
ATSC 212 - MySQL

1

ATSC 212 - MySQL

2

WHAT IS A DATABASE?

A database is any organized collection of data that fulfills some

purpose. As weather researchers, you will often have to access and

evaluate large amounts of weather data, and this data will be

organized into some kind of database.

There are at least six commonly known database types: flat,

hierarchical, network, dimensional, object, and relational.

Flat databases are just a table of data. The data can be organized

into groups either by row or column, and certain relations or

attributes exist in the corresponding columns or rows.

Spreadsheets are a good example of flat databases.

ATSC 212 - MySQL

3

MORE DATABASE TYPES

Hierarchical databases are tree structures. Each set of data has a

single parent set to which it is related. Data sets on the same level

of the tree are sorted in some fashion. Ordered and nested data fits

nicely into hierarchical databases, such as tables of contents or

recipes.

Network databases are linked lists of related sets of data. Each set

of data can have a related link to some other set. The links form a

semi-ordered listing of database elements. Early web search

engines (and possibly current ones) used this database type.

Dimensional databases are designed for efficient data analysis.

Data is described by dimensions and measures. The user can then

pick a number of dimensions (such as store and product) and

quickly compute a measure (such as revenue).

ATSC 212 - MySQL

4

MORE DATABASE TYPES

Object databases attempt to encapsulate data in the same manner

as object-oriented programming languages. There is no set

standard for this type of database currently.

Relational databases are composed of tables of data (each similar

to a flat database). Each column in a table describes some attribute

of the rows of the table. Each row is an actual object (usually called

a record) in the database. Records in relational databases are

unique (you cannot have two copies of the same data in a table).

Each type of database has its use. The type of application that

needs to access the data and the amount of data stored will

determine the best type of database to use.

ATSC 212 - MySQL

5

Relational databases are good for large volumes of data with

predefined relationships, particularly where flexibility and speed are

necessary. A well structured relational database is also good at

saving disk space due to low data replication.

For the remainder of our sessions on databases, we will stick to

relational database. There are two parts:

Part1: Designing databases

Part2: Using databases

ATSC 212 - MySQL

PART 1

Designing databases

ATSC 212 - MySQL

7

RELATIONAL DATABASES

Relational databases consist of entities and relationships.

Entities describe data. For example, we could have a Students

entity, which encapsulates all information about a student. The

information is provided through attributes. For the Students entity

we could have the attributes studentID, name, and year_of_birth.

Relationships capture how two entities relate to each other. For

example the students entity could be related to the courses entity

through the relationship enrolled.

Students

studentID

name

year_of_birth

Courses

courseCode

courseName

instructor

enrolled

ATSC 212 - MySQL

8

RELATIONAL DATABASES

Data in the database can be visualized as separate tables for each

entity with attributes as columns and records as rows:

StullMeteorology of stormsATSC201

AustinRemote sensingATSC301

NovakInstrumentationATSC303

StullIntroductory computing …ATSC212

instructorcourseNamecourseCode

ATSC 212 - MySQL

9

KEYS

A key is one or more attributes used to uniquely identify a record.

studentID and courseCode are keys to the Students and Courses

entities respectively. Two students cannot have the same studentID

and two courses cannot have the same course code.

The entity books shown below needs both name and edition as its

key because name alone will not uniquely identify a particular book.

Some entities can have several different sets of attributes that can

be keys. A primary key is the key we have selected to be the unique

identifier for a table.

Books

name

edition

number_sold

ATSC 212 - MySQL

10

CREATING RELATIONAL DATABASES

To use relational databases properly, it is important to first

understand how they are created. It is important to create a good

structure when defining a relational database. This reduces the

amount of space the database will take and eliminates data

replication (places where the same data appears more than once).

Data replication creates problems when we need to update the

database (as we have to find and change every instance of a piece

of data). To demonstrate this process, we are going to create a

database for weather data.

ATSC 212 - MySQL

11

Imagine that we have a small network of weather stations. Each

weather station reports weather data to us hourly. We need some

way to track and store this data.

What are the entities we need? At first glance, we might consider

two entities; weather reports and stations. The relationship is that

each report is tied to a single station that gave the report.

Weather stations report air temperature, relative humidity, pressure,

wind speed, wind direction, total rainfall, and solar radiation once

per hour.

 Each weather station is described by StationID, Province, Province

abbreviation, Manufacturer name, Manufacturer phone number and

Maintenance record.

StationIDs are unique within each province (i.e. two stations can

have the same StationID as long as they are in different provinces).

ATSC 212 - MySQL

12

NORMALIZATION

Normalization is the removal of data redundancy from a database

design. As previously mentioned, data replication creates problems

with updating the database and also takes more space. After we

have identified our initial entities and relationships, it is important to

normalize the database structure to remove as much redundancy as

possible.

Each step of the normalization process may create new entities and

relationships in order to remove redundancy.

There are three stages of normalization that we will look at are: first

normal form, second normal form, and third normal form.

Further normalization steps exists beyond the third normal form, but

they tend to remove redundancy that only exists in very obscure

entity relations.

ATSC 212 - MySQL

13

FIRST NORMAL FORM

A database is in first normal form when the attributes of all the

entities are single valued and each entity has a key.

Let!s look at the entities we have so far.

Weather Station

StationID

Province

Province abbreviation

Manufacturer name

Manufacturer phone#

Maintenance Record

Weather Report

Air Temperature Wind Speed

Relative Humidity Date

Pressure Time

Wind Direction

Total Rainfall

Solar Radiation

ATSC 212 - MySQL

14

FIRST NORMAL FORM

Starting with weather station, we know that each station is only in

one province and has only one manufacturer, so those attributes are

single valued. The maintenance record, however, would be a log of

all the times and reasons the station was serviced. This would have

more than one value so it should be its own entity.

Consider weather report now. Each attribute of weather report

would be single valued for a given report (we would not expect

multiple values for a given variable, date or time for a single report).

So that entity is already in first normal form. Let!s look at what we

have so far.

Weather report must also have a uniquely identifying key. We will

add a ReportID attribute that will serve as the key.

ATSC 212 - MySQL

15

FIRST NORMAL FORM

The crows feet connectors between the

entities show the relationships.

Weather Station

StationID

Province

Province abbreviation

Manufacturer name

Manufacturer phone#

Maintenance Record

MaintenanceID

Date

Time

Reason

Weather Report

ReportID Wind Speed

Air Temperature Solar radiation

Relative Humidity Date

Pressure Time

Wind Direction

Total Rainfall

ATSC 212 - MySQL

16

RELATIONSHIPS

There are three kinds of relationships between entities in a relational

database: one-to-one, one-to-many, and many-to-many.

A one-to-one relationship is a direct link between two specific entities.

Consider the entities driver and license. Each driver can only have

one driver's license and each driver's license can only belong to one

person. In that case, driver and license would have a one-to-one

relationship. We will represent one-to-one relationships by a straight

line.

One-to-many relationships link many of one kind of entity to a single

kind of another entity. For example, stations and maintenance

records have a one-to-many relationship. A single station can have

many maintenance records.

driver license

ATSC 212 - MySQL

17

RELATIONSHIPS

We will represent one-to-many relationships with a straight line

ending on the many side with 3 prongs.

Finally, a many-to-many relationship, as you might guess, links many

of one kind of entity to many of another kind. You may see these in

the assignment. We will represent these using 3 prongs on both

ends of the line.

station Maintenance record

students courses

ATSC 212 - MySQL

18

SECOND NORMAL FORM

A database is in second normal form when it is already in first

normal form and no non-identifying attributes of an entity are

dependent on part of the entity!s unique identifier.

Weather Station

StationID

Province

Province abbreviation

Manufacturer name

Manufacturer phone#

key

Note that Province abbreviation is dependent on Province, but not

on StationID. It is therefore only dependant on part of the key. This

table is therefore not in second normal form. Manufacturer name

depends fully on the entire key and Manufacturer phone# depends

only on Manufacturer name. Therefore these attributes do not

violate second normal form.

ATSC 212 - MySQL

19

SECOND NORMAL FORM

Let!s make these changes.

Provinces

Province name

Province abbreviation

Weather Station

StationID

Manufacturer name

Manufacturer phone#

Maintenance Record

MaintenanceID

Date

Time

Reason

Weather Report

ReportID Wind Speed

Air Temperature Solar radiation

Relative Humidity Date

Pressure Time

Wind Direction

Total Rainfall

ATSC 212 - MySQL

20

THIRD NORMAL FORM

A database is in third normal form when it is already in second

normal form and no non-identifying attributes of an entity are

dependent on any other non-identifying attributes.

Weather Station

StationID

Manufacturer name

Manufacturer phone#

key

Note that Manufacturer phone# is dependent on Manufacturer name

and must therefore be made its own entity.

ATSC 212 - MySQL

21

THIRD NORMAL FORM

Let!s make these changes.

Provinces

Province name

Province abbreviation

Weather Report

Air Temperature Wind Speed

Relative Humidity Solar radiation

Pressure Date

Wind Direction Time

Total Rainfall

Weather Station

StationID

Maintenance Record

Date

Time

Reason

Manufacturer

Manufacturer name

Manufacturer phone#

ATSC 212 - MySQL

22

UNIQUE IDENTIFIERS

We now have a model for our database and the relationships

between the different entities. Every entity now has a key.

For tables that have primary keys involving strings it is often

desirable to introduce a new attribute that will be used internally in

the database. This is because it is faster for the database system to

search for an integer than a string of characters.

For these tables we will create a new attribute ending in "ID" to

serve as this internal number.

We will add ProvinceID to the Provinces entity and ManufacturerID

to the Manufacturer entity.

ATSC 212 - MySQL

23

UNIQUE IDENTIFIERS

Provinces

ProvinceID

Province name

Province abbreviation

Weather Report

ReportID Wind Speed

Air Temperature Solar radiation

Relative Humidity Date

Pressure Time

Wind Direction

Total Rainfall

Weather Station

StationID

Maintenance Record

MaintenanceID

Date

Time

Reason

Manufacturer

ManufacturerID

Manufacturer name

Manufacturer phone#

ATSC 212 - MySQL

24

CODE TRANSLATION

1. Entities become tables.

2. Attributes become columns in the tables. Each attribute will

have a specific data type (i.e. string, integer, float)

3. Unique identifiers are columns that cannot contain NULL values

and form the primary key for the table.

4. Relationships become foreign keys which are special attributes

linking tables.

Now that we have a design, we need to translate that into code to

create the database. The first step is to recognize what the different

elements of our design become in a coded database.

ATSC 212 - MySQL

25

CODE TRANSLATION

How we translate relationships depends on the type of relationship.

One-to-one:

In this case the two entities can be merged into one table.

One-to-many:

Here we will add a foreign key attribute to the entity on the "Many"

side. Note that this design disallows a station to be in more than one

province (which is what we want).

Provinces

ProvinceID (primary key)

Province name

Province abbreviation

Weather Station

StationID (primary key)

ProvinceID (foreign key)

Drivers and licenses

Driver name license number

Driver SIN

ATSC 212 - MySQL

26

CODE TRANSLATION

Many-to-many:

This relationship requires us to create a brand new table that

encapsulates the relationship.

Students

studentID (primary key)

name

year_of_birth

Courses

courseCode (primary key)

courseName

instructor

Enrolled

enrolledID (primary key)

studentID (foreign key)

courseCode (foreign key)

ATSC 212 - MySQL

27

CODE TRANSLATION

Going back to the weather data example, we can summarize the

tables, attributes, and relationships we need as follows:

Primary KeyInteger

String

String

ManufacturerID

Name

Phone number

Manufacturer

Primary KeyInteger

String

String

ProvinceID

Name

Abbreviation

Province

TABLE COLUMN TYPE KEY

WeatherStation StationID

ProvinceID

ManufacturerID

Integer

Integer

Integer

Primary Key

Foreign Key

Foreign Key

ATSC 212 - MySQL

28

CODE TRANSLATION

TABLE COLUMN TYPE KEY

Maintenance

Record

MaintenanceID

Reason

Date

StationID

Integer

String

Date

Integer

Primary Key

Foreign Key

WeatherReport ReportID

…

Date

StationID

Integer

…

Date

Integer

Primary Key

…

Foreign Key

ATSC 212 - MySQL

PART 2

Using databases

ATSC 212 - MySQL

30

MySQL

A database engine is an application that allows a user to create,

modify, and query databases.

MySQL is a free, enterprise level database engine. MySQL is not a

database itself. Until recent versions, MySQL was primarily used for

small to midsize databases (hundreds to hundreds of thousands of

records) with liberal transaction checking where speed was

essential. However, versions 4 and 5 have incorporated more strict

transaction locking capabilities, and shown improvements which

allow for larger databases (millions of records). Security features

have also improved allowing MySQL to become one of the most

common engines.

ATSC 212 - MySQL

31

STRUCTURED QUERY LANGUAGE (SQL)

• SQL is a set of commands used to interact with databases

• These commands are called Queries

• Some examples of databases that support SQL: MySQL, Oracle,

Microsoft Access

• SQL is portable, therefore you do not need to change it when

moving to a different database system.

Database
SQL

User

ATSC 212 - MySQL

32

STRUCTURED QUERY LANGUAGE (SQL)

• There are seven basic types of queries we will look at:

USE, CREATE, DELETE, DROP, INSERT, UPDATE, and

SELECT.

• SQL is not case sensitive except with names. By convention,

keywords are usually capitalized.

ATSC 212 - MySQL

33

MySQL - Executing SQL queries

There are two ways to utilize MySQL to run queries. One way is

through programming language interfaces. C, PERL, and Python all

have special functions designed to allow a programmer to write a

program to interact with a database.

Because of the limited time we have spent on programming with C

and PERL, these functions are outside the scope of this course, but

you can check the MySQL reference in the course outline for more

details.

ATSC 212 - MySQL

34

MySQL - Executing SQL queries

The other way is to invoke MySQL and input queries on the

command line. To do this, type mysql -p on a terminal command

line. This will attempt to log you into the MySQL server with your

username. The -p flag indicates that you should supply a password

to log in. For exercises, you will be given a password for your

account.

Once you are logged in, MySQL will give you its own command line

prompt >. You can type any of the queries we will learn on this line

and MySQL will execute them. You can also type quit to leave

MySQL.

ATSC 212 - MySQL

35

MySQL - Showing available databases

Before we look at the types of queries we can use, it helps to know

what databases and tables are currently available in our database

system. The following three queries are specific to certain engines

including MySQL that give you information about database

structures that you will find useful.

SHOW databases;

SHOW tables;

DESC <table>;

SHOW databases; will list off all the databases the MySQL engine

knows about (that you are allowed to see). This is a good way to

find out what databases can be accessed.

We will look at SHOW tables and DESC later.

ATSC 212 - MySQL

36

USE

To actually make use of a database, we need to first use it. This is

the simplest form of query.

USE <name>;

A quick side note about syntax; all queries are terminated by a

semicolon. The <name> is what the database is called. Names of

databases and tables should not have any spaces in them. SQL

recognizes spaces as a delimiter and will not understand names

with spaces in them. Either remove spaces, or replace them with

underscores in names.

ATSC 212 - MySQL

37

MySQL - Showing table information

Now that we have selected a database to use, we can find out what

tables are in the database using SHOW tables;.

SHOW tables; will list off all the tables in the database you are using

(remember the USE command).

DESC <table>; where <table> is a given table name, will show the

columns of a table and what their types are, as well as any special

information about them.

ATSC 212 - MySQL

38

CREATE

To create a database, and the tables that go inside it, we use the

create query. To create a database;

CREATE DATABASE <name>;

To create a Students database, we would use the query:

CREATE DATABASE Students;

ATSC 212 - MySQL

39

CREATE

Creating tables within a database is a little trickier. First we must

issue a use query to make sure we are using the database we want

to create the tables in. Then we can issue table creation queries

that look like:

CREATE TABLE <name> (<attribute> <type> [options], …);

<name> conforms to the same rules as for database names.

<attribute> will be a column within the table, essentially the

attributes we defined in our example earlier. <type> is what type of

data that <attribute> is, like integer. [options] specify any additional

limits on the attribute.

ATSC 212 - MySQL

40

CREATE

SQL has many types, but the commonly used ones are INT for

integer, FLOAT for real numbers, DATE for any year/month/day

combinations, TIME for hour/minute/second combinations, CHAR

for fixed length strings, VARCHAR for variable length strings, and

ENUM for predefined datasets.

Like types, there are a great many options that can limit table data.

The commonly used ones are:

AUTO_INCREMENT automatically updates this field each

time data is inserted by adding one to

the previous value.

DEFAULT <value> when data is inserted, if a value for this

attribute is not specified, then it is set

as <value>

ATSC 212 - MySQL

41

CREATE

NOT NULL NULL, or an empty data string, cannot

be supplied for this attribute

NULL NULL, or an empty data string, can be

supplied for this attribute (this is the

default behaviour of most databases)

PRIMARY KEY specifies that this attribute is the

primary key for the table

UNSIGNED can be used with integer type to

specify that the integer values are only

positive (essentially doubles the

maximum integer value that can be

stored)

ZEROFILL can be used with the integer type to

pad out the integer field with zeroes (ie

132 would be stored as 00000132)

ATSC 212 - MySQL

42

CREATE

Here is a query for creating our Studnts table.

CREATE TABLE Students (

StudentID INT PRIMARY KEY AUTO_INCREMENT,

Name varchar(40) NOT NULL,

FavColour varchar(40) NULL DEFAULT "Blue",

CountryID INT

);

Notice how we did not specify NOT NULL for StudentID. Primary

keys cannot, by definition, be NULL so we do not need to specify it.

ATSC 212 - MySQL

43

CREATE

One element of confusion is that there is no FOREIGN KEY flag for

specifying attributes as foreign keys. That is because we do not

have to. What is important is to have the attributes in the table that

match primary keys in other tables. Looking at Students

CREATE TABLE Students (

StudentID INT PRIMARY KEY AUTO_INCREMENT,

Name varchar(40) NOT NULL,

FavColour varchar(40) NULL DEFAULT "Blue",

CountryID INT <--- We don!t specify FOREIGN KEY

);

More recent versions of MySQL have a way to enforce foreign key

alignment between tables, but it is outside the scope of the course.

ATSC 212 - MySQL

44

DELETE

To remove data from a database, we use DELETE.

DELETE FROM <table> [WHERE clause];

<table> is the name of the table we want to delete data from. The

WHERE clause is optional. If we do not include a WHERE clause,

then all the data in <table> is deleted. The WHERE clause allows

us to restrict the deletion to only specified records. We will see

more about WHERE clauses when we get to SELECT statements.

It is important to use the DELETE statement with caution. Unless

the database is backed up, the data loss is permanent.

ATSC 212 - MySQL

45

DROP

To remove a table from a database, or a database itself, we use

DROP.

DROP TABLE <name>;

DROP DATABASE <name>;

The DROP TABLE query can only be used once a database is

selected with USE. Tables and databases are permanently

removed with this command unless the database has been backed

up. For example, we could get rid of our Students table with:

DROP TABLE Students;

ATSC 212 - MySQL

46

INSERT

Of course, we need a way to put data into tables, and that is

INSERT.

INSERT INTO <table> [(<attribute>, …)] VALUES (<value>, …);

<table> is the name of the table we want to put data into. After that,

we can, optionally, include a list of attributes we want to insert data

for. When we run an insert query, it creates a new record within

<table>. If we do not want to fully specify the data within the record

(either because some fields are auto increment, or NULL), we can

list only the attributes we want to store data about. After VALUES,

we list the data. If we do not specify the attributes we are storing

for, then we must list enough values for all the attributes in the table.

ATSC 212 - MySQL

47

INSERT

Here are some examples based on our Students table.

INSERT INTO Students VALUES (1, "Thomas", "Green", 3);

This would insert a record into Students with StudentID = 1, Name =

“Thomas”, FavColour = “Green”, and CountryID = 3.

INSERT INTO Students (Name, CountryID) VALUES ("George", 2);

This would insert a record with StudentID = 2 (since StudentID is

auto incremented), Name = “George”, FavColour=“Blue”, CountryID

= 2.

ATSC 212 - MySQL

48

UPDATE

Sometimes we want to change the data in an existing record. To do

this, we use the UPDATE query.

UPDATE <table> SET <attribute>=<value>, … [WHERE clause];

<table> is the name of the table where the record(s) reside.

<attribute> is the column we want to change in the record(s) and

<value> is the new value. We can change multiple columns by

having a comma delimited list of <attribute>=<value>. The WHERE

clause is optional and allows us to select the particular records we

want to update. If the WHERE clause is not used, all records in the

table are updated with the new value(s).

ATSC 212 - MySQL

49

Meta and obs database

To get some experience with real data, we have uploaded a

simplified version of our observations and meta database.

Meta: Contains Cities, Stations, and Spacetimes tables

Obs: Stores Air_Temperature, Wind_Speed, etc.

Let's switch to the meta database for now.

USE meta;

Take a look at what this database contains:

SHOW tables;

ATSC 212 - MySQL

50

SELECT

Now we come to the most powerful, common, and complex query,

SELECT. SELECT queries are how we get data from database

tables.

The form of SELECT queries looks like this:

SELECT [DISTINCT] <attribute>[, <attribute> …] FROM <table>[,

<table>…] [WHERE clause];

That probably looks pretty complex, so let!s break it down. We start

the query with SELECT. We can then, optionally, include the

DISTINCT keyword. This tells the database not to return duplicates

of the attribute that follows. By default, the database will normally

return all data available.

ATSC 212 - MySQL

51

SELECT

After that we have a list of attributes that we would like to have

returned comma delimited. For example, we could query the

Stations table for just the Latitude and Longitude of stations. At

least one attribute must be specified in a SELECT query. To specify

all attributes in a table, rather than listing all attributes we can put *

instead of the attribute list. Attributes can be specified just by name

or by <table>.<name>, or even <database>.<table>.<name>.

After this comes the FROM keyword (to let the database know that

we are not listing any more attributes) followed by a comma

delimited list of tables to draw the data from. If we are gathering

data from related tables, we must list all tables we plan to use.

ATSC 212 - MySQL

52

SELECT

Finally, we can include a WHERE clause. If we do not include this

clause, the SELECT query will pull every record from all the tables

listed (which on a sizeable database can be millions or billions).

More than any other query, WHERE clauses are crucial to making

useful SELECT queries.

ATSC 212 - MySQL

53

WHERE clause

Simply put, WHERE clauses are a series of conditions. Only data which

meets all the conditions will be returned.

Like conditionals from programming/scripting languages, the conditions of

WHERE clauses are grouped together using AND and OR. To negate a

condition, preface it with NOT. Numerical comparisons can be conducted

with =, <, <=, >, >=, <>. Strings can be compared using LIKE and the

wildcards % (which will match any group of characters) and _ (which will

match any single character).

Examples:

SELECT * FROM Cities WHERE Name LIKE "Van%";

SELECT * FROM Stations WHERE Elevation>2200 AND Country="USA";

ATSC 212 - MySQL

54

WHERE clause

We can also use the WHERE clause to join related tables together.

For example, the Stations table has a Nearest_City attribute which

relates to a City_ID in the Cities table.

If we include both Stations and Cities in the FROM clause of the

SELECT statement, we must link the two in the WHERE clause as

follows:

SELECT * FROM Cities, Stations WHERE City_ID=Nearest_City;

Station_ID Codename Nearest_City … City_ID Name Latitude …

Stations Cities

ATSC 212 - MySQL

55

WHERE clause

Finally, results can be sorted or grouped by attributes using GROUP

BY <attribute>[, <attribute>…] and ORDER BY <attribute>[,

<attribute>…] [DESC].

GROUP BY acts like the DISTINCT keyword. It will return only the

first record from any group of records that all match the same data

on a given attribute (or list of attributes).

SELECT * FROM Stations GROUP BY Providing_Agency_ID;

ORDER BY will sort the output by the attributes listed (each in order

from the first attribute listed to the last). Normally, ORDER BY sorts

into ascending order, however it is possible to make it sort into

descending order by adding DESC to the end.

SELECT * FROM Cities ORDER BY Latitude_DMS;

ATSC 212 - MySQL

56

WHERE clause - Duplicate names

Sometimes when joining two tables together we end up with two

fields with the same name. For example both Stations and

Spacetimes have the field Station_ID. We can prefix each variable

name with the table name to specify which variable we are referring

to:

Stations.Station_ID and Spacetimes.Station_ID

ATSC 212 - MySQL

57

SELECT - Examples

Let!s look at some more examples.

SELECT * FROM Stations WHERE Sea_Land_Mask="water";

SELECT * FROM Stations, Spacetimes

 WHERE Stations.Station_ID=Spacetimes.Station_ID

 AND Date="2007-01-31"

 AND Time="22:30:00"

 AND Province="YT";

ATSC 212 - MySQL

58

SELECT - Examples

1) Find all inactive stations.

2) Show the elevation and station_ID of all stations in Ontario, sorted by

elevation.

3) Find all stations whose nearest city is Vancouver.

4) Find all stations whose nearest city is Vancouver, WA.

5) Find the temperature at station 2628 for all available times.

ATSC 212 - MySQL

59

Tidbits

There are a few other helpful functions that can be used in queries

to limit or change data that is returned. The three most useful to us

are MAX, MIN, and COUNT. Each takes an attribute as a

parameter and are part of the attribute list for a select query. For

example:

SELECT MAX(Station_ID) FROM Stations;

would return the largest Station_ID from the Stations table.

SELECT COUNT(Spacetime) FROM Spacetimes WHERE Date =

20070131;

would return the number of Spacetimes for which the date was

January 31, 2007.

ATSC 212 - MySQL

60

SELECT - Examples

1) Find the highest elevation.

2) Find the number of stations in each province (hint: GROUP BY)

3) For each city show how many stations are closest to that city

ATSC 212 - MySQL

61

THE END?

This is as far as we will cover with databases. The Managing &
Using MySQL text is a good reference if you want to get into serious

database work and programming. You can also find additional

information about databases online at www.wikipedia.com.

