Week 2 Demo (Thermometry)

Harrison chapter 5 Brock chapter 4 WMO-8 Chapter 2

Tim Chui

Weekly Schedule

Day	Monday	Wednesday	Friday	
Туре	Lecture	Demo	Lab	
Purpose	 Introduction of learning goals Theoretical knowledge of instruments "Formal" instruction 	 Review of learning goals Hands-on intro of instruments "Informal" instruction 	 Realization of learning goals Hands-on application of instruments "Self-taught" instruction 	

Learning Goals (from Monday's lecture)

	By the end of today's class, you should be able to:
I	List 5 or more types of thermometers, and describe how they work and how you use them.
2	Calculate and plot thermometer response (voltage, resistance, size, etc.) vs. temperature
3	Describe the advantages, disadvantages, and typical errors of each type of thermometer.
4	Select the appropriate thermometer and associated infrastructure (e.g., screens) for any measurement program.
5	Convert between different temperature units.
6	Explain the reasons for using radiation shields.

Demo Worksheet

Demo - Comparison of temperature sensors Worksheet by Dr. Rosie Howard Edited by Tim Chui

Date of demo: 15 January 2020

_	Instrument	What is it made of?	Principle	Details	Use/applications	Anecdotes
1	Liquid crystal thermometer	Liquid crystals	Liquid crystals are heat sensitive Colour changes when temperature changes	Monitors heat flow due to conduction, convection, and radiation Safer than glass thermometer though not as accurate	Medical/aquariums/home-brewing	
2	Bimetallic strip thermometer	Two metals e.g. iron and brass		Each metal must have different coefficient of linear expansion so it responds differently to heat One end fixed, other end is pointer to scale	Simple domestic thermometers/thermostats	
3	Liquid-in-glass thermometer		Volume expansion as response to temperature change		Traditional domestic thermometers Medical Calibrating other temperature sensors	
4	Type T thermocouple	Copper-constantan, two dissimilar metals		Inherently a differential temperature sensor Sensitivity: ~43 μV/°C	Widely used across scientific applications Meteorology field studies: e.g. air temperature	Rosie used these to measure temperature inside datalogger/power enclosures
5	Type E thermocouple	Chromel-constantan		Sensitivity: ~68 μV/°C		Rosie used these to measure the temperature at the snow-ground interface
6	Type K thermocouple			Sensitivity: ~41 µV/°C	Most common/inexpensive type	
7	Platinum resistance temperature detector	Platinum	Electrical resistance changes with temperature		Commonly used for air temperature measurements	Rosie used two of these at Whistler site (2-m and 10-m heights)
8	Thermistor		Resistance varies with temperature	Nonlinear, usually has negative temperature slope Despite nonlinearity, popular because they	Commonly used for air temperature measurements	
9	Sonic temperature sensor	Sonic anemometer (mostly aluminium)	Uses speed of sound, knowing distance between transducers and signal travel time		Sophisticated instrument used in field research e.g. eddy covariance methods or sub-zero temperatures	Rosie used this at Whistler site (but for 3-D wind speed/direction). We will hear more about that in week 12.
10	Radiation shield	Thermoplastic plates		Still allow ambient air to pass over sensor	Should always be used for air temperature measurements	Chris used these on a controlled burn. Turns out, they can melt!
11	Aspirated radiation shield	Thermoplastic plates	As above, plus fan pulls air over sensor to maintain high convective heat transfer (offset radiative or conductive heat transfer)	Better than non-aspirated		Rosie used one aspirated and one unaspirated. Unaspirated because needed small/light equipment that wouldn't easily accumulate snow on platform suspended over ski run.

Liquid Crystal Thermometer

Bimetallic Strip Thermometer

Bimetallic Strip Thermometer

Liquid-in-Glass Thermometer

Platinum Resistance Temperature Detector

Thermistor

Thermistor

Sonic Temperature Detector

Sonic Temperature Detector

Sonic Temperature Detector

Radiation Shield

Radiation Shield

Radiation Shield

Thermocouple

