Only data
which meets all the conditions will be returned.

Like conditionals from programming/scripting languages, the
conditions of WHERE clauses are grouped together using AND and
OR. To negate a condition, preface it with NOT. Numerical
comparisons can be conducted with =, <, <=, >, >=, <>. Strings
can be compared using LIKE and the wildcards % (which will match
any group of characters) and _ (which will match any single
character).

WHERE clause

41

ATSC 212 - MySQL

Finally, results can be sorted or grouped by attributes using GROUP
BY <attribute>[, <attribute>…] and ORDER BY <attribute>[,
<attribute>…] [DESC].

GROUP BY acts like the DISTINCT keyword. It will return only the
first record from any group of records that all match the same data
on a given attribute (or list of attributes).

ORDER BY will sort the output by the attributes listed (each in order
from the first attribute listed to the last). Normally, ORDER BY sorts
into ascending order, however it is possible to make it sort into
descending order by adding DESC to the end.

WHERE clause

42

ATSC 212 - MySQL

Let’s look at some examples.

SELECT DatetimeID FROM Datetime WHERE Date = “2006-03-12”
AND Time = “12:55:00”;

SELECT * from WeatherReport WHERE DatetimeID = 12;

SELECT AirTemperature FROM WeatherReport, Datetime,
WeatherStation WHERE WeatherReport.DatetimeID =
Datetime.DatetimeID AND WeatherReport.StationID =
WeatherStation.StationID AND Date = “2007-02-12” AND Time =
“09:03:00” AND Latitude >= 48.5 AND Latitude < = 49.5 AND
Longitude >= -122.0 AND Longitude < -121.0;

SELECT cont’d

43

ATSC 212 - MySQL

SELECT * FROM Manufacturer WHERE Name LIKE “%Vista”;

SELECT * FROM WeatherStation ORDER BY StationID;

SELECT * FROM WeatherStation GROUP BY ManufacturerID;

SELECT Reason FROM MaintenanceRecord, WeatherStation,
Datetime WHERE MaintenanceRecord.DatetimeID =
Datetime.DatetimeID AND MaintenanceRecord.StationID =
WeatherStation.StationID AND Date = “2007-01-31” AND
WeatherStation.StationID = 122;

SELECT cont’d

44

ATSC 212 - MySQL

Now that we have seen how to design a database and create the
queries necessary to make databases, put data into them, and get
data out, it is time to look at how this actually works with a
production database engine.

MySQL is a free, enterprise level database engine. Until recent
versions, MySQL was primarily used for small to midsize databases
(hundreds to hundreds of thousands of records) with liberal
transaction checking where speed was essential. However, versions
4 and 5 have incorporated more strict transaction locking
capabilities, and shown improvements which allow for larger
databases (millions of records). Security features have also
improved allowing MySQL to become one of the most common
engines.

MySQL

45

ATSC 212 - MySQL

A database engine is an application that allows a user to create,
modify, and query databases. MySQL is not a database itself.

There are two ways to utilize MySQL to run the queries we have
learned. One way is through programming language interfaces. C,
PERL, and Python all have special functions designed to allow a
programmer to write a program to interact with a database.
Because of the limited time we have spent on programming with C
and PERL, these functions are outside the scope of this course, but
you can check the MySQL reference in the course outline for more
details.

MySQL

46

ATSC 212 - MySQL

The other way is to invoke MySQL and input queries on the
command line. To do this, type mysql -p on a terminal command
line. This will attempt to log you into the MySQL server with your
username. The -p flag indicates that you should supply a password
to log in. For exercises, you will be given a password for your
account.

Once you are logged in, MySQL will give you its own command line
prompt >. You can type any of the queries we have learned on this
line and MySQL will execute them. You can also type quit to leave
MySQL.

MySQL

47

ATSC 212 - MySQL

One last note, there are three queries specific to certain engines
including MySQL that we have not discussed that give you
information about database structures or systems that you will find
useful.

SHOW databases;
SHOW tables;
DESC <table>;

SHOW databases; will list off all the databases the MySQL engine
knows about (that you are allowed to see). This is a good way to
find out what databases can be accessed.

MySQL

48

ATSC 212 - MySQL

SHOW tables; will list off all the tables in the database you are
using (remember the USE command).

DESC <table>; where <table> is a given table name, will show the
columns of a table and what their types are, as well as any special
information about them.

MySQL

49

ATSC 212 - MySQL

There are a few other helpful functions that can be used in queries
to limit or change data that is returned. The three most useful to
us are MAX, MIN, and COUNT. Each takes an attribute as a
parameter and are part of the attribute list for a select query. For
example:

SELECT MAX(StationID) FROM WeatherStation;

Would return the largest StationID from the WeatherStation table.

SELECT COUNT(DatetimeID) FROM Datetime WHERE Date =
20070302;

Would return the number of DatetimeIDs for which the date was
March 2, 2007.

Tidbits

50

ATSC 212 - MySQL

This is as far as we will cover with databases. The Managing &
Using MySQL text is a good reference if you want to get into serious
database work and programming. You can also find additional
information about databases online at www.wikipedia.com.

THE END?

