
ATSC 212 - PERL

1!

ATSC 212 - PERL

2!

Scripts are similar to programs. They tell the computer to perform
a series of tasks. The main difference between scripts and
programs is that programs are compiled into binaries (machine
language) and scripts are interpreted line by line by the shell on the
fly. Even though scripts are interpreted line by line, most shells or
interpreters will first do several passes through a script checking
syntax before actually running the script.

In most other ways, scripts look a lot like programs. They contain
many of the same conventions and syntax as programming
languages.

Different shells have their own scripting languages with slight
syntactical differences. However, there are common scripting
languages, such as Perl and Python, which can be utilized on most
unix systems. These scripting languages are more powerful than
those supported by shells.

ATSC 212 - PERL

3!

WHAT IS PERL?

PERL (Practical Extraction and Reporting Language) was originally
designed and used to track system resources across networks.
However, the addition of web design modules, originally part of the
reporting portion of the language, made PERL a perfect scripting
language for dynamically generated web content.

PERL is an interpreted language. This means that PERL scripts are
ASCII, human-readable files, and that a special program, the
interpreter, actually reads and does what the script tells it to. This is
similar to the way a shell interprets scripts.

Being an interpreted language, and having powerful text manipulation
capabilities, made PERL a perfect alternative as a scripting language.
Nowadays, PERL is installed on most unix systems and is available for
other OS such as Windows.

ATSC 212 - PERL

4!

COMMONALITIES OF SCRIPTING LANGUAGES

All scripting languages have a few elements in common:

variables
operators
conditionals
loops

Most everything done in a script involves one or more of these
common elements.

However, unlike many other scripting languages, instructions in
PERL are always terminated with a semicolon.

ATSC 212 - PERL

5!

SETTING UP A PERL SCRIPT

Basically, all PERL scripts are ASCII text files that begin with a line
that tells the shell that this file is a PERL script and should be
interpreted by the PERL interpreter. That line is

#!<path to PERL interpreter>

The location of the PERL interpreter can change from system to
system, so this line depends on its location. The PERL interpreter is
often in the common bin directory so a typical first line would be

#!/usr/bin/perl

PERL scripts can have any extension, like other unix files, but to
make them easy for other applications to recognize, they are usually
given the extension .pl.

ATSC 212 - PERL

6!

RUNNING A PERL SCRIPT

If you have set up your PERL script with executable permission, you
can run it in two ways.

The first is to execute the script as though it were any other
program.

! ./myscript.pl

The other way to run the script is to invoke the PERL interpreter on
the file. To do this, type <path of PERL interpreter> <script>.

! /usr/bin/perl myscript.pl

ATSC 212 - PERL

7!

VARIABLES
Variables in scripting languages work much the same way as they
do in programming languages. They are tokens that are meant to
hold a value of some kind (ie integers, floats, strings).

Variables can have any kind of name except for keywords that are
used in the PERL language (ie you cannot have a variable called if
or for). To get or set the value of a variable, you preface the name
with $. (ie the variable color would be referenced as $color). This
is similar to most scripting languages.

Unlike most other languages, scripting or programming, in PERL
variables are typed by context. In other languages, typically you
have to declare the type of a variable and can only use it in
contexts that make sense for that type (ie strings cannot be added
like integers). However, in PERL, the interpreter considers the
context of the variable and determines how it should treat the
value.

ATSC 212 - PERL

8!

VARIABLES
For example:

$color = 4;
print $color,“\n”;
$color = $color + 5;
print $color,”\n”;
$color = “$color”.”5”;
print $color,”\n”;

! ./myscript.pl
4
9
95

ATSC 212 - PERL

9!

VARIABLES
In general, PERL will interpret quoted values as strings, and
numbers as integers unless the numbers have a decimal (in which
case they will be treated as floats).

However, you have to be careful when using variables within quotes
in PERL. Double quotes instruct PERL to substitute the value of the
variable for the variable name within quotes. Single quotes instruct
PERL to treat the variable name as a string.

$foo = 5;
print “Give me $foo dollars!\n”;
print ‘Give me $foo dollars!\n’;

! /usr/bin/perl myscript.pl
Give me 5 dollars!
Give me $foo dollars!\n

ATSC 212 - PERL

10!

OPERATORS

Operators allow you to perform actions on variables. The various
types are:

ASSIGNMENT =, .=, +=, -=, =~

MATHEMATICAL +, -, /, *, %

LOGICAL <, <=, ==, >=, >, !, !=, and, or, not, eq,
ne, =~

ATSC 212 - PERL

11!

CONDITIONALS
Most languages have the notion of conditionals. A conditional is
a language structure that allows you to choose a particular
outcome or set of instructions based on a certain condition. The
most familiar type of conditional is the if-then-else. PERL
supports this structure in the following way:

if (<condition>) { ...instructions... }
elsif (<condition>) { ...instructions... }
else { ...instructions... }

The elsif and else blocks are optional and are used to create
series of conditions. It is possible to have only the if
(<condition>) and following instruction block. There can be as
many elsif blocks as you need (or none if you have only two
conditions). There is only one else block and it is always the last
condition in a series.

ATSC 212 - PERL

12!

CONDITIONALS

Conditions always have either the value of true or the value of
false. In PERL, anything that evaluates to 0 is false. Everything
else is considered true. The logical operators yield values that
are either true or false, and so you will usually create conditions
by using the logical operators. However, by noting how other
values are evaluated as true or false, it is possible to have just a
variable be the condition. Here are a couple examples:

$day = 4;
if ($day > 5) # this evaluates false
if ($day) # this evaluates true

ATSC 212 - PERL

13!

LOOPS

Most languages also have the notion of looping, or performing
some action over and over. In some cases, the purpose of
looping is to perform a given action over a set of items. This is
achieved in PERL by using the foreach loop. The syntax of the
foreach loop is

 foreach <variable> (<array or list>) { ...instructions... }

The foreach loops cycles over all the elements of the array or list
one at a time, assigning the element to <variable> and
performing the instructions given in the instruction block. For
example, this will print statements about each day in the array of
days:

foreach $date (@days) { print “Today is $date\n”; }

ATSC 212 - PERL

14!

LOOPS

In other cases, looping is used to perform an action over and over
until some condition becomes false. This is done by using the
while loop. The syntax for the while loop is

while (<condition>) { ...instructions... }

Be careful constructing conditions for while loops. If the condition
can never be changed by the loop, the while loop will never stop
running and the program will hang.

ATSC 212 - PERL

15!

LOOPS
Here are two examples. One works, while the other does not.

$i = 0;
while ($i < 5)
{
 $i += 1;
 print $i; # this will print 1 2 3 4 5 and exit the loop
}

$i = 0;
while ($i < 5)
{
 $i -= 1;
 print $i; # this will print -1 -2 -3 -4 ... and never stop printing
}

ATSC 212 - PERL

16!

ARRAYS
Sometimes, as with other programming languages, we would like to
work with collections of data. One way to organize and work with a
collection of data is to put it into an array. Then we can use the
indices of the array to get at the data. Indices for arrays are always
whole numbers.

In PERL, array variables are referenced with @ instead of $.
Individual elements of the array are referenced with $<array>
[index]. Elements of an array can be any type. Unlike other
languages, they can even be different types within the same array.

The advantage to using arrays is that a single variable name can
represent a data set and that the data set can be easily looped over
using foreach, or a variable for the array index.

ATSC 212 - PERL

17!

ARRAYS
There are many ways to create arrays, but the two most common
are assignment. The first way is to declare all the elements of the
array at once.

@<array> = (<list>);

In this form, <array> is the variable name and <list> is the data in
comma delimited format (ie @myArray = (1, 2, 3, 4);). Another
way to create an array is simply to add an element to the array.

$<array>[index] = <value>;

This will set the array element at index equal to <value> and create
the array if it does not already exist. Coincidentally, $<array>
[index] is also the way you reference that particular element. It
acts exactly the same as a regular variable.

ATSC 212 - PERL

18!

ARRAYS
Besides the foreach and while loops mentioned previously, which
provide a convenient way to work with arrays, there are four
commands that also help you to get at elements of an array; push,
pop, shift, and unshift.

Push will add an element to the end of an array. Pop will take a
value off the end of an array. The syntax for push and pop are

push(@<array>, $value);
$value = pop(@<array>);

Unshift and shift work just like push and pop but instead of adding/
removing elements to the end of the array, they work with the
beginning of the array. Here’s the syntax

unshift(@<array>, $value);
$value = $shift(@<array>);

ATSC 212 - PERL

19!

ARRAYS
Here is an example:

Create an array by setting a value in it
$myArray[0] = “/home”;

foreach $file (`ls $myArray[0]`)
{
 # Put each file listed from /home onto myArray
 push(@myArray, $file);
}
foreach $file (@myArray)
{
 print “$file\n”;
}

ATSC 212 - PERL

20!

HASHES
Another type of data set represented in PERL is the hash. A hash is
an array where the indices can be any type or value. % is used to
reference a hash variable (just as @ is used with arrays). Hash
elements can also be referenced just as array elements although
the index (referred to as a key) is enclosed in {} brackets instead of
[] brackets.

%<hash> = (); # creates an empty hash with
 # name <hash>

$<hash>{<key>} = <value>; # adds the <value> to <key> in
 # <hash>.

It is important to note that each key can only have one value. It is
also important to note that PERL does not necessarily store hashes
in key order, so when looping over hashes they may appear in a
different order than created.

ATSC 212 - PERL

21!

HASHES
Like arrays there are two common ways to create a hash, by adding
values or declaring the hash at once. Both ways are similar to
creating arrays.

To declare a hash use %<hash> = (<list>); where <hash> is the
name of the hash and <list> is all the key/value pairs in comma
delimited format. For example,

%newhash = (“one”, “two”, “three”, “four”);
print $newhash{“one”}; # two
print $newhash{“three”}; # four

Because delimiting the key value pairs themselves with commas
becomes confusing, programmers often use => which PERL treats
as a comma.

%newhash = (“one” => “two”, “three” => “four”);

ATSC 212 - PERL

22!

HASHES
As mentioned, keys can be any type or value. It is important to
note that if you create a key that is a string, you must reference it
in the same manner (using the appropriate quotes, etc) otherwise
the hash will not return a value.

Although there is no push/pop sorts of functions for hashes, you
can add key/value pairs through assignment as already mentioned.
You can delete elements from a hash using the delete function.

delete($<hash>{<key>});

As to looping, you can use foreach and while on a hash. In the
case of while, you can use the each function to get key/value pairs.

while (($<key>, $<value>) = each(%<hash>)) { ... }

This loop structure will return each key/value pair in $<key> and
$<value>.

ATSC 212 - PERL

23!

HASHES
Foreach loops are handled a little differently. In a foreach loop you
can only get either the keys or the values. To get the keys use

foreach $<key> (keys %<hash>) { ... }

This will loop over the keys storing them in $<key>.

To get the values use

foreach $<value> (values %<hash>) { ... }

This will loop over the values storing them in $<value>.

Keep in mind that the order may not be the same as the way
elements were added/declared in the hash.

ATSC 212 - PERL

24!

HASHES
Here is an example.

%air_temp = (“Vancouver” => 12, Seattle => “11”, “Hope” => 5);
Print the locations on the same line separated by tabs
foreach $location (keys %air_temp)
{
 print “$location\t”;
}
Print a newline for formatting
print “\n”;
Print the values on the next line tabbed under the locations
foreach $temp (values %air_temp)
{
 print “$temp\t”;
}
print “\n”;

ATSC 212 - PERL

25!

FILE HANDLING
PERL has many functions for handling files. We will cover basic file
opening, closing, reading, and writing.

To open a file, you use the command

open(<filehandle>, “<ctl><filename>”);

<filehandle> is a special name that PERL uses to refer to the file.
This is not a normal variable and is not prefaced by $. It can be
any string (other than PERL commands). Most programmers who
are opening one file at a time use the name FILEHANDLE.

<ctl> is a special character that tells PERL if the file is opened for
reading or writing, or both. < specifies the file is read only. >
specifies the file is write only. +< specifies the file is both read and
write. >> appends data to the file (> deletes the file contents on
opening).

ATSC 212 - PERL

26!

FILE HANDLING

To close a file, use

close(<filehandle>);

To write to a file, use the print command.

print <filehandle> <data>;

<data> is whatever you want to write to the file (string, number,
etc). If you do not include <filehandle>, PERL will print to the
screen.

There are many ways to read from a file, but the easiest to
understand is to use a while loop to read lines out of the file one at
a time. while (<<filehandle>>) will loop over the lines of the file,
storing the data in each line in $_.

ATSC 212 - PERL

27!

FILE HANDLING
This will read the comments out of a C file and write them to a file.

$file = “myCfile.c”;
open(FILEHANDLE, “<$file”);
while (<FILEHANDLE>)
{
 if ($_ =~ m/.*\/*.**\//) { push(@comments, $_); }
}
close(FILEHANDLE);
$file = “comments”;
open(FILEHANDLE, “>$file”);
foreach $comment (@comments)
{
 print FILEHANDLE “$comment\n”;
}
close(FILEHANDLE);

ATSC 212 - PERL

28!

DATA PROCESSING
In addition to all we have covered, PERL has many modules and
built in functions that can help you perform tasks. Here are a few
of the more commonly used ones.

chomp(X) This removes a newline from the end of string X.

exp(X) Returns e to the power of X.

log(X) Returns the natural logarithm of X.

sqrt(X) Returns the square root of X.

int(X) Truncates X to an integer.

sin(X) Returns the sine of X (X must be in radians).

cos(X) Returns the cosine of X (X must be in radians).

ATSC 212 - PERL

29!

DATA PROCESSING
defined($X) Returns true if $X is a variable with a value.

undef($X) Undefines the variable $X.

length(X) Returns the number of characters in string X.

join(“X”, Y) Form a string from the elements of array Y using
X as the delimiter between each element.

split(/X/, Y) Form an array from parts of the string Y that are
separated by the pattern X.

substr(X,Y,Z) Return a substring of string X. Start the substring
at offset Y from the beginning of X (if Y is
negative, the offset is counted backwards from
the end of X). Z, optional, is the length of the
substring.

ATSC 212 - PERL

30!

STANDARD INPUT
In addition to reading data from a file, it is possible in PERL to
read data from the command line. The way to do this is very
similar to the manner of reading lines from a file.

while (<>) { … }

If we leave out the filehandle, PERL will read a line from the
command line (terminated by a newline) into $_.

ATSC 212 - PERL

31!

EXECUTING UNIX COMMANDS
Sometimes it is useful to execute a unix command within PERL
script. There are two ways to do this.

If you merely want to execute the command without worrying
about the result, you print the command in backticks (`);

print `<command>`;

This can be useful for executing unattended ftp or executing unix
commands on files. The backtick is located in the upper left of the
keyboard. If you want to retain the result of the unix command,
use;

$<variable> = `<command>`;

This would be useful for retrieving the date with the unix date
command, for example.

ATSC 212 - PERL

32!

SUBROUTINES
Like other programming languages, you can create functions in
PERL that can be called by your script or other scripts. In PERL,
these functions are called subroutines.

To create a subroutine, you use the keyword sub, the subroutine
name, and encapsulate it in {} braces like this...

sub test {
...
}

To call a subroutine, you type its name followed by any arguments
in a comma delimited list in parentheses.

test(arg1, arg2, arg3);

ATSC 212 - PERL

33!

SUBROUTINES
Notice that in the declaration of the subroutine we do not declare
the number of arguments. The arguments supplied to a
subroutine are completely variable. The user can supply as many
or as little as she/he wishes. This means that the programmer
needs to make the subroutine capable of handling too few
arguments (usually extra arguments are just ignored).

Arguments are passed in through the @_ array. You can get at
the arguments by accessing the array values directly (ie $_[0]) or
by looping over the array with foreach.

This flexibility allows you to easily add more arguments without
having to push them into an array or other data structure.
However, it also means that you might not get enough arguments.
To set default values for arguments, you can use the ||=
assignment operator.

ATSC 212 - PERL

34!

SUBROUTINES
For example...

($arg1, $arg2) = @_;
$arg1 ||= 1;
$arg2 ||= 2;

will attempt to load the first two values in the array into $arg1
and $arg2. If $arg1 isn’t set, then the next line will set it to 1.
The following line takes care of $arg2 if it is not set.

Subroutines can return one value. To do this, use the return
statement.

return $result;

If you attempt to return multiple values, they will be flattened into
an array.

ATSC 212 - PERL

35!

MODULES
If you want to reuse subroutines in other scripts, you will need a
way to get at them. You can place them in a special file called a
module and then import them into your script when you want to
use them.

Modules are like scripts (typically suffixed with .pm). They begin
with the typical #!/usr/bin/perl line (or appropriate location).
Then you need a line for the declared module name (this is how
you will recognize the module later and is typically the filename
minus .pm. The typical line looks like...

package <module>;

ATSC 212 - PERL

36!

MODULES
After this you will need a bit of boilerplate to let any scripts know
how to import your module. It looks like this...

BEGIN {
 use Exporter();
 @ISA = qw(Exporter);
 @EXPORT = qw(&<subroutine1> &<subroutine2> ...);

}

The list of subroutines in the EXPORT array are the ones you are
making available in the module. Each subroutine must be
prefaced by a ‘&’ and separated by a space.

After this, you can add the code for each subroutine declared in
the usual fashion.

ATSC 212 - PERL

37!

MODULES
To finish the module, you need to add a bit more boilerplate.

return 1;
END { }

Now to use the module in your script, simply add the ‘use’ line
before calling the subroutines (typically at the top of the script).

use MyModule;

You do not add the .pm to the ‘use’ line. If the module is not in
your path or your running directory, you can tell the script where
to look for it by adding the following line prior to your module.

use lib <location of MyModule>;
use MyModule;

ATSC 212 - PERL

38!

REGULAR EXPRESSIONS
Regular expressions are a powerful tool for matching strings. You
can use regular expressions to determine if a string fits a particular
pattern or to isolate parts of a string to use as variables, or even
replace portions of a string.

There are three common operators for regular expressions in PERL,
m//, s///, and tr///. m// is used to match strings to patterns (and
to isolate parts of a string for use as variables). s/// is used to
replace substrings with other substrings (ie replace the word young
with old). tr/// is used to translate strings (ie replace all instances
of a given character with another character).

The way to invoke a regular expression is

$<string> =~ <operator>

ATSC 212 - PERL

39!

REGULAR EXPRESSIONS
The m// operator will return a true or false value, so it is often
used in conditionals. The s/// and tr/// operate on strings and will
change $<string>. Here are a couple examples of using s/// and
tr///.

$newstring = “Hi my name is Tom”;
$newstring =~ tr/o/i/;
print $newstring # Hi my name is Tim
$newstring =~ s/name/surname/;
print $newstring # Hi my surname is Tim

If s/// or tr/// cannot find a match in the string for the given
substring or character, it will make no changes. This can be a
particularly sticky issue with s///, for the substring must match
exactly for a change to be made. (ie Young is not the same as
young).

ATSC 212 - PERL

40!

REGULAR EXPRESSIONS
To use m// properly, you need to understand how to develop
patterns. A pattern can be a pure string or a collection of symbols
to describe strings. Patterns, even pure strings, in regular
expressions do not need to be in quotations (in fact the quotation
would be treated as part of the pattern). To match a pure string
just put in the string exactly as it should appear between the
slashes.

To make more complex patterns, we need some special symbols.

^ is used to represent the beginning of a line. Using this
symbol forces a match that begins at the start of a line.

$ is used to represent the end of a line. Again this will force a
match to lines that end a certain way.

. is used to match any character other than a newline.
* must follow another character. It specifies that any number

of the character it follows may appear.

ATSC 212 - PERL

41!

If you want *, \, /, or + to appear in a regular expression, you
must escape it by putting a backslash in front of it first, otherwise
it will be treated as a special character. (ie m/t*/ would match any
number of t’s while m/t*/ would match t*)

REGULAR EXPRESSIONS

+ must follow another character. It specifies that one or more
of the previous character must appear in the pattern.

\s stands for a blank space.
\n stands for a newline.
\d stands for any digit.
\D stands for any non-digit character.

ATSC 212 - PERL

42!

In addition to these special characters, you can specify ranges of
characters using []. For example, we can set up a regular
expression to match Tom or Tim followed by a space and a last
name made of any set of characters.

m/T[oi]m\s[A-Za-z]*/

It is important to note that patterns are case sensitive. You can
make a pattern case insensitive by adding i to the end of the match
(ie m//i).

You can also specify a number of characters to appear by using {}.
For example a{3} would mean match aaa, and a{0,3} would mean
match anywhere from 0 to 3 a’s.

REGULAR EXPRESSIONS

ATSC 212 - PERL

43!

REGULAR EXPRESSIONS
Let’s consider some examples:

m/^Hi\smy\sname\sis/ matches any line starting with “Hi my
name is”

m/hi\smy\sname\sis/i matches any line containing the words “hi
my name is” in any case

m/Tom$/ matches any line ending with “Tom”
m/[a-z]/ matches any line containing a lower case

letter
m/[a-zA-Z]{3,6}/ matches any line containing 3 to 6 letters

(either case)
m/Hi\smy.*is\sTom/ matches any line with “Hi my” and “is

Tom”
m/^200[5-7]\d{4}/ matches any line beginning with “200”

followed by 5, 6, or 7 and 4 digits. (ie
20060708)

ATSC 212 - PERL

44!

REGULAR EXPRESSIONS
There is one last thing you can do with m//, and that is to select
portions of a string for use as variables. The way you do this is to
enclose portions of a pattern in parentheses. Each set of
parentheses is assigned to a number variable corresponding to the
occurrence of the parentheses in the pattern. (ie $1 for first set,
$2 for second set, etc). For example;

m/^([a-z]*)\s+([0-9]*)/

would assign any set of lowercase letters at the beginning of a line
to $1 and any set of numbers from 0 to 9 to $2.

There are many more ways to make complex patterns in PERL than
we have covered, but even with these basic tools you can create a
pattern to match any line and pull portions of data from a matching
line.

ATSC 212 - PERL

45!

REGULAR EXPRESSIONS
Consider the following examples:

$line = “20060718 Rel Hum 86% Air Temp 25 Wind Spd 13”;
$line2 = “NO DATA”;
if ($line =~ m/^200[5-7]\d{4}.*(\d{2})%.*(\d{2}).*(\d{2})$/)
This would return true and would set $1 = 86, $2 = 25, $3 = 13

if ($line2 =~ m/^200[5-7]\d{4}.*(\d{2})%.*(\d{2}).*(\d{2})$/)
This would return false (not match)

if ($line =~ m/no\sdata/i) # This would return false

if ($line2 =~ m/no\sdata/i) # This would return true

if ($line =~ m/\d*\s*([a-zA-Z\s]*)[\d\s]*%*([a-zA-Z\s]*)[\d\s]*[a-zA-Z\s]*(\d*)/)
This would return true and set $1 = “Rel Hum“, $2 = “Air Temp” and $3 = 13

if ($line2 =~ m/\d*\s*([a-zA-Z\s]*)[\d\s]*%*([a-zA-Z\s]*)[\d\s]*[a-zA-Z\s]*(\d*)/)
This would return true and set $1 = “NO DATA”

ATSC 212 - PERL

46!

That is all we will cover in PERL, however, there is considerably
more to PERL (CGI to MySQL to compilation scripting). For more
information, try the O’Reilly book on PERL or PERL Core Language
by Steven Holzner.

