Manual on Codes International Codes VOLUME 1.1

PART A – Alphanumeric Codes

2011 edition Updated in 2013

Manual on Codes

International Codes

Volume I.1
(Annex II to WMO Technical Regulations)

Part A – Alphanumeric Codes

WMO-No. 306

2011 edition Updated in 2013

WMO-No. 306

© World Meteorological Organization, 2011

The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to:

Tel.: +41 (0) 22 730 84 03 Fax: +41 (0) 22 730 80 40

E-mail: publications@wmo.int

Chair, Publications Board
World Meteorological Organization (WMO)
7 bis, avenue de la Paix
P.O. Box 2300
CH-1211 Geneva 2, Switzerland

ISBN 978-92-63-10306-2

NOTE

The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.

PUBLICATION REVISION TRACK RECORD

	Part/			Approval Resolution
Date	chapter/ section	Purpose of amendment	Proposed by	or other
2012	Part A, Section C, b. Code tables	Consolidation of amendments approved by the procedure for adoption of amendments in May 2012	CBS/OPAG-ISS/IPET-DRC	Procedure for adoption of amendments between CBS sessions (OBS/WIS/DRMM/DRC (PR-6630))
2013	Part A, Sections A, B and C	Consolidation of amendments approved by the procedure for adoption of amendments in May 2013	CBS/OPAG-ISS/ IPET-DRMM	Procedure for adoption of amendments between CBS sessions (OBS/WIS/DRMM/DRC (PR-6688))
2013	Introduction	Clarification of the procedures for amending the Manual	CBS/OPAG-ISS/ IPET-DRMM	Resolution 15 (EC-65)

EDITORIAL NOTE

As a general rule, **standard coding practices** are printed in semi-bold roman in order to distinguish them from explanations.

Section A: **Regulations** are printed in semi-bold roman; explanatory notes relating to these regulations are printed in smaller type and preceded by the indication: Note.

Sections B and C: **Specifications** of symbolic letters and **standard coding procedures** relating to the specification concerned are printed in semi-bold roman. Definitions and explanations relating to these specifications are printed in light-face roman.

PREFACE

Coded messages are used for the international exchange of meteorological information comprising observational data provided by the WWW Global Observing System and processed data provided by the WWW Global Data-processing and Forecasting System. Coded messages are also used for the international exchange of observed and processed data required in specific applications of meteorology to various human activities and for exchanges of information related to meteorology.

The codes are composed of a set of CODE FORMS and BINARY CODES made up of SYMBOLIC LETTERS (or groups of letters) representing meteorological or, as the case may be, other geophysical elements. In messages, these symbolic letters (or groups of letters) are transcribed into figures indicating the value or the state of the elements described. SPECIFICATIONS have been defined for the various symbolic letters to permit their transcription into figures. In some cases, the specification of the symbolic letter is sufficient to permit a direct transcription into figures. In other cases, it requires the use of CODE FIGURES, the specifications of which are given in CODE TABLES. Furthermore, a certain number of SYMBOLIC WORDS and SYMBOLIC FIGURE GROUPS have been developed for use as code names, code words, symbolic prefixes or indicator groups.

Rules concerning the selection of code forms to be exchanged for international purposes, and the selection of their symbolic words, figure groups and letters, are laid down in the *Technical Regulations* (WMO-No. 49), Volume I, section 2.3 (2011 edition, updated in 2012). These code forms are contained in Volume I of the *Manual on Codes*, issued as Volume I.1 – Part A, and Volume I.2 – Part B and Part C.

Apart from these international codes, several sets of regional codes exist which are intended only for exchanges within a given WMO Region. These codes are contained in Volume II of the *Manual on Codes*. This volume also contains descriptions of:

- Regional coding procedures for the use of international code forms;
- National coding practices in the use of international or regional codes of which the Secretariat has been informed;
- National code forms.

A number of special codes which are used in messages exchanged over the WWW Global Telecommunication System circuits, and which comprise ice and satellite ephemeris codes, are included in Volume II as an appendix.

This edition of Volume I.1 of the Manual on Codes replaces the 2010 edition.

CONTENTS

VOLUME I.1 – INTERNATIONAL CODES

Part A – Alphanumeric Codes

		Page
Introduc	tion	ix
Definitio	ns	xv
Section	A – Code forms	A-1
a.	FM system of numbering code forms	A-3
b.	List of code forms with notes and regulations	A-9
Section	B – Specifications of symbolic letters (or groups of letters)	A-167
Sy	mbolic letters and remarks as to the methods of coding	A-169
Section	C – Specifications of code figures (code tables)	A-235
a.	Numbering system of international code tables	A-237
b.	Code tables	A-241
Section	D – System of station index numbers	A-371
a.	Meteorological observing stations	A-373
b.	Hydrological observing stations	A-375
Section	E – Beaufort scale of wind	A-377
Append	ix – National practices regarding the coding of certain elements in reports, analyses or forecasts for international exchange	A-381
Attachn	nents	A-389
l.	Common code tables to binary and alphanumeric codes (copy of Volume I.2, Part C/c: Common Features to Binary and Alphanumeric Codes)	A-391
II.	List of alphanumeric code tables related to BUFR Table B	A-415
III	International Seismic Code	A-419

INTRODUCTION

Volume I of the *Manual on Codes* contains WMO international codes for meteorological data and other geophysical data relating to meteorology; it constitutes Annex II of the WMO *Technical Regulations* and has therefore the status of a Technical Regulation. It is issued in two volumes: Volume I.1, containing PART A, and Volume I.2, containing PART B and PART C.

VOLUME I.1:

Part A – Alphanumeric Codes consists of five sections.

Section A contains lists of international code forms and corresponding standard coding procedures. The format and wording conventions used in this section are as follows:

Code forms: Groups in brackets are drop-out items and may or may not be included, depending on specified conditions. The absence of round brackets means that the inclusion of the group concerned is determined by international decision; these decisions are indicated in the regulations appearing under each code form.

Parts and sections of code forms: Code forms may have been built up from a number of well-defined components, each comprising a different type of coded information. Components which can be transmitted as a separate report are called *parts* and carry special identification groups. Code forms, or their parts, can be divided into *sections* which may be omitted from the report under certain conditions and therefore carry a symbolic indicator figure or group.

Notes: Brief explanations of the code form are included in a number of notes under the code form.

Regulations: The regulations, which follow the notes, contain standard coding procedures in the sense given to these procedures in the *Technical Regulations*. The standard coding procedures are distinguished by the use of the term "shall" in the English text, and by suitable equivalent terms in the French, Russian and Spanish texts. Where national practices do not conform with these regulations, Members concerned shall formally notify the Secretary-General of WMO for the benefit of other Members. Explanatory notes are sometimes added to regulations.

Section B contains the list of symbolic letters which are to be replaced, generally by figures in coded reports, analyses or forecasts with their specifications. Definitions and standard coding procedures relating to the specification concerned are added, where appropriate, to the specifications in the form of notes. Notes indicating standard coding procedures are distinguished from notes containing a definition by a difference in typographical practice and by the use of the word "shall" in the English text, and by suitable equivalents in the French, Russian and Spanish texts. Where symbolic letters represent coded information, i.e. not just the scale of values as measured, the reference to the tables containing specifications of the code figures is added between brackets.

Section C contains the specifications of code figures in the form of code tables. The tables are preceded by a description of the numbering system of international code tables included in the part concerned.

 $\textbf{Section D} \ \ \text{contains a description of the system of station index numbers}.$

Section E contains the Beaufort scale of wind for ease of reference and in order to provide the equivalent wind speeds for Beaufort numbers used in some codes.

Attachments II and III (yellow background) to Volume I.1 do not have the status of WMO *Technical Regulations* and are given for information only.

x INTRODUCTION

VOLUME I.2:

Part B - Binary Codes consists of the list of binary codes with their specifications and associated code tables.

Part C – Common Features to Binary and Alphanumeric Codes consists of table-driven alphanumeric codes and of common code tables to binary and alphanumeric codes.

PROCEDURES FOR AMENDING THE MANUAL ON CODES

1. General validation and implementation procedures

1.1 Proposal of amendments

Amendments to the *Manual on Codes* shall be proposed in writing to the WMO Secretariat. The proposal shall specify the needs, purposes and requirements for the proposed amendment. A contact point for technical matters shall be identified to facilitate collaboration for the validation and drafting of a recommendation.

1.2 Drafting recommendation

The Inter-Programme Expert Team on Data Representation Maintenance and Monitoring (IPET-DRMM), supported by the Secretariat, shall validate the stated requirements (unless it is consequential to an amendment to the WMO Technical Regulations) and develop a draft recommendation to respond to the requirements, as appropriate.

1.3 Date of implementation

The IPET-DRMM should define a date of implementation in order to give sufficient time to WMO Members to implement the amendments after the date of notification; the IPET-DRMM should document the reasons to propose a time span of less than six months except for the fast-track procedure.

1.4 Procedures for approval

After a draft recommendation of the IPET-DRMM is validated in accordance with the procedure given in section 6 below, depending on the type of amendments, the IPET-DRMM may select one of the following procedures for the approval of the amendments:

- Fast-track procedure (see section 2 below);
- Procedure for the adoption of amendments between CBS sessions (see section 3 below);
- Procedure for the adoption of amendments during CBS sessions (see section 4 below).

1.5 Urgent introduction

Regardless of the above procedures, as an exceptional measure, the following procedure accommodates urgent user needs to introduce new entries in BUFR/CREX tables A, B and D, code and flag tables of BUFR, CREX and GRIB edition 2 and Common Code tables.

- (a) A draft recommendation developed by IPET-DRMM shall be validated according to 6.1, 6.2 and 6.3 below;
- (b) The draft recommendation for pre-operational use, which can be used in operational data and products, shall be approved by the chairs of IPET-DRMM and the Open Programme Area Group on Information Systems and Services (OPAG-ISS), and the president of CBS. The list of preoperational entries is kept online on the WMO Web server;
- (c) Pre-operational entries need to be approved by one of the procedures in 1.4 for operational use.

1.6 Version number

The version number of the master table will be incremented.

The IPET-DRMM, the ICT-ISS and the OPAG-ISS are the current bodies dealing with data representation and codes within CBS. If they were replaced by other bodies performing the same function, the same rules would apply, by replacing the names of the entities appropriately.

1.7 Issuing the updated version

Once amendments to the *Manual on Codes* are adopted, an updated version of the relevant part of the Manual shall be issued in the four languages: English, French, Russian and Spanish. The Secretariat will inform all WMO Members of the availability of a new updated version of that part at the date of notification mentioned in 1.3.

2. Fast-track procedure

2.1 Scope

The fast-track procedure can be used for additions to BUFR or CREX Tables A, B, and D with associated code tables or flag tables, to code or flag tables or templates in GRIB and to common tables C.

2.2 Endorsement

Draft recommendations developed by the IPET-DRMM, including a date of implementation of the amendments, must be endorsed by the chair of OPAG-ISS.

2.3 Approval

2.3.1 Minor adjustments

The filling of reserved and unused entries in the existing code and flag tables and Common Code tables is considered as a minor adjustment, and will be done by the Secretary-General in consultation with the president of CBS.

2.3.2 Other types of amendments

For other types of amendments, the English version of the draft recommendation, including a date of implementation, should be distributed to the focal points for codes and data representation matters for comments, with a deadline of two months for the reply. It should then be submitted to the president of CBS for adoption on behalf of the Executive Council (EC).

2.4 Frequency

The implementation of amendments approved through the fast-track procedure can be twice a year in May and November.

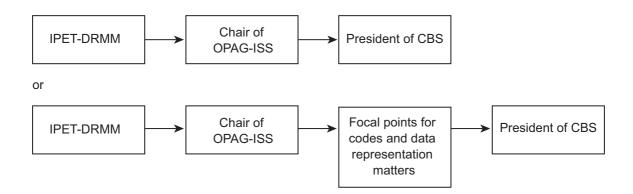


Figure 1. Adoption of amendments by fast-track procedure

3. Procedure for the adoption of amendments between CBS sessions

3.1 Approval of draft recommendation

For the direct adoption of amendments between CBS sessions, the draft recommendation developed by the IPET-DRMM, including a date of implementation of the amendments, shall be submitted to the chair of OPAG-ISS and president and vice-president of CBS for approval.

xii INTRODUCTION

3.2 Circulation to Members

Upon approval of the president of CBS, the Secretariat sends the recommendation in the four languages (English, French, Russian and Spanish), including a date of implementation of the amendments, to all WMO Members for comments to be submitted within two months following the dispatch of the amendments.

3.3 Agreement

Those WMO Members not having replied within the two months following the dispatch of the amendments are implicitly considered as having agreed with the amendments.

3.4 Coordination

WMO Members are invited to designate a focal point responsible to discuss any comments/ disagreements with the IPET-DRMM. If the discussion between the IPET-DRMM and the focal point cannot result in an agreement on a specific amendment by a WMO Member, this amendment will be reconsidered by the IPET-DRMM.

3.5 Notification

Once amendments are agreed by WMO Members, and after consultation with the chair of the OPAG-ISS and the president and vice-president of CBS, the Secretariat notifies at the same time the WMO Members and the members of the Executive Council of the approved amendments and of the date of their implementation.

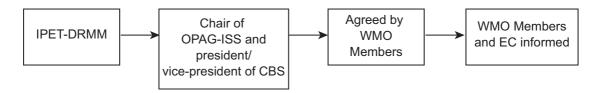


Figure 2. Adoption of amendments between CBS sessions

4. Procedure for the adoption of amendments during CBS sessions

For the adoption of amendments during CBS sessions, the IPET-DRMM submits its recommendation, including a date of implementation of the amendments, to the Implementation/Coordination Team on Information Systems and Services (ICT-ISS) of OPAG-ISS. The recommendation is then submitted to a CBS session and thereafter to an EC session.

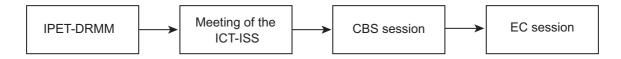


Figure 3. Adoption of amendments during a CBS session

5. Procedure for the correction of existing entries in the BUFR and CREX tables

5.1 Introducing a new descriptor

If an erroneous specification of an entry is found in an operational BUFR or CREX element descriptor or sequence descriptor, a new descriptor should preferably be added to the appropriate table through the fast-track procedure or the procedure for adoption of amendments between CBS sessions. The new descriptor should be used instead of the old one for encoding (especially if it concerns data width). An appropriate explanation shall be added to the notes of the table to clarify the practice along with the date of the change. This situation is considered a minor adjustment according to 2.3.1 above.

INTRODUCTION xiii

5.2 Correcting erroneous specification

As an exceptional measure for erroneous entries in Table B, if it is found absolutely necessary to correct an erroneous specification of an existing entry by changing its specification, the following rules shall apply:

- 5.2.1 The name and unit of an element descriptor shall remain unchanged except for minor clarifications.
- 5.2.2 Scale, reference value and bit width may be corrected to required values.
- 5.2.3 Such a change will be submitted through the fast-track procedure.

6. Validation procedure

6.1 Documentation of need and purpose

The need for, and the purpose of, the proposal for changes should be documented.

6.2 Documentation of result

This documentation must include the results of validation testing of the proposal as described below.

6.3 Testing with encoder/decoder

For new or modified WMO code and data representation forms, proposed changes should be tested by at least two centres, using two independently developed encoders and two independently developed decoders which incorporated the proposed change. Where the data originated from a necessarily unique source (for example, the data stream from an experimental satellite), the successful testing of a single encoder with at least two independent decoders would be considered adequate. Results should be made available to the IPET-DRMM with a view to verifying the technical specifications.

Volume I.1

DEFINITIONS

Actual time of observation

- (1) In the case of a surface synoptic observation, the time at which the barometer is read.
- (2) In the case of upper-air observations, the time at which the balloon, parachute or rocket is actually released.

Alpine glow

Pink or yellow colouring assumed by mountain tops opposite the Sun when it is only just below the horizon before it rises and after it sets. This phenomenon vanishes after a brief interval of blue colouring, when the Earth's shadow reaches these summits.

Anomalous propagation

Propagation of radio energy in abnormal conditions of vertical distribution of refractive index, in association with abnormal distribution of atmospheric temperature and humidity. Use of the term is mainly confined to conditions in which abnormally large distances of propagation are attained.

Atmospheric - Sferic

Electromagnetic wave resulting from an electric discharge (lightning) in the atmosphere.

Automatic station

Meteorological station at which instruments make and transmit observations, the conversion to code form for international exchange being made either directly or at an editing station.

Aviation routine weather report

A statement of the observed meteorological conditions related to a specified time and location, issued on a routine basis for use in international air navigation.

BUFR - Binary universal form for the representation of meteorological data

BUFR is the name of a binary code for the exchange and storage of data.

BUFR message

A single complete BUFR entity.

Category

The lists of sequence descriptors tabulated in BUFR or CREX Table D are categorized according to their application; categories are provided for non-meteorological sequences, for various types of meteorological sequences, and for sequences which define reports, or major subsets of reports.

Class

A set of elements tabulated together in BUFR/CREX Table B.

Condensation trails (contrails)

Clouds which form in the wake of an aircraft when the atmosphere at flying level is sufficiently cold and humid.

Coordinate class

Classes 0–9 inclusive in BUFR/CREX Table B define elements which assist in the definition of elements from subsequent classes; each of these classes is referred to as a coordinate class.

xvi DEFINITIONS

CREX - Character form for the representation and exchange of data

CREX is the name of a table-driven alphanumeric code for the exchange and storage of data.

Data description operator

Operators which define replication or the operations listed in BUFR or CREX Table C.

Data entity

A single data item.

Data subset

A set of data corresponding to the data description in a BUFR or CREX message; for observational data, a data subset usually corresponds to one observation.

Day darkness

Sky covered with clouds with very strong optical thickness (dark clouds) having a threatening appearance.

Descriptor

An entity entered within the Data description section to describe or define data; a descriptor may take the form of an element descriptor, a replication operator, an operator descriptor, or a sequence descriptor.

Dry thunderstorm

A thunderstorm without precipitation reaching the ground (distinct from a nearby thunderstorm with precipitation reaching the ground but not at the station at the time of observation).

Dust wall or sand wall

Front of a duststorm or sandstorm, having the appearance of a gigantic high wall which moves more or less rapidly.

Element descriptor

A descriptor containing a code figure reference to BUFR/CREX Table B; the referenced entry defines an element, together with the units, scale factor, reference value and data width to be used to represent that element as data.

Equatorial regions

For the purpose of the analysis codes, the region between 30°N and 30°S latitudes.

Geometric altitude

Vertical distance (Z) of a level, a point or an object considered as a point, measured from mean sea level

Geopotential

That potential with which the Earth's gravitational field is associated. It is equivalent to the potential energy of unit mass relative to a standard level (mean sea level by convention) and is numerically equal to the work which would be done against gravity in raising the unit mass from sea level to the level at which the mass is located.

Geopotential ø at geometric height z is given by

$$\phi = \int_{a}^{z} g \, dz$$

where g is the acceleration of gravity.

DEFINITIONS xvii

Geopotential height

Height of a point in the atmosphere expressed in units (geopotential metres) proportional to the geopotential at that height. Geopotential height expressed in geopotential metres is approximately equal to $\frac{g}{9.8}$ times the geometric height expressed in (geometric) metres, g being the local acceleration of gravity.

Haboob

A strong wind and duststorm or sandstorm in the northern and central Sudan. Its average duration is three hours; the average maximum wind velocity is over 15 m s⁻¹. The dust or sand forms a dense whirling wall which may be 1 000 m high; it is often preceded by isolated dust whirls. Haboobs usually occur after a few days of rising temperature and falling pressure.

Ice crust (ice slick)

- (1) A type of snow crust; a layer of ice, thicker than a film crust, upon a snow surface. It is formed by the freezing of melt water or rain water which has flowed into it.
- (2) See Ice rind.

Ice rind

A thin but hard layer of sea ice, river ice or lake ice. Apparently this term is used in at least two ways: (a) for a new encrustation upon old ice; and (b) for a single layer of ice usually found in bays and fjords where fresh water freezes on top of slightly colder sea water.

Instrumental wave data

Data on measured characteristics relating to period and height of the wave motion of the sea surface.

Inversion (layer)

Atmospheric layer, horizontal or approximately so, in which the temperature increases with increasing height.

Isothermal layer

Atmospheric layer through which there is no change of temperature with height.

Jet stream

Flat tubular current of air, quasi-horizontal, whose axis is along a line of maximum speed and which is characterized not only by great speeds but also by strong transverse gradients of speed.

Line squall

Squall which occurs along a squall line.

Lithometeor

Meteor consisting of an ensemble of particles most of which are solid and non-aqueous. The particles are more or less suspended in the air, or lifted by the wind from the ground.

Mountain waves

Oscillatory motions of the atmosphere induced by flow over a mountain; such waves are formed over and to the lee of the mountain or mountain chain.

Normals

Period averages computed for over a uniform and relatively long period comprising at least three consecutive 10-year periods.

xviii DEFINITIONS

Obscured sky

Occasions of hydrometeors or lithometeors which are so dense as to make it impossible to tell whether there is cloud above or not.

Ocean weather station

A station aboard a suitably equipped and staffed ship that endeavours to remain at a fixed sea position and that makes and reports surface and upper-air observations and may also make and report subsurface observations.

Operator descriptor

A descriptor containing a code figure reference to BUFR or CREX Table C, together with data to be used as an operand.

Past weather

Predominant characteristic of weather which had existed at the station during a given period of time.

Persistent condensation trail

Long-lived condensation trails which have spread to form clouds having the appearance of cirrus or patches of cirrocumulus or cirrostratus. It is sometimes impossible to distinguish such clouds from other cirrus, cirrocumulus or cirrostratus.

Present weather

Weather existing at the time of observation, or under certain conditions, during the hour preceding the time of observation.

Prevailing visibility

The greatest visibility value, observed in accordance with the definition of "visibility", which is reached within at least half the horizon circle or within at least half of the surface of the aerodrome. These areas could comprise contiguous or non-contiguous sectors.

Note: This value may be assessed by human observation and/or instrumented systems. When instruments are installed, they are used to obtain the best estimate of the prevailing visibility.

Purple light

Glow with a hue varying between pink and red, which is to be seen in the direction of the Sun before it rises and after it sets and is about 3° to 6° below the horizon. It takes the form of a segment of a more or less large luminous disc which appears above the horizon.

Reference value

All data are represented within a BUFR or CREX message by positive integers; to enable negative values to be represented, suitable negative base values are specified as reference values. The true value is obtained by addition of the reference value and the data as represented.

Replication descriptor

A special descriptor is reserved to define the replication operation; it is used to enable a given number of subsequent descriptors to be replicated a given number of times.

Runway visual range

The range over which the pilot of an aircraft on the centre line of the runway can see the runway markings or the lights delineating the runway or identifying its centre line.

Sea station

An observing station situated at sea. Sea stations include ships, ocean weather stations and stations on fixed or drifting platforms (rigs, platforms, lightships and buoys).

DEFINITIONS xix

Section

A logical subdivision of a BUFR or CREX message, to aid description and definition.

Sequence descriptor

A descriptor used as a code figure to reference a single entry in BUFR or CREX Table D; the referenced entry contains a list of descriptors to be substituted for the sequence descriptor.

Severe line squall

Severe squall which occurs along squall line (see *Line squall*).

Snow haze

A suspension in the air of numerous minute snow particles, considerably reducing the visibility at the Earth's surface (visibility in snow haze often decreases to 50 m). Snow haze is observed most frequently in Arctic regions, before or after a snowstorm.

Squall

Atmospheric phenomenon characterized by a very large variation of wind speed: it begins suddenly, has a duration of the order of minutes and decreases rather suddenly in speed. It is often accompanied by a shower or thunderstorm.

Squall line

Fictitious moving line, sometimes of considerable extent, along which squall phenomena occur.

Sun pillar

Pillar of white light, which may or may not be continuous, which may be observed vertically above or below the Sun. Sun pillars are most frequently observed near sunrise or sunset; they may extend to about 20° above the Sun, and generally end in a point. When a sun pillar appears together with a well-developed parhelic circle, a sun cross may appear at their intersection.

Synoptic hour

Hour, expressed in terms of UTC, at which, by international agreement, meteorological observations are made simultaneously throughout the globe.

Synoptic observation

A surface or upper-air observation made at standard time.

Synoptic surface observation

Synoptic observation, other than an upper-air observation, made by an observer or an automatic weather station on the Earth's surface.

Tropical (Tropic)

Pertaining to that region of the Earth's surface lying between the Tropic of Cancer and Tropic of Capricorn at 23°30'N and S, respectively.

Tropical cyclone

Cyclone of tropical origin of small diameter (some hundreds of kilometres) with minimum surface pressure in some cases less than 900 hPa, very violent winds and torrential rain; sometimes accompanied by thunderstorms. It usually contains a central region, known as the "eye" of the storm, with a diameter of the order of some tens of kilometres, and with light winds and more or less lightly clouded sky.

xx DEFINITIONS

Tropical revolving storm

Tropical cyclone.

Tropopause

(1) Upper limit of the troposphere. By convention, the "first tropopause" is defined as the lowest level at which the lapse rate decreases to 2°C km⁻¹ or less, provided also the average lapse rate between this level and all higher levels within 2 km does not exceed 2°C km⁻¹.

(2) If, above the first tropopause, the average lapse rate between any level and all higher levels within 1 km exceeds 3°C km⁻¹, then a "second tropopause" is defined by the same criterion as under (1). This second tropopause may be either within or above the 1-km layer.

Twilight glow

See Purple light.

Twilight glow in the mountains (Alpenglühen)

See Alpine glow.

Unit of geopotential (Hm')

1 standard geopotential metre = 0.980 665 dynamic metre

$$H_{\rm m'} = \frac{1}{9.80665} \int_0^z g(z) \, dz$$

where g(z) = acceleration of gravity, in m s⁻², as a function of geometric height;

z = geometric height, in metres;

 $H_{\rm m}$ ' = geopotential, in geopotential metres.

Vertical visibility

Maximum distance at which an observer can see and identify an object on the same vertical as himself, above or below.

Visibility (for aeronautical purposes)

Visibility for aeronautical purposes is the greater of:

- (a) The greatest distance at which a black object of suitable dimensions, situated near the ground, can be seen and recognized when observed against a bright background;
- (b) The greatest distance at which lights in the vicinity of 1000 candelas can be seen and identified against an unlit background.

Note: The two distances have different values in air of a given extinction coefficient, and the latter (b) varies with the background illumination. The former (a) is represented by the meteorological optical range (MOR).

Whiteout

Uniformly white appearance of the landscape when the ground is snow covered and the sky is uniformly covered with clouds. An atmospheric optical phenomenon of the polar regions in which the observer appears to be engulfed in a uniformly white glow. Neither shadows, horizon, nor clouds are discernible; sense of depth and orientation are lost; only very dark, nearby objects can be seen. Whiteout occurs over an unbroken snow cover and beneath a uniformly overcast sky, when, with the aid of the snowblink effect, the light from the sky is about equal to that from the snow surface. Blowing snow may be an additional cause. The phenomenon is experienced in the air as well as on the ground.

DEFINITIONS xxi

Wind (mean wind, spot wind)

Air motion relative to the Earth's surface. Unless it is otherwise specified, only the horizontal component is considered.

- (1) Mean wind: For the purpose of upper air reports from aircraft, mean wind is derived from the drift of the aircraft when flying from one fixed point to another or obtained by flying on a circuit around a fixed observed point and an immediate wind deduced from the drift of the aircraft.
- (2) Spot wind: For the purpose of upper-air reports from aircraft, the wind velocity, observed or predicted, for a specified location, height and time.

Zodiacal light

White or yellowish light which spreads out, in the night sky, more or less along the zodiac from the horizon on the side on which the Sun is hidden. It is observed when the sky is sufficiently dark and the atmosphere sufficiently clear.

Section A

CODE FORMS

- a. FM system of numbering code forms
- b. List of code forms with notes and regulations

a. FM SYSTEM OF NUMBERING CODE FORMS

Each code form bears a number, preceded by the letters FM. This number is followed by a Roman numeral to identify the session of CSM or (from 1974 onwards) of CBS which either approved the code form as a new one or made the latest amendment to its previous version. A code form approved or amended by correspondence after a session of CSM/CBS receives the number of that session.

Furthermore, an indicator term is used to designate the code form colloquially and is therefore called a "code name". In some cases, this code name is included as a symbolic prefix in the code form and during transmission ensures ready identification of the type of report (e.g. CLIMAT).

The FM system of numbering the code forms, together with the corresponding code names and their reference list of CBS approved decisions, is the following:

FM SYSTEM OF CODE FORMS

FM 12-XIV Ext. SYNOP Report of surface observation from a fixed land station

Res. 5 (EC-XXXI), Res. 4 (EC-XXXVIII), Res. 1 (EC-XL), Res. 8 (EC-XLIII), Res. 4 (EC-XLV), Res. 4 (EC-XLVI), Res. 4 (EC-XLIX), Res. 8 (EC-LI), Res. 8 (EC-LV), Res. 7 (EC-LXI) and amendments between CBS sessions (2011)

FM 13–XIV Ext. SHIP Report of surface observation from a sea station

Res. 5 (EC-XXXI), Res. 4 (EC-XXXVIII), Res. 1 (EC-XL), Res. 8 (EC-XLIII), Res. 4 (EC-XLV), Res. 4 (EC-XLIX), Res. 8 (EC-LI), Res. 8 (EC-LV), Res. 7 (EC-LXI) and amendments between CBS sessions (2011)

FM 14–XIV Ext. SYNOP MOBIL Report of surface observation from a mobile land station

Res. 4 (EC-XLVII), Res. 4 (EC-XLIX), Res. 8 (EC-LI), Res. 8 (EC-LV), Res. 7 (EC-LXI) and amendments between CBS sessions (2011)

FM 15–XV METAR Aerodrome routine meteorological report (with or without trend forecast)

Res. 13 (EC-XVIII), paragraph 4.10.10 of the general summary of EC-XXI, Res. 15 (EC-XXII), Res. 4 (EC-XXXVIII), Res. 8 (EC-XLIII), Rec. 14 (CBS-95), approved by the President of WMO, Res. 4 (EC-LIII), Res. 8 (EC-LV), Res. 2 (EC-LVII), Res. 10 (EC-LIX), Res. 7 (EC-LXI), amendments between CBS sessions (2010), Res. 4 (Cg-XVI) and amendments between CBS sessions (2013)

FM 16–XV SPECI Aerodrome special meteorological report (with or without trend forecast)

Res. 13 (EC-XVIII), paragraph 4.10.10 of the general summary of EC-XXI, Res. 15 (EC-XXII), Res. 4 (EC-XXXVIII), Res. 8 (EC-XLIII), Rec. 14 (CBS-95), approved by the President of WMO, Res. 4 (EC-LIII), Res. 8 (EC-LV), Res. 2 (EC-LVII), Res. 10 (EC-LIX), Res. 7 (EC-LXI), amendments between CBS sessions (2010), Res. 4 (Cg-XVI) and amendments between CBS sessions (2013)

FM 18–XII BUOY Report of a buoy observation

Res. 8 (EC-XLIII), Res. 4 (EC-XLV), Rec. 16 (CBS-94), approved by the President of WMO, Res. 4 (EC-XLIX), Rec. 9 (CBS-97), approved by the President of WMO, and Res. 4 (EC-LIII)

Volume I.1 A–3

FM 20-VIII RADOB Report of ground radar weather observation

Res. 15 (EC-XXII) and Res. 4 (EC-XXXV)

FM 22-IX Ext. RADREP Radiological data r1eport (monitored on a routine basis and/or in case

of accident)

Res. 8 (EC-XLIII)

FM 32–XI Ext. PILOT Upper-wind report from a fixed land station

Res. 21 (EC-IV), Res. 22 (EC-X), Res. 34 (EC-XIV), Res. 13 (EC-XVIII), Res. 15 (EC-XXII), Res. 1 (EC-XL), Rec. 22 (CBS-89), approved by the

President of WMO and Res. 8 (EC-LI)

FM 33-XI Ext. PILOT SHIP Upper-wind report from a sea station

Res. 21 (EC-IV), Res. 22 (EC-X), Res. 34 (EC-XIV), Res. 13 (EC-XVIII),

Res. 15 (EC-XXII), Res. 1 (EC-XL) and Res. 8 (EC-LI)

FM 34–XI Ext. PILOT MOBIL Upper-wind report from a mobile land station

Rec. 22 (CBS-89), approved by the President of WMO and Res. 8 (EC-LI)

FM 35-XI Ext. TEMP Upper-level pressure, temperature, humidity and wind report from a

fixed land station

Res. 21 (EC-IV), Res. 22 (EC-X), Res. 34 (EC-XIV), Res. 13 (EC-XVIII), Res. 15 (EC-XXII), Res. 1 (EC-XL), Rec. 22 (CBS-89), approved by the President of WMO, Res. 8 (EC-XLIII), Res. 4 (EC-XLVII) and Res. 8 (EC-LI)

FM 36-XI Ext. TEMP SHIP Upper-level pressure, temperature, humidity and wind report from a

sea station

Res. 21 (EC-IV), Res. 22 (EC-X), Res. 34 (EC-XIV), Res. 13 (EC-XVIII), Res. 15 (EC-XXII), Res. 1 (EC-XL), Res. 8 (EC-XLIII), Res. 4 (EC-XLVII)

and Res. 8 (EC-LI)

FM 37-XI Ext. TEMP DROP Upper-level pressure, temperature, humidity and wind report from a

sonde released by carrier balloons or aircraft

Res. 4 (EC-XXXI), Res. 8 (EC-XLIII), Res. 4 (EC-XLVII) and Res. 8 (EC-LI)

FM 38–XI Ext. TEMP MOBIL Upper-level pressure, temperature, humidity and wind report from a

mobile land station

Rec. 22 (CBS-89), approved by the President of WMO, Res. 8 (EC-XLIII),

Res. 4 (EC-XLVII) and Res. 8 (EC-LI)

FM 39-VI ROCOB Upper-level temperature, wind and air density report from a land

rocketsonde station

Paragraph 2.1.4 of the general summary of EC-XVI, Res.15 (EC-XXII) and

Res. 3 (EC-XXVI)

FM 40-VI ROCOB SHIP Upper-level temperature, wind and air density report from a

rocketsonde station on a ship

Paragraph 2.1.4 of the general summary of EC-XVI, Res. 15 (EC-XXII) and

Res. 3 (EC-XXVI)

A-4 Volume I.1

FM 41-IV CODAR Upper-air report from an aircraft (other than weather reconnaissance

aircraft)

Res. 13 (EC-XVIII)

FM 42–XI Ext. AMDAR Aircraft report (aircraft meteorological data relay)

Res. 1 (EC-XL), Res. 8 (EC-XLIII), Res. 4 (EC-XLIX) and Res. 8 (EC-LI)

FM 44-V ICEAN Ice analysis

Rec. 47 (CBS-74), approved by the President of WMO

FM 45-IV IAC Analysis in full form

Res. 156 (CD Washington 1947), Res. 22 (EC-X), Res. 34 (EC-XIV) and

Res. 13 (EC-XVIII)

FM 46-IV IAC FLEET Analysis in abbreviated form

Res. 156 (CD Washington 1947), Res. 21 (EC-IV), Res. 34 (EC-XIV) and

Res. 13 (EC-XVIII)

FM 47-IX Ext. GRID Processed data in the form of grid-point values

Rec. 46 (CBS-73), approved by the President of WMO, Res. 4 (EC-XXXI)

and Res. 8 (EC-XLIII)

FM 49-IX Ext. GRAF Processed data in the form of grid-point values (abbreviated code

form)

Res. 4 (EC-XXXI) and Res. 8 (EC-XLIII)

FM 50–XIII WINTEM Forecast upper wind and temperature for aviation

Res. 5 (EC-XXXV), Res. 4 (EC-XXXVIII) and Res. 2 (EC-LVII)

FM 51–XV TAF Aerodrome forecast

Res. 21 (EC-IV), Res. 34 (EC-XIV), Res. 13 (EC-XVIII), Res. 15 (EC-XXII), paragraph 2.1.4 of the general summary of EC-XXII, Res. 4 (EC-XXXVIII), Res. 1 (EC-XL), Res. 8 (EC-XLIII), Rec. 14 (CBS-95), approved by the President of WMO, Res. 4 (EC-LIII), Res. 8 (EC-LV), Res. 2 (EC-LVII), Res. 10 (EC-LIX), Res. 7 (EC-LXI), Res. 4 (Cg-XVI) and amendments

between CBS sessions (2013)

FM 53–X Ext. ARFOR Area forecast for aviation

Res. 21 (EC-IV), Res. 22 (EC-X), Res. 13 (EC-XVIII), Res. 15 (EC-XXII), Res. 4 (EC-XXXVIII), Res. 8 (EC-XLIII) and Rec. 14 (CBS-95), approved by

the President of WMO

FM 54–X Ext. ROFOR Route forecast for aviation

Res. 21 (EC-IV), Res. 22 (EC-X), Res. 13 (EC-XVIII), Res. 15 (EC-XXII), Res. 4 (EC-XXXVIII), Res. 8 (EC-XLIII) and Rec. 14 (CBS-95), approved by

the President of WMO

FM 57-IX Ext. RADOF Radiological trajectory dose forecast (defined time of arrival and

location)

Res. 8 (EC-XLIII)

Volume I.1 A–5

FM 61-IV MAFOR Forecast for shipping

Res. 22 (EC-X), Res. 34 (EC-XIV) and Res. 13 (EC-XVIII)

FM 62-VIII Ext. TRACKOB Report of marine surface observation along a ship's track

Res. 4 (EC-XXXVIII)

FM 63-XI Ext. BATHY Report of bathythermal observation

Res. 15 (EC-XXII), Res. 4 (EC-XXXV), Res. 4 (EC-XXXVIII), Res. 1 (EC-XL),

Res. 8 (EC-XLIII), Res. 4 (EC-XLVII) and Res. 8 (EC-LI)

FM 64–XI Ext. TESAC Temperature, salinity and current report from a sea station

Res. 15 (EC-XXII), Res. 4 (EC-XXXV), Res. 4 (EC-XXXVIII), Res. 1 (EC-XL),

Res. 8 (EC-XLIII) and Res. 8 (EC-LI)

FM 65-XI Ext. WAVEOB Report of spectral wave information from a sea station or from a

remote platform (aircraft or satellite)

Res. 1 (EC-XL), Res. 4 (EC-XLIX) and Res. 8 (EC-LI)

FM 67–VI HYDRA Report of hydrological observation from a hydrological station

Res. 3 (EC-XXVI)

FM 68-VI HYFOR Hydrological forecast

Res. 3 (EC-XXVI)

FM 71–XII CLIMAT Report of monthly values from a land station

Res. 71 and 72 (CD Washington 1947), Res. 13 (EC-XVIII), paragraph 2.1.4 of the general summary of EC–XXII, Res. 3 (EC-XXVI), Res. 4 (EC-XLV), Res. 4

(EC-XLIX) and Res. 4 (EC-LIII)

FM 72–XII CLIMAT SHIP Report of monthly means and totals from an ocean weather station

Res. 71 and 72 (CD Washington 1947), Res. 22 (EC-X), Res. 13 (EC-XVIII), paragraph 2.1.4 of the general summary of EC-XXII, Res. 3 (EC-XXVI) and

Res. 4 (EC-LIII)

Report of monthly means for an oceanic area

Res. 22 (IMC Salzburg 1937), Res. 71 (CD Washington 1947) and Res. 3

(EC-XXVI)

FM 75–XII Ext. CLIMAT TEMP Report of monthly aerological means from a land station

Res. 71 (CD Washington 1947), paragraph 5.11 of the general summary of EC-XV, Res. 13 (EC-XVIII), Res. 3 (EC-XXVI), Res. 4 (EC-XLV), Res. 4

(EC-LIII) and Res. 8 (EC-LV)

FM 76–XII Ext. CLIMAT TEMP SHIP Report of monthly aerological means from an ocean weather station

Res. 71 (CD Washington 1947), paragraph 5.11 of the general summary of EC-XV, Res. 13 (EC-XVIII), Res. 3 (EC-XXVI), Res. 4 (EC-XLV), Res. 4

(EC-LIII) and Res. 8 (EC-LV)

FM 81-I SFAZI Synoptic report of bearings of sources of atmospherics

Res. 21 (EC-IV)

A-6 Volume I.1

FM 82-I SFLOC Synoptic report of the geographical location of sources of

atmospherics

Res. 21 (EC-IV)

FM 83-I SFAZU Detailed report of the distribution of sources of atmospherics by

bearings for any period up to and including 24 hours

Res. 21 (EC-IV)

FM 85-IX SAREP Report of synoptic interpretation of cloud data obtained by a

meteorological satellite

Res. 15 (EC-XXII), Res. 3 (EC-XXVI) and Res. 1 (EC-XL)

FM 86-XI SATEM Report of satellite remote upper-air soundings of pressure,

temperature and humidity

Rec. 2 (CBS-Ext.(76)), approved by the President of WMO, Res. 4

(EC-XXXVIII) and Res. 4 (EC-XLIX)

FM 87–XI SARAD Report of satellite clear radiance observations

Rec. 3 (CBS-Ext.(76)), approved by the President of WMO, 4 (EC-XXXVIII)

and Res. 4 (EC-XLIX)

FM 88-XI SATOB Report of satellite observations of wind, surface temperature, cloud,

humidity and radiation

Rec. 4 (CBS-Ext.(76)), approved by the President of WMO, Res. 4 (EC-XLV)

and Res. 4 (EC-XLIX)

Volume I.1 A–7

b. LIST OF CODE FORMS WITH NOTES AND REGULATIONS

FM 12–XIV Ext. SYNOP Report of surface observation from a fixed land station

FM 13–XIV Ext. SHIP Report of surface observation from a sea station

FM 14-XIV Ext. SYNOP MOBIL Report of surface observation from a mobile land station

CODE FORM:

Groups to be developed nationally

SECTION 5

555

Volume I.1 A–9

Used in FM 12 only.

^{**} Used in FM 13 only.

^{***} Used in FM 14 only.

^{****} Used in FM 13 and FM 14 only.

Notes:

- (1) The code form FM 12 SYNOP is used for reporting synoptic surface observations from a fixed land station, manned or automatic. The code form FM 13 SHIP is used for the same kind of observations from a sea station, manned or automatic. The code form FM 14 SYNOP MOBIL is used for surface observations from an automatic or manned land station not at a fixed location.
- (2) A SYNOP report from a fixed land station is identified by the symbolic letters M_iM_iM_iM_i = AAXX.
- (3) A SHIP report from a sea station is identified by the symbolic letters M_iM_iM_iM_i = BBXX.
- (4) A SYNOP MOBIL report from a mobile land station is identified by the symbolic letters $M_iM_iM_i = OOXX$.
- (5) The code form is made up of figure groups arranged by sections in ascending order of their numerical indicators with the exception of the following:
 - (a) All the groups of Section 0 and for the first two groups of Section 1, which are always included in the report of any surface observing station;
 - (b) The first data group of Section $2-222D_sv_s$, which is always included in the report of a sea station if data are available;
 - (c) The data group of Section 4, which is clearly identified by a three-figure indicator group.

As a result, the following features are achieved:

- (d) The loss of information due to the accidental loss of any one of these groups is strictly limited to the information content of that group;
- (e) The rules of inclusion or omission of sections or of groups between brackets can be laid down for each specific case of station type or of data requirements;
- (f) The length of the report can be kept to a strict minimum by dropping out some groups whenever their information content is considered insignificant or when that information content is not normally available.

It is to be noted that the code word ICE of Section 2 plays the role of a numerical indicator for the last data group of the section or for the equivalent plain language information.

(6) The code form is divided into a number of sections as follows:

Section number	Symbolic figure group	Contents
0	_	Data for reporting identification (type, ship's call sign/buoy identifier, date, time, location) and units of wind speed used
1	_	Data for global exchange which are common to the SYNOP, SHIP and SYNOP MOBIL code forms
2	222	Maritime data for global exchange pertaining to a sea, or to a coastal station
3	333	Data for regional exchange
4	444	Data for national use for clouds with base below station level, included by national decision
5	555	Data for national use

A-10 Volume I.1

REGULATIONS:

- 12.1 General
- 12.1.1 The code name SYNOP, SHIP or SYNOP MOBIL shall not be included in the report.

Note: See Regulation 12.1.7.

12.1.1.1 SYNOP MOBIL is intended for encoding meteorological observations from a non-fixed location. SYNOP MOBIL shall not be used as a replacement to SYNOP from a fixed location.

Note: An example of the intended application is to temporarily monitor meteorological parameters in the area of an environmental emergency.

$$\label{eq:use of groups MiMiMjMj} \textbf{Use of groups } \mathbf{M}_i \mathbf{M}_i \mathbf{M}_j \mathbf{M}_j \left\{ \begin{array}{l} \mathbf{D} \dots \mathbf{D}^{**} \\ \text{or} \\ \mathbf{A}_1 \mathbf{b}_w \mathbf{n}_b \mathbf{n}_b \mathbf{n}_b^* \end{array} \right\} \mathbf{YYGGi}_w$$

Note: See Regulation 18.2.3, Notes (1), (2) and (3).

- 12.1.2.1 In a bulletin of SYNOP reports from fixed land stations, the groups M_iM_iM_j YYGGi_w shall be included only as the first line of the text, provided all the reports of the bulletin were taken at the same time and use the same unit for reporting wind speed.
- 12.1.2.2 In a bulletin of SHIP reports from sea stations or SYNOP MOBIL reports from mobile land stations, the group $M_i M_i M_j M_j$ shall be included only as the first line of the text, and the groups

Note: See Regulation 12.1.7.

- 12.1.3 Use of sections
- 12.1.3.1 Reports from a fixed or mobile land station shall always contain at least Sections 0 and 1. When a report from a coastal land station contains maritime data, that report shall also include Section 2. The identification and position of a fixed land station shall be indicated by means of the group IIiii.
- 12.1.3.2 The identification of a mobile land station shall be indicated by the group D D. The observing station shall indicate its position by means of the groups $99L_aL_aL_a$ $Q_cL_oL_oL_o$ MMMU_{La}U_{Lo} for mobile land stations. In addition, a mobile land station shall include the group $h_0h_0h_0h_0h_0$ im to indicate the elevation of the station, including the units of measure for the elevation and the accuracy of the elevation.
- 12.1.3.3 Mobile land station reports shall include (besides Sections 0 and 1), whenever the corresponding data are available, Section 3 containing at least the groups with indicator figures 5, 8 and 9.
- 12.1.3.4 Reports from a sea station shall always include Sections 0 and 1 and, whenever the corresponding data are available, Section 2. Section 2 shall always include the maximum number of data groups consistent with observed conditions. The identification of a sea station shall be indicated by either the group D D or the group A₁b_wn_bn_bn_b. The position of a sea station shall be indicated by the groups 99L_aL_aL_a Q_cL_oL_oL_oL_o.
- 12.1.3.5 Ocean weather station reports shall include (besides Sections 0, 1 and 2), whenever the corresponding data are available, Section 3 containing at least the groups with indicator figures 5, 8 and 9.

Volume I.1 A–11

Used in FM 13 only.

^{**} Used in FM 13 and FM 14 only.

12.1.3.6 In reports from supplementary ships, Section 1 shall contain at least:

 $i_R i_x hVV$ Nddff 1s_nTTT 4PPPP 7wwW₁W₂ 8N_hC_LC_MC_H

where

- (a) i_R shall be set to code figure 4;
- (b) i_x shall be coded as 1 or 3 as the case may be.
- 12.1.3.7 In reports from auxiliary ships, Section 1 shall contain at least:

iRixhVV Nddff 1snTTT 4PPPP 7wwW1W2

where

- (a) i_R shall be set to code figure 4;
- (b) i_x shall be coded as 1 or 3 as the case may be.

Notes:

- (1) The above-mentioned version of Section 1 is considered suitable for any ship which is not supplied with tested instruments and may be requested to report in areas where shipping is relatively sparse, or on request, and especially when storm conditions threaten or prevail. These ships may report in plain language if the use of code is impracticable.
- (2) If the ship does not report cloud data, h should be coded with a solidus (/).
- (3) If the ship is not equipped with tested instruments permitting the determination of tenths of degrees of air temperature and/or tenths of hectopascals of pressure, a solidus should be coded for the tenths of degrees and/or tenths of hectopascals, as appropriate.
- 12.1.4 In reports from automatic stations, mandatory group elements specified by symbolic letters shall be coded with solidi (/) if the station is not equipped to report the relevant data, taking into account that i_R , i_x , and N = 0, N = 9, N = / provide for omission of groups $6RRRt_R$, $7w_aw_aW_{a1}W_{a2}$ and $8N_hC_LC_MC_H$, as the case may be.
- 12.1.5 A fixed sea station (other than an ocean weather station or a moored buoy), which is considered by the Member operating it to be in the same category as a fixed land station, shall report its identification and position by means of the group IIiii.
- 12.1.6 The actual time of observation shall be the time at which the barometer is read.
- 12.1.7 (a) The identification of stations located at sea on a drilling rig or an oil- or gasproduction platform shall be indicated by the group $A_1b_wn_bn_bn_b$.
 - (b) In reports of sea stations other than buoys, drilling rigs and oil- or gas-production platforms, and in the absence of a ship's call sign, the word SHIP shall be used for D.... D.
 - (c) In reports from a mobile land station, only in the absence of a suitable call sign, the word MOBIL shall be used for D D.
- 12.2 Section 1
- 12.2.1 Group i_Ri_xhVV
- 12.2.1.1 This group shall always be included in the report.
- 12.2.1.2 Base of lowest cloud: h

When the station is in fog, a sandstorm or a duststorm or in blowing snow but the sky is discernible, h shall refer to the base of the lowest cloud observed, if any. When, under the above conditions, the sky is not discernible, h shall be reported as /.

Note: See regulations relative to the use of Section 4.

- 12.2.1.3 *Visibility:* VV
- 12.2.1.3.1 When the horizontal visibility is not the same in different directions, the shortest distance shall be given for VV.
- 12.2.1.3.2 In reporting visibility at sea, the decile 90–99 shall be used for VV.

A-12 Volume I.1

12.2.2	Group Nddff
12.2.2.1	This group shall always be included in the report.
12.2.2.2	Total cloud cover: N
12.2.2.2.1	N shall be reported as actually seen by the observer during the observation.
12.2.2.2.2	Altocumulus perlucidus or Stratocumulus perlucidus ("mackerel sky") shall be reported using N = 7 or less (unless overlying clouds appear to cover the whole sky) since breaks are always present in this cloud form even if it extends over the whole celestial dome.
12.2.2.3	N shall be coded as 0 when blue sky or stars are seen through existing fog or other analogous phenomena without any trace of cloud being seen.
12.2.2.2.4	When clouds are observed through fog or analogous phenomena, their amount shall be evaluated and reported as if these phenomena were non-existent.
12.2.2.5	The total cloud cover shall not include the amount resulting from rapidly dissipating condensation trails.
12.2.2.2.6	Persistent condensation trails and cloud masses which have obviously developed from condensation trails shall be reported as cloud, using the appropriate C_H or C_M code figure.
12.2.2.3	Wind direction and speed: ddff
12.2.2.3.1	The mean direction and speed of the wind over the 10-minute period immediately preceding the observation shall be reported for ddff. However, when the 10-minute period includes a discontinuity in the wind characteristics, only data obtained after the discontinuity shall be used for reporting the mean values, and hence the period in these circumstances shall be correspondingly reduced.
12.2.2.3.2	In the absence of wind instruments, the wind speed shall be estimated on the basis of the Beaufort wind scale. The Beaufort number obtained by estimation is converted into metres per second or knots by the use of the wind speed equivalent columns of the Beaufort scale, and this speed is reported for ff.
12.2.2.3.3	When the wind speed, in units indicated by i _w , is 99 units or more:
	(a) ff in the group Nddff shall be encoded 99;
	(b) The group 00fff shall be included immediately following the group Nddff.
	Note: The apparent wind speed measured on board a moving ship is to be corrected for the course and the speed of the ship, in order to obtain the speed of the true wind, which is to be reported. The correction can be made on the basis of the parallelogram of velocities or by means of specia tables.
12.2.3	Groups 1s _n TTT, 2s _n T _d T _d T _d , 4PPPP, 5appp
12.2.3.1	Groups $1s_nTTT$, $2s_nT_dT_dT_d$ and 4PPPP shall be included whenever the corresponding data are available, unless stated otherwise in specific regulations.
	Note: See Regulation 12.2.3.5 relative to group 5appp.
12.2.3.2	Group 1s _n TTT
	When the data are not available as a result of a temporary instrument failure, automatic weather stations programmed to transmit this group shall either omit the group altogether or include it in their reports in the form 1///.
12.2.3.3	Group 2s _n T _d T _d T _d
12.2.3.3.1	Under unusual conditions, when the dew-point temperature is temporarily unavailable (e.g. because of instrument failure) but relative humidity is available, the group 29UUL shall replace the group 2s _n T _d T _d T _d . Every attempt shall first be made, however, to conver relative humidity to dew-point temperature, and the relative humidity included only as a

Volume I.1 A–13

Regulation 12.2.3.2 shall apply to this group, which shall in that case either be omitted

last resort.

or encoded as 2////.

12.2.3.3.2

12.2.3.4 Group 4PPPP

12.2.3.4.1 Whenever air pressure at mean sea level can be computed with reasonable accuracy, this pressure shall be reported in the 4PPPP group.

Notes:

- (1) For a station situated in a region of normal synoptic network density, the pressure at mean sea level is considered not to be computed with reasonable accuracy when it introduces a deformation into the analysis of the horizontal pressure field which is purely local and recurring.
- (2) For a station lying in a data-sparse area of the synoptic network, reasonable accuracy will be obtained when using a reduction method which has proved to be satisfactory in a region of normal network density and under similar geographical conditions.
- 12.2.3.4.2 By regional decision, a high-level station which cannot give pressure at mean sea level to a satisfactory degree of accuracy shall report both the station-level pressure group $3P_0P_0P_0P_0$ and the geopotential height of an agreed standard isobaric surface. In that case, the group 4PPPP shall be replaced by the group $4a_3hhh$.

Note: The level chosen for each station is indicated in Weather Reporting (WMO-No. 9), Volume A.

- 12.2.3.5 *Group* 5appp
- 12.2.3.5.1 Unless specified otherwise by regional decision, this group shall be included whenever the three-hourly pressure tendency is available.
- 12.2.3.5.2 The pressure tendency over the past three hours, a, shall, wherever possible, be determined on the basis of pressure samplet at equi-spaced intervals not exceeding one hour.

Note: Algorithms for selecting the appropriate code figure are included in the *Guide to Meteorological Instruments and Methods of Observation* (WMO-No. 8).

- 12.2.3.5.3 Where it is not possible to apply the algorithms specified in Regulation 12.2.3.5.2 in reports from automatic weather stations, a shall be coded as 2 when the tendency is positive; as 7 when the tendency is negative; and as 4 when the atmospheric pressure is the same as three hours before.
- 12.2.4 Group 3P₀P₀P₀P

This group shall be included in reports for global exchange from land stations, together with either the group 4PPPP or, in accordance with Regulation 12.2.3.4.2, the group 4a₃hhh.

Note: Inclusion of this group at other times is left to the decision of individual Members.

- 12.2.5 Group 6RRRt_R
- 12.2.5.1 When precipitation data are to be exchanged in time periods of six hours at main standard times (i.e. to report the amount of precipitation over the preceding 6, 12, 18 and 24 hours), this group shall be included in Section 1.
- 12.2.5.2 When precipitation data are to be exchanged in time periods of three hours or other periods required for regional exchange, this group shall be included in Section 3.
- 12.2.5.3 For lightships reporting in the SHIP code form and for ocean weather stations, the use of this group shall be fixed regionally or nationally. In the case of mobile ship stations which make precipitation observations, the group shall be included in each SHIP report.
- 12.2.5.4 This group shall:
 - (a) Coded with RRR = 000 (3 zeros) when precipitation is measured but no precipitation occurred during the reference period;
 - (b) Coded with RRR = /// (3 solidi) when precipitation is normally measured but is not available for the current report;
 - (c) Omitted when precipitation is not normally measured. In this case, i_R should be coded as 4;

A-14 Volume I.1

- (d) Existing automated weather stations (AWS) may continue to report no precipitation with i_R coded as 3 and the 6RRRt_R group omitted. New systems and human observer should report the 6RRRt_R group with RRR = 000 (3 zeros) to indicate no precipitation occurred during the reference period.
- 12.2.6 Group $7wwW_1W_2$ or $7w_aw_aW_{a1}W_{a2}$
- 12.2.6.1 This group shall be included in an observation by a manually operated station after a period of closure or at start up, when past weather conditions for the period applicable to the report are unknown, and shall take the form 7ww// (with $i_x = 1$), even if ww = 00-03. Otherwise it shall only be included if present or past weather phenomena of significance, or both, were observed. $W_1W_2 = //$ shall indicate that previous conditions are unknown. This regulation shall also apply to automatic reporting stations with the facility to report present and past weather. Where a single past weather form is recognized it shall take the form of $7wwW_1$ / or $7w_aw_aW_a$ /.
- 12.2.6.2 Code figures 00, 01, 02, 03 of the ww code table and code figures 0, 1 and 2 of the W₁, W₂ code table shall be considered to represent phenomena without significance.

Note: All present weather and past weather including phenomena without significance observed at sea shall be reported in the SHIP message.

- 12.2.6.3 This group shall be omitted if both present and past weather were:
 - (a) Not available (no observation made); or
 - (b) Observation made but observed phenomena were not of significance.

The indicator ix shall indicate which one of these conditions applies.

- 12.2.6.4 Present weather reported from a manned weather station: ww
- 12.2.6.4.1 If more than one form of weather is observed, the highest applicable code figure shall be selected for the group 7wwW₁W₂. Other weather may be reported in Section 3, using the group 960ww or 961w₁w₁, repeated as necessary. In any case, in the group 7wwW₁W₂, code figure 17 shall have precedence over figures 20–49.
- 12.2.6.4.2 In coding 01, 02 and 03, there is no limitation on the magnitude of the change of the cloud amount. ww = 00, 01 and 02 can each be used when the sky is clear at the time of observation. In this case, the following interpretation of the specifications shall apply:

00 is used when the preceding conditions are not known;

01 is used when the clouds have dissolved during the past hour;

02 is used when the sky has been continuously clear during the past hour.

- 12.2.6.4.3 When the phenomenon is not predominantly water droplets, the appropriate code figure shall be selected without regard to VV.
- 12.2.6.4.4 The code figure 05 shall be used when the obstruction to vision consists predominantly of lithometeors.
- 12.2.6.4.5 National instructions shall be used to indicate the specifications for ww = 07 and 09.
- 12.2.6.4.6 The visibility restriction on ww = 10 shall be 1 000 metres or more. The specification refers only to water droplets and ice crystals.
- 12.2.6.4.7 For ww = 11 or 12 to be reported, the apparent visibility shall be less than 1 000 metres.
- 12.2.6.4.8 For ww = 18, the following criteria for reporting squalls shall be used:
 - (a) When wind speed is measured:

A sudden increase of wind speed of at least 8 metres per second (16 knots), the speed rising to 11 metres per second (22 knots) or more and lasting for at least one minute;

(b) When the Beaufort scale is used for estimating wind speed:

A sudden increase of wind speed by at least three stages of the Beaufort scale, the speed rising to force 6 or more and lasting for at least one minute.

12.2.6.4.9 Figures 20–29 shall never be used when precipitation is observed at the time of observation.

12.2.6.4.10	For ww = 28, visibility shall have been less than 1 000 metres.
	Note: The specification refers only to visibility restrictions which occurred as a result of water droplets or ice crystals.
12.2.6.4.11	For synoptic coding purposes, a thunderstorm shall be regarded as being at the station from the time thunder is first heard, whether or not lightning is seen or precipitation is occurring at the station. A thunderstorm shall be reported in present weather if thunder is heard within the normal observational period preceding the time of the report. A thunderstorm shall be regarded as having ceased at the time thunder is last heard and the cessation is confirmed if thunder is not heard for 10–15 minutes after this time.
12.2.6.4.12	The necessary uniformity in reporting ww = 36, 37, 38 and 39 which may be desirable within certain regions shall be obtained by means of national instructions.
12.2.6.4.13	A visibility restriction "less than 1 000 metres" shall be applied to ww = 42-49. In the case of ww = 40 or 41, the apparent visibility in the fog or ice fog patch or bank shall be less than 1 000 metres. 40-47 shall be used when the obstructions to vision consist predominantly of water droplets or ice crystals, and 48 or 49 when the obstructions consist predominantly of water droplets.
12.2.6.4.14	When referring to precipitation, the phrase "at the station" in the ww table shall mean "at the point where the observation is normally taken".
12.2.6.4.15	The precipitation shall be encoded as intermittent if it has been discontinuous during the preceding hour, without presenting the character of a shower.
12.2.6.4.16	The intensity of precipitation shall be determined by the intensity at the time of observation.
12.2.6.4.17	Code figures 80–90 shall be used only when the precipitation is of the shower type and takes place at the time of observation.
	Note: Showers are produced by convective clouds. They are characterized by their abrupt beginning and end and by the generally rapid and sometimes great variations in the intensity of the precipitation. Drops and solid particles falling in a shower are generally larger than those falling in non-showery precipitation. Between showers openings may be observed unless stratiform clouds fill the intervals between the cumuliform clouds.
12.2.6.4.18	In reporting code figure 98, the observer shall be allowed considerable latitude in deter mining whether precipitation is or is not occurring, if it is not actually visible.
12.2.6.5	Present weather reported from an automatic weather station: wawa
12.2.6.5.1	The highest applicable figure shall be selected.
12.2.6.5.2	In coding 01, 02 and 03, there is no limitation on the magnitude of the change of the cloud amount. w_aw_a = 00, 01 and 02 can each be used when the sky is clear at the time of observation. In this case, the following interpretation of the specifications shall apply:
	00 is used when the preceding conditions are not known;
	01 is used when the clouds have dissolved during the past hour;
	02 is used when the sky has been continuously clear during the past hour.
12.2.6.5.3	When the phenomenon is not predominantly water droplets, the appropriate code figure shall be selected without regard to VV.
12.2.6.5.4	The code figures 04 and 05 shall be used when the obstruction to vision consists predominantly of lithometeors.
12.2.6.5.5	The visibility restriction on w_aw_a = 10 shall be 1 000 metres or more. The specification refers only to water droplets and ice crystals.
12.2.6.5.6	For $w_a w_a = 18$, the following criteria for reporting squalls shall be used:
	A sudden increase of wind speed of at least 8 metres per second (16 knots), the speed rising to 11 metres per second (22 knots) or more and lasting for at least one minute.

A-16 Volume I.1

Code figures 20-26 shall never be used when precipitation is observed at the time of

12.2.6.5.7

observation.

12.2.6.5.8 For $w_a w_a = 20$, visibility shall have been less than 1 000 metres.

Note: The specification refers only to visibility restrictions which occurred as a result of water droplets or ice crystals.

- 12.2.6.5.9 For synoptic coding purposes, a thunderstorm shall be regarded as being at the station from the time thunder is first detected, whether or not lightning is detected or precipitation is occurring at the station. A thunderstorm shall be reported in present weather if thunder is detected within the normal observational period preceding the time of the report. A thunderstorm shall be regarded as having ceased at the time thunder is last detected and the cessation is confirmed if thunder is not detected for 10–15 minutes after this time.
- 12.2.6.5.10 A visibility restriction "less than 1 000 metres" shall be applied to w_aw_a = 30–35.
- 12.2.6.5.11 The precipitation shall be encoded as intermittent if it has been discontinuous during the preceding hour, without presenting the character of a shower.
- 12.2.6.5.12 The intensity of precipitation shall be determined by the intensity at the time of observation.
- 12.2.6.5.13 Code figures 80–89 shall be used only when the precipitation is intermittent or of the shower type and takes place at the time of observation.

Note: Showers are produced by convective clouds. They are characterized by their abrupt beginning and end and by the generally rapid and sometimes great variations in the intensity of the precipitation. Drops and solid particles falling in a shower are generally larger than those falling in non-showery precipitation. Between showers openings may be observed unless stratiform clouds fill the intervals between the cumuliform clouds.

- 12.2.6.6 Past weather reported from a manned weather station: W₁W₂
- 12.2.6.6.1 The period covered by W_1 and W_2 shall be:
 - (a) Six hours for observations at 0000, 0600, 1200 and 1800 UTC;
 - (b) Three hours for observations at 0300, 0900, 1500 and 2100 UTC;
 - (c) Two hours for intermediate observations if taken every two hours;
 - (d) One hour for intermediate observations if taken every hour.
- 12.2.6.6.2 The code figures for W_1 and W_2 shall be selected in such a way that W_1W_2 and ww together give as complete a description as possible of the weather in the time interval concerned. For example, if the type of weather undergoes a complete change during the time interval concerned, the code figures selected for W_1 and W_2 shall describe the weather prevailing before the type of weather indicated by ww began.
- 12.2.6.6.3 When W_1 and W_2 are used in hourly reports other than those covered by Regulation 12.2.6.6.1 (a) and (b), they cover a short period of time and Regulation 12.2.6.6.2 shall apply.
- 12.2.6.6.4 If, using Regulation 12.2.6.6.2, more than one code figure may be given to W₁ with regard to the past weather, the highest figure shall be reported for W₁ and the second highest code figure shall be reported for W₂.
- 12.2.6.6.5 If the weather during the period has not changed so that only one code figure may be selected for the past weather, then that code figure shall be reported for both W_1 and W_2 . For example, rain during the entire period shall be reported as $W_1W_2 = 66$.
- 12.2.6.7 Past weather reported from an automatic weather station: Wa1Wa2
- 12.2.6.7.1 The period covered by $W_{a1}W_{a2}$ shall be:
 - (a) Six hours for observations at 0000, 0600, 1200 and 1800 UTC;
 - (b) Three hours for observations at 0300, 0900, 1500 and 2100 UTC;
 - (c) Two hours for intermediate observations if taken every two hours;
 - (d) One hour for intermediate observations if taken every hour.

- 12.2.6.7.2 The code figures for W_{a1}W_{a2} shall be selected so that the maximum capability of the automatic station to discern past weather is utilized, and so that W_{a1}W_{a2} and w_aw_a together give as complete a description as possible of the weather in the time interval concerned.
- 12.2.6.7.3 In cases where the automatic station is capable only of discerning very basic weather conditions, the lower code figures representing basic and generic phenomena may be used. If the automatic station has higher discrimination capabilities, the higher code figures representing more detailed explanation of the phenomena shall be used. For each basic type of phenomenon, the highest code figure within the discrimination capability of the automatic station shall be reported.
- 12.2.6.7.4 If the type of weather during the time interval concerned undergoes complete and discernible changes, the code figures selected for W_{a1} and W_{a2} shall describe the weather prevailing before the type of weather indicated by w_aw_a began. The highest figure shall be reported for W_{a1}, and the second highest code figure shall be reported for W_{a2}.
- 12.2.6.7.5 If a discernible change in weather has not occurred during the period, so that only one code figure may be selected for the past weather, then that code figure shall be reported for both W_{a1} and W_{a2} . For example, rain during the entire period shall be reported as W_{a1} W_{a2} = 44 in the case of an automatic station incapable of differentiating types of precipitation, or $W_{a1}W_{a2}$ = 66 in the case of a station with the higher discrimination capability.
- 12.2.7 Group 8N_hC_LC_MC_H
- 12.2.7.1 This group shall be omitted in the following cases:
 - (a) When there are no clouds (N = 0);
 - (b) When the sky is obscured by fog and/or other meteorological phenomena (N = 9);
 - (c) When the cloud cover is indiscernible for reasons other than (b) above, or observation is not made (N = /).

Note: All cloud observations at sea including no cloud observation shall be reported in the SHIP message.

- 12.2.7.2 Certain regulations concerning the coding of N shall also apply to the coding of N_h.
- 12.2.7.2.1 (a) If there are C_L clouds then the total amount on all C_L clouds, as actually seen by the observer during the observation, shall be reported for N_h ;
 - (b) If there are no C_L clouds but there are C_M clouds, then the total amount of the C_M clouds shall be reported for N_n ;
 - (c) If there are no C_L clouds and there are no C_M level clouds, but there are C_H clouds, then N_h shall be coded as 0.
- 12.2.7.2.2 If the variety of the cloud reported for N_h is perlucidus (stratocumulus perlucidus for a C_L cloud or altocumulus perlucidus for a C_M cloud) then N_h shall be coded as 7 or less.

Note: See Regulation 12.2.2.2.2.

- 12.2.7.2.3 When the clouds reported for N_h are observed through fog or an analogous phenomenon their amount shall be reported as if these phenomena were not present.
- 12.2.7.2.4 If the clouds reported for N_h include contrails, then N_h shall include the amount of persistent contrails. Rapidly dissipating contrails shall not be included in the value for N_h .

Note: See Regulation 12.5 concerning the use of Section 4.

12.2.7.3 The coding of C_L , C_M and C_H clouds shall be as specified in the *International Cloud Atlas* (WMO-No. 407), Volume I.

Note: It is recommended that the pictorial guides included at the end of Chapter II.8 in the *International Cloud Atlas*, Volume I, be fully utilized in determining the priority of reporting the code figures for C_L , C_M and C_H .

A-18 Volume I.1

12.2.8 Group 9GGgg

This group shall be included:

- (a) When the actual time of observation differs by more than 10 minutes from the standard time GG reported in Section 0;
- (b) When additionally specified by regional decision.

Note: See Regulation 12.1.6.

12.3 Section 2

General

The inclusion of the groups of Section 2 in reports of merchant ships shall be determined by the Member who recruits the ship. The same rule shall be applied for automatic sea stations.

Note: Members are recommended to encourage the inclusion of the maximum possible number of data groups in Section 2 in accordance with Regulation 12.1.3.4.

- 12.3.1 Group 222D_sv_s
- 12.3.1.1 This group shall always be included in reports from stations which have observed maritime conditions and in reports from ships being requested to include $D_s v_s$ as a routine procedure.
- 12.3.1.2 This group shall be encoded as:
 - (a) 22200 for a stationary sea station;
 - (b) 222// for:
 - (i) A coastal land station which reports maritime conditions;
 - (ii) A supplementary or auxiliary ship, except when reporting from an area for which the ship report collecting centre, in order to meet a requirement of a search and rescue centre, has requested inclusion of D_sv_s as a routine procedure.
- 12.3.2 Group $(0s_sT_wT_wT_w)$

This group shall always be included in reports from ocean weather stations, when data are available.

- 12.3.3 Groups $(1P_{wa}P_{wa}H_{wa}H_{wa})$, $(2P_{w}P_{w}H_{w}H_{w})$, $(70H_{wa}H_{wa}H_{wa})$
- 12.3.3.1 Regulation 12.3.2 shall apply to these groups.
- 12.3.3.2 The group 1P_{wa}P_{wa}H_{wa}H_{wa} shall be used to report instrumental wave data in units of 0.5 metre.
- 12.3.3.3 The group $2P_wP_wH_wH_w$ shall be used to report wind waves, when instrumental wave data are not available.
- 12.3.3.4 (a) When the sea is calm (no waves and no swell) $P_{wa}P_{wa}H_{wa}H_{wa}$, or $P_{w}P_{w}H_{w}H_{w}$ as the case may be, shall be reported as 0000;
 - (b) When the estimation of the period is impossible owing to confused sea, P_wP_w shall be reported as 99. When, for the same reason, the height of the waves cannot be determined, H_wH_w shall be encoded as //;
 - (c) In a report from a station that includes instrumental wave data, if data are not available for any other reason for either period or height of waves, P_{wa}P_{wa} or H_{wa}H_{wa}, as the case may be, shall be encoded as //. If data are not available for either period or height of waves, Regulation 12.2.3.2 shall apply and the group 1P_{wa}P_{wa}H_{wa}H_{wa} shall either be omitted or encoded as 1////;
 - (d) In a report from a station that does not include instrumental wave data, if data are not available for any other reason for either period or height of waves, P_wP_w or H_wH_w, as the case may be, shall be encoded as //. If data are not available for either period or height of waves, the group 2P_wP_wH_wH_w shall be omitted.

- 12.3.3.5 The group 70H_{wa}H_{wa} shall be reported in addition to the group 1P_{wa}P_{wa}H_{wa}H_{wa} when the following conditions have been met:
 - (a) The sea is not calm (e.g. $P_{wa}P_{wa}H_{wa}H_{wa}$ has not been reported as 0000);
 - (b) H_{wa}H_{wa} has not been reported as //;
 - (c) The station has the capability of accurately measuring instrumental wave height in units of 0.1 metre.
- 12.3.4 Groups $((3d_{w1}d_{w2}d_{w2}) (4P_{w1}P_{w1}H_{w1}H_{w1}) (5P_{w2}P_{w2}H_{w2}H_{w2}))$
- 12.3.4.1 These groups shall be used to report swell data only when swell can be distinguished from wind waves.
- 12.3.4.2 If only one system of swell is observed:
 - (a) Its direction, period and height shall be indicated, respectively, by d_{w1}d_{w1}, P_{w1}P_{w1}, H_{w1} H_{w1}:
 - (b) dw2dw2 shall be encoded as //;
 - (c) Group 5P_{w2}P_{w2}H_{w2}H_{w2} shall be omitted.
- 12.3.4.3 If a second system of swell is observed:
 - (a) Its direction, period and height shall be indicated, respectively, by d_{w2}d_{w2}, P_{w2}P_{w2}, H_{w2}H_{w2};
 - (b) The corresponding data for the first system of swell shall be reported as prescribed by Regulation 12.3.4.2 (a).
- 12.3.4.4 Ocean weather stations shall always include swell data when data are available.
- 12.3.5 Group (6I_sE_sE_sR_s)

When the ice accretion on ships is reported in plain language, it shall be preceded by the word ICING.

12.3.6 Group $(8s_wT_bT_bT_b)$

When the wet bulb is used to derive dew-point value in a SHIP report, the group $8s_wT_bT_bT_b$ shall be included to report the wet-bulb temperature measurement.

- 12.3.7.1 The reporting of sea ice and ice of land origin in FM 13 shall not supersede the reporting of sea ice and icebergs in accordance with the International Convention for the Safety of Life at Sea.
- 12.3.7.2 The group $c_iS_ib_iD_iz_i$ shall be reported whenever sea ice and/or ice of land origin are observed from the ship's position at the time of observation, unless the ship is required to report ice conditions by means of a special sea-ice code.
- 12.3.7.3 When an ice edge is crossed or sighted between observation hours, it shall be reported as a plain-language addition in the form "ice edge lat. long." (with position in degrees and minutes).
- 12.3.7.4 If the ship is in the open sea reporting an ice edge, the concentration c_i and stage of development S_i shall be reported only if the ship is close to the ice (i.e. within 0.5 nautical mile).
- 12.3.7.5 The situation in which the ship is in an open lead more than 1.0 nautical mile wide shall be coded as $c_i = 1$ and $D_i = 0$. The situation in which the ship is in fast ice with ice boundary beyond limit of visibility shall be coded as $c_i = 1$ and $D_i = 9$.
- 12.3.7.6 If no sea ice is visible and the code group is used to report ice of land origin only, the group shall be coded as 0/b_i/0; e.g. 0/2/0 would mean 6–10 icebergs in sight, but no sea ice.
- 12.3.7.7 In coding concentration or arrangement of sea ice (code c_i), that condition shall be reported which is of the most navigational significance.

A-20 Volume I.1

12.3.7.8 The bearing of the principal ice edge reported shall be to the closest part of that edge.

Note: The requirements for sea-ice reporting are covered in the following way by the associated code tables:

Symbolic code letter ci

- (a) The purpose of the first code figure (0) is to establish in relation to code z_i (code figure 0) and code b_i whether the floating ice that is visible is only ice of land origin;
- (b) The possible variations in sea-ice concentration and arrangement within an area of observation are almost infinite. However, the field of reasonably accurate observation from a ship's bridge is limited. For this reason, and also because minor variations are of temporary significance, the choice of concentrations and arrangements has been restricted for reporting purposes to those representing significantly different conditions from a navigational point of view. The code figures 2–9 have been divided into two sections depending on:
 - (i) Whether sea-ice concentration within the area of observation is more or less uniform (code figures 2–5); or
 - (ii) Whether there are marked contrasts in concentration or arrangement (code figures 6–9).

Symbolic code letter Si

- (a) This table represents a series of increasing navigational difficulties for any given concentration; i.e. if the concentration is, for example, 8/10ths, then new ice would hardly have any effect on navigation while predominantly old ice would provide difficult conditions requiring reductions in speed and frequent course alterations;
- (b) The correlation between the stage of development of sea ice and its thickness is explained in the *Guide to Meteorological Instruments and Methods of Observation* (WMO-No. 8).

Symbolic code letter bi

- (a) This code provides a scale of increasing navigational hazard;
- (b) Growlers and bergy bits, being much smaller and lower in the water than icebergs, are more difficult to see either by eye or radar. This is especially so if there is a heavy sea running. For this reason, code figures 4 and 5 represent more hazardous conditions than code figures 1 to 3.

Symbolic code letter Di

There is no provision in this code for the reporting of distance from the ice edge. It will be assumed by those receiving the report that the bearing has been given to the closest part of the ice edge. From the reported code figures for concentration and stage of development, it will be clear whether the ship is in ice or within 0.5 nautical mile of the ice edge. If the ship is in open water and more than 0.5 nautical mile from the ice edge, the ice edge will be assumed to be aligned at right angles to the bearing which is reported.

Symbolic code letter zi

- (a) The purpose of this element in the code is to establish:
 - (i) Whether the ship is in pack ice or is viewing floating ice (i.e. sea ice and/or ice of land origin) from the open sea; and
 - (ii) A qualitative estimate, dependent on the sea-ice navigation capabilities of the reporting ship, of the penetrability of the sea ice and of the recent trend in conditions;
- (b) The reporting of the conditions represented by code figures 1–9 in Code table 5239 can be used to help in the interpretation of reports from the two code tables (concentration c_i and stage of development S_i).

12.4 Section 3

This section shall be used for regional exchange.

- 12.4.1 The inclusion of groups with indicator figures 1 to 6, 8 and 9 shall be decided regionally. However group 7R₂₄R₂₄R₂₄R₂₄ shall be included by all stations (with the exception of stations situated in the Antarctic) capable of doing so, once a day at one appropriate time of the main standard times (0000, 0600, 1200 or 1800 UTC).
- 12.4.2 The symbolic form of the group with indicator figure 0 shall be developed regionally, as well as the rules for its inclusion in Section 3.
- 12.4.3 Other figure groups shall be developed regionally in order to cover requirements which cannot be satisfied by the existing groups. In order to avoid ambiguities, these other groups shall be:
 - (a) Provided with indicator figures 0, 1, 2, etc.;
 - (b) Preceded by an indicator group 80000 located after the last of the existing figure groups that was included in the report.

Notes:

- (1) For example, if three supplementary groups are developed, a report including state of the ground, precipitation and cloud data would present Section 3 as 333 3Ejjj 6RRRt_R 8N_sCh_sh_s 80000 0.... 1.... 2....
- (2) See Regulation 12.1.3.5.
- 12.4.4 Groups $(1s_nT_xT_xT_x)$, $(2s_nT_nT_nT_n)$

The period of time covered by the maximum and the minimum temperature and the synoptic hour at which these temperatures are reported shall be determined by regional decision.

12.4.5 *Group* (3Ejjj)

The use of the parameter(s) jjj shall be fixed regionally.

- 12.4.6 *Group* (4E´sss)
- 12.4.6.1 The measurement shall include snow, ice and all other forms of solid precipitation on the ground at the time of observation.
- 12.4.6.2 When the depth is not uniform, the average depth over a representative area shall be reported.
- 12.4.7 Groups (5j₁j₂j₃j₄ (j₅j₆j₇j₈j₉))
- 12.4.7.1 Symbolic expression
- 12.4.7.1.1 When the group $5_{1}, 1_{2}, 1_{3}$ is used in the form $55, 1_{2}, 1_{3}$, $553, 1_{3}$, $554, 1_{3}$ or $555, 1_{3}$, the supplementary group $5_{1}, 1_{2}, 1_{3}$ shall be added to report net radiation, global solar radiation, diffused solar radiation, long-wave radiation, short-wave radiation, net short-wave radiation or direct solar radiation if data are available. The group shall be repeated as often as necessary.

Note: If sunshine duration is not available, the group shall be reported as 55///, 553//, 55407, 55408, 55507 or 55508 whenever the group $j_5j_6j_7j_8j_9$ is required to report radiation data.

- 12.4.7.1.2 When the group $5j_1j_2j_3j_4$ is used, one or more of the following symbolic expressions shall be adopted:
 - (a) $5EEEi_E$ to report the daily amount of either evaporation or evapotranspiration;
 - (b) $54g_0s_nd_T$ to report temperature change data in period covered by W_1W_2 ;
 - (c) 55SSS to report the daily hours of sunshine;
 - (d) 553SS to report the duration of sunshine in the past hour;
 - (e) 55407 to indicate that the supplementary group 4FFFF, which follows immediately, is used to report net short-wave radiation during the previous hour, in kJ m⁻²;

A-22 Volume I.1

(f)	55408	to indicate that the supplementary group 4FFFF, which follows
		immediately, is used to report direct solar radiation during the
		previous hour, in kJ m ⁻² ;

- (g) 55507 to indicate that the supplementary group 5F₂₄F₂₄F₂₄F₂₄, which follows immediately, is used to report net short-wave radiation during the preceding 24 hours, in J cm⁻²;
- (h) 55508 to indicate that the supplementary group 5F₂₄F₂₄F₂₄F₂₄, which follows immediately, is used to report direct solar radiation during the preceding 24 hours, in J cm⁻²;
- (i) 56D_LD_MD_H to report data on direction of cloud drift;
- (j) 57CD_ae_C to report data on direction and elevation of cloud;
- (k) 58p₂₄p₂₄p₂₄ to report positive or zero change of surface pressure over the last 24 hours;
- (I) 59p₂₄p₂₄p₂₄ to report negative change of surface pressure over the last 24 hours.
- 12.4.7.1.3 When more than one group $5j_1j_2j_3j_4$ is used, these groups shall be included in the order as listed in Regulation 12.4.7.1.2 with the supplementary groups $j_5j_6j_7j_8j_9$ at the appropriate place.
- 12.4.7.2 Daily evaporation or evapotranspiration
- 12.4.7.2.1 The symbolic expression 5EEEi_E shall be used to report either daily evaporation or evapotranspiration.
- 12.4.7.2.2 EEE shall indicate the amount of either evaporation or evapotranspiration, in tenths of a millimetre, during the preceding 24 hours at either 0000, 0600 or 1200 UTC.
- 12.4.7.3 Temperature change

For a change of temperature to be reported, the change shall be equal to or more than 5° C and occur in less than 30 minutes during the period covered by W_1W_2 .

Note: The reporting of this information is restricted by regional or national decision to islands or other widely separated stations.

- 12.4.7.4 Duration of sunshine and radiation data
- 12.4.7.4.1 The symbolic expression SSS shall be used to report the daily sunshine, in hours and tenths of an hour. The symbolic expression SS (in group 553SS) shall be used to report the duration of sunshine in the past hour, in tenths of an hour.
- 12.4.7.4.2 In the form 55SSS, this group shall, by regional decision, be reported by all stations capable of doing so and included at either 0000, 0600, 1200 or 1800 UTC.
- 12.4.7.4.3 When the group $5j_1j_2j_3j_4$ has the form 553SS, the supplementary group(s) j_5 FFFF may take one or more of the following forms:

```
j_5 = 0 FFFF = positive net radiation during the previous hour, in kJ m<sup>-2</sup>;
```

 j_5 = 1 FFFF = negative net radiation during the previous hour, in kJ m⁻²;

 j_5 = 2 FFFF = global solar radiation during the previous hour, in kJ m⁻²;

 $j_5 = 3$ FFFF = diffused solar radiation during the previous hour, in kJ m⁻²;

 $j_5 = 4$ FFFF = downward long-wave radiation during the previous hour, in kJ m⁻²;

 j_5 = 5 FFFF = upward long-wave radiation during the previous hour, in kJ m⁻²;

 j_5 = 6 FFFF = short-wave radiation during the previous hour, in kJ m⁻².

Note: For reporting net short-wave and direct solar radiation during the previous hour, see Regulation 12.4.7.1.2 (e) and (f), respectively.

 $j_5 = 0$ $F_{24}F_{24}F_{24} = positive net radiation during the preceding 24 hours, in J cm⁻²;$

 $j_5 = 1$ $F_{24}F_{24}F_{24} = negative net radiation during the preceding 24 hours, in J cm⁻²;$

- $j_5 = 2$ $F_{24}F_{24}F_{24} = global solar radiation during the preceding 24 hours, in J cm⁻²;$
- $j_5 = 3$ $F_{24}F_{24}F_{24} = diffused solar radiation during the preceding 24 hours, in J cm⁻²;$
- $j_5 = 4$ $F_{24}F_{24}F_{24} =$ downward long-wave radiation during the preceding 24 hours, in $J \text{ cm}^{-2}$:
- $j_5 = 5$ $F_{24}F_{24}F_{24} = upward long-wave radiation during the preceding 24 hours, in J cm⁻²;$
- $j_5 = 6$ $F_{24}F_{24}F_{24}F_{24} =$ short-wave radiation during the preceding 24 hours, in J cm⁻².

Note: For reporting net short-wave and direct solar radiation during the preceding 24 hours, see Regulation 12.4.7.1.2 (g) and (h), respectively.

- 12.4.7.4.5 FFFF shall indicate the absolute value of the amount of solar or terrestrial radiation as appropriate, in kJ m⁻², during the preceding hour. F₂₄F₂₄F₂₄F₂₄F₂₄ shall indicate the absolute value of the amount of solar or terrestrial radiation as appropriate, in J cm⁻², during the preceding 24 hours at either 0000, 0600, 1200 or 1800 UTC.
- 12.4.7.5 Direction, drift and elevation of cloud

Note: This information is required from land stations and fixed ship stations, mainly in the tropics.

- 12.4.8 Group (6RRRt_R)
- 12.4.8.1 This group shall be included in Section 3 only when Regulation 12.2.5.2 applies.
- 12.4.8.2 The decision to implement Regulation 12.2.5.2 shall be taken at the regional level.
- 12.4.9 Group (7R₂₄R₂₄R₂₄R₂₄)

This group shall be used to report the total amount of precipitation during the 24-hour period ending at the time of observation, in tenths of a millimetre (coded 9998 for 999.8 mm or more, and coded 9999 for trace).

- 12.4.10 **Group** (8N_sCh_sh_s)
- 12.4.10.1 This group shall be repeated to report a number of different layers or masses of cloud. When reported from a manned station, the number of such groups shall in the absence of Cumulonimbus clouds not exceed three. Cumulonimbus clouds, when observed, shall always be reported, so that the total number of groups can be four. When the station operates in the automatic mode, the total number of groups shall not exceed four.

The selection of layers (masses) to be reported shall be made in accordance with the following criteria:

- (a) The lowest individual layer (mass) of any amount (N_s equals 1 or more);
- (b) The next higher individual layer (mass) the amount of which is greater than two oktas (N_s equals 3 or more);
- (c) The next higher individual layer (mass) the amount of which is greater than four oktas (N_s equals 5 or more);
- (d) Cumulonimbus clouds, whenever observed and not reported under (a), (b) and (c) above by means of a group referring exclusively to Cb.
- 12.4.10.2 The order of reporting the groups shall always be from lower to higher levels.
- 12.4.10.3 In determining the cloud amounts to be reported for individual layers or masses in the 8-group, the observer shall estimate, by taking into consideration the evolution of the sky, the cloud amounts of each layer or mass at the different levels, as if no other clouds existed.
- 12.4.10.4 When the sky is clear (N = 0), the 8-group shall not be used.

A-24 Volume I.1

12.4.10.5 When the sky is obscured ($N_s = 9$), the 8-group shall read $89/h_sh_s$, where h_sh_s is the vertical visibility. When the observation of clouds is not made (N = 1), the 8-group shall not be included.

Note: The vertical visibility is defined as the vertical visual range into an obscuring medium.

- 12.4.10.6 If two or more types of cloud occur with their bases at the same level and this level is one to be reported in accordance with Regulation 12.4.10.1, the selection for C and N_s shall be made in accordance with the following criteria:
 - (a) If these types do not include cumulonimbus then C shall refer to the cloud type that represents the greatest amount, or if there are two or more types of cloud all having the same amount, the highest applicable code figure for C shall be reported. N_s shall refer to the total amount of cloud whose bases are all at the same level;
 - (b) If these types do include cumulonimbus then one group shall be used to describe only this type with C reported as 9 and N_s as the amount of cumulonimbus. If the total amount of the remaining type(s) of cloud (excluding cumulonimbus) whose bases are all at the same level is greater than that required by Regulation 12.4.10.1, then another group shall be reported with C being selected in accordance with (a) and N_s referring to the total amount of the remaining cloud (excluding cumulonimbus).
- 12.4.10.7 Regulations 12.2.2.2.3 to 12.2.2.2.6, inclusive, shall apply.
- 12.4.11 *Group* (9S_PS_PS_PS_P)

The use of this group and the specifications for the supplementary information shall be as specified in Code table 3778.

- 12.5 Section 4
- 12.5.1 The inclusion of this section shall be fixed nationally.
- 12.5.2 Clouds with tops below station level shall be reported only by this section and any coexistent clouds with bases above station level shall be reported in group $8N_hC_LC_MC_H$ of Section 1.
- 12.5.3 C_L clouds with bases below and tops above station level shall be reported in both 8N_hC_LC_MC_H and Section 4, provided that the station is out of cloud sufficiently frequently to enable the various features to be recognized. In this case:
 - (a) N_h shall correspond with N' and C_L with C' while h shall be coded as I;
 - (b) If the upper surface of the clouds with tops above station level can be observed, it shall be reported by means of H'H'. If the upper surface cannot be observed, H'H' shall be coded as //:
 - (c) Other C_L clouds present with tops below station level shall be reported in a second N´C´H´H´C $_t$ group;
 - (d) Other C_L clouds present with bases above station level shall be reported in plain language after the N'C'H'H'C_t group.
- 12.5.4 If the station is in almost continuous cloud, Regulation 12.2.7.1 shall apply and Section 4 shall be omitted.
- 12.5.5 When two or more cloud layers with their bases below station level occur at different levels, two or more groups N´C´H´H´C_t shall be used. C_t shall be reported as 9 in the groups indicating the layer of the smaller cloud amount and, in the remaining group, C_t shall be coded in Code table 0552.
- 12.5.6 Rapidly dissipating condensation trails shall not be reported in Section 4.

Note: See Regulation 12.2.2.2.5.

12.5.7 The top of persistent condensation trails and cloud masses which have obviously developed from condensation trails shall be reported, using the appropriate Ct code figure.

FM 12 SYNOP, FM 13 SHIP, FM 14 SYNOP MOBIL

12.5.8	Regulations 12.2.2.2.1 to 12.2.2.2.6, inclusive, shall apply.
12.5.9	Spaces occupied by mountains emerging from the cloud layers shall be counted as occupied by cloud.
12.6	Section 5
12.6.1	The use of this section, the symbolic form of groups and the specifications of symbolic letters shall be determined by national decision.
12.6.2	Preference shall be given to symbolic 5-figure groups identified by numerical indicator figures.

A-26 Volume I.1

FM 15–XV METAR Aerodrome routine meteorological report (with or without

trend forecast

FM 16–XV SPECI Aerodrome special meteorological report (with or without

trend forecast

CODE FORM:

Notes:

- (1) METAR is the name of the code for an aerodrome routine meteorological report. SPECI is the name of the code for an aerodrome special meteorological report. A METAR report and a SPECI report may have a trend forecast appended.
- (2) The groups contain a non-uniform number of characters. When an element or phenomenon does not occur, the corresponding group, or the extension of a group, is omitted from a particular report. Detailed instructions are given for each group in the following Regulations. The groups enclosed in brackets are used in accordance with regional or national decisions. Groups may have to be repeated in accordance with the detailed instructions for each group. The code words COR and NIL shall be used, as appropriate, for corrected and missing reports, respectively.
- (3) The code form includes a section containing the trend forecast identified either by a change indicator (TTTTT = BECMG or TEMPO as the case may be), or by the code word NOSIG.
- (4) The governing criteria for issuing SPECI reports are specified in the *Technical Regulations* (WMO-No. 49), Volume II, [C.3.1].

REGULATIONS:

15.1 General

- 15.1.1 The code name METAR or SPECI shall be included at the beginning of each individual report.
- 15.1.2 When a deterioration of one weather element is accompanied by an improvement in another element (for example, lowering of clouds and an improvement in visibility), a single SPECI report shall be issued.

15.2 Group CCCC

The identification of the reporting station in each individual report shall be indicated by means of the ICAO location indicator.

15.3 Group YYGGggZ

- 15.3.1 The day of the month and the time of observation in hours and minutes UTC followed, without a space, by the letter indicator Z shall be included in each individual METAR report.
- 15.3.2 This group shall be included in each individual SPECI report. In SPECI reports, this group shall indicate the time of occurrence of the change(s) which justified the issue of the report.

15.4 Code word AUTO

The optional code word AUTO shall be inserted before the wind group when a report contains fully automated observations without human intervention. The ICAO requirement is that all of the specified elements shall be reported. However, if any element cannot be observed, the group in which it would have been encoded shall be replaced by the appropriate number of solidi. The number of solidi depends on the number of symbolic letters for the specific group which is not able to be reported; i.e. four for the visibility group, two for the present weather group and three or six for the cloud group, as appropriate.

15.5 Groups
$$dddffGf_mf_m \begin{Bmatrix} KT \\ or \\ MPS \end{Bmatrix} d_nd_nVd_xd_xd_x$$

15.5.1 The mean true direction in degrees rounded off to the nearest 10 degrees from which the wind is blowing and the mean speed of the wind over the 10-minute period immediately preceding the observation shall be reported for dddff followed, without a space, by one of the abbreviations KT or MPS, to specify the unit used for reporting wind speed. Values of wind direction less than 100° shall be preceded by 0 and a wind from true north shall be reported as 360. Values of wind speed less than 10 units shall be preceded by 0. However, when the 10-minute period includes a marked discontinuity in the wind characteristics, only data after the discontinuity shall be used for obtaining mean wind speed and maximum gust values, and mean wind direction and variations of the wind direction, hence the time interval in these circumstances shall be correspondingly reduced.

Notes:

- (1) KT and MPS are the standard ICAO abbreviations for knots and metres per second, respectively.
- (2) The primary unit prescribed in ICAO Annex 5 for wind speed is the metre per second (MPS), with the knot (KT) permitted for use as a non-SI alternative unit until a termination date is decided.
- (3) A marked discontinuity occurs when there is an abrupt and sustained change in wind direction of 30° or more, with a wind speed of 5 m s⁻¹ (10 KT) or more before or after the change, or a change in wind speed of 5 m s⁻¹ (10 KT) or more, lasting at least two minutes.

A-28 Volume I.1

- 15.5.2 In the case of variable wind direction, ddd shall be encoded as VRB when the mean wind speed is less than 1.5 m s⁻¹ (3 knots). A variable wind at higher speeds shall be reported only when the variation of wind direction is 180° or more or when it is impossible to determine a single wind direction, for example when a thunderstorm passes over the aerodrome.
- 15.5.4 "Calm" shall be coded as 00000 followed immediately, without a space, by one of the abbreviations KT or MPS to specify the unit, used normally for reporting wind.
- 15.5.5 If, during the 10-minute period preceding the observation, the maximum wind gust speed exceeds the mean speed by 5 m s $^{-1}$ (10 knots) or more, this maximum speed shall be reported as $\mathbf{Gf}_m\mathbf{f}_m$ immediately after dddff, followed immediately, without a space, by one of the abbreviations KT or MPS to specify the units used for reporting wind speed. Otherwise the element $\mathbf{Gf}_m\mathbf{f}_m$ shall not be included.

Note: It is recommended that the wind measuring systems should be such that peak gusts should represent a three-second average.

15.5.6 For wind speeds of 100 units or greater, the exact number of wind speed units shall be given in lieu of the two-figure code ff or $f_m f_m$. When the wind speed is 50 m s⁻¹ (100 knots) or more, the groups ff and $f_m f_m$ shall be preceded by the letter indicator P and reported as P49MPS (P99KT).

Note: There is no aeronautical requirement to report surface wind speeds of 50 m s⁻¹ (100 KT) or more; however, provision has been made for reporting wind speeds up to 99 m s⁻¹ (199 KT) for non-aeronautical purposes, as necessary.

15.6 Groups VVVV $V_N V_N V_N V_N D_V$

Note: The coding of visibility is based on the use of the metre and kilometre, in accordance with the units specified in ICAO Annex 5.

- 15.6.1 The group VVVV shall be used to report prevailing visibility. When the horizontal visibility is not the same in different directions and when the visibility is fluctuating rapidly and the prevailing visibility cannot be determined, the group VVVV shall be used to report the lowest visibility.
- 15.6.2 Directional variation in visibility V_NV_NV_NV_ND_V

When the horizontal visibility is not the same in different directions and when the minimum visibility is different from the prevailing visibility, and less than 1 500 metres or less than 50% of the prevailing visibility, and less than 5 000 metres, the group $V_N V_N V_N D_V$ shall also be used to report the minimum visibility and, when possible, its general direction in relation to the aerodrome reference point indicated by reference to one of the eight points of the compass. If the minimum visibility is observed in more than one direction, the D_V shall represent the most operationally significant direction.

- 15.6.3 Visibility shall be reported using the following reporting steps:
 - (a) Up to 800 metres rounded down to the nearest 50 metres;
 - (b) Between 800 and 5 000 metres rounded down to the nearest 100 metres;
 - (c) Between 5 000 metres up to 9 999 metres rounded down to the nearest 1 000 metres;
 - (d) With 9999 indicating 10 km and above.

15.6.4 Code word CAVOK

Regulation 15.10 shall apply.

15.7 Group $RD_RD_R/V_RV_RV_Ri$

Note: The coding of runway visual range is based on the use of the metre in accordance with the unit specified in ICAO Annex 5.

- 15.7.1 During periods when either the horizontal visibility reported in the group VVVV or the runway visual range for one or more runways available for landing is observed to be less than 1 500 metres, one or more groups under Regulation 15.7 shall be included in the report. The letter indicator R followed immediately, without a space, by the runway designator D_RD_R shall always precede the RVR reports.
- 15.7.2 The groups shall be repeated to report runway visual range values for each runway, up to a maximum of four, which is available for landing and for which runway visual range is determined.

15.7.3 Runway designator D_RD_R

The designator of each runway for which runway visual range is reported shall be indicated by D_RD_R . Parallel runways should be distinguished by appending to D_RD_R letters L, C or R indicating the left, central or right parallel runway, respectively. The letter(s) shall be appended to D_RD_R as necessary in accordance with the standard practice for runway designation, as laid down by ICAO in Annex 14 – Aerodromes, Volume I – Aerodrome design and operations, paragraphs 5.2.2.4 and 5.2.2.5.

- 15.7.4 Mean value and tendency of runway visual range over the 10-minute period immediately preceding the observation V_RV_RV_Ri
- 15.7.4.1 The runway visual range values to be reported shall be representative of the touchdown zone of the active landing runway(s) up to a maximum of four.
- 15.7.4.2 The mean value of the runway visual range over the 10-minute period immediately preceding the observation shall be reported for V_RV_RV_R. However, when the 10-minute period includes a marked discontinuity in the RVR (for example, sudden advection of fog, rapid onset or cessation of an obscuring snow shower), only data after the discontinuity shall be used for obtaining mean RVR values, hence the time interval in these circumstances shall be correspondingly reduced.

Notes:

- (1) Any observed value which does not fit the reporting scale in use should be rounded down to the nearest lower step in the scale.
- (2) A marked discontinuity occurs when there is an abrupt and sustained change in runway visual range, lasting at least two minutes, consistent with the issuance of aerodrome special meteorological reports (SPECI) given in the *Technical Regulations* (WMO-No. 49), Volume II, [C.3.1.] 4.3.3.
- 15.7.4.3 If the runway visual range values during the 10-minute period preceding the observation show a distinct upward or downward tendency such that the mean during the first five minutes varies by 100 metres or more from the mean during the second five minutes of the period, this shall be indicated by i = U for upward and i = D for downward tendency of runway visual range values. When no distinct change in runway visual range is observed, i = N shall be used. When it is not possible to determine the tendency, i shall be omitted.

A-30 Volume I.1

15.7.5 Extreme values of runway visual range

When actual RVR values are outside the measuring range of the observing system in use, the following procedure shall apply:

- (a) When the RVR, to be reported in accordance with the *Technical Regulations*, is greater than the maximum value which can be assessed with the system in use, the group V_RV_RV_RV_R shall be preceded by the letter indicator P (PV_RV_RV_RV) in which V_RV_RV_RV is the highest value which can be assessed. When the RVR is assessed to be more than 2 000 metres, it shall be reported as P2000;
- (b) When the RVR is below the minimum value which can be assessed with the system in use, the group $V_RV_RV_RV_R$ shall be preceded by the letter indicator M ($MV_RV_RV_RV_R$) in which $V_RV_RV_RV_R$ is the lowest value which can be assessed. When the RVR is assessed to be less than 50 metres, it shall be reported as M0050.

15.8 Group w'w'

15.8.1 One or more groups w'w', but not more than three, shall be used to report all present weather phenomena observed at or near the aerodrome and of significance to aeronautical operations in accordance with Code table 4678.

Appropriate intensity indicators and letter abbreviations (Code table 4678) shall be combined in groups of two to nine characters to indicate present weather phenomena.

- 15.8.2 If the observed present weather cannot be reported by use of Code table 4678, the group w'w' shall be omitted from the report.
- 15.8.3 The w'w' groups shall be ordered as follows:
 - (a) First, if appropriate, the qualifier for intensity or for proximity, followed without a space by;
 - (b) If appropriate, the abbreviation for the descriptor followed without a space by;
 - (c) The abbreviation for the observed weather phenomenon or combinations thereof.
- 15.8.4 Intensity shall be indicated only with precipitation, precipitation associated with showers and/or thunderstorms, funnel cloud, duststorm or sandstorm. If the intensity of the phenomena reported in the group is either light or heavy, this shall be indicated by the appropriate sign (see Code table 4678 and specially Note (5)). No indicator shall be included in the group when the intensity of the reported phenomenon is moderate.
- 15.8.5 The intensity of present weather phenomena reported in the group w'w' shall be determined by the intensity at the time of observation.
- 15.8.6 If more than one significant weather phenomenon is observed, separate w'w' groups shall be included in the report in accordance with Code table 4678. However, if more than one form of precipitation is observed, the appropriate letter abbreviations shall be combined in a single group with the dominant type of precipitation being reported first. In such a single group, the intensity shall refer to the total precipitation and be reported with one or no indicator as appropriate.

When an automatic observing system is used and when the type of the precipitation cannot be identified by this system, the abbreviation UP shall be used for precipitation. The abbreviation UP may be combined, as necessary, with the following characteristics of present weather: FZ, SH and TS.

15.8.7 The qualifier SH shall be used to indicate precipitation of the shower type. When associated with the indicator VC, the type and intensity of precipitation shall not be specified.

Note: Showers are produced by convective clouds. They are characterized by their abrupt beginning and end and by the generally rapid and sometimes great variations in the intensity of the precipitation. Drops and solid particles falling in a shower are generally larger than those falling in non-showery precipitation. Between showers, openings may be observed unless stratiform clouds fill the intervals between the cumuliform clouds

15.8.8 The qualifier TS shall be used whenever thunder is heard or lightning is detected at the aerodrome within the 10-minute period preceding the time of observation. When appropriate, TS shall be followed immediately, without a space, by relevant letter abbreviations to indicate any precipitation observed. The letter abbreviation TS on its own shall be used when thunder is heard or lightning detected at the aerodrome but no precipitation observed.

Note: A thunderstorm shall be regarded as being at the aerodrome from the time thunder is first heard, whether or not lightning is seen or precipitation is observed at the aerodrome. A thunderstorm shall be regarded as having ceased or being no longer at the aerodrome at the time thunder is last heard, and the cessation is confirmed if thunder is not heard for 10 minutes after this time.

15.8.9 The qualifier FZ shall be used only to indicate supercooled water droplets or supercooled precipitation.

Notes:

- (1) Any fog consisting predominantly of water droplets at temperatures below 0°C shall be reported as freezing fog (FZFG) whether it is depositing rime ice or not.
- (2) Whether or not the supercooled precipitation is of the shower type shall not be specified.
- 15.8.10 The qualifier VC shall be used to indicate the following significant weather phenomena observed in the vicinity of the aerodrome: TS, DS, SS, FG, FC, SH, PO, BLDU, BLSA, BLSN and VA. Regulations referring to the combination of VC and FG are given in Regulation 15.8.16.

Notes:

- (1) Such weather phenomena should be reported with the qualifier VC only when observed between approximately 8 km and 16 km from the aerodrome reference point. The actual range for which the qualifier VC is to be applied will be determined locally, in consultation with aeronautical authorities.
- (2) See Regulation 15.8.7.
- 15.8.11 The letter abbreviation GR shall be used to report hail only when the diameter of the largest hailstones observed is 5 mm or more. The letter abbreviation GS shall be used to report small hail (diameter of the hailstones less than 5 mm) and/or snow pellets.
- 15.8.12 The letter abbreviations FU, HZ, DU and SA (except DRSA) shall be used only when the obstruction to vision consists predominantly of lithometeors and the visibility is reduced by the reported phenomenon to 5 000 metres or less.
- 15.8.13 The letter abbreviation BR shall be used when the obstruction to vision consists of water droplets or ice crystals. For w'w'= BR to be reported, the visibility reported in the group VVVV shall be at least 1 000 metres but not more than 5 000 metres.
- 15.8.14 The letter abbreviation FG shall be used when the obstruction to vision consists of water droplets or ice crystals (fog or ice fog). For w'w'= FG to be reported without the qualifiers MI, BC, PR or VC, the visibility reported in the group VVVV shall be less than 1 000 metres.
- 15.8.15 For w'w'= MIFG to be reported, the visibility at two metres above ground level shall be 1 000 metres or more and the apparent visibility in the fog layer shall be less than 1 000 metres
- 15.8.16 The letter abbreviation VCFG shall be used to report any type of fog observed in the vicinity of the aerodrome.
- 15.8.17 The letter abbreviation BCFG shall be used to report fog patches and the letter abbreviation PRFG to report fog covering part of the aerodrome; the apparent visibility in the fog patch or bank shall be less than 1 000 metres, the fog extending to at least 2 metres above ground level.

Note: BCFG should be used only when the visibility in parts of the aerodrome is 1 000 metres or more although, when the fog is close to the observing point, the minimum visibility reported by $V_NV_NV_ND_V$ will be less than 1 000 metres.

A-32 Volume I.1

- 15.8.18 The letter abbreviation SQ shall be used to report squalls when a sudden increase in wind speed is observed of at least 8 m s⁻¹ (16 knots), the speed rising to 11 m s⁻¹ (22 knots) or more and lasting for at least one minute.
- 15.8.19 When an automatic observing system is used and the present weather cannot be observed, the present weather group shall be replaced by //.
- 15.8.20 Regulation 15.10 shall apply.

$$\label{eq:state_state} \textbf{15.9} \qquad \qquad \textbf{Group} \left\{ \begin{array}{l} \textbf{N_sN_sN_sh_sh_sh_s} \\ \textbf{or} \\ \textbf{VV}\textbf{N_sh_sh_s} \\ \textbf{or} \\ \textbf{NSC} \\ \textbf{or} \\ \textbf{NCD} \end{array} \right.$$

- 15.9.1 Cloud amount and cloud height N_sN_sN_sh_sh_sh_s
- 15.9.1.1 Cloud amount, cloud type and height of cloud base shall be reported to describe only the clouds of operational significance, i.e., clouds with the height of base below 1 500 meters (5 000 ft) or below the highest minimum sector altitude, whichever is greater, or cumulonimbus or towering cumulus at any height. The cloud amount N_sN_sN_s shall be reported as few (1 to 2 oktas), scattered (3 to 4 oktas), broken (5 to 7 oktas) or overcast (8 oktas), using the three-letter abbreviations FEW, SCT, BKN and OVC followed, without a space, by the height of the base of the cloud layer (mass) h_sh_sh_s. If there are no clouds below 1 500 m (5 000 ft) or below the highest minimum sector altitude, whichever is greater, no cumulonimbus and no towering cumulus and no restriction on vertical visibility, and the abbreviations CAVOK is not appropriate, then the abbreviation NSC shall be used. When an automatic observing system is used and no clouds are detected by that system, the abbreviation NCD shall be used.
- 15.9.1.2 The amount of each cloud layer (mass) shall be determined as if no other clouds were existing.
- 15.9.1.3 The cloud group shall be repeated to report different layers or masses of cloud. The number of groups shall not exceed three, except that significant convective clouds, when observed, shall always be reported.

Note: The following clouds shall be reported as significant convective clouds:

- (1) Cumulonimbus cloud (CB);
- (2) Cumulus congestus of great vertical extent (TCU). The contraction TCU, taken from the term "towering cumulus", is an ICAO abbreviation used in aeronautical meteorology to describe this cloud.
- 15.9.1.4 The selection of layers or masses of cloud to be reported shall be made in accordance with the following criteria:

1st group: the lowest individual layer (mass) of any amount, to be reported as

FEW, SCT, BKN or OVC;

2nd group: the next individual layer (mass) covering more than two oktas, to

be reported as SCT, BKN or OVC;

3rd group: the next higher individual layer (mass) covering more than four

oktas, to be reported as BKN or OVC;

Additional groups: significant convective clouds (CB or TCU) when observed and not

already reported in one of the three groups above.

The order of reporting the groups shall be from lower to higher levels.

15.9.1.5 The height of cloud base shall be reported in steps of 30 m (100 ft) up to 3 000 m (10 000 ft). Any observed value which does not fit the reporting scale in use shall be rounded down to the nearest lower step in the scale.

Note: See Note (1) to Regulation 15.7.4.2.

- 15.9.1.6 When cumulonimbus clouds or towering cumulus clouds are detected by the automatic observing system and the cloud amount and/or the height of cloud base cannot be observed, the cloud amount and/or the height of cloud base elements should be replaced by ///.
- 15.9.1.7 Types of cloud other than significant convective clouds shall not be identified. Significant convective clouds, when observed, shall be identified by appending the letter abbreviations CB (cumulonimbus) or TCU (cumulus congestus of great vertical extent), as appropriate, to the cloud group without a space. When an automatic observing system is used and the cloud type cannot be observed by that system, the cloud type in each cloud group shall be replaced by ///.

Note: When an individual layer (mass) of cloud is composed of cumulonimbus and towering cumulus clouds with a common cloud base, the type of cloud should be reported as cumulonimbus only and the amount of clouds shall be encoded as the sum of the CB and TCU amounts.

15.9.2 Vertical visibility VVh_sh_sh_s

When the sky is obscured and information on vertical visibility is available, the group $VVh_sh_sh_s$ shall be reported, where $h_sh_sh_s$ is the vertical visibility in units of 30 metres (hundreds of feet). When information on vertical visibility is not available due to a temporary failure of a sensor or system, the group shall read VV///.

Notes:

- (1) The vertical visibility is defined as the vertical visual range into an obscuring medium.
- (2) See Note (1) to Regulation 15.7.4.2.
- 15.9.3 Regulation 15.10 shall apply.

15.10 Code word CAVOK

The code word CAVOK shall be included in place of the groups under Regulations 15.6, 15.8 and 15.9, when the following conditions occur simultaneously at the time of observation:

- (a) Visibility reported in the group VVVV is 10 km or more and criteria for inclusion of the group V_NV_NV_NV_ND_V are not met;
- (b) No cloud below 1 500 metres (5 000 ft) or below the highest minimum sector altitude, whichever is greater, and no cumulonimbus and no towering cumulus;
- (c) No significant weather phenomena (see Code table 4678).

Note: Highest minimum sector altitude is defined in ICAO PANS-OPS, Part 1 – *Definitions*, as the lowest altitude which may be used under emergency conditions which will provide a minimum clearance of 300 metres (1 000 ft) above all objects located in an area contained within a sector of a circle of 46 km (25 nautical miles) radius centred on a radio aid to navigation.

- 15.11 Group $T'T'/T'_dT'_d$
- 15.11.1 The observed air temperature and dew-point temperature rounded to the nearest whole degree Celsius shall be given for T´T´/T´_dT´_d. Observed values involving 0.5°C shall be rounded up to the next higher Celsius degree.
- 15.11.2 Rounded whole degree values of air temperature and dew-point temperature of -9°C to +9°C shall be preceded by 0; for example, +9°C shall be reported as 09.
- 15.11.3 Temperatures below 0°C shall be immediately preceded by M, that is minus; for example, -9°C shall be reported as M09 and -0.5°C shall be reported as M00.

A-34 Volume I.1

- 15.12 Group $\mathbf{Q}P_{H}P_{H}P_{H}P_{H}$
- 15.12.1 The observed QNH value rounded down to the nearest whole hectopascal shall be given for P_HP_HP_H preceded, without a space, by the letter indicator Q.
- 15.12.2 If the value of QNH is less than 1 000 hPa, it shall be preceded by 0; for example, QNH 995.6 shall be reported as Q0995.

Notes:

- (1) When the first digit following the letter indicator Q is either 0 or 1, the QNH value is reported in the unit hectopascal (hPa).
- (2) The unit prescribed by ICAO Annex 5 for pressure is the hectopascal.
- 15.13 Supplementary information groups

$$\begin{aligned} \textbf{REw'w'} & \left\{ \begin{array}{l} \textbf{WS} \ \textbf{R} D_R \\ \textbf{or} \\ \textbf{WS} \ \textbf{ALL} \ \textbf{RWY} \end{array} \right. \left. \left\{ \begin{array}{l} \textbf{(WT}_s T_s / \textbf{S} S') \\ \textbf{or} \\ \textbf{(WT}_s T_s / \textbf{H} H_s H_s H_s) \end{array} \right\} \right. \\ \left. (\textbf{R} D_R D_R / E_R C_R e_R e_R B_R B_R) \right. \end{aligned}$$

- 15.13.1 For international dissemination, the section on supplementary information shall be used only to report recent weather phenomena of operational significance, available information on wind shear in the lower layers and, subject to regional air navigation agreement, sea-surface temperature and state of the sea or significant wave height, and also subject to regional air navigation agreement, the state of the runway.
- 15.13.2 Recent weather phenomena of operational significance REw'w'
- 15.13.2.1 Up to three groups of information on recent weather shall be given by the indicator letters RE followed, without a space, by the appropriate abbreviations, in accordance with Regulation 15.8 (but no intensity of the recent weather phenomena shall be indicated) if the following weather phenomena were observed during the period since the last routine report, or last hour, whichever is shorter, but not at the time of observation:
 - Freezing precipitation;
 - Moderate or heavy drizzle, rain or snow;
 - Moderate or heavy: ice pellets, hail, small hail and/or snow pellets;
 - Blowing snow;
 - Sandstorm or duststorm;
 - Thunderstorm;
 - Funnel cloud(s) (tornado or waterspout);
 - Volcanic ash.

When an automatic observing system is used and when the type of the precipitation cannot be identified by this system, the abbreviation REUP shall be used for recent precipitation. It may be combined with the characteristics of the present weather in accordance with Regulation 15.8.6.

Note: The meteorological authority, in consultation with users, may agree not to provide recent weather information where SPECI are issued.

15.13.3 Wind shear in the lower layers WS RD_RD_R or WS ALL RWY

Information on the existence of wind shear along the take-off path or approach path between one runway level and 500 metres (1 600 ft) significant to aircraft operations shall be reported whenever available and if local circumstances so warrant, using the group set $\mathbf{WS}\ \mathbf{RD_RD_R}$ repeated as necessary. If the wind shear along the take-off path or approach path is affecting all runways in the airport, WS ALL RWY shall be used.

Note: Concerning runway designator $D_{\text{R}}D_{\text{R}},$ Regulation 15.7.3 applies.

- 15.13.4 Supplementary information other than specified by Regulations 15.13.2 and 15.13.3 shall be added only in accordance with regional decision.
- 15.13.5 Sea-surface temperature and the state of the sea (WT_sT_s/SS') or sea-surface temperature and the significant wave height (WT_sT_s/HH_sH_s)
- 15.13.5.1 The sea-surface temperature shall, by regional agreement, be reported according to the regional ICAO Regulation 15.11. The state of the sea shall be reported in accordance with Code table 3700. The significant wave height shall be reported in decimetres.
- 15.13.6 State of the runway (RDRDR/ERCReRERBRBR)
- 15.13.6.1 Subject to regional air navigation agreement, information on the state of the runway provided by the appropriate airport authority shall be included. The runway deposits ER, the extent of runway contamination CR, the depth of deposit e_Re_R and the estimated surface friction B_RB_R shall be indicated in accordance with code tables 0919, 0519, 1079 and 0366, respectively. The state of the runway group shall be replaced by the abbreviation SNOCLO when the aerodrome is closed due to extreme deposit of snow. If contaminations on a single runway or on all runways at an aerodrome have ceased to exist, this should be reported by replacing the last six digits of the group by CLRD//.

Note: Concerning runway designator D_RD_R , Regulation 15.7.3 applies. Additional code figures 88 and 99 are reported in accordance with the European Air Navigation Plan, FASID, Part III-AOP, Attachment A: Code figure 88 indicates "all runways"; code figure 99 shall be used if a new runway state report is not available in time for dissemination of the appropriate METAR message, in which case the previous runway state report will be repeated.

15.14 Trend forecasts

Note: The governing criteria for issuing trend forecasts are specified in the *Technical Regulations* (WMO-No. 49), Volume II, [C.3.1].

- 15.14.1 When included in METAR or SPECI reports, the trend forecasts shall be in coded form.
- 15.14.2 When a change, required to be indicated in accordance with the governing criteria for significant changes, is expected for one or several of the observed elements wind, horizontal visibility, present weather, clouds or vertical visibility one of the following change indicators shall be used for TTTTT: BECMG or TEMPO.

Note: Where possible, values corresponding to the local operating minima should be selected to indicate changes.

- 15.14.3 The time group GGgg, preceded without a space by one of the letter indicators TT = FM (from), TL (until) or AT (at), shall be used as appropriate, to indicate the beginning (FM) or the end (TL) of a forecast change, or the time (AT) at which specific forecast condition(s) is (are) expected.
- 15.14.4 The change indicator BECMG shall be used to describe expected changes to meteorological conditions which reach or pass specified threshold criteria at either a regular or irregular rate.
- 15.14.5 Changes in meteorological conditions which reach or pass specified threshold criteria for trend forecasts shall be indicated as follows:
 - (a) When the change is forecast to begin and end wholly within the trend forecast period: by the change indicator BECMG followed by the letter indicators FM and TL respectively with their associated time groups, to indicate the beginning and end of the change (for example, for a trend forecast period from 1000 to 1200 UTC in the form: BECMG FM1030 TL1130);
 - (b) When the change is forecast to occur from the beginning of the trend forecast period and be completed before the end of that period: by the change indicator BECMG followed only by the letter indicator TL and its associated time group (the letter indicator FM and its associated time group being omitted), to indicate the end of the change (for example: BECMG TL1100);

A-36 Volume I.1

- (c) When the change is forecast to begin during the trend forecast period and be completed at the end of that period: by the change indicator BECMG followed only by the letter indicator FM and its associated time group (the letter indicator TL and its associated time group being omitted), to indicate the beginning of the change (for example: BECMG FM1100);
- (d) When it is possible to specify a time for the change to occur during the trend forecast period: by the change indicator BECMG followed by the letter indicator AT and its associated time group, to indicate the time of the change (for example: BECMG AT1100);
- (e) When changes are forecast to take place at midnight UTC, the time shall be indicated:
 - (i) By 0000 when associated with FM and AT;
 - (ii) By 2400 when associated with TL.
- 15.14.6 When the change is forecast to commence at the beginning of the trend forecast period and be completed by the end of that period, or when the change is forecast to occur within the trend forecast period but the time of the change is uncertain (possibly shortly after the beginning of the trend forecast period, or midway or near the end of that period), the change shall be indicated by only the change indicator BECMG (letter indicator(s) FM and TL or AT and associated time group(s) being omitted).
- 15.14.7 The change indicator TEMPO shall be used to describe expected temporary fluctuations to meteorological conditions which reach or pass specified threshold criteria and last for a period of less than one hour in each instance and in the aggregate cover less than half of the forecast period during which the fluctuations are expected to occur.
- 15.14.8 Periods of temporary fluctuations to meteorological conditions which reach or pass specified threshold criteria shall be indicated as follows:
 - (a) When the period of temporary fluctuations is forecast to begin and end wholly within the trend forecast period: by the change indicator TEMPO followed by the letter indicators FM and TL respectively with their associated time groups, to indicate the beginning and end of the fluctuations (for example, for a trend forecast period from 1000 to 1200 UTC in the form: TEMPO FM1030 TL1130);
 - (b) When the period of temporary fluctuations is forecast to occur from the beginning of the trend forecast period but cease before the end of that period: by the change indicator TEMPO followed only by the letter indicator TL and its associated time group (the letter indicator FM and its associated time group being omitted), to indicate the cessation of the fluctuations (for example: TEMPO TL1130):
 - (c) When the period of temporary fluctuations is forecast to begin during the trend forecast period and cease by the end of that period: by the change indicator TEMPO followed only by the letter indicator FM and its associated time group (the letter indicator TL and its associated time group being omitted), to indicate the beginning of the fluctuation (for example: TEMPO FM1030).
- 15.14.9 When the period of temporary fluctuations to meteorological conditions is forecast to occur from the beginning of the trend forecast period and cease by the end of that period, the temporary fluctuations shall be indicated by only the change indicator TEMPO (letter indicators FM and TL and associated time groups being omitted).
- 15.14.10 Following the change groups TTTTT TTGGgg, only the group(s) referring to the element(s) which is (are) forecast to change significantly shall be included. However, in the case of significant changes of the clouds, all cloud groups, including any significant layer(s) or masses not expected to change, shall be given.
- 15.14.11 Regulation 15.5.6 shall apply.
- 15.14.12 Inclusion of significant forecast weather w'w', using the appropriate abbreviations in accordance with Regulation 15.8, shall be restricted to indicate:
 - (1) The onset, cessation or change in intensity of the following weather phenomena:
 - Freezing precipitation;
 - Moderate or heavy precipitation (including showers);
 - Duststorm;

- Sandstorm
- Thunderstorm (with precipitation);
- Other weather phenomena given in Code table 4678 as agreed by the meteorological authority and air traffic services authority and operators concerned.
- (2) The onset or cessation of the following weather phenomena:
 - Freezing fog;
 - Low drifting dust, sand or snow;
 - Blowing dust, sand or snow;
 - Thunderstorm (without precipitation);
 - Squall;
 - Funnel cloud (tornado or waterspout).
- 15.14.13 To indicate the end of significant weather phenomena w'w', the abbreviation NSW (Nil Significant Weather) shall replace the group w'w'.
- 15.14.14 When no cloud below 1 500 metres (5 000 ft) or the highest minimum sector altitude, whichever is greater, and no cumulonimbus and no towering cumulus are forecast, and CAVOK is not appropriate, the abbreviation NSC shall be used.
- 15.14.15 When none of the elements listed in Regulation 15.14.2 is expected to change significantly as to require a change to be indicated, this shall be indicated by the code word NOSIG. NOSIG (no significant change) shall be used to indicate meteorological conditions which do not reach or pass specified threshold criteria.
- 15.15 Group (**RMK**....)

The indicator RMK denotes the beginning of a section containing information included by national decision which shall not be disseminated internationally.

A-38 Volume I.1

FM 18-XII BUOY

Report of a buoy operation

CODE FORM:

SECTION 0	$M_i M_i M_j M_j \\$	$A_1b_wn_bn_bn_b$	YYMMJ	$GGggi_w$	$Q_cL_aL_aL_aL_aL_a$
		$L_oL_oL_oL_oL_oL_o$	$(6Q_IQ_tQ_A/)$		
SECTION 1	(111Q _d Q _x	0ddff 4PPPP	1s _n TTT -	$\left\{\begin{array}{l} 2s_nT_dT_dT_d\\ or\\ 29UUU \end{array}\right\}$	$3P_0P_0P_0P_0$
050510110	(2222.0			000 0 0	
SECTION 2	$(222Q_dQ_x$	$0s_nT_wT_wT_w$	$1P_{wa}P_{wa}H_{wa}H_{wa}$	$20P_{wa}P_{wa}P_{wa}$	21H _{wa} H _{wa} H _{wa})
SECTION 3	$(333Q_{d1}Q_{d2}$	(8887k ₂	$2z_0z_0z_0z_0$	$3T_0T_0T_0T_0$	$4S_0S_0S_0S_0$
		(66k ₆ 9k ₃	$2z_nz_nz_nz_n$ $2z_0z_0z_0z_0$	$3T_nT_nT_nT_n$ $d_0d_0c_0c_0c_0$	$4S_nS_nS_nS_n$)
			$2z_nz_nz_nz_n$	$d_nd_nc_nc_nc_n$)	
SECTION 4	(444	$1Q_PQ_2Q_{TW}Q_4$	$2Q_NQ_LQ_AQ_Z$	$\begin{cases} (Q_cL_aL_aL_aL_aL_a\\ or\\ (YYMMJ \end{cases}$	$\left. egin{array}{ll} L_{o}L_{o}L_{o}L_{o}L_{o} O \\ GGgg/) \end{array} ight. ight.$
			.,	$9/Z_dZ_dZ_d))$	

SECTION 5 (555 Groups to be developed nationally)

Notes:

- (1) BUOY is the name of the code for reporting buoy observations.
- (2) A BUOY report, or a bulletin of BUOY reports, is identified by the group $M_iM_iM_jM_j = ZZYY$.
- (3) The inclusion of the group $9/Z_dZ_dZ_d$ is strongly recommended for buoys which have been deployed with drogues.
- (4) The group $9/Z_dZ_dZ_d$ should not be used in reports from a buoy on which a drogue has never been installed.
- (5) The code form is divided into six sections, the first being mandatory in its entirety, except group $6Q_lQ_tQ_A/$, and the remainder optional as data are available:

Section number	Symbolic figure group	Contents
0	_	Identification, time and position data
1	111	Meteorological and other non-marine data
2	222	Surface marine data
3	333	Temperatures, salinity and current (when available) at selected depths
4	444	Information on engineering and technical parameters, including quality control data
5	555	Data for national use

REGULATIONS:

18.1 General

The code name BUOY shall not be included in the report.

18.2 Section 0

- 18.2.1 All groups in Section 0 are mandatory, except group 6Q_iQ_tQ_A/, and shall be included in each report, even if no other data are reported.
- 18.2.2 Each individual BUOY report, even if included in a bulletin of such reports, shall contain as the first group the identification group M_iM_iM_iM_i.

18.2.3 $Group A_1b_wn_bn_bn_b$

Only buoy numbers $(n_b n_b n_b)$ 001 through 499 are assigned. In the case of a drifting buoy, 500 shall be added to the original $n_b n_b n_b$ number.

Notes:

- (1) A₁b_w normally corresponds to the maritime zone in which the buoy was deployed. The WMO Secretariat allocates to Members, who request and indicate the maritime zone(s) of interest, a block or blocks of serial numbers (n_bn_bn_b) to be used by their environmental buoy stations.
- (2) The Member concerned registers with the WMO Secretariat the serial numbers actually assigned to individual stations together with their geographical positions of deployment.
- (3) The Secretariat informs all concerned of the allocation of serial numbers and registrations made by individual Members.

18.2.4 Groups Q_cL_aL_aL_aL_aL_a L_oL_oL_oL_oL_oL_o

Position shall be reported in tenths, hundredths or thousandths of a degree, depending on the capability of the positioning system. When the position is in tenths of a degree, the groups shall be encoded as $Q_cL_aL_aL_a/I$ $L_oL_oL_oL_o/I$. When the position is in hundredths of a degree, the groups shall be encoded as $Q_cL_aL_aL_a/I$ $L_oL_oL_oL_oL_o/I$.

18.2.5 Group $(6Q_1Q_tQ_A/)$

 $Q_lQ_tQ_A$ are quality control indicators. Q_l and Q_A apply to position and Q_t to time.

18.3 Section 1

- 18.3.1 Each of the groups in Section 1 shall be included for all parameters that have been measured, when data are available.
- 18.3.2 When data are missing for all groups, the entire section shall be omitted from the report.

18.3.3 Group 111Q_dQ_x

 Q_d is a quality control indicator for the section. If all data groups have the same quality control flag value, Q_d shall be coded with that value and Q_x shall be set to 9. If only one data group in the section has a quality control flag other than 1, Q_d shall be coded with that flag and Q_x shall indicate the position of this group within the section. If more than one data group have a quality control flag greater than 1, Q_d shall be set to the greater flag value and Q_x shall be set to 9.

Note: When Q_x shows the position of the data group, it should be relative to the group containing Q_x . For example, $Q_x = 1$ refers to the data group immediately following.

18.4 Section 2

- 18.4.1 Each of the groups in Section 2 shall be included for all parameters that have been measured, when data are available.
- 18.4.2 When data are missing for all groups, the entire section shall be omitted from the report.

A-40 Volume I.1

18.4.3 Group 222Q_dQ_x

Regulation 18.3.3 shall apply.

18.5 Section 3

18.5.1 General

Section 3 is in two parts. The first part, identified by the indicator group $8887k_2$, shall be used to report temperatures and/or salinity at selected depths. The second part, identified by the indicator group $66k_69k_3$, shall be used to report current at selected depths. Either or both parts shall be transmitted, depending on the availability of the temperature and/or salinity data for the first part and of the current data for the second part.

18.5.2 Temperatures shall be reported in hundredths of a degree Celsius. When accuracy is limited to tenths of a degree, data shall be encoded using the general form $3T_nT_n/$.

18.5.3 Group 333Q_{d1}Q_{d2}

 $Q_{d1}Q_{d2}$ are two quality control indicators. Q_{d1} is used to indicate the quality of the temperature and salinity profile and Q_{d2} is used to indicate the quality of the current speed and direction profile.

18.6 Section 4

18.6.1 General

Additional groups in this section shall be included as data are available or required.

18.6.2 Group $(1Q_PQ_2Q_{TW}Q_4)$

When Q_P , Q_2 , Q_{TW} and Q_4 = 0, the corresponding group shall not be transmitted. Its absence thus indicates a satisfactory general operation.

18.6.3 Group $(2Q_NQ_LQ_AQ_z)$

 Q_N gives the quality of the satellite transmission. Q_L and Q_A are indicators on the quality of location. Q_z indicates whether or not probe depths as reported in Section 3 are corrected using hydrostatic pressure.

- 18.6.4 In Section 4, pressure of fields $(Q_cL_aL_aL_aL_aL_aL_aL_aL_aL_aL_oL_oL_oL_oL_oL_oL_o)$ and (YYMMJ GGgg/) is driven by the value of the Q_L indicator:
 - (a) Group 2Q_NQ_LQ_AQ_z absent: fields (Q_cL_aL_aL_aL_aL_aL_aL_aL_oL_oL_oL_oL_oL_oL_o) and (YYMMJ GGgg/) not coded;
 - (b) $Q_L = 1$: fields YYMMJ GGgg/ coded (fields $Q_c L_a L_a L_a L_a L_a L_a L_o L_o L_o L_o L_o L_o Los ent);$
 - (c) $Q_L = 2$: fields $Q_c L_a L_a L_a L_a L_a L_o L_o L_o L_o L_o L_o Coded (fields YYMMJ GGgg/ absent).$

18.6.5 Group (Q_cL_aL_aL_aL_aL_a)

This group shall be transmitted only when $Q_L = 2$ (location over one pass only). It gives the latitude of the second possible solution (symmetrical to the satellite subtrack).

Note: Same coding as in Section 0.

18.6.6 Group $(L_oL_oL_oL_oL_oL_oL_o)$

This group shall be transmitted only when Q_L = 2 and it gives the longitude of the second possible position, the latitude being indicated by the previous group.

Note: Same coding as in Section 0.

18.6.7 Groups (YYMMJ GGgg/)

The groups YYMMJ GGgg/ give the exact time of the last known position and shall be transmitted only when $Q_L = 1$ together with the following group $7V_BV_Bd_Bd_B$.

18.6.8 Group $(3Z_hZ_hZ_hZ_h)$

Hydrostatic pressure of lower end of cable. Pressure is expressed in units of kPa (kilopascal, i.e. centibars). If group $(3Z_hZ_hZ_hZ_h)$ is present, then group $(4Z_cZ_cZ_cZ_c)$ is mandatory.

18.6.9 Group $(4Z_cZ_cZ_cZ_c)$

Length of cable in metres (thermistor strings).

18.6.10 Group $(5B_tB_tX_tX_t)$

Group $(5B_tB_tX_tX_t)$ should be omitted if buoy-type and drogue-type information is not available.

18.6.11 Group $(6A_hA_hA_hA_N)$

Group 6 $(6A_hA_hA_hA_h)$ should be omitted if the buoy is not reporting wind or if the information is not available for both anemometer height and anemometer type. $A_hA_hA_h$ is the anemometer height above station level. Height is expressed in decimetres. For drifting and moored buoys, station level is assumed to be sea level. /// shall be used for unknown values. A value of 999 shall be used to say that anemometer height is artificially corrected to 10 metres by applying a formula.

18.6.12 Group (7V_BV_Bd_Bd_B)

This group shall be transmitted only when $Q_L = 1$.

Example: At the last location, the true direction of the buoy is 47° and its speed is 13 cm s^{-1} – the group is coded 71304.

18.6.13 *Group* (8V_iV_iV_i)

The number of groups $8V_iV_iV_iV_i$ containing information on the engineering status of the buoy shall not exceed three.

Notes:

- (1) The physical equivalent of the value $V_iV_iV_iV_i$ will be different from one buoy to another.
- (2) Interpretation of these groups will not be necessary to permit use of the meteorological data.

A-42 Volume I.1

FM 20-VIII RADOB

Report of ground radar weather observations

CODE FORM:

Part A

$M_i M_i M_j M_j \\$	YYGGg	{ IIiii or 99L _a L _a L _a	$Q_cL_oL_oL_oL_o$
$4R_wL_aL_aL_a\\$	$Q_cL_oL_oL_oL_o$	$A_{C}S_{C}W_{C}a_{C}r_{t} \\$	$t_e d_s d_s f_s f_s \\$
D D			

Part B

SECTION 1	$M_iM_iM_jM_j$	YYGGg	$\left\{ \begin{array}{l} \text{IIiii} \\ \text{or} \\ 99 L_a L_a L_a \end{array} \right.$	$\left.\begin{array}{c} \\ Q_cL_oL_oL_oL_o\end{array}\right\}$
	$N_eN_eW_RH_eI_e$			$N_eN_eW_RH_eI_e$
	/555/	$N_e N_e a_e D_e f_e \\$		$N_e N_e a_e D_e f_e \\$
SECTION 2	51515	Code groups to b	e developed regior	nally
SECTION 3	61616	Code groups to b	e developed nation	nally
	D D			

Notes:

- (1) RADOB is the name of the code for reporting ground radar weather observations.
- (2) A RADOB report from a land station is identified by M_iM_i = FF, a RADOB report from a sea station by M_iM_i = GG.
- (3) The code form is divided into two parts:

Part	Identifier letters (M _j M _j)	Contents
Α	AA	Information on tropical cyclone
В	ВВ	Information on significant features

Each part can be transmitted separately.

(4) Part B is divided into three sections:

Section number	Symbolic figure group	Contents
1	_	Identification and position data; information on significant features
2	51515	Code groups to be developed regionally
3	61616	Code groups to be developed nationally

REGULATIONS:

20.1	General
20.1.1	The code name RADOB shall not be included in the report.
20.1.2	The call sign D D shall be included only in RADOB reports from sea stations.
20.2	Part A
20.2.1	Part A shall be used whenever the observed echo pattern is recognized as relating to a tropical cyclone.
20.2.2	Groups 4R _w L _a L _a L _a Q _c L _o L _o L _o L _o
	The position of the centre, or the eye, of the tropical cyclone shall be reported by means of the groups $4R_wL_aL_aL_a$ $Q_cL_oL_oL_oL_o$.
20.2.3	Group AcScWcacrt
20.2.3.1	The characteristics as regards size, development and relative location of the centre or the eye of the tropical cyclone shall be reported by the group $A_cS_cW_ca_{crt}$.
20.2.3.2	Whenever doubt exists as to the location of the eye or whether the outermost spiral band is indeed visible on the radar scope, r_t shall be coded as \emph{l} .
20.2.4	Group tedsdsfsfs
20.2.4.1	Information on the movement of the centre, or eye, of the tropical cyclone shall be included in the report by means of the group $t_e d_s d_s f_s f_s$.
20.2.4.2	If no information on the movement of the centre, or eye, of the tropical cyclone is available, the group $t_e d_s d_s f_s f_s$ shall be coded as /////.
20.3	Part B
20.3.1	In Part B, one series of groups $N_eN_eW_RH_eI_e$ shall be used to report the location of phenomena and/or clouds and their characteristics. Group $N_eN_eW_RH_eI_e$ shall be repeated as necessary for a full description of the spatial distribution of the echo on the radar scope in 60 × 60 km squares.
20.3.2	Group N _e N _e W _R H _e I _e
20.3.2.1	Characteristics concerning the location, type of phenomena and/or clouds and the elevation and intensity of their echoes shall be reported by groups $N_eN_eW_RH_eI_e$.
20.3.2.2	Groups $N_eN_eW_RH_eI_e$ shall be included in the report in the rising order of the squares' sequential numbers $N_eN_e.$
20.3.2.3	If several weather phenomena were observed in a single 60 × 60 km square, the most dangerous phenomenon shall be reported in W_R , the highest echo elevation in $H_{\rm e}$ and the greatest echo intensity in $I_{\rm e}$.
20.3.2.4	Cloud type data (W_{R}) shall be reported only if no weather phenomena were observed in the 60 × 60 km square.
20.3.2.5	Data on stratiform cloud without precipitation shall be reported if it occupies no less than $^1/4$ of the 60 × 60 km square's area.
20.3.2.6	Data on convective cloud shall be reported irrespective of the centres' dimensions within the limits of the 60 \times 60 km square.
20.3.2.7	If, in the 60 \times 60 km square, convective and stratiform clouds were observed, only data on the convective clouds shall be reported.
20.3.2.8	Cloud echo intensity (I_e) shall be coded as I .

A-44 Volume I.1

20.3.3	Group NeNeaeDefe
20.3.3.1	Characteristics concerning change and movement of the echo pattern shall be reported by groups N _o N _o a _o D _o f _o , preceded by the identifier group /555/.
20.3.3.2	Group N _e N _e a _e D _e f _e shall be used to report the evolutionary characteristics of no more than three echo patterns. The identifier group /555/ shall not be repeated.
20.3.3.3	N_eN_e shall be used to report the number of the 60 × 60 km square in which the radar operator placed the origin of the speed vector characterizing the direction of movement D_e of the echo pattern. If only the tendency of the echo pattern a_e has been estimated,
20.3.3.4	the number of any square covered by the pattern shall be reported in N_eN_e . The tendency of the echo pattern a_e shall be estimated over a period of approximately one hour, but not longer than 90 minutes and not shorter than 30 minutes. The echo area shall be considered as increasing or diminishing if it changes by more than 25 per cent over a period of time not exceeding 90 minutes.
20.3.3.5	If no information is available on the change and movement of the echo, groups /555/ and $N_eN_ea_eD_ef_e$ shall not be included in the report.
20.3.3.6	The movement of individual echoes in the echo pattern shall not be reported.
20.3.4	Reporting of inoperative equipment, anomalous propagation and absence of an echo
	In the case of inoperative equipment, anomalous propagation or absence of an echo on the radar scope, groups $N_eN_eW_RH_eI_e$, /555/ and $N_eN_ea_eD_ef_e$ shall be replaced by one of the following groups, as appropriate:
	0/0/0 Radar equipment inoperative;
	or 0//// Anomalous propagation; or
	00000 No echo visible on radar scope.

FM 22-IX Ext. RADREP

Radiological data report (monitored on a routine basis and/or in case of accident)

CODE FORM:

Notes:

- (1) RADREP is the name of the code for reporting radiological data monitored on a routine basis and/or in case of an accident. A RADREP report may have a trend forecast appended.
- (2) A RADREP report, or a bulletin of RADREP reports, is identified by the word RADREP.
- (3) Relevant groups of Section 0, the first three groups and the group 6XXXs_naa of Section 2 are always included in a report of radiological data from a surface observing station. Section 1 is only included when data on accident notification is reported.
- (4) Relevant groups of Section 0, the first two groups and the group 6XXXs_naa of Section 3 are always included in a report of radiological data from an airborne observing station.

^{*} Included in a fixed land station report only.

^{**} Included in a sea or mobile land station report only.

(5) The code form is divided into seven sections:

Section number	Symbolic figure group	Contents
0	_	Identification and position data (ship's call sign/buoy identifier, date and reporting time, location and elevation/altitude), type of report and unit of reported radiological quantity
1	111AA	Data on accident notification: activity or facility involved, date and time of accident, location of accident, early notification convention article applicable, type and composition of release, cause and evolution of incident, characteristics, state and evolution of release, possible health effect, protective measures taken with its radius, actual or effective release height, main transport in atmosphere and/or water, and discharge of receiving water body
2	222	Data on date and time of start and end of monitoring (when relevant, isotope mass and element name), observed radiological quantity, dose on land surface and density of deposits from a surface observing station
3	333	Data on time of monitoring, unit of wind speed, upper wind (when relevant, isotope mass and element name) and observed radiological quantity from an airborne observing station
4	444	Data on time of observed meteorological conditions, unit of wind speed, total cloud cover, surface wind, temperature, dew point, station pressure, precipitation and related duration, weather and variation of surface wind direction
5	555	Data on forecast trend of accident in next six hours: time or period of expected change, early notification convention article applicable, type and composition of release, cause and evolution of incident, characteristics, state and evolution of release, possible health effect, protective measures to be taken and its radius, actual or effective release height, main transport in atmosphere and/or water, discharge of receiving water body, and possibility that plume will encounter precipitation and/or change in wind
6	666	Data on forecast trend of radiological quantity in next six hours: date and time (when relevant, isotope mass and element name), expected radiological quantity, expected dose on land surface and density of deposits
7	777	Data on forecast trend in surface meteorological conditions in next six hours: time or period of expected change, total cloud cover, surface wind, temperature, precipitation and related duration, and weather

REGULATIONS:

22.1 General

22.1.1 The code name RADREP shall be included at the beginning of an individual RADREP report. In the case of a bulletin, which may consist of more than one RADREP report, the code name RADREP shall be included in the first line of the text of the bulletin, and the identification, date, reporting time, type of report and position groups shall be included in every individual report.

Note: See Regulation 12.1.7.

A-48 Volume I.1

$$22.1.2 \qquad \qquad Groups \left\{ \begin{array}{l} IIiii^* \\ or \\ D \dots D^{**} \\ or \\ A_1b_wn_bn_bn_b \end{array} \right\} \begin{array}{l} Y_rY_rG_rG_ra_5 \qquad L_aL_aL_aA \qquad L_oL_oL_oL_oL_oB \qquad h_rh_rh_rh_ri_h \\ \end{array}$$

Note: See Regulation 18.2.3, Notes (1), (2) and (3).

The identification and position of a fixed land station shall be indicated by means of the group IIiii. The identification of a sea or mobile land station shall be indicated by the group D.... D or $A_1b_wn_bn_bn_b$. The position and elevation/altitude of fixed and mobile land stations, sea stations or airborne observing stations shall be indicated by the groups $L_aL_aL_aA$ $L_oL_oL_oL_oB$ $h_rh_rh_rh_rh_b$.

22.1.3 Use of sections

- 22.1.3.1 Accident notification reports shall always contain at least Sections 0 and 1. When the report contains environmental (on site) radiological monitoring results and/or meteorological monitoring results, that report shall also include Sections 2 and/or 4, respectively.
- 22.1.3.2 Environmental radiological data monitoring results reports from surface observing stations of a routine nature or activated following an accident shall always contain at least Sections 0 and 2. When in addition the report contains meteorological monitoring results, that report shall also include Section 4.
- 22.1.3.3 In radiological data monitoring results reports of gamma dose in air along the main transport path (defined location and time period), Section 2 shall contain the groups 222 $Y_sY_sG_sG_sg_sg_s$ $Y_eY_eG_eG_eg_eg_e$ 6XXXs_naa.
- 22.1.3.4 In radiological data monitoring results reports of air concentration (of named isotope type including gross beta), Section 2 shall contain the groups 222 $Y_sY_sG_sG_sg_sg_s$ $Y_eY_eG_eG_eg_eg_e$ 5nnnIS 6XXXs_naa.
- 22.1.3.5 In radiological data monitoring results reports of concentration in precipitation (of named isotope type), Section 2 shall contain the groups 222 $Y_sY_sG_sG_sg_sg_s$ $Y_eY_eG_eG_eg_eg_e$ 5nnnIS 6XXXs_naa, and Section 4 at least the groups 444 6RRRt_R.
- 22.1.3.6 When relevant forecast data are available, Sections 5, 6 and/or 7 shall be appended as appropriate to an accident notification report or an environmental radiological data monitoring report, to indicate expected changes in radiological and/or meteorological conditions in the next six hours.

22.2 Section 1 – Data on accident notification

22.2.1 Group 111AA

This group shall always be included in accident notification reports. AA shall be encoded in accordance with Code table 0177 – Activity or facility involved in incident.

$$22.2.2 \hspace{1.5cm} \textit{Groups} \hspace{0.2cm} \textbf{MMJJJ} \hspace{0.2cm} \textbf{Y}_{a} \textbf{Y}_{a} \textbf{G}_{a} \textbf{G}_{a} \textbf{g}_{a} \textbf{g}_{a} \hspace{0.2cm} \textbf{L}_{a}{}^{1} \textbf{L}_{a}{}^{1} \textbf{L}_{a}{}^{1} \textbf{A} \hspace{0.2cm} \textbf{L}_{o}{}^{1} \textbf{L}_{o}{}^{1} \textbf{L}_{o}{}^{1} \textbf{L}_{o}{}^{1} \textbf{B}$$

These groups shall always be included in accident notification reports to give the date, time and location of the accident: month, three last digits of year, day of the month, hours and minutes in UTC, latitude and longitude in degrees and minutes.

Included in a fixed land station report only.

^{**} Included in a sea or mobile land station report only.

22.2.3 Group 4A_aB_TR_cR_cR_cR_c

This group shall always be included in accident notification reports. A_a shall be encoded in accordance with Code table 0131 – Accident early notification – article applicable. B_T shall be encoded in accordance with Code table 0324 – Type of release. $R_cR_cR_cR_c$ shall be encoded such that each R_c is in accordance with Code table 3533 – Composition of release, so that a combination of up to four elements shall be reported in order of significance. If less than four elements are to be reported, the group shall be completed with solidi (/).

22.2.4 Group 5A_cA_eE_cE_sE_e

This group shall always be included in accident notification reports. A_c shall be encoded in accordance with Code table 0133 – Cause of incident; A_e in accordance with Code table 0135 – Incident situation; E_c in accordance with Code table 0933 – Characteristics of release; E_s in accordance with Code table 0943 – State of current or expected release; and E_e in accordance with Code table 0935 – Release behaviour over time.

22.2.5 Group 6R_eP_aD_{Pa}D_{Pa}D_{Pa}D_{Pa}

This group shall always be included in accident notification reports. $R_{\rm e}$ shall be encoded in accordance with Code table 3535 – Possibility of significant chemical toxic health effect; and $P_{\rm a}$ in accordance with Code table 3131 – Countermeasures taken near border.

Note: This group may be repeated as necessary, e.g. if more than one protective measure is to be indicated.

$$22.2.6 \qquad \qquad Groups \left. \left\{ \begin{array}{l} (7h_ah_ah_ah_a) \\ or \\ (7h_eh_eh_eh_e) \end{array} \right\} \left. (8d_{ta}d_{ta}d_{ta}f_{ta}f_{ta}) \right.$$

If release is not ground-level release and relevant data are available, these groups shall be included in accident notification reports to give either the actual release height or the effective release height, in metres, the main transport direction in atmosphere, in degrees from north, and the main transport speed in atmosphere, in metres per second.

22.2.7 Groups (9dtwdtwdtwftwftw) (0qqq0aa)

If release is to water and relevant data are available, these groups shall be included in accident notification reports to give the main transport direction in water, in degrees from north, and the main transport speed in water, in metres per second, and the discharge of the main receiving water body, in cubic metres per second, as appropriate.

22.3 Section 2 – Radiological monitoring data from a surface observing station

22.3.1 Groups 222 $Y_sY_sG_sG_sg_sg_s$ $Y_eY_eG_eG_eg_eg_e$

These groups shall always be included in radiological data monitoring result reports or accident reports to give the day and time of start and day and time of end, in hours and minutes UTC, of monitoring operations or release.

22.3.2 *Group* (5nnnIS)

22.3.2.1 The group 5nnnIS shall be included in either radiological data monitoring result reports of air concentration of named isotope type including gross beta or to give the isotope mass and element name.

Notes:

- (1) This group may be repeated as necessary, e.g. if more than one isotope is to be included.
- (2) See Regulation 22.1.3.5.
- 22.3.2.2 The group 5nnnIS shall be omitted from the report in radiological data monitoring results of gamma dose in air along the main transport path for defined location and time.

A-50 Volume I.1

22.3.3 Group 6XXXs_naa

This group shall always be included in radiological data monitoring results reports or accident reports to give the three most significant digits of the reported monitored radiological quantity or estimated release quantity followed, without a space, by the sign of the exponent (s_n) and the decimal exponent (a_a). The type of report and the unit of the reported radiological quantity shall be indicated by a_5 in the group $Y_rY_rG_rG_ra_5$ of Section 0.

Note: See Note (1) to Regulation 22.3.2.1.

22.3.4 Group (7XXXs_naa)

If relevant data are available, this group shall be included in reports of radiological data monitoring results to give the dose of gamma radiation or the density of deposits (total beta activity) on land surface.

22.4 Section 3 – Radiological monitoring data from an airborne observing station

- 22.4.1 Inclusion of groups of Section 3 shall be determined by national decision.
- 22.4.2 Section 3 shall always be preceded by Section 0.

22.4.3 *Group* (5nnnIS)

This group shall be included in radiological data monitoring results of air concentration of named isotope type followed by the group 6XXXs_naa (radiological quantity of the isotope).

Note: See Note (1) to Regulation 22.3.2.1.

22.4.4 Group 6XXXsnaa

Regulation 22.3.3 shall apply.

22.5 Section 4 – Meteorological monitoring data

22.5.1 If meteorological data are available, relevant groups of this section shall be included in a radiological data report.

Note: See Regulation 22.1.3.5.

22.5.2 Group (6RRRt_R)

- 22.5.2.1 When no precipitation occurred during the reference period, RRR shall be encoded 000.
- 22.5.2.2 When precipitation occurred during the reference period but the amount of precipitation has not been measured, RRR shall be encoded ///.

22.5.3 Groups (80000 0dadadcdc)

If relevant data are available, these groups shall be included in addition to the group Nddff or the groups Nddff 00fff, as the case may be, to give the variation in wind direction.

Note: Variation and mean wind direction are measured over the 10-minute period immediately preceding the observation.

22.6 Section 5 – Accident behaviour over time

22.6.1 Group TTGGgg

The time group GGgg, preceded without a space by one of the letter indicators TT = FM (from) or AT (at), shall be used, as appropriate, to indicate the beginning (FM) of a forecast change, or the time (AT) at which specific forecast conditions are expected.

22.6.2 Group 122R_pI_n

This group shall be included to indicate the possibility that a plume will encounter precipitation in the State in which the incident occurred and whether the plume will encounter a change in wind direction and/or speed. R_p shall be encoded in accordance with Code table 3548, and I_n in accordance with Code table 1743.

A-52 Volume I.1

FM 32–XI Ext. PILOT Upper-wind report from a fixed land station

FM 33–XI Ext. PILOT SHIP Upper-wind report from a sea station

FM 34–XI Ext. PILOT MOBIL Upper-wind report from a mobile land station

CODE FORM:

Part A

SECTION 1	$M_i M_i M_j M_j \\$	D D**	YYGGa ₄		
		{ IIiii* or 99LaLaLa	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} **	h ₀ h ₀ h ₀ h ₀ i _m ***
SECTION 2	44nP ₁ P ₁ or 55nP ₁ P ₁	ddfff	ddfff		etc.
SECTION 3	$ \begin{array}{c} 77P_{m}P_{m}P_{m}\\ \text{or}\\ 66P_{m}P_{m}P_{m}\\ \text{or} \end{array} $	$d_m d_m f_m f_m f_m$	$(4v_bv_bv_av_a)$		
	or 7H _m H _m H _m H _m or 6H _m H _m H _m H _m or 77999	$d_md_mf_mf_mf_m$	$(4v_bv_bv_av_a)$		
SECTION 5	51515 52525 59595	Code groups to b	e developed region	ally	
SECTION 6	61616 62626 69696	Code groups to b	e developed nation	ally	

Part B

Used in FM 32 only.

^{**} Used in FM 33 and FM 34 only.

^{***} Used in FM 34 only.

FM 32 PILOT, FM 33 PILOT SHIP, FM 34 PILOT MOBIL

SECTION 4	9 or 8	$t_nu_1u_2u_3$	ddfff	ddfff	ddfff
	9 or 8 or	$t_nu_1u_2u_3$	ddfff	ddfff	ddfff
	21212	$n_0n_0P_0P_0P_0$ $n_1n_1P_1P_1P_1$	$d_0d_0f_0f_0f_0\\d_1d_1f_1f_1f_1$		
		$n_n n_n P_n P_n P_n$	$d_n d_n f_n f_n f_n$		
SECTION 5	51515 52525 59595	Code groups to I	oe developed regio	onally	
SECTION 6	61616 62626 69696	Code groups to I	oe developed natio	onally	
Part C					
SECTION 1	$M_i M_i M_j M_j$	D D** ∫ ∏iii*	YYGGa ₄		
		$\begin{cases} or \\ 99L_aL_aL_a \end{cases}$	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} **	$h_0h_0h_0h_0i_m^{***}$
SECTION 2	$44nP_1P_1$ or $55nP_1P_1$	ddfff	ddfff		etc.
SECTION 3	77P _m P _m P _m or 66P _m P _m P _m	$\left.\begin{array}{ll} & d_m d_m f_m f_m f_m \end{array}\right.$	$(4v_bv_bv_av_a)$		
	or $7H_mH_mH_mH_m$ or $6H_mH_mH_mH_m$ or 77999	$\left.\begin{array}{ll} & d_m d_m f_m f_m f_m \end{array}\right.$	$(4v_bv_bv_av_a)$		
SECTION 5	51515 52525 59595	Code groups	to be developed r	egionally	
SECTION 6	61616 62626 69696	Code groups	to be developed r	ationally	

^{*} Used in FM 32 only.

A-54 Volume I.1

^{**} Used in FM 33 and FM 34 only.

^{***} Used in FM 34 only.

Part D

SECTION 1	$M_iM_iM_jM_j$	D D** IIiii* or	YYGGa₄		
	(99L _a L _a L _a	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} **	h ₀ h ₀ h ₀ i _m ***
SECTION 4	9 (or 1) or 8	t _n u₁u₂u₃	ddfff	ddfff	ddfff
	9)				
(or 1) or 8 or 21212	(or 1) or 8	t _n u ₁ u ₂ u ₃	ddfff	ddfff	ddfff
		$n_1n_1P_1P_1P_1$	$d_1d_1f_1f_1f_1\\$		
		$n_n n_n P_n P_n P_n$	$d_n d_n f_n f_n f_n$		
SECTION 5	51515 52525 59595	Code groups to b	e developed region	ally	
SECTION 6	61616 62626 69696	Code groups to b	e developed nation	ally	

Notes:

- (1) PILOT is the name of the code for an upper-wind report from a fixed land station. PILOT SHIP is the name of the code for an upper-wind report from a sea station. PILOT MOBIL is the name of the code for an upper-wind report from a mobile land station.
- (2) A PILOT report is identified by $M_iM_i = PP$, a PILOT SHIP report is identified by $M_iM_i = QQ$, and a PILOT MOBIL report is identified by $M_iM_i = EE$.
- (3) The code form consists of four parts as follows:

Part	<i>Identifier letters</i> (M _j M _j)	Isobaric surfaces
A B	AA } BB }	Up to and including the 100-hPa surface
C D	CC }	Above the100-hPa surface

Each part can be transmitted separately.

^{*} Used in FM 32 only.

^{**} Used in FM 33 and FM 34 only.

^{***} Used in FM 34 only.

(4) The code form is divided into a number of sections as follows:

Section number	Indicator figures or symbolic figure groups	Contents
1	_	Identification and position data
2	44 or 55	Data for standard isobaric surfaces
3	6, 7, 66 or 77	Data for maximum wind level(s), with altitudes given in pressure units or tens of geopotential metres, and data for vertical wind shear
4	8, 9 (or 1) or 21212	Data for fixed regional levels and/or significant levels, with altitudes given either in geopotential units or in pressure units
5	51515 52525 59595	Code groups to be developed regionally
		In parts A and C, identifier 55555 should not be used in Section 5.
6	61616 62626 69696	Code groups to be developed nationally

In parts A and C, identifier 66666 should not be used in Section 6 $\,$

REGULATIONS:

General
The code name PILOT, PILOT SHIP or PILOT MOBIL shall not be included.
Parts A and B shall contain data, in so far as available, only for levels up to and including the 100-hPa level.
Parts C and D shall contain data, in so far as available, only for levels above the 100-hPa level.
For example, if data at or below 100 hPa are not included in either Part A or B, as appropriate, they shall <i>not</i> be included in Part C or D. In this instance the non-included data shall be transmitted separately in the form of a correction report.

32.2 Parts A and C

32.2.1 Section 1 – Identification and position

The identification of a sea station or a mobile land station shall be indicated by the group D D. The observing station shall indicate its position by means of the group IIiii for a fixed land station, or the groups $99L_aL_aL_a$ $Q_cL_oL_oL_oL_o$ MMMULaULo for a sea station or a mobile land station. In addition, a mobile land station shall include the group $h_0h_0h_0h_0i_m$ to indicate the elevation of the station (including units of elevation) and the accuracy of the elevation.

32.2.2 Section 2 – Standard isobaric surfaces

- 32.2.2.1 Section 2 shall contain data, in ascending order with respect to altitude, for the standard isobaric surfaces of 850, 700, 500, 400, 300, 250, 200, 150 and 100 hPa in Part A and for the standard isobaric surfaces of 70, 50, 30, 20 and 10 hPa in Part C.
- 32.2.2.2 When pressure measurements are not available, wind data shall be reported using geopotential approximations to the standard isobaric surfaces.

A-56 Volume I.1

- 32.2.2.3 All standard isobaric surfaces within the sounding shall be represented in Section 2 of the report by either a data group or a group of solidi (/////).
- 32.2.2.4 Indicator figures 44 shall be used when the standard isobaric surfaces are located by means of pressure equipment. Indicator figures 55 shall be used for the reporting of winds at altitudes approximating the standard isobaric surfaces. If the pressure element failed during the ascent, indicator figures 55 shall replace the indicator figures 44 for the remaining standard isobaric surfaces to be reported.
- 32.2.2.5 In the report, no more than three wind groups shall follow a 44nP₁P₁ or 55nP₁P₁ group. The latter groups shall therefore be repeated as often as necessary.
- 32.2.3 Section 3 Maximum wind level(s) and vertical wind shear
- 32.2.3.1 For coding purposes, a maximum wind level:
 - (a) Shall be determined by consideration of the list of significant levels for wind speed, as obtained by means of the relevant recommended or equivalent national method (see Note under Regulation 32.3.1) and *not* by consideration of the original wind-speed curve;
 - (b) Shall be located above the 500-hPa isobaric surface and shall correspond to a speed of more than 30 metres per second.

Note: A maximum wind level is defined as a level at which the wind speed is greater than that observed immediately above and below that level.

- 32.2.3.2 Whenever more than one maximum wind level exists, these levels shall be reported as follows:
 - (a) The level of greatest maximum wind speed shall be transmitted first;
 - (b) The other levels shall be classified in descending order of speed and be transmitted only if their speed exceeds those of the two adjacent minimals by at least 10 metres per second;
 - (c) The levels of maximum wind with the same speed shall be encoded successively, beginning with the lowest one;
 - (d) Furthermore, the highest level attained by the sounding shall be transmitted, provided:
 - (i) It satisfies the criteria set forth in Regulation 32.2.3.1 above;
 - (ii) It constitutes the level of the greatest speed of the whole sounding.
- 32.2.3.3 When more than one level of maximum wind is observed, data for each level shall be reported by repeating Section 3.
- 32.2.3.4 Indicator figures
- 32.2.3.4.1 When a maximum wind occurred within the sounding and its level was determined by means of pressure, the indicator figures 77 shall be used in the first group of Section 3, i.e. 77P_mP_mP_m.
- 32.2.3.4.2 When a maximum wind occurred within the sounding and its altitude was expressed in tens of standard geopotential metres, the indicator figure 7 shall be used in the first group of Section 3, i.e. $7H_mH_mH_mH_m$.
- 32.2.3.4.3 When the greatest wind speed observed throughout the sounding occurred at the top of the sounding and the level of the greatest wind was determined by means of pressure, the indicator figures 66 shall be used in the first group of Section 3, i.e. 66P_mP_mP_m.
- 32.2.3.4.4 When the greatest wind speed observed throughout the sounding occurred at the top of the sounding and the altitude of the greatest wind was expressed in tens of standard geopotential metres, the indicator figure 6 shall be used in the first group of Section 3, i.e. $6H_mH_mH_mH_m$.
- 32.2.3.4.5 When a maximum wind is not observed or not reported, the group 77999 shall be reported in lieu of the maximum wind section, i.e. Section 3.

32.2.3.5 Group $(4v_bv_bv_av_a)$

The group $4v_bv_bv_av_a$ shall be included only if data for vertical wind shear are computed and are required to be reported.

32.2.4 Section 5 – Regional groups

Inclusion of groups of Section 5 shall be determined by regional decision.

32.2.5 Section 6 – National groups

Inclusion of groups of Section 6 shall be determined by national decision.

32.3 Parts B and D

32.3.1 Section 4 – Fixed regional levels and/or significant levels

32.3.1.1 Significant levels

The reported significant data *alone* shall make it possible to reconstruct the wind profile with sufficient accuracy for practical use. Care shall be taken that:

- (a) The direction and speed curves (in function of the log of pressure or altitude) can be reproduced with their prominent characteristics;
- (b) These curves can be reproduced with an accuracy of at least 10° for direction and five metres per second for speed;
- (c) The number of significant levels is kept strictly to a necessary minimum.

Note: To satisfy these criteria, the following method of successive approximations is recommended, but other methods of attaining equivalent results may suit some national practices better and may be used:

(1) The surface level and the highest level attained by the sounding constitute the first and the last significant levels.

The deviation from the linearly interpolated values between these two levels is then considered. If no direction deviates by more than 10° and no speed by more than five metres per second, no other significant level need be reported. Whenever one parameter deviates by more than the limit specified in paragraph (b) above, the level of greatest deviation becomes a supplementary significant level for *both* parameters.

(2) The additional significant levels so introduced divide the sounding into two layers. In each separate layer, the deviations from the linearly interpolated values between the base and the top are then considered. The process used in paragraph (1) above is repeated and yields other significant levels. These additional levels in turn modify the layer distribution, and the method is applied again until any level is approximated to the above-mentioned specified values.

For the purpose of computational work, it should be noted that the values derived from a PILOT report present two different resolutions:

- (a) Winds at significant levels are reported to the resolution of 5° in direction and one metre per second in speed;
- (b) Any interpolated wind at a level between two significant levels is *implicitly* reported to the resolution of ± 10° in direction and ± 5 metres per second in speed.

32.3.1.2 Fixed levels

- 32.3.1.2.1 The fixed levels reported in Section 4 shall be determined by regional decision.
- 32.3.1.2.2 In Section 4, the data groups for the fixed and significant levels within the sounding shall appear in ascending order with respect to altitude.

32.3.1.3 Indicator figures

32.3.1.3.1 When the altitudes of regional fixed levels and/or significant levels are given in units of 300 metres, the indicator figure 9 shall be used in Section 4 up to and including the height of 29 700 metres. Above that level, the indicator figure 1 shall be used to specify that 30 000 metres be added to the heights indicated by $t_nu_1u_2u_3$.

A-58 Volume I.1

- 32.3.1.3.2 When the altitudes of regional fixed levels and/or significant levels are given in units of 500 metres, the indicator figure 8 shall be used in Section 4.
- 32.3.1.3.3 To indicate that the first wind group refers to station level, u_1 shall be coded / (solidus), and appropriate values shall be reported for t_n , u_2 and u_3 .
- 32.3.1.4 *Altitudes*

The altitudes of fixed regional and significant levels shall be reported either in geopotential units or in pressure units. Only one of the units shall be used in a coded report.

- 32.3.1.5 Missing data
- 32.3.1.5.1 If altitude is given in geopotential units in Parts B and D, a layer for which data are missing shall be indicated by reporting the boundary levels of the layer and a level in between with a height value somewhere in between the boundary heights and a group ddfff of solidi (/////) to indicate the layer of missing data, provided that the layer is at least 1 500 geopotential metres thick. The boundary levels are the levels closest to the bottom and the top of the layer for which the observed data are available. The boundary levels are not required to meet "significant level" criteria. For example:

9226/ 27025 28030 9329/ ///// 29035

where 28030 and 29035 are the boundary level winds in 7 800 and 11 700 gpm altitude. The fictitious altitude 9 600 gpm together with the group of solidi indicates the layer for which data are missing.

32.3.1.5.2 If altitude is given in pressure units in Parts B and D, a layer for which data are missing shall be indicated by reporting the boundary levels of the layer and a level of solidi (/////) to indicate the layer of missing data, provided that the layer is at least 50 hPa thick. The boundary levels are the levels closest to the bottom and the top of the layer for which the observed data are available. The boundary levels are not required to meet "significant level" criteria. The boundary levels and the missing data level groups will be identified by appropriate nn numbers. For example:

33P₃P₃P₃ d₃d₃f₃f₃f₃f 44/// ///// 55P₅P₅P₅ d₅d₅f₅f₅f₅

where the levels 33 and 55 are the boundary levels and 44 indicates the layer for which data are missing.

32.3.2 Section 5 – Regional groups

Inclusion of groups of Section 5 shall be determined by regional decision.

32.3.3 Section 6 – National groups

Inclusion of groups of Section 6 shall be determined by national decision.

FM 35–XI Ext. TEMP

Upper-level pressure, temperature, humidity and wind report from a fixed land station

Upper-level pressure, temperature, humidity and wind report from a sea station

Upper-level pressure, temperature, humidity and wind report from a sonde released by carrier balloons or aircraft

FM 38–XI Ext. TEMP MOBIL

Upper-level pressure, temperature, humidity and wind report from a mobile land station

CODE FORM:

Part A

SECTION 1	$M_i M_i M_j M_j$	D D**	YYGGI _d		
		{ IIiii* or 99L _a L _a L _a	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} ***	h ₀ h ₀ h ₀ h ₀ i _m ****
SECTION 2	99P ₀ P ₀ P ₀ P ₁ P ₁ h ₁ h ₁ h ₁	$T_0T_0T_{a0}D_0D_0$ $T_1T_1T_{a1}D_1D_1$	$d_0d_0f_0f_0f_0\\d_1d_1f_1f_1f_1$		
	$P_nP_nh_nh_nh_n$	$T_nT_1T_{an}D_nD_n$	$d_n d_n f_n f_n f_n$		
SECTION 3	88P _t P _t P _t or 88999	$T_tT_tT_{at}D_tD_t$	$d_t d_t f_t f_t f_t$		
SECTION 4	77P _m P _m P _m or 66P _m P _m P _m } or 77999	$d_m d_m f_m f_m f_m$	$(4v_bv_bv_av_a)$		
SECTION 7	31313	S _Γ Γ _a Γ _a S _a S _a	8GGgg	$(9s_nT_wT_wT_w)$	
SECTION 9	51515 52525 59595	Code groups to be	developed regional	ly	
SECTION 10	61616 62626 69696	Code groups to be	developed national	ly	

^{*} Used in FM 35 only.

^{**} Used in FM 36 and FM 38 only.

^{***} Used in FM 36, FM 37 and FM 38 only.

^{****} Used in FM 38 only.

Part B					
SECTION 1	$M_iM_iM_jM_j$	D D** ∫IIiii*	YYGGa₄		
		$\left\{ egin{aligned} & ext{or} \ & ext{99L}_{a} ext{L}_{a} ext{L}_{a} \end{aligned} ight.$	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} ***	$h_0h_0h_0h_0i_m^{****}$
SECTION 5	$n_0 n_0 P_0 P_0 P_0 n_1 n_1 P_1 P_1 P_1$	$T_0T_0T_{a0}D_0D_0$ $T_1T_1T_{a1}D_1D_1$			
	$n_n n_n P_n P_n P_n$	$T_nT_nT_{an}D_nD_n$			
SECTION 6	21212	$ n_0 n_0 P_0 P_0 P_0 n_1 n_1 P_1 P_1 P_1 $	$d_0d_0f_0f_0f_0\\d_1d_1f_1f_1f_1$		
		$n_n n_n P_n P_n P_n$	$d_n d_n f_n f_n$		
SECTION 7	31313	$S_r r_a r_a S_a S_a$	8GGgg	$(9s_nT_wT_wT_w)$	
SECTION 8	41414	$N_h C_L h C_M C_H$			
SECTION 9	51515 52525 59595	Code groups	to be developed regi	onally	
SECTION 10	61616 62626 69696	Code groups	to be developed nation	onally	
Part C					
SECTION 1	$M_i M_i M_j M_j \\$	D D**	$YYGGI_d$		
		$\begin{cases} or \\ 99L_aL_aL_a \end{cases}$	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} ***	$h_0h_0h_0h_0i_m^{****}$
SECTION 2	$P_1P_1h_1h_1h_1$	$T_1T_1T_{a1}D_1D_1$	$d_1d_1f_1f_1f_1$		
	$P_nP_nh_nh_nh_n$	$T_nT_nT_{an}D_nD_n$	$d_n d_n f_n f_n f_n$		
SECTION 3	88P _t P _t P _t or 88999	$T_{t}T_{t}T_{at}D_{t}D_{t}$	$d_t d_t f_t f_t f_t \\$		
SECTION 4	77P _m P _m P _m or 66P _m P _m P _m } or 77999	$d_{m}d_{m}f_{m}f_{m}$	(4v _b v _b v _a v _a)		

Used in FM 35 only.

A-62 Volume I.1

^{**} Used in FM 36 and FM 38 only.

[&]quot;** Used in FM 36, FM 37 and FM 38 only.

^{****} Used in FM 38 only.

8GGgg

 $(9s_nT_wT_wT_w)$

 $(9s_nT_wT_wT_w)$

 $s_r r_a r_a s_a s_a$

Dort	\sim	(continued
raii	u	(COHIIII)

31313

SECTION 7

SECTION 9	51515 52525 59595	Code groups to b	pe developed regi	onally	
SECTION 10	61616 62626 69696	Code groups to b	oe developed natio	onally	
Part D					
SECTION 1	$M_iM_iM_jM_j$	D D** {IIiii* {or	YYGG/		
		(99L _a L _a L _a	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} ***	h ₀ h ₀ h ₀ i _m ****
SECTION 5	$n_1n_1P_1P_1P_1$	$T_1T_1T_{a1}D_1D_1$			
	$n_n n_n P_n P_n P_n$	$T_nT_nT_{an}D_nD_n$			
SECTION 6	21212	$n_1n_1P_1P_1P_1$	$d_1d_1f_1f_1f_1\\$		

SECTION 7

SECTION 9

31313

51515 52525

59595

61616 62626 Code groups to be developed nationally 69696

 $n_n n_n P_n P_n P_n$

 $s_r r_a r_a s_a s_a$

Code groups to be developed regionally

 $d_nd_nf_nf_nf_n\\$

8GGgg

SECTION 10

Used in FM 35 only.

Used in FM 36 and FM 38 only.

Used in FM 36, FM 37 and FM 38 only.

Used in FM 38 only.

Notes:

- (1) TEMP is the name of the code for an upper-level pressure, temperature, humidity and wind report from a fixed land station. TEMP SHIP is the name of the code for an upper-level pressure, temperature, humidity and wind report from a sea station. TEMP DROP is the name of the code for an upper-level pressure, temperature, humidity and wind report from a sonde released by a carrier balloon or aircraft equipped with dropsondes. TEMP MOBIL is the name of the code for an upper-level pressure, temperature, humidity and wind report from a mobile land station.
- (2) A TEMP report is identified by $M_iM_i = TT$, a TEMP SHIP report is identified by $M_iM_i = UU$, a TEMP DROP report is identified by $M_iM_i = XX$, and a TEMP MOBIL report is identified by $M_iM_i = II$.
- (3) The code form consists of four parts as follows:

Part	Identifier letters (M _j M _j)	Isobaric surfaces
Α	AA Ì	Up to and including the 100-hPa surface
В	ВВ Ј	op to and moldaring the room a canado
С	CC]	Above the 100-hPa surface
D	DD (Above the 100-fira surface

Each part can be transmitted separately.

(4) The code form is divided into a number of sections as follows:

Section number	Indicator figures or symbolic figure groups	Contents
1	_	Identification and position data
2	_	Data for standard isobaric surfaces
3	88	Data for tropopause level(s)
4	66 or 77	Data for maximum wind level(s) and data for vertical wind shear
5	_	Data for significant levels, with respect to temperature and/or relative humidity
6	21212	Data for significant levels, with respect to wind
7	31313	Data on sea-surface temperature and sounding system
8	41414	Cloud data
9	51515 52525 59595	Code groups to be developed regionally
10	61616 62626 69696	Code groups to be developed nationally In parts A and C, identifier 66666 should not be used in Section 10.

A-64 Volume I.1

REGULATIONS:

35.1 General

- 35.1.1 The code names TEMP, TEMP SHIP, TEMP DROP or TEMP MOBIL shall not be included in the report.
- 35.1.2 Parts A and B shall contain data, in so far as available, *only* for levels up to and including the 100-hPa level.
- 35.1.3 Parts C and D shall contain data, in so far as available, *only* for levels above the 100-hPa
- 35.1.4 The instructions regarding Parts A and B of the report with respect to the inclusion of data up to and including 100 hPa and regarding Parts C and D with respect to the inclusion of data above 100 hPa shall *not* be contravened. For example, if data at or below 100 hPa are not included in either Part A or B, as appropriate, they shall *not* be included in Part C or D. In this instance, the non-included data shall be transmitted separately in the form of a correction report.
- 35.1.5 When during an ascent the pressure data can no longer be obtained but wind data can be obtained, the wind data so obtained shall *not* be reported in TEMP, TEMP SHIP and TEMP MOBIL reports.

Note: These wind data so obtained may be reported in PILOT, PILOT SHIP or PILOT MOBIL.

- 35.1.6 Only wind data obtained from the radiosonde ascent by either visual or electronic means shall be included in the TEMP, TEMP SHIP and TEMP MOBIL reports. Wind data obtained by means other than a radiosonde-type ascent shall not be included in TEMP, TEMP SHIP and TEMP MOBIL reports.
- 35.1.7 Only wind data obtained from the radiosonde descent by electronic means shall be included in the TEMP DROP reports. Wind data obtained by means other than a radiosonde-type descent shall not be included in TEMP DROP reports.

35.2 Parts A and C

35.2.1 Section 1 – Identification and position

The identification of a sea station or a mobile land station shall be indicated by the group D D. The observing station shall indicate its position by means of the group IIiii for a fixed land station, or the groups $99L_aL_aL_a$ $Q_cL_oL_oL_oL_o$ MMMULaULo for a sea station, aircraft or a carrier balloon, or a mobile land station. In addition, a mobile land station shall include the group $h_0h_0h_0h_0h_0$ to indicate the elevation of the station (including units of elevation) and the accuracy of the elevation.

35.2.2 Section 2 – Standard isobaric surfaces

- 35.2.2.1 In section 2, the data groups for the surface level and the standard isobaric surfaces of 1 000, 925, 850, 700, 500, 400, 300, 250, 200, 150 and 100 hPa in Part A, and of 70, 50, 30, 20 and 10 hPa in Part C shall appear in ascending order with respect to altitude.
- 35.2.2.2 When the geopotential of a standard isobaric surface is lower than the altitude of the reporting station, the air temperature-humidity group for that surface shall be included. Solidi (/////) shall be reported for these groups. The wind groups for these levels shall be included as specified by the value reported for symbol I_d .
- 35.2.2.3 When wind data are available for all levels, the wind group shall be included for each level as indicated in the symbolic code form. If wind data are not available for all levels, the procedures given below shall be followed:
 - (a) When wind data are missing for one or more standard isobaric surfaces but are available for other standard isobaric surfaces below and above the level of missing wind data, the wind group(s), i.e. d_nd_nf_nf_n, shall be coded by means of solidi (/////);

- (b) When wind data are missing for a standard isobaric surface and are also missing for all succeeding standard isobaric surfaces up to the termination of the ascent, the wind group shall be omitted for all these levels and the symbol I_d reported accordingly.
- 35.2.2.4 Whenever it is desired to extrapolate a sounding for the computation of the geopotential at a standard isobaric surface, the following rules shall apply:
 - (a) Extrapolation is permissible if, and only if, the pressure difference between the minimum pressure of the sounding and the isobaric surface for which the extrapolated value is being computed does not exceed one quarter of the pressure at which the extrapolated value is desired, provided the extrapolation does not extend through a pressure interval exceeding 25 hPa;
 - (b) For the purpose of geopotential calculation, and for this purpose only, the sounding will be extrapolated, using two points only of the sounding curve on a T-log p diagram, namely that at the minimum pressure reached by the sounding and that at the pressure given by the sum of this minimum pressure and the pressure difference, mentioned in (a) above.
- 35.2.3 Section 3 Tropopause level(s)
- 35.2.3.1 When more than one tropopause is observed, each shall be reported by repeating section 3.

Note: For a definition of tropopause, the *International Meteorological Vocabulary* (see WMO-No. 182).

- 35.2.3.2 When no tropopause data are observed, the group 88999 shall be reported for section 3.
- 35.2.4 Section 4 Maximum wind level(s) and vertical wind shear
- 35.2.4.1 When more than one maximum wind level is observed, each shall be reported by repeating section 4.

Note: Criteria for determining maximum wind levels are given in Regulations 32.2.3.1 and 32.2.3.2.

- 35.2.4.2 When no maximum wind level is observed, the group 77999 shall be reported for section 4.
- 35.2.4.3 Indicator figures 77 shall be used when the level(s) for which maximum wind data are reported does (do) not coincide with the top of the wind sounding. Indicator figures 66 shall be used in the opposite case, i.e. whenever the top of the wind sounding corresponds to the highest wind speed observed throughout the ascent.

Note: For the purpose of the above regulation, the "top of the wind sounding" is to be understood as the highest level for which wind data are available.

35.2.4.4 Group (4v_bv_bv_av_a)

Group $4v_bv_bv_av_a$ shall be included only if data for vertical wind shear are computed and required.

35.2.5 Section 7 – Sounding system indication, radiosonde, system status, launch time, seasurface temperature groups

Section 7 is a mandatory section and shall always be reported. The groups s_rr_ar_as_as_a and 8GGgg are mandatory for all TEMP reports: TEMP, TEMP SHIP, TEMP DROP and TEMP MOBIL. In TEMP SHIP reports, the group 9s_nT_wT_wT_w shall also be included.

35.2.6 Section 9 – Regional groups

Inclusion of groups of Section 9 shall be determined by regional decision.

35.2.7 Section 10 – National groups

Inclusion of groups of Section 10 shall be determined by national decision.

A-66 Volume I.1

35.3 Parts B and D

- 35.3.1 Section 5 Significant levels with respect to temperature and/or relative humidity
- 35.3.1.1 If, in the determination of significant levels with respect to specified criteria for changes in air temperature and/or relative humidity, the criteria for either variable are satisfied at a particular point in altitude, data for both variables (as available) shall be reported for that level.

Dew-point data shall be derived using the function (or a near equivalent) for the relationship between saturation vapour pressure over water and air temperature (specified in the *Technical Regulations* (WMO-No. 49)). Dew-point data shall not be reported when the air temperature is outside the range stated by WMO for the application of the function; a lesser range may be used as a national practice.

The highest level for which a dew point is reported shall be one of the levels selected in accordance with Regulations 35.3.1.2 and 35.3.1.3.

The reported significant levels *alone* shall make it possible to reconstruct the air temperature and humidity profiles within the limits of the criteria specified.

- 35.3.1.2 The following shall be included as "mandatory significant levels":
 - (a) Surface level and the highest level of the sounding, or aircraft reference level and termination level for descent soundings;
 - (b) A level between 110 and 100 hPa;
 - (c) Bases and tops of inversions and isothermal layers which are at least 20 hPa thick, provided that the base of the layer occurs below the 300-hPa level or the first tropopause, whichever is the higher;
 - (d) Bases and tops of inversion layers which are characterized by a change in temperature of at least 2.5°C or a change in relative humidity of at least 20 per cent, provided that the base of the layer occurs below the 300-hPa level or the first tropopause, whichever is the higher.

Note: The inversion layers of (c) and (d) may be comprised of several thinner inversion layers separated by thin layers of temperature lapse. To allow for this situation, the tops of the inversion layers of (c) and (d) shall each be at a level such that no further inversion layers, whether thick or thin, shall occur for at least 20 hPa above the level.

- 35.3.1.3 The following shall be included as "additional levels". They shall be selected in the order given, thereby giving priority to representing the temperature profile. As far as possible, these additional levels shall be the actual levels at which prominent changes in the lapserate of air temperature occur:
 - (a) Levels which are necessary to ensure that the temperature obtained by linear interpolation (on a T-log P or essentially similar diagram) between adjacent significant levels shall not depart from the observed temperature by more than 1°C below the first significant level reported above the 300-hPa level or the first tropopause, whichever level is the lower, or by more than 2°C thereafter;
 - (b) Levels which are necessary to ensure that the relative humidity obtained by linear interpolation between adjacent significant levels shall not depart by more than 15 per cent from the observed values. (The criterion of 15 per cent refers to an amount of relative humidity and NOT to the percentage of the observed value, e.g. if an observed value is 50 per cent, the interpolated value shall lie between 35 per cent and 65 per cent.);
 - (c) Levels which are necessary to limit the interpolation error on diagrams other than T-log P. These levels shall be such that the pressure at one significant level divided by the pressure of the preceding significant level shall exceed 0.6 for levels up to the first tropopause and shall be determined by use of the method for selecting additional levels but with application of tighter criteria.
- 35.3.1.4 When a significant level (with respect to air temperature and/or relative humidity) and a standard isobaric surface coincide, data for that level shall be reported in Parts A and B (or C and D, as appropriate).

- 35.3.1.5 In Part B, the successive significant levels shall be numbered 00 (station level), the first level 11, the second level 22, ... etc. ... 99, 11, 22, ... etc. In Part D, the first level above 100 hPa shall be numbered 11, the second 22, . . . etc. . . . 99, 11, 22, . . . etc. The code figure 00 for nono in Part B shall never be used to indicate any level other than station level.
- 35.3.1.6 In Parts B and D, a layer for which data are missing shall be indicated by reporting the boundary levels of the layer and a level of solidi (/////) to indicate the layer of missing data, provided that the layer is at least 20 hPa thick. The boundary levels are the levels closest to the bottom and the top of the layer for which the observed data are available. The boundary levels are not required to meet "significant level" criteria. The boundary levels and the missing data level groups will be identified by appropriate nn numbers. For example:

33P₃P₃P₃ $T_3T_3T_{a3}D_3D_3$

44/// 11111

55P₅P₅P₅ $T_5T_5T_{a5}D_5D_5$

where the levels 33 and 55 are the boundary levels and 44 indicates the layer for which data are missing.

- 35.3.2 Section 6 - Significant levels with respect to wind
- 35.3.2.1 Significant levels shall be chosen so that the data from them alone shall make it possible to reconstruct the wind profile with sufficient accuracy for practical use.

Note: Criteria for determining significant levels with respect to changes in wind speed and direction are given in Regulation 32.3.1.

35.3.2.2 In Parts B and D, a layer for which data are missing shall be indicated by reporting the boundary levels of the layer and a level of solidi (/////) to indicate the layer of missing data, provided that the layer is at least 50 hPa thick. The boundary levels are the levels closest to the bottom and the top of the layer for which the observed data are available. The boundary levels are not required to meet "significant level" criteria. The boundary levels and the missing data level groups will be identified by appropriate nn numbers. For example:

> 33P₃P₃P₃ $d_3d_3f_3f_3f_3$ 44/// 11111 55P5P5P5 dsdsfsfsfs

where the levels 33 and 55 are the boundary levels and 44 indicates the layer for which data are missing.

35.3.3 Section 7 - Sounding system indication, radiosonde, system status, launch time, seasurface temperature groups

> Section 7 is a mandatory section and shall always be reported. The groups s_rr_ar_as_as_a and 8GGgg are mandatory for all TEMP reports: TEMP, TEMP SHIP, TEMP DROP and TEMP MOBIL. In TEMP SHIP reports, the group 9s_nT_wT_wT_w shall also be included.

- 35.3.4 Section 8 - Cloud data
- 35.3.4.1 In TEMP, TEMP SHIP and TEMP MOBIL reports, this section shall be used to report cloud data. Nh, h, CL, CM and CH shall be coded in accordance with the regulations in FM 12 SYNOP (12.2.1.2, 12.2.7.2 and 12.2.7.3).
- 35.3.4.2 This section shall not be included in TEMP DROP reports.
- 35.3.5 Section 9 - Regional groups

Inclusion of groups of Section 9 shall be determined by regional decision.

35.3.6 Section 10 - National groups

Inclusion of groups of Section 10 shall be determined by national decision.

FM 39-VI ROCOB Upper-level temperature, wind and air density report from a

land rocketsonde station

FM 40-VI ROCOB SHIP Upper-level temperature, wind and air density report from a

rocketsonde station on a ship

CODE FORM:

SECTION 1	M _i M _i M _j M _j a₁e⊤e⊤c⊤m _r	YYGGg r _m e _w e _w c _w m _r	MMJJJ	$\begin{cases} \text{IIiii*} \\ \text{or} \\ 99L_aL_aL_a \end{cases}$	$Q_cL_oL_oL_oL_o$	MMMU _{La} U _{Lo} **
SECTION 2	HHZ _T TT HHZ _T TT	ddfff ddfff	(9d _p p ₁ p ₁ p (9d _p p ₁ p ₁ p			
SECTION 3	$(11Z_TT_1T_1 \\ \dots \\ 11Z_TT_nT_n \\ 22Z_TT_1T_1$	P ₁ P ₁ h ₁ h ₁ h ₁ P _n P _n h _n h _n h _n P ₁ P ₁ h ₁ h ₁ h ₁	d1d1f1f1f1 dndnfnfnfn d1d1f1f1f1			
	$22Z_{T}T_{n}T_{n}$ $33Z_{T}T_{1}T_{1}$	$P_nP_nh_nh_nh_n$ $P_1P_1h_1h_1h_1$	 d _n d _n f _n f _n f _n d ₁ d ₁ f ₁ f ₁ f			
	$33Z_{T}T_{n}T_{n}$ $44Z_{T}T_{1}T_{1}$	$P_nP_nh_nh_nh_n$ $P_1P_1h_1h_1h_1$	$\begin{array}{c} d_n d_n f_n f_n f_n \\ d_1 d_1 f_1 f_1 \end{array}$			
	$44Z_{T}T_{n}T_{n}$ $55Z_{T}T_{1}T_{1}$	$P_nP_nh_nh_nh_n$ $P_1P_1h_1h_1h_1$	$d_n d_n f_n f_n f_n$ $d_1 d_1 f_1 f_1 f_1$			
	55Z _T T _n T _n 66Z _T T ₁ T ₁	$P_nP_nh_nh_nh_n$ $P_1P_1h_1h_1h_1$	$\begin{array}{c} d_n d_n f_n f_n f_n \\ d_1 d_1 f_1 f_1 f_1 \end{array}$			
	66Z _T T _n T _n	$P_nP_nh_nh_nh_n$	$d_n d_n f_n f_n f_n$)		

Notes:

- (1) ROCOB is the name of the code for an upper-level (for altitudes greater than 20 km) temperature, wind and air density report of a rocketsonde observation from a land station. ROCOB SHIP is the name of the code of a rocket-sonde report from a ship.
- (2) A ROCOB report is identified by = RRXX. A ROCOB SHIP report is identified by M_iM_iM_iM_i = SSXX.
- (3) The code form is divided into three sections as follows:

Section number	Contents
1	Identification data
2	Data for specified geometric altitudes
3	Data for isobaric surfaces (optional)

Used in FM 39 only.

^{**} Used in FM 40 only.

REGULATIONS:

39.1	General

The code name ROCOB or ROCOB SHIP shall not be included in the report.

39.2 Section 1 – Identification

- 39.2.1 The land rocketsonde station shall indicate its position by means of the group lliii. The ship rocketsonde station shall indicate its position by means of the groups $99L_aL_aL_a$ $Q_cL_oL_oL_o$ MMMU_{La}U_{Lo}.
- 39.2.2 Section 1 shall not be transmitted as a separate report.
- 39.2.3 The group MMJJJ shall be used to indicate, together with the group YYGGg, the year (JJJ), month (MM), day (YY) and time (GGg) of the firing of the rocket.

39.3 Section 2 – Specified geometric altitudes

39.3.1 Mandatory levels

- 39.3.1.1 Data shall be reported for each 5 km vertical interval, beginning at 20 km, up to the top of the ascent, and for the lowest level of the ascent for which data are available, provided its altitude is higher than 20 km.
- 39.3.1.2 If data are not available for one or more of the mandatory altitudes specified in Regulation 39.3.1.1, the code groups for those levels shall be inserted in the report in their altitude sequence order with solidi (/, // or ///) reported for the missing elements.

39.3.2 Significant levels

- 39.3.2.1 All data shall be reported for those non-mandatory levels at which significant changes in wind speed or direction or temperature occur. The mandatory and significant levels shall be intermixed in the report in ascending order with respect to altitude.
- 39.3.2.2 The reported significant data shall make it possible to reconstruct the wind and temperature curves between consecutive mandatory levels with sufficient accuracy for practical use.
- 39.3.2.3 The criteria for significant changes shall be as follows:
 - (a) A departure of the wind speed of 5 or more metres per second from a linear interpolation between any two consecutive levels selected to be reported;
 - (b) A departure of the wind direction from a linear interpolation between any two consecutive levels selected to be reported, thus:
 - 60° or more when the average wind speed for the layer is 8 to 15 metres per second;
 - 30° or more when the average wind speed for the layer is 16 to 30 metres per second:
 - 20° or more when the average wind speed for the layer is 31 metres per second or more;
 - (c) A temperature change of 3°C from a linear interpolation between any two consecutive levels selected to be reported.

Note: To satisfy these criteria, the following method of approximation is recommended:

(1) The bottom level and the top level of the 5 km stratum between two consecutive mandatory levels constitute the base lines for determining the significant levels in that stratum. If the wind and temperature criteria are not exceeded, no significant level need be reported. Whenever one of the parameters deviates by more than the limit specified in Regulation 39.3.2.3, the level of greatest deviation becomes a significant level, and data for all three parameters are reported for that level.

A-70 Volume I.1

(2) The additional significant levels so introduced divide the stratum into several layers. In each separate layer, the deviations from the linearly interpolated values between the base and the top are then considered. The process used in paragraph (1) above is repeated and yields other significant levels. These additional levels in turn modify the layer distribution, and the method is applied again until any level is approximated to the specified criteria values.

39.3.3 Group ddfff

The thickness of the layer through which wind direction and speed are determined shall be 2 km for both mandatory and significant levels, i.e. from 1 km below to 1 km above the altitude reported.

39.3.4 *Group* $(9d_pp_1p_1p_1)$

Group $9d_pp_1p_1p_1$ shall be included only when data are available. If temperature data are missing for a stratum of more than 3 km in depth, the $9d_pp_1p_1p_1$ group shall be omitted for the remainder of the ascent.

39.4 Section 3 – Isobaric surfaces

- 39.4.1 Section 3 shall be included only when data are available for any of the isobaric surfaces of 70, 50, 30, 20, 10, 7, 5, 3, 2, 1, 7.10^{-1} , 5.10^{-1} , 4.10^{-1} , 3.10^{-1} , 2.10^{-1} , 1.10^{-1} , 7.10^{-2} , 5.10^{-2} , 3.10^{-2} , 2.10^{-2} , 1.10^{-2} , 7.10^{-3} , 5.10^{-3} , 3.10^{-3} , 2.10^{-3} , 1.10^{-3} , 7.10^{-4} , 5.10^{-4} , 3.10^{-4} , 2.10^{-4} , 1.10^{-4} , 1.10^{-5} ,
- 39.4.2 In Section 3, indicator figures 11, 22, 33, 44, 55 and 66 specify the following values for PP and hhh:

Indicator figures 11 shall be used when P_1P_1 , P_2P_2 , . . . P_nP_n are reported in whole hectopascals and $h_1h_1h_1$, $h_2h_2h_2$, . . . $h_nh_nh_n$ in hundreds of standard geopotential metres:

Indicator figures 22 shall be used when P_1P_1 , P_2P_2 , . . . P_nP_n are reported in tenths of a hectopascal and $h_1h_1h_1$, $h_2h_2h_2$, . . . $h_nh_nh_n$ in hundreds of standard geopotential metres;

Indicator figures 33 shall be used when P_1P_1 , P_2P_2 , . . . P_nP_n are reported in hundredths of a hectopascal and $h_1h_1h_1$, $h_2h_2h_2$, . . . $h_nh_nh_n$ in hundreds of standard geopotential metres;

Indicator figures 44 shall be used when P_1P_1 , P_2P_2 , . . . P_nP_n are reported in thousandths of a hectopascal and $h_1h_1h_1$, $h_2h_2h_2$, . . . $h_nh_nh_n$ in hundreds of standard geopotential metres;

Indicator figures 55 shall be used when P_1P_1 , P_2P_2 , . . . P_nP_n are reported in tenthousandths of a hectopascal and $h_1h_1h_1$, $h_2h_2h_2$, . . . $h_nh_nh_n$ in hundreds of standard geopotential metres;

Indicator figures 66 shall be used when P_1P_1 , P_2P_2 , . . . P_nP_n are reported in hundred-thousandths of a hectopascal and $h_1h_1h_1$, $h_2h_2h_2$, . . . $h_nh_nh_n$ in thousands of standard geopotential metres.

FM 41-IV CODAR Upper-air report from an aircraft (other than weather reconnaissance aircraft)

CODE FORM:

.

$M_iM_iM_jM_j$				
YYGGg	$99L_aL_aL_a$	$Q_cL_oL_oL_oL_o$	$P_aP_aP_aB_zS_h$	$TTT_{a}n_{s}n_{m} \\$
$(40L_aL_aL_a$	$Q_cL_oL_oL_oL_o)$	ddfff		
$(41L_aL_aL_a$	$Q_cL_oL_oL_oL_o$	ddfff)		
$(49L_aL_aL_a$	$Q_cL_oL_oL_oL_o$	ddfff)		
(6HHHH)				

Notes:

- (1) CODAR is the name of the code for an upper-air report from aircraft (other than weather reconnaissance aircraft) in figure code.
- (2) A CODAR report is identified by $M_iM_iM_iM_j = LLXX$.

REGULATIONS:

41.1 General

- 41.1.1 The code name CODAR shall not be included in the report.
- 41.1.2 The identifier group $M_iM_iM_jM_j$ shall be included as the first line of the text of a meteorological bulletin of CODAR reports. Individual reports in the bulletin shall not contain the group $M_iM_iM_jM_j$.
- 41.2 Wind data
- 41.2.1 If both spot and mean winds are available, spot winds shall always be reported first.
- 41.2.2 If one spot wind only is reported, it shall refer to the position given at the beginning of the report. If more than one spot wind is reported, the positions of the points where the second and the following spot winds were measured shall be included immediately before the relevant ddfff group(s).
- 41.2.3 In the case of mean wind, the position of the midpoint of the sector over which it was calculated shall always be included immediately before the relevant ddfff group.

FM 42–XI Ext. AMDAR Aircraft report (aircraft meteorological data relay)

CODE FORM:

SECTION 1 **AMDAR YYGG SECTION 2** $i_p i_p i_p$ $I_A \dots I_A$ $L_aL_aL_aL_aA$ $L_0L_0L_0L_0L_0B$ YYGGgg $S_h h_l h_l h_l$ $SST_dT_dT_d$ ddd/fff $SST_AT_AT_A$ or **TB**B_A Ss₁s₂s₃ **SECTION 3** 333 $\mathbf{F} h_d h_d h_d$ VGfgfgfg

Notes:

- (1) AMDAR is the name of the code for an automatic meteorological report from an aircraft.
- (2) Observations are made at specified levels, time intervals or when the highest wind is encountered, and shall be included in individual reports.
- (3) Data transmitted from the aircraft are encoded in binary code and are translated into the quasi-AIREP format for the convenience of human users.

REGULATIONS:

42.1 General

- 42.1.1 In a bulletin of AMDAR reports, the contents of Section 1 (the code name AMDAR and the group YYGG) shall be included only as the first line of the bulletin.
- 42.1.2 Reporting data groups
- 42.1.2.1 Subject to Regulation 42.1.2.2, an AMDAR report shall include Section 2 containing at least the phase of flight indicator, the aircraft identifier, its geographical location and the day and time of observation, as well as the observed temperature and wind.
- 42.1.2.2 An AMDAR report from an ASDAR system shall include all data groups contained in Section 2 and shall not include Section 3.
- 42.1.2.3 An AMDAR report from an ACARS system shall include Section 3.
- 42.1.2.4 Use of solidi

Data shall be encoded as solidi when not available, when the data collection platform cannot acquire correct data, or in the event of parity errors.

42.1.3 Frequency of observations

The frequency of observations shall vary according to the phase of the flight (ascent, level flight or descent).

42.1.3.1 Observations during ascent

During ascent, observations shall be made as the aircraft passes through certain pressure levels, as follows. The first level shall be the nearest multiple of 10 hPa less than pressure at take-off. The next nine observations shall be at intervals of 10 hPa. The eleventh level shall be the first multiple of 50 hPa less than the tenth level. Observations shall continue at 50-hPa intervals until ascent is completed.

Note: For example, if the pressure at take-off was 1 012 hPa, the first level to be reported would be 1 010 hPa.

42.1.3.2 Observations during level flight

42.1.3.2.1 Routine observations

Routine observations during level flight shall be made at set intervals of time. The first observation shall be made at the first integral minute after the level flight phase has been continuously occupied for at least 15 seconds. Subsequent observations shall be made at seven-minute intervals. If level flight is interrupted by unsteady flight, the timing sequence shall begin again upon resumption of level flight.

42.1.3.2.2 Highest wind encountered

Highest wind encountered shall be reported when the aircraft is in level flight at a pressure level less than 600 hPa, according to the following scheme. Smoothed wind speed shall be sampled at one-second intervals, and a wind speed maximum shall be reported if and only if the wind speed:

- (a) Is greater than 60 knots;
- (b) Exceeds the observed wind speed at the previous routine observation by 10 knots or more; and
- (c) Exceeds the observed wind speed at the subsequent routine observation by 10 knots or more.

42.1.3.3 Observations during descent

During descent, observations shall be made as the aircraft passes through certain pressure levels, as follows. The first level shall be the nearest multiple of 50 hPa greater than the pressure at the last observation before descent. Subsequent observations shall be at intervals of 50 hPa, until a pressure level of 700 hPa is reached. From that level, observations shall continue at 50-hPa intervals, but supplemented by observations at intervals of 10 hPa.

42.2 Section 2

- 42.2.1 Phase of flight indicator ipipip
- 42.2.1.1 An indicator shall be included in each report, to show both phase of flight (unsteady, level, ascent or descent) and, in the case of level flight, the type of observation (routine or maximum wind).
- 42.2.1.2 Whenever a predetermined roll threshold has been exceeded, the phase of flight shall be considered to be unsteady.
- 42.2.1.3 A routine observation in level flight shall be indicated by encoding the phase of flight indicator as LVR.
- 42.2.1.4 Highest wind encountered in level flight shall be indicated by encoding the phase of flight indicator as LVW.
- 42.2.1.5 An observation during ascent shall be indicated by encoding the phase of flight indicator as ASC.
- 42.2.1.6 An observation during descent shall be indicated by encoding the phase of flight indicator as DES.
- 42.2.1.7 An observation during an unsteady phase of flight shall be indicated by encoding the phase of flight indicator as UNS.

42.2.2 Meteorological data

42.2.2.1 Temperature

Each observation shall include the air temperature at the given pressure altitude. The precision of the temperature shall be indicated by s₃. If observed, either dew-point temperature or relative humidity at the given pressure altitude shall be included.

A-76 Volume I.1

42.2.2.2 Wind

Each observation shall include a value for the observed wind. Direction, relative to true north, shall be reported in whole degrees. Wind speed shall be reported in whole knots.

42.2.2.3 Turbulence

Each observation from an ASDAR system shall include a report of turbulence, encoded by the indicator letters TB followed by a single digit value for the turbulence.

42.3 Section 3

42.3.1 Group Fh_dh_dh_d

This group shall be used in an AMDAR report from an ACARS system to report the pressure altitude.

Note: Reports up to and including 700 hPa are considered to be above the aerodrome with height derived from the QNH value and the elevation of the aerodrome concerned. Heights above 700 hPa are included in accordance with the ICAO standard atmosphere.

42.3.2 Group VGfgfgfg

This group shall be used in an AMDAR report from an ACARS system to report the maximum derived equivalent vertical gust.

Notes:

(1) The qualitative severity of turbulence can be related approximately to values of derived equivalent gust velocity as follows:

$$U_{de}$$
 < 2 m s⁻¹ 2-4.5 m s⁻¹ 4.5-9 m s⁻¹ > 9 m s⁻¹
Severity Nil Light Heavy Severe

(2) The derived equivalent vertical gust, U_{de}, is defined by aircraft design codes such as the US Federal Aviation Regulations – Part 25.341, or the Engineering Sciences Data Unit (London, United Kingdom) – Data Item 69023.

FM 44-V ICEAN

Ice analysis

CODE FORM:

SECTION 1	ICEAN						
(Preamble 1)	20002 or	33399	0YYG	:Gc	(2Y _s Y _s G _s G	s)	
(Preamble 2)	75557	33399	0YYG	;G _c	(2Y _s Y _s G _s G	€s)	$000G_pG_p$
SECTION 2	$\begin{array}{l} (44111 \\ Q_c L_a L_a L_a L_a \\ CF_p C_p S_1 C_1 \\ (5F_u C_u S_5 C_5) \\ (9n_G n_G n_B n_B)) \end{array}$	$\begin{aligned} &6L_{i}L_{j}L_{j} \\ &L_{o}L_{o}L_{o}L_{o}L_{o} \\ &(2F_{s}C_{s}S_{2}C_{;} \\ &(6T_{1}T_{2}R_{e}R_{i}) \end{aligned}$	2)	$Q_cL_aL_aL$ $(3F_eC_eS$ $(7W_tD_wt$	₃ C ₃)	L _o L _o L _o l (4F _q C _q (8a _i Dr _i i	S ₄ C ₄)
SECTION 3	(4422K L _o L _o L _o L _o L _o	Q _c L _a L _a L _a L _a	ì	L _o L _o L _o L _o	₅ L _o	$Q_cL_aL_a$	L_aL_a
SECTION 4	(4433K L₀L₀L₀L₀L₀ 19191	Q _c L _a L _a L _a L _a	1	L ₀ L ₀ L ₀ L ₀	_b L _o	$Q_cL_aL_a$	$L_{a}L_{a}$

Notes:

- (1) ICEAN is the name of the code describing actual or predicted ice conditions.
- (2) An ICEAN analysis or prognosis is identified by the word ICEAN.
- (3) The code form is divided into four sections:

Section number	Symbolic figure group	Contents
1	20002 or 75557	Identification of time groups
2	44111	Description of ice conditions
3	4422	Areas with defined navigability
4	4433	Recommended track

Sections 2, 3 and/or 4 are not transmitted separately.

REGULATIONS:

44.1.1 General 44.1.1 The code name ICEAN shall always appear as a prefix to an individual coded analysis or prognosis. 4.4.1.2 When the position groups delineate an enclosed area, they shall appear in the coded analysis or prognosis in clockwise sequence. The first position group(s) shall be repeated as the last position group(s) to complete closure of the area. 44.1.3 Each analysis or prognosis shall end with the group 19191.

44.2		Section 1
44.2.	1	The first preamble shall be used to begin an ice analysis. The second preamble shall be used to begin an ice prognosis.
44.2.	2	The appropriate preamble shall be included each time the analysis or prognosis is prepared from a different chart.
44.2.	3	When, in addition to conventional data, satellite information is used to prepare the analysis or prognosis, the date and time of the satellite information shall be indicated by means of the group $2Y_sY_sG_sG_s$.
44.2.	4	Positions shall be given in degrees and minutes or by using the group $L_aL_aL_oL_ok$ which gives the position to the nearest half-degree. If the group $L_aL_aL_oL_ok$ is used, the indicator group 33399 in the preamble shall be replaced by the group 33300 for positions in the northern hemisphere and by the group 33311 for positions in the southern hemisphere.
44.3		Section 2
44.3.	1	Section 2 shall be omitted from the coded analysis or prognosis which is intended to contain only information on the navigability of areas or on recommended shipping tracks.
44.3.	2	Section 2 shall be repeated as often as necessary to describe the ice conditions in the entire area covered by the analysis or prognosis.
44.3.	3	The groups $2F_sC_sS_2C_2$ etc $9n_Gn_Gn_Bn_B$ shall be included, as required, to describe further the ice conditions indicated by the preceding groups $6L_iL_jL_j$ etc $CF_pC_pS_1C_1$.
44.3.	4	Information on icebergs shall be included when available. The group $9n_Gn_Bn_B$ shall be used to provide information on the icebergs additional to that given by the group $6L_iL_jL_jL_j$.
44.4		Section 3
44.4.	1	When information on the navigability of an area is not available, or does not need to be included, Section 3 shall be omitted.
44.4.	2	Section 3 shall be repeated as often as necessary to describe the navigation conditions in the entire area covered by the analysis or prognosis.
44.5		Section 4
44.5.	1	When information on shipping tracks is not included, Section 4 shall be omitted.
44.5.	2	If the obstruction to navigation varies along a recommended track, Section 4 shall be repeated as often as necessary to delineate the various legs along the recommended track

A-80 Volume I.1

If a recommended track is divided into legs, the position of the last point of the

preceding leg shall be repeated as the first position point of the new leg.

44.5.3

Analysis in full form

CODE FORM:

PREAMBLES	10001	333x ₁ x ₁	0YYG _c G _c				
	or 10001	333x ₁ x ₁	0YYG _c G _c	$8x_2x_2x_2$ 8	00x ₃ x ₃ x	3	
	or 65556	333x ₁ x ₁	0YYG _c G _c	$000G_pG_p$			
	or 65556	333x ₁ x ₁	0YYG _c G _c	$000G_pG_p$	$8x_2x_2x_2$	8 00x ₃ x ₃	X 3
SECTION 0	99900						
SECTION	(9NNSS)		8h _t h _c h _a h _a	,,,,,		$(md_sd_sf_sf_s)$	(00C ₁ 00)
Subsection 0–1	(000g _p g _p	9P _t P _c PP or or	9h _t h _c h _a h _a	ууууу			
Subsection 0-1	(ԾԾԾրցր	7P _t P _c PP or	7h _t h _c h _a h _a	ууууу		$(md_sd_sf_sf_s)$	(00C ₁ 00))
		· · · · · ·					
SECTION 1	99911 (9NNSS)	66F _t F _i F _c	ууууу		$(md_sd_sf_sf_s)$	(00C ₁ 00)	
		$\int 69F_tF_iF_c$	ууууу	ууууу			
Subsection 1–1	$(000g_pg_p$	or 67F _t F _i F _c	ууууу	ууууу		$(md_sd_sf_sf_s)$	(00C ₁ 00))
		l					
SECTION 2	99922						
	4e₁uuu 	ууууу 		(00C ₁ 00	0)		
SECTION 3	99933 $33M_hM_sM_t$	ууууу		(00C₁00))		
					<i>-</i> ,		
SECTION 4	99944						
OLO HON 4	989w _e i						
	988ww }	ууууу		(md _s d _s f _s	_s f _s) (00	C ₁ 00)	
	or 987w _s w _s						
SECTION 5	99955						(
		55T _t T _i T _c) (555		i) yyyyy 		$(md_sd_sf_sf_s)$	(00C ₁ 00)
SECTION 6	99966 2C _s S ₁ S ₂ Z ₁	ууууу		$(md_sd_sf_sf_s)$	(00C ₁ 0	00)	
	 (9CH _b H _b H _b	8NH _t H _t H _t	 уууу				
	or (7CH _b H _b H _b	$6NH_tH_tH_t$,		
	(7 Or ibi ibi ib	OINI IţI IţI Iţ	уууу)		

SECTION 7	99977 (000g _p g _p)	ууууу	8ddff	7ddff	5ddff	4ddff	3ddff	2ddff	1ddff	(00C ₁ 00)
SECTION 8	99988 9i _j H _j H _j H _j	ууууу	d _j d _j f _j f _j	ууууу	djdjfjfjfj					(00C ₁ 00)
	and/or 9i _j P _s P _s P _s and/or	ууууу	d _j d _j f _j f _j	ууууу	$d_jd_jf_jf_jf_j\\$					(00C ₁ 00)
	4e₁uuu	ууууу	ууууу							
SECTION 9	99999 4e₁uuu (00000 ((42uuu) 42uuu 	ууууу ууууу 			0C₁00)))				
SECTION 10	88800 77e ₂ uu	(9d _w d _w P _w F	?w) yyy	ууу	(9d _w d _w P _v	"P _w)	ууууу			(00C ₁ 00)
Subsection 10-1	(000g _p g _p	{79e₂uu {or 76e₂uu	} (Juw	$d_w P_w P_w$	ууууу	(9d _v	$_{v}d_{w}P_{w}P_{w}$)	ууууу		(00C ₁ 00))
SECTION 11	88822 44vvv or 444vvv		уууу							
SECTION 12	77744 . 19191			\	√ocabula	ıry group:	s			. 44777

Notes:

- (1) IAC is the name of the code comprising a set of the International Analysis Codes.
- (2) The code form consists of a set of alternative preambles and a number of sections as follows:
 - (a) Alternative preambles

Line To be used for
First line Surface analysis

Second line Analysis other than surface

Third line Surface prognosis

Fourth line Prognosis other than surface

(b) Sections

Occions		
Section number	Symbolic figure group	Contents
0	99900	Pressure or topography systems
1	99911	Frontal systems
2	99922	Isopleth values
3	99933	Air-mass particulars
4	99944	Weather
5	99955	Tropical systems
6	99966	Cloud systems
7	99977	Upper winds
8	99988	Jet-stream characteristics
9	99999	Tropopause characteristics
10	88800	Sea temperature and waves
11	88822	Vertical wind shear
12	77744	Vocabulary groups

A section cannot be transmitted without the appropriate preamble.

A-82 Volume I.1

- (3) Sections 0, 1 and 10 each contain a subsection which can be used when greater detail is required about past or future positions and characteristics of any pressure, front or wave system or sea-temperature configuration. Whereas the section itself refers to the time indicated in the preamble of the message, the past or future times of the subsection are indicated by means of the group 000g_pg_p. A subsection can be repeated, with insertion of the appropriate group 000g_pg_p, when information on both past and future conditions is to be included.
- (4) The Sections 0 to 11 and the subsections each describe delineations, by means of the position groups yyyyy, of given values of a parameter or given states of an element. The section thus consists of a regular succession of sets of groups, each set starting with a group giving the new value of the parameter or element. The position groups of each set may be followed by additional information in the optional groups md_sd_sf_sf_s and 00C₁00 on the movement of systems or fronts and about the confidence of the preceding information, as specified in the code form
- (5) Section 6 provides for the inclusion of reported conditions by means of groups with indicator figures 9 and 8, and forecast conditions by groups with indicator figures 7 and 6.
- (6) Section 7 provides for the coding of upper winds in vertical profile for selected standard isobaric surfaces, at each position yyyyy and either at the time given in the preamble of the message or at a later time indicated by the group 000g_pg_p.
- (7) Section 8 provides for the coding of actual or forecast winds for a number of positions along the jet-stream core or along the line of maximum wind speed on the standard constant-pressure charts immediately above or below the jet core. This section will be restricted normally to winds exceeding 60 knots or 30 m s⁻¹ or 100 km h⁻¹ (depending on the value selected for i_i).
- (8) Section 9 provides for the coding of tropopause temperature data in relation to isopleths of the level of the tropopause. The 4e₁uuu group gives the value of the isobar or the isohypse described by all the yyyyy groups which follow up to the next 4e₁uuu group in the message. Along a given isobar or isohypse, each of the 42uuu groups gives the temperature at the points indicated by the following yyyyy groups. When the temperature changes along the tropopause isopleth, an indicator group 00000 is included, followed by a 42uuu group and the yyyyy groups. In the 42uuu group, uuu gives the temperature in whole degrees Celsius.
- (9) Section 10 provides for indicating, as an optional feature, direction and period of waves for each point of a seasurface isotherm. Each group 9d_wd_wP_wP_w refers to the position yyyyy which follows.
- (10) Section 11 provides for the coding of vertical wind shear in knots per 1 000 metres, by using the group 44vvv, and for the coding of vertical wind shear in knots per 300 metres by using the group 444vv.
- (11) Section 12 provides for the addition of information in plain language, for instance to emphasize the existence of a line squall.

REGULATIONS:

45.1 General

The code name IAC shall not be included in the coded analysis or prognosis.

45.2 Preamble

- 45.2.1 The appropriate preamble shall be included each time the analysis or prognosis is made up from a different chart, whether it be for sea level or any other level, and for each different type.
- 45.2.2 Each analysis or prognosis defined in Regulation 45.2.1 shall end with the group 19191.
- 45.2.3 Additional groups shall be inserted in the preambles under the following conditions, as described in Code table 4892:
 - (a) When $x_2x_2x_2 = 555$, the group 85558 shall be followed by two $00x_3x_3x_3$ groups;
 - (b) When $x_2x_2x_2 = 666$, the group 86668 shall be followed by either the 81118 or the 82228 group, as appropriate.

45.3 Sections

45.3.1 Each section shall be identified by its symbolic figure group. If the same type of data is given in two separate portions of the message, each portion constitutes a section and shall be preceded by the appropriate symbolic figure group.

Note: The symbolic figure groups are primarily designated for use at analysis centres where different sections or portions of sections may be prepared at varying times and may be communicated in a varying order.

- 45.3.2 Position groups
- 45.3.2.1 The position groups yyyyy shall be given in the form specified by the symbol x_1x_1 .
- When the method of indicating positions is changed part-way through an analysis, the change shall be indicated by the insertion of the appropriate indicator group $333x_1x_1$, except as stipulated in Regulation 45.3.2.3.
- 45.3.2.3 When positions in equatorial regions are given in the form $L_aL_aL_oL_ok$ and the key group 33322 (for $333x_1x_1$) is used, southern latitudes from 0°S to 30°S shall be indicated by subtraction from 100 (13°S = 87, 29°S = 71, etc.).
- When positions are given in the form $QL_aL_oL_o$ and a more precise location of the positions is required, the group $000L_aL_o$ shall be added after the appropriate $QL_aL_aL_oL_o$ group, with L_a and L_o giving the required tenths of a degree latitude and longitude, respectively.
- 45.3.2.5 When positions are given in the form $iiiD_1s_1$ and the distance to be indicated by s_1 is 110 kilometres or more, the group $00s_200$ shall precede the $iiiD_1s_1$ group which it modifies, with s_2 indicating the hundreds of kilometres to be added to the value of s_1 .
- 45.3.3 Subsections of Sections 0, 1 and 10
- 45.3.3.1 To indicate positions and characteristics of a system or set of parameters at times *prior* to the time given in the preamble, the groups $9P_tP_cPP$ or $9h_th_ch_ah_a$ in Subsection 0–1, or the group $69F_tF_iF_c$ in Subsection 1–1, or the group $79e_2uu$ in Subsection 10–1 shall be used. In these cases the number of hours reported for g_pg_p shall be *subtracted* from the time given in the preamble (i.e. G_cG_c or $G_cG_c + G_pG_p$ as appropriate), to obtain the *prior* time.

Note: A subsection may be repeated, as required, to give information on various *prior* positions of the system or parameters.

45.3.3.2 To indicate positions and characteristics of a system or set of parameters at times after the time given in the preamble, the groups $7P_tP_cPP$ or $7h_th_ch_ah_a$ in Subsection 0–1, or the group $67F_tF_iF_c$ in Subsection 1–1, or the group $76e_2uu$ in Subsection 10–1 shall be used. In these cases the number of hours reported for g_pg_p shall be added to the time given in the preamble (i.e. G_cG_c or $G_cG_c + G_pG_p$, as appropriate), to obtain the future time.

Note: A subsection may be repeated, as required, to give information on various *future* positions of the system or parameters.

45.3.4 Section 3 – Air mass

The $33M_hM_sM_t$ group shall be followed by a second $33M_hM_sM_t$ group when necessary to indicate that two air masses are involved and they have become mixed, that one air mass is above the other, or that the air mass is in a state of transition and acquiring new characteristics.

45.3.5 Section 6 – Clouds

Groups with indicator figures 9 and 8 shall be used to indicate reported conditions, those with indicator figures 7 and 6 to indicate forecast conditions.

A-84 Volume I.1

45.3.6 Section 7 – Upper winds

- 45.3.6.1 Wind data for the standard isobaric surfaces of 850, 700, 500, 400, 300, 200 and 100 hPa, or a selection of these surfaces, shall be given in the ddff groups with indicator figures 8, 7, 5, 4, 3, 2 and 1, respectively. The number of hours given for g_pg_p shall be added to the time given for G_cG_c to specify the time of forecast winds.
- 45.3.6.2 Wind speeds of 100 knots or more shall be encoded as follows:
 - (a) Wind speeds of 100 knots or more, but not exceeding 199 knots, shall be reported as follows:
 - (i) 50 shall be added to dd;
 - (ii) The number of knots in excess of 100 shall be indicated for ff;
 - (b) Wind speeds of 200 knots or more, but not exceeding 299 knots, shall be reported as follows:
 - (i) The code group 00200 shall be inserted after the group to which it refers;
 - (ii) The number of knots in excess of 200 shall be indicated for ff;
 - (c) Wind speeds of 300 knots or more, but not exceeding 399 knots, shall be reported as follows:
 - (i) The code group 00300 shall be inserted after the group to which it refers;
 - (ii) The number of knots in excess of 300 shall be indicated for ff.

45.4 Additional groups and supplementary information

If additional supplementary sections of the analysis code are used for national purposes, the above code form shall be used in so far as it is applicable and the supplementary sections shall be placed at the end of the coded analysis and prognosis or sent separately from each other.

45.5 Correction

When it is necessary to send a correction to the analysis or prognosis, the correction shall commence with the groups 11133 $0YYG_cG_c$. The corrections shall follow, preceded by the key group indicators pertinent to the sections, and the coded analysis or prognosis shall end with the 19191 group.

FM 46-IV IAC FLEET

Analysis in abbreviated form

CODE FORM:

PREAMBLES	10001	33388	0YYG _c G _c			
	or 65556	33388	0YYG _c G _c	$000G_pG_p$		
SECTION 0	99900					
	8P _t P _c PP	$QL_aL_aL_oL_o$		$md_sd_sf_sf_s$		
Subsection 0–1	(000g _p g _p	∫9P _t P _c PP or	$QL_aL_aL_oL_o$)	
oubsection o 1	(осодрур	7P _t P _c PP	$QL_aL_aL_oL_o$		$md_sd_sf_sf_s$	
SECTION 1	99911					
SECTION	66F _t F _i F _c	$QL_aL_aL_oL_o$	$QL_aL_aL_oL_o$		$md_sd_sf_sf_s$	
	(000	$\int 69F_tF_iF_c$	$QL_aL_aL_oL_o$,	
Subsection 1–1	$(000g_pg_p$	or 67F _t F _i F _c	$QL_aL_aL_oL_o$) md _s d _s f _s f _s	
SECTION 2	99922 44PPP	$QL_aL_aL_oL_o$	$QL_aL_aL_oL_o$			
SECTION 3	(Reserved)					
SECTION 4	99944					
OLOTION 4	987w _s w _s	$QL_aL_aL_oL_o$	$QL_aL_aL_oL_o$			
OFOTION 5	00055					
SECTION 5	99955 (55T _t T _i T _c)	(555PP)	$QL_aL_aL_oL_o$	$QL_aL_aL_oL_o$	md _s	d _s f _s f _s
SECTION 6	88800 77e ₂ uu (9d _w o	I _w P _w P _w) QL _a L _a L _o L	-₀ (9d _w d _w P _w F	P_w) $QL_aL_aL_oL_o$. (00C ₁ 00)
	79	9e ₂ uu (9d _w d _w P _w P _w				
Subsection 6–1		$6e_2uu$ ($9d_wd_wP_wP_w$	$QL_aL_aL_oL_o$	$(9d_wd_wP_wP_w$,) QL _a L _a L _o L _o	}
SECTION 7	77744 19191		Vocabulary	groups		44777

Notes:

- (1) IAC FLEET is the name of the abbreviated code of the International Analysis Code used for marine purposes.
- (2) The code form consists of a set of alternative preambles and a number of sections as follows:
 - (a) Alternative preambles

Line	To be used for
First line	Surface analysis
Second line	Surface prognosis

(b) Sections

Section number	Symbolic figure group	Contents
0	99900	Pressure systems
1	99911	Frontal systems
2	99922	Isobar values
3	_	(Reserved)
4	99944	Weather
5	99955	Tropical systems
6	88800	Sea temperature and waves
7	77744	Vocabulary groups

- (3) Each analysis or prognosis section may be repeated as many times as necessary. Any section may be omitted from the code form.
- (4) The basic code forms for Sections 0, 1 and 6 give details on pressure systems, fronts, waves and seasurface temperatures at the time specified in the preamble. Each of these sections contains a subsection which can be used when greater detail is required on past and future positions and characteristics of those systems or parameters. These subsections are identified by the group $000g_pg_p$; hence, they can be repeated within the section as often as necessary in order to provide information on either past or future conditions, or both.
- (5) Sections 0 to 6 and the subsections each describe delineations, by means of the position groups QL_aL_aL_oL_o (or variants thereof), of given values of a parameter or given states of an element. The section thus consists of a regular succession of sets of groups, each beginning with an indicator group giving the new value of the parameter or element. In some cases the position groups of each set are followed by the movement group md_sd_sf_sf_s and the optional group 00C₁00 which contains the confidence factor for the preceding information.
- (6) The use of Section 5 (tropical section) does not preclude the use in the same general area of other sections, where applicable.
- (7) Section 6 provides for indicating, as an optional feature, direction and period of waves for each point of a sea-surface isotherm. Each group 9d_wd_wP_wP_w refers to the position QL_aL_aL_oL_o which follows.
- (8) Section 7 provides for the inclusion of amplifying phrases from a vocabulary code within the message. Section 7 also provides for including plain-language remarks at the end of the analysis or of the prognosis when this is considered necessary to emphasize the existence of a line squall.

REGULATIONS:

46.1 General

The code name IAC FLEET shall not be included in the coded analysis or prognosis.

46.2 Preamble

46.2.1 The appropriate preamble shall be included each time the analysis or prognosis is made up from a different chart for each different type.

A-88 Volume I.1

46.2.2 Each analysis or prognosis as defined in Regulation 46.2.1 shall end with the indicator group 19191.

Note: See Regulation 46.4.3 regarding the use of replacement groups for group 33388 in the preambles.

46.3 Sections

46.3.1 Each section shall be identified by its symbolic figure group. If the same type of data is given in two separate portions of the message, each portion constitutes a section and it shall be preceded by the appropriate symbolic figure group.

Note: When different sections, or portions of sections, are prepared at varying times, it may be necessary for an analysis centre to issue more than one coded analysis or prognosis in order to include all of the data required for its area of responsibility.

- 46.3.2 When included, the sections shall be given in the following order of sequence: Sections 0, 1, 2, 4, 5, 6 and 7.
- 46.3.3 In coding Sections 0, 1, 2, 4 and 5, the sequence order of the data, in so far as practicable, shall be as follows:
 - Section 0 Pressure systems: to be given in order of occurrence from west to east.
 - Section 1 Frontal information: to be given in a general run, in so far as possible, from west to east.
 - Section 2 Isobar delineation: points on an isobar encircling a LOW shall be given first and progressively in cyclonic direction. Points on an isobar encircling a HIGH shall be given last and progressively in an anticyclonic direction.
 - Section 4 Areas of weather: to be given in order of occurrence from west to east.
 - Section 5 *Tropical systems:* to be given in the same order as pressure systems or frontal information, according to which one the tropical system more closely resembles.

46.4 Position groups

- 46.4.1 When the group 33388 is used in the preamble, point position groups shall be given in the form QL_aL_aL_oL_o for all sections included.
- 46.4.2 When point positions are given in the $QL_aL_aL_oL_o$ and a more precise location of the positions is required, the group $000L_aL_o$ shall be added after the appropriate $QL_aL_aL_oL_o$ group, with L_a and L_o giving the required tenths of a degree of latitude and longitude, respectively.
- When point positions are given to the nearest half-degree of latitude and longitude, the group 33300, 33311 or 33322, as appropriate, shall be used instead of the group 33388 in the preamble. In these cases, the group L_aL_aL_oL_ok shall be substituted for the group QL_aL_aL_oL_o in the code form of all the sections included.
- 46.4.4 When positions in equatorial areas are given in the form $L_aL_aL_oL_ok$ (i.e. group 33322 is used), southern latitudes from 0°S to 30°S shall be indicated by subtraction from 100 (13°S = 87, 29°S = 71, etc.).
- 46.4.5 The position group for each pressure system (Section 0) shall be repeated, when required. Position points on fronts (Section 1), isobars (Section 2), boundaries of areas of significant weather (Section 4) and tropical systems resembling fronts (Section 5) shall be given only once.
- 46.4.6 If a pressure (Section 0) or tropical (Section 5) system is elongated and open, two or more position points shall be given to locate the axis of the system. The first position point and the pressure (when given in Section 5) shall refer to the vortex of the system.

Note: The position points delineating the axis of the system may be repeated, if required.

46.5 Movement groups

- 46.5.1 The movement group shall be given for each pressure (Section 0), frontal (Section 1) or tropical (Section 5) system included in the message. When the system is stationary, the $md_sd_sf_sf_s$ group shall be coded 10000.
- 46.5.2 When the pressure (Section 0) or tropical (Section 5) system is elongated and open, the md_sd_sf_sf_s group shall refer to the axis of the system.
- 46.5.3 When fronts (Section 1) or tropical systems resembling fronts (Section 5) are given, the $md_sd_sf_sf_s$ group shall refer to the central portion of the type indicated. When two or more $md_sd_sf_sf_s$ groups are required to indicate the movement, the front or system shall be subdivided into segments by repeating the group $66F_tF_iF_c$ or $55T_tT_iT_c$, as appropriate.
- 46.5.4 The md_sd_sf_s group shall always indicate the movement of the system or front from the last given position.

46.6 Subsections of Sections 0, 1 and 6

46.6.1 To indicate positions and characteristics of a system or set of parameters at times *prior* to the time given in the preamble, the group $9P_tP_cPP$ in Subsection 0–1, or the group $69F_tF_iF_c$ in Subsection 1–1, or the group $79e_2uu$ in Subsection 6–1 shall be used. In these cases the number of hours coded for g_pg_p shall be subtracted from the time given in the preamble (i.e. G_cG_c or $G_cG_c + G_pG_p$, as appropriate), to obtain the *prior* time.

Note: A subsection may be repeated, as required, to give information on various *prior* positions of the system or parameters.

46.6.2 To indicate positions and characteristics of a system or set of parameters at times after the time given in the preamble, the group $7P_tP_cPP$ in Subsection 0–1, or the group $67F_tF_iF_c$ in Subsection 1–1, or the group $76e_2uu$ in Subsection 6–1 shall be used. In these cases the number of hours coded for g_pg_p shall be added to the time given in the preamble (i.e. G_cG_c or $G_cG_c + G_pG_p$, as appropriate), to obtain the future time.

Note: A subsection may be repeated, as required, to give information on various *future* positions of the system or parameters.

46.7 Section 6

When included in Section 6 and Subsection 6–1, the group $9d_wd_wP_wP_w$ shall give the direction and period of the waves at the position specified by the $QL_aL_aL_oL_o$ group which follows.

46.8 Additional groups and supplementary information

46.8.1 Amplifying phrases from a vocabulary code shall be preceded and terminated by the appropriate indicator groups 77744 and 44777, respectively.

Note: These amplifying phrases may be inserted within the message as required.

46.8.2 If additional supplementary sections of the IAC FLEET are used for national purposes, the above code form shall be used in so far as it is applicable and the supplementary sections shall be placed at the end of the coded analysis or prognosis or sent separately.

46.9 Correction

When it is necessary to send a correction to the analysis or the prognosis, the correction shall commence with the groups 11133 $0YYG_cG_c$. The corrections which follow shall be preceded by the appropriate indicators $(8. \ldots, 66. \ldots, 44. \ldots,$ etc.) and end with the 19191 group.

A-90 Volume I.1

FM 47-IX Ext. GRID

Processed data in the form of grid-point values

CODE FORM:

SECTION 0	GRID	F ₁ F ₂ NNN	1nnn _t n _t	$(2n_Tn_Ta_1a_2)$			
SECTION 1	111	1a₁a₁a₂a₂ 7YYG _c G _c	$(2p_1p_1p_2p_2)$ $(8u_tttt)$	$(3H_1H_1H_1H_1)$ $(9u_bt_bt_bt_b)$	$ (4H_2H_2H_2H_2) $ $ (0mmg_rg_r) $	(5b ₁ b ₁ b ₂ b ₂)	6JJMM
SECTION 2	(222	$\begin{array}{ll} 1n_{i}n_{i}n_{j}n_{j} & \left\{ \\ \\ 9d_{i}d_{i}d_{i}d_{i} \end{array} \right.$	$\begin{aligned} &2Q_cL_aL_aL_a\\ &6Q_cL_oL_o\\ &0d_jd_jd_jd_j) \end{aligned}$	3L _o L _o L _o L _o (7iiii	4Q _c L _a L _a L _a s _x jjjj)	5L _o L _o L _o L _o (88L _a L _a L _a	$Q_cL_oL_oL_oL_o) \bigg\}$
SECTION 3	333	$1n_an_an_pi_s$ $(5Q_cL_aL_aL_a$ $(999I_0I_0)$	2n ₁ n ₂ q ₁ q ₂ 6L _o L _o L _o L _o)	(3us _n rr r	rrrr) (4us	orr rrrrr)	
		$k_1k_1n_gn_g$	i _a iajajaja	(s _x)II I (s _x)II I		(s _x)II I
		 (999l ₀ l ₀)					
		$k_1k_1n_gn_g$	i _a i _a i _a jajaja	(s _x II I (s _x)II I		$(s_x) \text{II} \dots \text{I}$
SECTION 4	(444	$1C_sC_sC_sC_s$	2C _s C _s C _s C _s	$3C_sC_sC_sC_s$	4C _s C _s C _s C _s	5C _s C _s C _s C _s	$6C_sC_sC_sC_s)$
SECTION 5	555	F ₁ F ₂ NNN	1nnn _t n _t	(2n _T n _T a₁a₂)	{666 777		

Notes:

- (1) GRID is the name of the code for the transmission of processed data (analyses and forecasts of meteorological and other geophysical parameters) in the form of numerical values given for a set of regularly spaced points on a chart. The code is suitable for computer use and also for decoding by manual handling.
- (2) A GRID coded analysis or forecast is identified by the word GRID.
- (3) The code form is divided into six sections:

Section number	Symbolic figure group	Contents
0	_	Identification of the coded analysis or forecast
1	111	Identification of the processed data included in the coded analysis or forecast
2	222	Geometry of grids not published in <i>Weather Reporting</i> (WMO-No. 9), Volume B (optional)
3	333	Data format specification and data content
4	444	Check sums (optional)
5	555	Redundant identification of the coded analysis or forecast and indicator figures 666 or 777 (see Regulation 47.1.4)

(4) Definitions

Data field: The horizontal distribution of one (or several) parameter(s) and/or of the occurrence of weather phenomena described by means of grid-point values for a given geographical area.

Data group: Group that contains only meteorological or other geophysical information relative to one grid point or several consecutive grid points of a data line.

Data line: Set of consecutive grid points on a grid line for which data are reported. A grid line may contain several data lines.

Data location groups relative to a data line: Groups which indicate the serial number of the data line, the number of associated data groups and the coordinates of the grid point from which the scanning of the data line starts.

Grid line: Line connecting all grid points having the same latitude in a geographical grid or the same ordinate value in a cartesian grid (when normal scanning mode is used).

Mesh width values:

- (a) Constant amount of grid-point spacing along the grid lines (on the map);
- (b) Constant amount of grid-line spacing in the grid itself (on the map).

 $d_id_id_i$ and $d_jd_jd_jd_j$ represent the actual distances corresponding on the Earth's surface to the mesh-width values when taken at a latitude of true scale. In Cartesian grids, both values are generally identical, which results in using only one mesh-width value. In geographical grids, however, these values may differ from one another. (Example: 10° spacing of longitude along parallels and 5° spacing of latitude along meridians.)

Normal scanning mode: Occurs when the sequence of grid points in the message is organized as follows:

- (a) The data line(s) which correspond(s) to the smallest "j" coordinate (or to the smallest latitude difference with the reference point) within the data field (or part of it) is (are) considered first;
- (b) The grid points of this (these) data line(s) are examined in the order of increasing "i" coordinate (or of increasing longitude difference with the reference point; in the special case of a geographical grid covering a circumpolar area, the longitude difference with the reference point is taken to be increasing when moving from the meridian of the reference point to the east);
- (c) The grid points of the remaining data line(s) within the data field (or part of it) are examined as in (b) above, taking into account that data lines are dealt with one after the other in increasing order of their "j" coordinates (or of their latitude differences with the reference point).

Reference point in a geographical grid: Point which serves as the origin for grid-point coordinates. It is chosen in such a way as to prevent these coordinates from being negative.

- (5) Section 0 is used for the identification of the coded analysis or forecast. In addition to the identifier word GRID, it contains an indication of the data-processing centre (F₁F₂) originating the product, of the number of parts into which the complete analysis or prognosis has been split up for transmission purposes (n_tn_t), as well as of the serial number of that part which is included in the coded analysis or forecast (nn), and an indication (n_Tn_T) whether the type of parameter of the following analysis or prognosis is given by the international Code table 0291 or by a national code table. The section provides, furthermore, a reference to the grid system used (NNN). The grid identifier NNN will normally refer to *Weather Reporting* (WMO-No. 9), Volume B, in which full details of the grid system used will be given. It is, however, possible to provide a complete description of the grid system within the GRID message itself. Section 2 of the code form serves this purpose but it is stressed that the use of Section 2 should be reserved for the rare cases when a new grid is being introduced (e.g. for special purposes) before its complete description is published in the appropriate WMO publication.
- (6) Section 1 contains information relating to the processed data transmitted in the coded analysis or forecast. This consists of:
 - Meteorological or other geophysical parameters (a₁a₁a₁, a₂a₂a₂);
 - The level(s) or layer to which the parameters refer (p₁p₁, p₂p₂, H₁H₁H₁H₁, H₂H₂H₂H₂H₂, b₁b₁, b₂b₂);
 - Time identifiers relating to the product (JJ, MM, YY, G_cG_c);

A-92 Volume I.1

- The validity of prognoses (u_t, ttt) and the period of data averaging or data change, as the case may be (u_b, t_bt_bt_b);
- The procedure or model used to generate the data field (mm);
- A very general description of the grid used (g_rg_r).
- (7) Section 2 is devoted entirely to the detailed description of the grid system used, whenever that description cannot be found in the appropriate WMO publication. In the GRID code, two different types of grid may be used: either geographical or cartesian. In both cases a reference point is identified and grid points are set up which are defined with respect to the reference point and to known mesh-width values. The values of the parameter(s) given in Section 3 refer to the grid points so determined. Section 2 provides for the indication of the size of the grid system (n_in_i, n_jn_j), the mesh widths of the grid (d_id_id_id_i, d_jd_jd_j), the boundaries of the grid system (groups with indicator figures 2, 3, 4 and 5), the coordinates of the reference point which serves for the determination of the position of the other grid points in the case of a geographical grid (groups with indicator figures 2 and 3), the origin of the cartesian coordinate system (groups 88L_aL_aL_a, Q_cL_oL_oL_oL_o or groups 7iiii s_xjjjj with group 6Q_cL_oL_oL_o), and the direction of the axes of the cartesian coordinate system (group 6Q_cL_oL_oL_o).
- (8) Section 3 includes the actual data content of the coded analysis or forecast, symbolized by the data groups (s_x)II . . . I. There is normally a spacing between these data groups for the convenience of manual decoding; but the spacing between these groups may be omitted if the data are exchanged only between computer centres. The characteristics of the form of the data groups, their number and the way they are arranged in the coded analysis or forecast are indicated by the first two groups of this section. It should be noted that, while the length of the data groups may vary in different coded analyses or forecasts, it remains the same within any given coded analysis or forecast.
- (9) The code provides for the possibility of reporting data for grid points spaced at larger intervals than the mesh widths d_id_id_id_i and d_jd_jd_j. An increase in the mesh width d_id_id_id_i is indicated by the factor l₀l₀, while in the other direction the spacing may be increased by simply not including data for some grid lines.
- (10) Furthermore, values of a parameter may not exist, may be missing or may not need to be reported at each point of a grid. For instance, the data field of sea temperatures in a grid which also covers islands in an ocean shows an empty spot (hole) at the place of an island. To avoid the inclusion of meaningless data groups for a number of grid points in such cases, the concept of "data line" was introduced. The data lines are numbered (by the symbol k₁k₁) and the data groups (s_x)II . . . I are arranged per data line. The number of data lines per grid line and the number of data groups per data line are generally fixed if data for all grid points are reported. They may vary greatly if only parts of a data field are coded.
- (11) The position of the first grid point of a data line is given by its coordinates (iaiajajaja) with respect to an initial point of reference. The initial point of reference in a cartesian grid is fixed. The initial point of reference in a geographical grid, as contained in Section 2 or in the appropriate WMO publication, may change in another part of the data field. For geographical grids therefore this change can be indicated by means of the groups with indicator figures 5 and 6 in Section 3.
- (12) A method to reduce as much as possible the length of data groups consists in the elimination of the sign indicator of the parameters concerned. Negative signs can be eliminated by selecting another reference value as the new zero (s_n, rrrrrrr), for example, when temperatures in the data field fluctuate between –20° and +20°C, the addition of 30°C to these temperatures would make them all positive. Another possibility to reduce the length of the data groups is to include the sign of the parameter(s), if necessary, in the values of the parameter(s) by a proper rule. The sign indicator may also be excluded if all values of the parameter(s) are negative. The symbolic letter i_s in the group with indicator 1 in Section 3 provides for these possibilities.
- (13) The reporting of parameter values is generally based on the use of conventional units as indicated in the a₁a₁a₁/a₂a₂a₂ code table. A departure from these units can be realized, however, by using the scale factor (u) as follows: modified unit = conventional unit multiplied by the scale factor. For example, a scale factor of 0.1 can be applied to the unit for geopotential height of an isobaric topography, changing it into the standard geopotential metre.
- (14) Section 4 is relevant only to computer operations. It provides numerical checks of the different sections and of the whole coded analysis or prognosis, with the object of detecting errors.
- (15) Section 5 gives a redundant identification of the coded analysis or forecast.

REGULATIONS:

47.1 General

47.1.1 The groups GRID $F_1F_2NNN\ 1nnn_tn_t\ (2n_Tn_Ta_1a_2)$ shall be included as the first line of the text of the coded meteorological analysis or forecast.

Note: When, in the optional group $2n_Tn_Ta_1a_2$, $n_Tn_Ta_1a_2$ is 0000, the group shall be omitted.

47.1.2 If the complete analysis or prognosis described by the grid has to be transmitted in a number of parts separately, the text of each coded analysis or forecast shall contain Sections 0, 1, 3, 4 and 5 (see Regulations 47.2 and 47.5.1 below). The truncation shall be made in Section 3 after a suitable data line.

Note: In the case of geographical grids, the data location groups $k_1k_1n_gn_g$ $i_ai_ai_aj_aj_a$ can be preceded by the groups with indicator figures 5 and 6 when a change of reference point is needed and by the group $999l_0l_0$ as necessary.

- 47.1.3 If several complete analyses or forecasts are transmitted one after another in the same bulletin, each of them shall contain Sections 0, 1, 3 and 5. Sections 2 and 4 shall also be included, as required.
- 47.1.4 Each coded analysis or forecast shall end with the group 666 if further parts are to follow and with the group 777 if all parts have been transmitted.
- 47.2 Section 1 Identification of the processed data included in the coded analysis or forecast
- 47.2.2 If the parameter(s) given in the data content refer(s) to a pressure level or to a layer between two pressure levels, the group 2p₁p₁p₂p₂ shall be used to identify this (these) pressure level(s). If the parameter(s) refer(s) to a height level, the group 3H₁H₁H₁H₁ shall be used to identify this height level. If the parameter(s) refer(s) to a layer between two height levels, the groups 3H₁H₁H₁H₁ and 4H₂H₂H₂H₂ shall be used to identify these height levels. If the parameter(s) refer(s) to special level(s), the group 5b₁b₁b₂b₂ shall be used to identify this/these special level(s).
- 47.2.3 If only one constant pressure surface is indicated by the group 2p₁p₁p₂p₂, p₂p₂ shall be coded 99 and p₁p₁ shall specify the pressure surface concerned.
- 47.2.4 The group $4H_2H_2H_2$ shall be included only when data are transmitted for a layer between two levels of given altitude.
- 47.2.5 If only one special level is indicated by the group 5b₁b₁b₂b₂, b₂b₂ shall be coded 00 and b₁b₁ shall specify the special level concerned.
- 47.2.6 The group 8uttt shall be included only in the case of a forecast, the group 9ubtbtb shall be included in the case of an analysis of a mean data field or of a data-field change and in the case of a forecast of a mean data field or of a data-field change.

Note: Quantity accumulation (for instance, accumulation of precipitation) over a certain period of time is interpreted as a data-field change where the initial value is equal to zero.

47.2.7 If both mm and g_rg_r correspond to code figure 99, the group 0mmg_rg_r shall not be included in the coded analysis or forecast.

A-94 Volume I.1

47.3 Section 2 - Geometry of grids not published in Weather Reporting (WMO-No. 9), Volume B 47.3.1 Section 2 shall be included only if the grid geometry used is not defined in Weather Reporting (WMO-No. 9), Volume B. 47.3.2 Code figure 99 shall be used for q_rq_r in Section 1 to indicate that Section 2 is not included. 47.3.3 If the complete analysis or forecast is transmitted in separate parts and Section 2 is used in the first part, this section shall not be repeated in the other parts. 47.3.4 To define a geographical grid the groups with indicator figures 1, 2, 3, 4, 5, 9 and 0 shall he used 47.3.5 To define a cartesian grid on Mercator projection with true scale at 22°30′, the groups with indicator figures 1, 2, 3, 4, 5, 9 and 0 shall be used. 47.3.6 To define a cartesian grid, on polar stereographic projection with true scale at 60°, or on Lambert conformal projection with true scale at 30° and 60°, or at 10° and 40°, the groups with indicator figures 1, 6, 9 and 0, and the groups 7iiii sxjjjj shall be used if the origin is specified by means of the cartesian coordinates of the Pole; whenever the origin is specified by means of its geographical coordinates, the groups with indicator figures 1, 6, 9 and 0, and the groups $88L_aL_aL_aQ_cL_oL_oL_oL_o$ shall be used. 47.3.7 In the case of a geographical grid when the area covered does not include the Pole, and in the case of a cartesian grid on Mercator projection, the groups 2QcLaLaLa and 3L_oL_oL_oL_o shall define the northern and western borders of the grid, and the groups $4Q_cL_aL_aL_a$ and $5L_oL_oL_o$ the southern and eastern borders of the grid. The point defined by the groups $2Q_cL_aL_aL_a$ and $3L_oL_oL_oL_o$ shall be the origin of the coordinate system in the case of a cartesian grid on Mercator projection; the same point shall be the reference point in the case of a geographical grid. In the case of a geographical grid covering a circumpolar area around the North Pole, 47.3.8 the group $2Q_cL_aL_aL_a$ shall be coded as 21900 or 27900 and the group $3L_oL_oL_oL_o$ shall be used to define the reference point together with the group $4Q_cL_aL_aL_a$; the group $4Q_cL_aL_aL_a$ shall define also the southern border of the grid, and the group $5L_oL_oL_oL_o$ shall be coded as 59999. In the case of a geographical grid covering a circumpolar area around the South Pole, the group $2Q_cL_aL_a$ shall define the northern border of the grid; the group $3L_oL_oL_oL_o$ shall be used, together with the group $2Q_cL_aL_aL_a$, to define the reference point; the group 4QcLaLaLa shall be coded as 43900 or 45900; and the group 5L_oL_oL_oL_o shall be coded as 59999. 47.3.9 In the case of a cartesian grid on polar stereographic or Lambert conformal projection, the group 6Q_cL_oL_oL_o shall define the quadrant and longitude in degrees of the meridian which is parallel to the j-axis of the grid, the j-axis being positive in the direction from North Pole to South Pole along this meridian. The actual longitude value should be coded for $L_0L_0L_0$ to indicate that the cartesian coordinate system is left-handed. The actual longitude value increased by 500 shall be coded for LoLoLo to indicate that the cartesian coordinate system is right-handed.* 47.3.10 In the case of a cartesian grid on polar stereographic or Lambert conformal projection, the groups 7iiii and sxijjjj shall define respectively the "i" and the "j" coordinate of the Pole in grid units and tenths. The origin of the coordinate system i, j shall be placed at a corner of the rectangle, with sides parallel to the grid lines to be scanned, which encompasses all possible points in the grid. The group $9d_id_id_id_i$ shall define the grid spacing in a cartesian grid along the i-axis at the 47.3.11 latitude of true scale in km, and in a geographical grid along the latitude circles, in tenths of a degree. The group $0d_id_id_id_i$ shall similarly define the grid spacing, in a

cartesian grid along the j-axis, and in a geographical grid along the meridians.

Volume I.1 A-95

_

When moving in the positive direction of the j-axis, positive "i" coordinates are situated to the left in a left-handed coordinate system. They are found to the right in a right-handed system.

47.4 Section 3 – Data format specification and data content

- 47.4.1 If the complete analysis or forecast described by the grid has to be transmitted in several parts by means of several coded meteorological analyses or forecasts of optimum length each, the groups $1n_an_an_pi_s$ and $2n_1n_2q_1q_2$ and, if required, the groups with indicator figures 3 and 4 shall be included in each part.
 - (a) Groups $3us_nrr$ rrrrr shall be used to indicate the scaled unit and reference value of the parameter indicated by $a_1a_1a_1$ and shall be included only if the scaled unit and/or reference value used are different from those specified in Code table $a_1a_1a_1/a_2a_2a_2$ (0291).
 - (b) Groups $4us_nrr$ rrrrr shall be used to indicate the scaled unit and reference value of the parameter indicated by $a_2a_2a_2$ and shall be included only if the scaled unit and/or reference value used are different from those specified in Code table $a_1a_1a_1/a_2a_2a_2$ (0291).
- 47.4.2 When $a_1a_1a_1/a_2a_2a_2$ represent weather phenomena (code figures 080–090 of Code table 0291), the code figure for n_1/n_2 shall be 1, and the data content for each grid point and for each phenomenon reported shall contain one digit chosen out of (0, 1) or (0, 1 and 2) as specified in Code table 0291, to indicate the occurrence and/or the intensity of the phenomenon.
- 47.4.3 Whenever a change of mesh width $d_id_id_id_i$ is required, a group $999l_0l_0$ shall be inserted before the data-location groups $k_1k_1n_gn_g$ $i_ai_ai_aj_aj_aj_a$ of the data line where the change is required. In a printout of the coded analysis or forecast, the group $999l_0l_0$ shall be printed on a separate line.
- 47.4.4 The values reported in the data groups II . . . I for each grid point may refer to one or two parameters and to one or two levels or to one layer. The various possible combinations and the manner in which the parameter(s) is (are) coded and the level(s) or layer defined are listed in the table on the opposite page.
- 47.5 Section 4 Check sums
- 47.5.1 Check sum groups shall be included only by centres using computers for coding.
- 47.5.2 Group 1C_sC_sC_s shall indicate the check sum of all digits appearing in Section 1, including the indicator figures 111.
- 47.5.3 Group 2C_sC_sC_s shall indicate the check sum of all digits of Section 2, including the indicator figures 222.
- 47.5.4 Group 3C_sC_sC_s shall indicate the check sum of all digits of groups 333 1n_an_an_pi_s together with the groups with indicator figures 2 to 6 of Section 3.

A-96 Volume I.1

	Number of parameters reported	to which the	Number of layers to which the parameters reported refer	Significance of the values given in the data groups II I for each grid point
1.	1 (defined by a₁a₁a	1 (defined by p ₁ p ₁ or H ₁ H ₁ H ₁ H ₁ or b ₁ b ₁)	_	The value of the parameter for the level is given by n₁ digits
2.	1 (defined by a₁a₁a₁	_	1 (defined by p_1p_1 and p_2p_2 or $H_1H_1H_1H_1$ and $H_2H_2H_2H_2$)	The value of the parameter for the layer is given by n_1 digits
3.	1 (defined by a₁a₁a	2 (defined by b ₁ b ₁ and b ₂ b ₂)	_	The value of the parameter for the level defined by b_1b_1 is given by n_1 digits, followed by the value of the parameter for the level defined by b_2b_2 , by n_2 digits
4.	2 (defined by a₁a₁a₁ and a₂a₂a₂)	1 (defined by p ₁ p ₁ or H ₁ H ₁ H ₁ H ₁ or b ₁ b ₁)	_	The value of the parameter defined by $a_1a_1a_1$ for the level is given by n_1 digits, followed by the value of the parameter defined by $a_2a_2a_2$ for the level, by n_2 digits
5.	2 (defined by a₁a₁a₁ and a₂a₂a₂)	_	1 (defined by p_1p_1 and p_2p_2 or $H_1H_1H_1$ and $H_2H_2H_2$)	The value of the parameter defined by $a_1a_1a_1$ for the layer is given by n_1 digits, followed by the value of the parameter defined by $a_2a_2a_2$ for the layer, by n_2 digits
6.	2 (defined by a ₁ a ₁ a and a ₂ a ₂ a ₂)	2 (defined by b₁b₁ and b₂b₂)	_	The value of the parameter defined by $a_1a_1a_1$ for the level defined by b_1b_1 is given by n_1 digits, followed by the value of the parameter defined by $a_2a_2a_2$ for the level defined by b_2b_2 , by n_2 digits
47.5	.5	Group 4C _s C _s C _s C _s sha and i _a i _a j _a j _a j _a which a		um of the digits of all groups 999I ₀ I ₀ , k ₁ k ₁ n _g n _g
47.5	.6	Group 5C _s C _s C _s C _s sha which appear in Sect		sum of the digits of all data groups $(s_x)II\dots I$
47.5	.7	Group 6C _s C _s C _s C _s sha Section 4.	all indicate the check s	sum of all digits which precede this group in
47.6	3		dant identification for figures 666 or 77	of the coded analysis or forecast and 7
			•	oded analysis or forecast or in parts thereof.

CODE FORM:

SECTION 0	GRAF	F_1F_2NNN	1nnn _t n _t	(2n _T n _T a₁0))			
SECTION 1	111	1a₁a₁00 7YYG _c G _c	(2p ₁ p ₁ p ₂ p ₂) (81ttt)	(3H₁H₁H₁	ιH₁)	(5b ₁ b ₁ 00)	6JJMM	
SECTION 3	333	$1n_an_a12$ $k_1k_1(n_gn_g)$	2n ₁ 0q ₁ q ₂ (i _a i _a i _a j _a j _a)	3us _n rr II I	rrrrr II I			II I
		$k_1k_1(n_gn_g)$	(iaiaiajajaja)	II I	II I			II I
SECTION 5	555	F ₁ F ₂ NNN	1nnn _t n _t	(2n _T n _T a ₁ 0)) { 666 777	5 7		

Notes:

- (1) GRAF is the name of the abbreviated code for the transmission of processed data (analyses and prognoses of meteorological and other geophysical parameters) in the form of numerical values given for a set of regularly spaced points on a chart. The code is suitable for computer use and also for decoding by manual handling.
- (2) The GRAF code form is derived from the GRID code form (FM 47) by means of a series of simplifying assumptions, i.e.:
 - (a) To include data for one parameter only;
 - (b) To relate these data to one pressure surface, or to one height level or to one special level, or to a layer between two pressure levels;
 - (c) Each data group refers to one grid point only;
 - (d) To include grids that are published in Weather Reporting (WMO-No. 9), Volume B;
 - (e) The terms data line and grid line are used interchangeably in the code.
- (3) A GRAF coded analysis or prognosis is identified by the word GRAF.
- (4) The code form is divided into four sections:

Section number	Symbolic figure group	Contents
0	_	Identification of the coded analysis or prognosis
1	111	Identification of the processed data included in the coded analysis or prognosis
3	333	Data format specification and data content
5	555	Redundant identification of the coded analysis or prognosis and indicator figures 666 or 777 (see Regulation 49.1.4)

- (5) Definitions See Note (4) under FM 47 GRID.
- (6) Section 0 is used for the identification of the coded analysis or prognosis. In addition to the identifier word GRAF, it contains an indication of the data-processing centre (F₁F₂) originating the product, of the number of parts into which the complete analysis or prognosis has been split for transmission purposes (n_tn_t), as well as of the serial number of that part which is included in the coded analysis or prognosis (nn), and an indication (n_Tn_T) whether the type of parameter of the following analysis or prognosis is given by the

international Code table 0291 or by a national code table. The section provides, furthermore, a reference to the grid system used (NNN). The grid identifier NNN will normally refer to *Weather Reporting* (WMO-No. 9), Volume B, in which full details of the grid system used will be given.

- (7) Section 1 contains information relating to the processed data transmitted in the coded analysis or prognosis. This consists of:
 - One meteorological or other geophysical parameter (a₁a₁a₁);
 - The level or layer to which the parameter refers (p₁p₁, p₂p₂, H₁H₁H₁H₁, b₁b₁);
 - Time identifiers relating to the product (JJ, MM, YY, G_cG_c);
 - The time of validity of prognoses that is (ttt) hours after G_cG_c.
- (8) Section 3 includes the actual data content of the coded analysis or prognosis, symbolized by the data groups II . . . I. There is normally a space between these data groups for the convenience of manual decoding; but the space between these groups may be omitted. The characteristics of the form of the data groups and the way they are arranged in the coded analysis or prognosis are indicated by the first two groups of this section. It should be noted that, while the length of the data groups may vary in different coded analyses or prognoses, it remains the same within any given coded analysis or prognosis.
- (9) The data lines are numbered (by the symbol k_1k_1) and the data groups II . . . I are arranged in the sequence for normal scanning.
- (10) In the case of a non-rectangular grid, the position of the first grid point of a data line is given by its coordinates (iaiajajaja) with respect to a point of reference. The point of reference in a cartesian grid is fixed. In the case of the GRAF code, the point of reference in a geographical grid, as contained in the appropriate WMO publication, is assumed to remain fixed throughout the whole message.
- (11) The reporting of parameter values is generally based on the use of conventional units as indicated in the a₁a₁a₁ code table. A departure from these units can be realized, however, by using the scale factor (u) as follows: modified unit = conventional unit multiplied by the scale factor. For example, a scale factor of 0.1 can be applied to the conventional unit for geopotential height of an isobaric topography, changing it into the standard geopotential metre.
- (12) Section 5 gives a redundant identification of the coded analysis or prognosis.

REGULATIONS:

49.1 General

49.1.1 The groups GRAF F_1F_2NNN 1nnn_tn_t (2n_Tn_Ta₁0) shall be included as the first line of the text of the coded meteorological analysis or prognosis.

Note: When, in the optional group $2n_Tn_Ta_10,\,n_Tn_Ta_10$ is 0000, the group shall be omitted.

- 49.1.2 If the complete analysis or prognosis described by the grid has to be transmitted in a number of parts separately, the text of each coded analysis or prognosis shall contain Sections 0, 1, 3 and 5. The truncation shall be made in Section 3 at the end of a suitable data line.
- 49.1.3 If several complete analyses or prognoses are transmitted one after the other in one meteorological bulletin, each of them shall contain Sections 0, 1, 3 and 5.
- 49.1.4 Each coded analysis or prognosis shall end with the group 666 if further parts are to follow, and with the group 777 if all parts have been transmitted.
- 49.2 Section 1 Identification of the processed data included in the coded analysis or prognosis
- 49.2.1 The groups with indicator figures 1, 6 and 7 shall always be included in the coded analysis or prognosis. One of the groups $2p_1p_1p_2p_2$, $3H_1H_1H_1H_1$ or $5b_1b_100$ shall always be included in the coded analysis or prognosis to indicate the level or the layer to which the parameter given in the data content refers. When parameters $a_1a_1a_1 = 080$ to 090 are reported, the indication of the level can be meaningless and therefore is not mandatory.

A-100 Volume I.1

- 49.2.2 If the parameter given in the data content refers to a pressure level, the group $2p_1p_1p_2p_2$ shall be used; p_1p_1 shall indicate the level and p_2p_2 shall be coded 99.
- 49.2.3 If the parameter given in the data content refers to a layer between two pressure levels, the group $2p_1p_1p_2p_2$ shall be used. The upper level shall be indicated by p_1p_1 and the lower level by p_2p_2 .
- 49.2.4 If the parameter given in the data content refers to a special level, the group 5b₁b₁00 shall be used and b₁b₁ shall indicate the special level.
- 49.2.5 The group 81ttt shall be included only in the case of a prognosis.
- 49.3 Section 3 Data format specification and data content
- 49.3.1 If the complete analysis or prognosis described by the grid has to be transmitted in several parts by means of several coded meteorological analyses or prognoses of optimum length each, the four groups $1n_an_a12$, $2n_10q_1q_2$, $3us_nrr$ and rrrrr shall be included in each part.
- 49.3.2 Each data group shall refer to one grid point only. As a result, the fourth figure of the group with indicator figure 1 shall always be 1.
- 49.3.3 The grid points shall always be scanned in the normal mode, and q_1 shall only take values 0 (spaces included between data groups) or 2 (no spaces included).
- 49.3.4 For a rectangular grid, each data line shall begin with k_1k_1 immediately followed, as the case may be, by one of the following:
 - (a) The data groups (q₂ shall be encoded by means of code figure 2); or
 - (b) The number of data groups per data line, and the data groups (q₂ shall be encoded by means of code figure 4); or
 - (c) The number of data groups per data line, the coordinates of the first grid point on the data line, and the data groups (q₂ shall be encoded by means of code figure 5).
- 49.3.5 When $a_1a_1a_1$ represents a weather phenomenon (code figures 080–090 of Code table 0291), the code figure for n_1 shall be 1, and the data content for each grid point and for each phenomenon reported shall contain one digit chosen out of (0, 1) or (0, 1 and 2) as specified in Code table 0291, to indicate the occurrence and/or the intensity of the phenomenon.
- 49.3.6 The groups $3us_n rr$ rrrrr shall always be included; u indicates the scaled unit of the parameter indicated by $a_1a_1a_1$ and $s_n rr$ rrrrr are used for the reference value. All values in the data content shall always be positive. As a result, the last figure of the group with indicator figure 1 shall always be 2. Negative values shall be eliminated by selecting an appropriate reference value. The reference values shall be chosen in order to minimize the number of digits in the data content.

Note: To illustrate this regulation, consider a temperature field in which values vary between -27°C and +11°C. The reference value can be chosen between -27°C and -88°C, inclusive. The choice of a lower temperature value would increase the number of digits to be reported (for example, -89°C, as a reference value, would convert 11°C into 100°C). For practical reasons, the choice of -30°C would be made in this case, and values to be reported would range between +3 and +41.

49.4 Section 5 – Redundant identification of the coded analysis or prognosis and indicator figures 666 or 777

Section 5 shall always be included in the coded analysis or prognosis or in parts thereof.

FM 50-XIII WINTEM

Forecast upper wind and temperature for aviation

CODE FORM:

SECTION 0	WINTEM	$Y_{F}Y_{F}G_{F}G_{F}g_{F}g_{F} \left\{ \begin{array}{l} KMH \ o \\ KT \ or \\ MPS \end{array} \right.$	r	
SECTION 1	$L_a^1L_a^1l_a^1A$	$L_0^1 L_0^1 L_0^1 I_0^1 B$	$L_0^2 L_0^2 L_0^2 I_0^2 B$	 Lo ⁱ Lo ⁱ Lo ⁱ Io ⁱ B
	(TROP	n _t n _t n _t	n _t n _t n _t	 $n_t n_t n_t$)
	(MAXW	$n_m n_m n_m d_m d_m f_m f_m f_m$	$n_m n_m n_m d_m d_m f_m f_m f_m$	 $n_m n_m n_m d_m d_m f_m f_m f_m)$
	$Fn_1n_1n_1$	ddfffSTT	ddfffSTT	 ddfffSTT
	$Fn_2n_2n_2$	ddfffSTT	ddfffSTT	 ddfffSTT
	$Fn_kn_kn_k$	ddfffSTT	ddfffSTT	 ddfffSTT
	$L_a^2 L_a^2 I_a^2 A$			
	(TROP	$n_t n_t n_t$	$n_t n_t n_t$	 $n_t n_t n_t$)
	(MAXW	$n_m n_m n_m d_m d_m f_m f_m f_m$	$n_m n_m n_m d_m d_m f_m f_m f_m \\$	 $n_m n_m n_m d_m d_m f_m f_m f_m)$
	$Fn_1n_1n_1$	ddfffSTT	ddfffSTT	 ddfffSTT
	$Fn_2n_2n_2$	ddfffSTT	ddfffSTT	 ddfffSTT
	$Fn_kn_kn_k$	ddfffSTT	ddfffSTT	 ddfffSTT
	$L_a^j L_a^j I_a^j A$			
	(TROP	$n_t n_t n_t$	$n_t n_t n_t$	 $n_t n_t n_t$)
	(MAXW	$n_m n_m n_m d_m d_m f_m f_m f_m$	$n_m n_m n_m d_m d_m f_m f_m f_m \\$	 $n_m n_m n_m d_m d_m f_m f_m f_m)$
	$Fn_1n_1n_1$	ddfffSTT	ddfffSTT	 ddfffSTT
	$Fn_2n_2n_2$	ddfffSTT	ddfffSTT	 ddfffSTT
	$Fn_kn_kn_k$	ddfffSTT	ddfffSTT	 ddfffSTT

Notes:

- (1) WINTEM is the name of the code used to provide forecast upper wind and temperature for aviation.
- (2) The forecast data are valid at the points of a rectangular geographical grid.
- (3) A WINTEM message is identified by the word WINTEM.
- (4) The code form is divided in two sections as follows:

Section number	Contents
0	Identification and time of validity of forecast data
1	Grid-point coordinates and data groups for tropopause height, level of maximum wind and specified flight levels

(5) No aeronautical requirement for this code form is stated by ICAO for international air navigation in ICAO Annex 3/WMO *Technical Regulations* (WMO-No. 49), Volume II, [C.3.1].

REGULATIONS:

En 4	4	<u> </u>	
50.1		Gen	erai

- 50.1.1 The code name WINTEM shall always be included in the message.
- 50.1.2 When in printed form, the format of the WINTEM message shall present the characteristics of a direct reading data table.

50.2 Section 0

- 50.2.1 The groups of this section shall constitute the first line of the message.

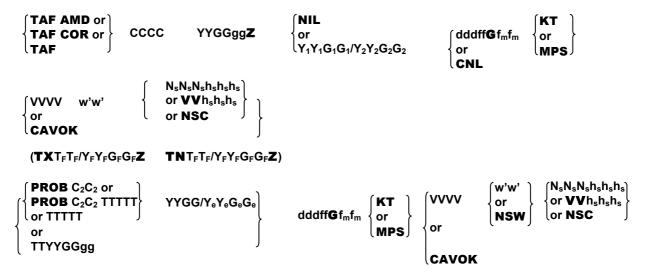
Notes:

- (1) KMH, KT and MPS are the standard ICAO abbreviations for kilometres per hour, knots and metres per second, respectively.
- (2) The unit of wind speed used is determined by national decision. However, the primary unit prescribed in ICAO Annex 5 for wind speed is the kilometre per hour (KMH), with the knot (KT) permitted for use as a non-SI alternative unit until a termination date is decided subject to a decision which is currently under review by ICAO.

50.3 Section 1

- 50.3.1 The geographical grid used shall be rectangular, i.e. its boundaries shall be delineated by means of two meridians and two parallel circles.
- 50.3.2 In the message, the latitudes of grid points shall always be included at the beginning of a line and they shall follow each other in a regular sequence, starting with the northernmost grid-point latitude.
- 50.3.3 The longitudes of the grid points shall be included only in the first line of Section 1 and they shall be ordered from left to right in a continuous sequence corresponding to an eastward direction.
- 50.3.4 The nth figure group of a given line of the message, which contains forecast data, shall always refer to the grid point determined by:
 - (a) The latitude included in the nearest preceding line of the data group;
 - (b) The nth longitude included on the first line of Section 1.
- 50.3.5 The maximum number of grid-point longitudes included in the first line of Section 1 (i.e. index i of $L_o{}^iL_o{}^iL_o{}^iI_o{}^iB$) shall not exceed seven.

Note: There is no limitation to the number of grid-point latitudes included in the message, except for telecommunication reasons.


- 50.3.6 Whenever the need arises to include more than seven grid-point longitudes in the first line of Section 1, the message shall be split up in parts, each one satisfying Regulation 50.3.5 above.
- 50.3.7 The data associated with a given grid point shall be included in the following order:
 - (a) Tropopause height;
 - (b) Maximum wind level;
 - (c) Specified flight levels arranged in decreasing order.
- 50.3.8 Tropopause height and/or maximum wind-level data shall be omitted whenever these data are not required for operational purposes.
- 50.3.9 The number of specified flight levels to be included shall be determined by the issuing centre on the basis of operational requirements.

A-104 Volume I.1

Aerodrome forecast

CODE FORM:

Notes:

- (1) TAF is the name of the code for an aerodrome forecast.
- (2) Owing to the variability of meteorological elements in space and time, to limitations of forecasting techniques and to limitations caused by the definitions of some of the elements, the specific value of any of the elements given in a forecast shall be understood by the recipient to be the most probable value which the element is likely to assume during the period of the forecast. Similarly, when the time of occurrence or change of an element is given in a forecast, this time shall be understood to be the most probable time.
- (3) The groups enclosed in brackets are used in accordance with regional air navigation agreements.
- (4) Aerodrome forecasts are dealt with in the Technical Regulations (WMO-No. 49), Volume II, [C.3.1].
- (5) The code words "AMD", "CNL", "COR" and "NIL" shall be included, as appropriate, for amended, cancelled, corrected and missing forecasts, respectively.

REGULATIONS:

- 51.1 General
- 51.1.1 The code name TAF shall be included at the beginning of each individual aerodrome forecast.
- 51.1.2 The group YYGGggZ shall be included in each individual forecast to report the date and time of origin of forecast.
- 51.1.3 The description of forecast conditions shall contain at least information about wind, visibility, weather and cloud or vertical visibility.
- The forecast shall cover the period Y₁Y₁G₁G₁ to Y₂Y₂G₂G₂. The forecast period may be divided into two or more self-contained parts by the use of the time indicator group TTYYGGgg in the form of FMYYGGgg. A complete description of the forecast prevailing conditions shall be given at the beginning of the forecast or the self-contained parts designated by FMYYGGgg. If any element is expected to change significantly during the forecast period or a self-contained part thereof, one or more sets of change groups TTTTT YYGG/Y_eY_eG_eG_e shall be added after the complete description of the conditions prevailing before the change. Each change group shall be followed by the modified elements subject to Regulation 51.1.5.

Notes:

- (1) The governing criteria for inclusion of change groups are specified in the *Technical Regulations* (WMO-No. 49), Volume II, [C.3.1].
- (2) See Regulation 51.8.1.
- The group w'w' and/or the group N_sN_sN_sh_sh_s or **VV**h_sh_sh_s shall be omitted if the corresponding element(s) is (are) expected to be absent or not significant. After change groups TTTTT YYGG/Y_eY_eG_eG_e, elements shall be omitted if they are not expected to differ significantly from the preceding values they possessed in the coded forecast (see Regulations 51.5.2, 51.6.1.7 and 51.6.3). However, in case of significant change of the clouds, all cloud groups, including any significant layer(s) or masses not expected to change, shall be given.

51.2 Group CCCC

- 51.2.1 ICAO location indicators shall be used.
- 51.2.2 When the same forecast in a TAF bulletin applies to more than one aerodrome, a separate forecast shall be issued for each aerodrome concerned. Only one indicator CCCC shall prefix each coded forecast.

51.3.1 The mean direction and speed of the forecast wind shall be indicated by dddff immediately followed, without a space, by one of the letter code indicators KT or MPS, as the case may be.

Notes:

- (1) KT and MPS are the standard ICAO abbreviations for knots and metre per second, respectively.
- (2) The primary unit prescribed in ICAO Annex 5 for wind speed is the metre per second (MPS), with the knot (KT) permitted for use as a non-SI alternative unit until a termination date is decided.
- 51.3.2 Regulations 15.5.2 and 15.5.4 shall apply.
- 51.3.3 ddd shall normally be encoded as VRB only when the mean wind speed is less than 1.5 m s⁻¹ (3 knots). A variable wind at higher speeds shall be indicated only when it is impossible to forecast a single wind direction.
- 51.3.4 When it is forecast that the maximum wind speed will exceed the mean speed by 5 m s $^{-1}$ (10 knots) or more, the maximum wind speed shall be indicated by adding $\mathbf{G} f_m f_m$ immediately after dddff.

Note: If after a change group the wind is reported again, $\mathbf{G}\mathbf{f}_m\mathbf{f}_m$ should be included, or not, in accordance with these same criteria.

51.3.5 Regulation 15.5.6 shall apply.

51.4 Group VVVV

Note: The coding of visibility is based on the use of the metre and kilometre, in accordance with the units specified in ICAO Annex 5.

- 51.4.1 When the horizontal visibility is forecast not to be the same in different directions, the prevailing visibility shall be given for VVVV. When the prevailing visibility cannot be forecast, the group VVVV shall be used to forecast the minimum visibility.
- 51.4.2 Regulation 51.7 shall apply.
- 51.4.3 Values to indicate forecast visibility shall be in conformity with those set out in Regulation 15.6.3.

A-106 Volume I.1

- 51.5.1 Inclusion of significant forecast weather w'w', using the appropriate abbreviations in accordance with Regulation 15.8, shall be restricted to indicate the occurrence and, where appropriate, the intensity of:
 - Freezing precipitation;
 - Moderate or heavy precipitation (including showers);
 - Duststorm:
 - Sandstorm;
 - Thunderstorm;
 - Freezing fog;
 - Low drifting dust, sand or snow;
 - Blowing dust, sand or snow;
 - Squall;
 - Funnel cloud (tornado or waterspout);
 - Other weather phenomena given in Code table 4678 shall be included as agreed by the meteorological authority with the air traffic services authority and operators concerned.
- 51.5.2 To indicate the end of significant weather phenomena w'w', the abbreviation NSW (Nil Significant Weather) shall replace the group w'w'.

Note: See Regulation 51.8.3.

51.5.3 Regulation 51.7 shall apply.

$$\label{eq:state_state} 51.6 \qquad \qquad \text{Group} \left\{ \begin{array}{l} N_s N_s N_s h_s h_s h_s \\ \text{or} \\ \textbf{VV} h_s h_s h_s \\ \text{or} \\ \textbf{NSC} \end{array} \right.$$

- 51.6.1 Cloud amount and cloud height N_sN_sN_sh_sh_sh_s
- 51.6.1.1 The cloud amount N_sN_sN_s shall be given as few (1 to 2 oktas), scattered (3 to 4 oktas), broken (5 to 7 oktas) or overcast (8 oktas), using the three-letter abbreviations FEW, SCT, BKN and OVC followed, without a space, by the height of the base of the cloud layer (mass) h_sh_sh_s.
- 51.6.1.2 Subject to Regulation 51.6.1.4, in any cloud group, N_sN_sN_s shall be the total amount of cloud that the forecaster expects to be at the level given by h_sh_sh_s.
- 51.6.1.3 The cloud group shall be repeated to indicate different layers or masses of cloud forecast. The number of groups shall not exceed three, except that cumulonimbus clouds and/or towering cumulus clouds, when forecast, shall always be included.
- 51.6.1.4 The selection of forecast layers or masses of cloud to be included shall be made in accordance with the following criteria:

1st group: the lowest individual layer (mass) of any amount, to be indicated as

FEW, SCT, BKN or OVC;

2nd group: the next individual layer (mass) covering more than two oktas, to

be indicated as SCT, BKN or OVC;

3rd group: the next higher individual layer (mass) covering more than four

oktas, to be indicated as BKN or OVC;

Additional groups: Cumulonimbus clouds (CB) and/or towering cumulus clouds when

forecast, if not already included in one of the three groups above.

The order of inclusion of the groups shall be from lower to higher levels.

- 51.6.1.5 The height of the base of forecast cloud layer (mass) shall be coded in units of 30 metres (100 ft) in the form $h_s h_s h_s$.
- 51.6.1.6 Types of forecast clouds other than cumulonimbus clouds and towering cumulus clouds shall not be given. Cumulonimbus clouds and towering cumulus clouds when expected shall be indicated by appending the letter abbreviations CB and TCU, respectively, to the cloud group without a space. In case CB and TCU are forecast with the same height of cloud base, the cloud amount shall be the sum of the CB and TCU amounts and the cloud type given as CB.
- 51.6.2 Vertical visibility VVhshshs

When the sky is expected to be obscured and clouds cannot be forecast and information on vertical visibility is available, the group $VVh_sh_sh_s$ shall be used in lieu of $N_sN_sh_sh_sh_s$, where hshshs shall be the vertical visibility in units of 30 metres (hundreds of feet).

Note: See Note (1) to Regulation 15.9.2.

- 51.6.3 Cloud information shall be limited to cloud of operational significance, i.e. cloud below 1 500 metres (5 000 ft) or below the highest minimum sector altitude, whichever is greater, and cumulonimbus and/or towering cumulus whenever forecast. In applying this limitation, when no cumulonimbus and no towering cumulus and no cloud below 1 500 m (5 000 ft) or below the highest minimum sector altitude, whichever is greater, are forecast, and CAVOK is not appropriate, the abbreviation NSC shall be used.
- 51.6.4 Regulation 51.7 shall apply.
- 51.7 Code word CAVOK

When it is expected that the following conditions will apply simultaneously, the code word CAVOK shall be included in place of the groups VVVV, w'w' and $N_sN_sh_sh_s$ or $VVh_sh_sh_s$:

- (a) Visibility: 10 km or more;
- (b) No cloud below 1 500 metres (5 000 ft) or below the highest minimum sector altitude, whichever is greater, and no cumulonimbus and no towering cumulus;
- (c) No significant weather phenomena (see Code table 4678).

Note: See note under Regulation 15.10.

51.8 Groups
$$\begin{cases} TTTTT YYGG/Y_eY_eG_eG_e \\ or \\ TTYYGGgg \end{cases}$$

51.8.1 These groups shall be used when, during the period $Y_1Y_1G_1G_1$ to $Y_2Y_2G_2G_2$, a change in some or all of the elements forecast is expected to occur at some intermediate time YYGGgg or during the period YYGG to $Y_eY_eG_eG_e$. Such groups shall not be introduced until all the data groups necessary to describe the elements forecast in the period $Y_1Y_1G_1G_1$ to $Y_2Y_2G_2G_2$ or YYGGgg have been given.

Notes:

- (1) If the end of the forecast period is midnight, Y_eY_e should be the date before midnight and G_eG_e should be indicated as 24.
- (2) See Note (1) to Regulation 51.1.4.
- 51.8.2 The time indicator group TTYYGGgg in the form of FMYYGGgg (from YYGGgg) shall be used to indicate the beginning of a self-contained part of the forecast indicated by YYGGgg. When the group FMYYGGgg is used, all forecast conditions given before the group FMYYGGgg are superseded by the conditions indicated after the group.

A-108 Volume I.1

The change groups TTTTT YYGG/Y_eY_eG_eG_e in the form of BECMG YYGG/Y_eY_eG_eG_e shall indicate a change in forecast meteorological conditions expected to occur at either a regular or irregular rate at an unspecified time within the period YYGG to Y_eY_eG_eG_e. The duration of the period YYGG to Y_eY_eG_eG_e shall normally not exceed two hours and in any case shall not exceed four hours. The change groups shall be followed by a description of all the elements for which a change is forecast. When an element is not described in data groups which follow the change groups, the description of this element for the period between Y₁Y₁G₁G₁ and Y₂Y₂G₂G₂ shall be considered to remain valid subject to Regulation 51.1.5.

Note: The conditions described after the groups BECMG YYGG/ $Y_eY_eG_eG_e$ are those expected to prevail from $Y_eY_eG_eG_e$ until $Y_2Y_2G_2G_2$, unless a further change is expected, in which case a further set of change groups BECMG YYGG/ $Y_eY_eG_eG_e$ or FMYYGGgg must be used.

51.8.4 The change groups TTTTT YYGG/Y_eY_eG_eG_e in the form of TEMPO YYGG/Y_eY_eG_eG_e shall indicate frequent or infrequent temporary fluctuations in forecast meteorological conditions which are expected to last less than one hour in each instance and, in the aggregate cover, less than half of the period indicated by YYGG/Y_eY_eG_eG_e.

Notes:

- (1) If the modified forecast condition is expected to last one hour or more, Regulation 51.8.2 or 51.8.3 applies, i.e. the change groups BECMG YYGG/Y_eY_eG_eG_e or FMYYGGgg must be used at the beginning and end of the period during which conditions are expected to depart from those forecast prior to YYGG or YYGGgg.
- (2) To keep forecasts clear and unambiguous, the use of change indicators should be carefully considered and kept to a minimum. In particular, the overlapping of change periods should be avoided. At any time during the period of validity of the TAF, only one possible variation in the prevailing forecast conditions should normally be indicated. The subdivision of the forecast period by FMYYGGgg should be used to avoid too complex forecasts in cases where many significant changes in weather conditions are expected to occur throughout the forecast period.
- 51.9 Groups **PROB**C₂C₂ YYGG/Y_eY_eG_eG_e
- 51.9.1 In order to indicate the probability of occurrence of alternative value(s) of forecast element(s) during a defined period of time, the groups $PROBC_2C_2$ YYGG/Y_eY_eG_eG_e shall be placed directly before the alternative value(s). For C_2C_2 , only the values 30 and 40 shall be used to indicate the probabilities 30 and 40%, respectively.

Note: A probability of less than 30% of actual values deviating from those forecast is not considered to justify the use of the group PROB. When the possibility of an alternative value is 50% or more, this should be indicated by the use of BECMG, TEMPO or FM as appropriate.

- 51.9.2 A probability statement may also be related to the occurrence of temporary fluctuations. In this case, the group $PROBC_2C_2$ shall be placed immediately before the change group TEMPO and the group $YYGG/Y_eY_eG_eG_e$ shall be placed after TEMPO (for example PROB30 TEMPO 2922/3001).
- 51.9.3 The group **PROBC**₂C₂ shall not be used in combination with the change indicator group BECMG or the time indicator group FMYYGGgg.
- 51.10 Group ($TXT_FT_F/Y_FY_FG_FG_FZ$ $TNT_FT_F/Y_FY_FG_FG_FZ$)
- 51.10.1 To indicate forecast maximum and minimum temperatures expected to occur at the time indicated by $Y_FY_FG_FG_FZ$, the letter indicator TX for the maximum forecast temperature and TN for the minimum forecast temperature shall precede T_FT_F without a space. Up to a maximum of four temperatures shall be included, i.e., two maximum temperatures and two minimum temperatures.
- 51.10.2 Temperatures between -9°C and +9°C shall be preceded by 0; temperatures below 0°C shall be preceded by the letter M, that is, minus.

51.11 Amended aerodrome forecast

An amended aerodrome forecast in code form shall be identified by the use of the prefix TAF AMD in place of TAF, and it shall cover the whole remaining validity period of the original TAF.

A-110 Volume I.1

FM 53-X Ext. ARFOR

Area forecast for aviation

CODE FORM:

SECTION 1	ARFOR	(YYGGgg Z)	Y ₁ Y ₁ G ₁ G ₁ G ₂ G ₂	{ KMH or KT or MPS	AAAAA	(VVVV)
	(w ₁ w ₁ w ₁)	$ \left(\begin{array}{l} N_sN_sN_sh_sh_s \\ or \\ \textbf{VV} \\ h_sh_sh_s \\ or \\ \textbf{SKC} \\ \end{array} \right) $	})	7h _t h _t h _t h _t h _f h _f	$6I_ch_ih_ih_it_L$	5Bh _B h _B h _B t _L
	$(4h_xh_xh_xT_hT_h$	$d_h d_h f_h f_h f_h)$	$(2h'_Ph'_PT_PT_P)$			
SECTION 2	(11111	$QL_aL_aL_oL_o$	h´ _j h´ _j f _j f _j f _j)			
SECTION 3	(22222	$h'_m h'_m f_m f_m f_m$	$(d_m d_m vv))$			
SECTION 4	9i₃nnn					

Notes:

- (1) ARFOR is the name of the code for an aviation forecast in figure code prepared for a specific area.
- (2) See Notes (2) and (3) under FM 51 TAF.
- (3) The code form is divided into four sections as follows:

Section number	Symbolic figure group	Contents
1	_	Code identification and time groups; area forecast
2	11111	Jet-stream data (optional)
3	22222	Data of maximum wind and vertical wind shear (optional)
4	_	Supplementary phenomena

Sections 2, 3 and 4 are not transmitted separately.

(4) No aeronautical requirement for this code form is stated by ICAO for international air navigation in ICAO Annex 3/WMO Technical Regulations (WMO-No. 49), Volume II, [C.3.1].

REGULATIONS:

53.1 Section 1

53.1.1 The code name ARFOR shall appear as a prefix to individual coded area forecasts, followed by the group YYGGggZ, if required.

Note: See Regulation 51.1.2.

53.1.2 The group $Y_1Y_1G_1G_2G_2$ shall be immediately followed, with a space, by the unit of wind speed used and indicated by one of the letter code indicators KMH, KT or MPS, as the case may be.

Notes:

- (1) KMH, KT and MPS are the standard ICAO abbreviations for kilometres per hour, knots and metres per second, respectively.
- (2) The unit of wind speed used is determined by national decision. However, the primary unit prescribed in ICAO Annex 5 for wind speed is the kilometre per hour (KMH), with the knot (KT) permitted for use as a non-SI alternative unit until a termination date is decided - subject to a decision which is currently under review by ICAO.
- 53.1.3 Regulations 51.1.3 and 51.1.4 shall apply.
- 53.1.4 Group AAAAA

If, instead of plain language, a code is used for AAAAA, this code shall be subject to regional agreements.

- 53.1.5 Group (VVVV)
- 53.1.5.1 This group shall be omitted when visibility is not forecast.
- 53.1.5.2 Regulation 51.4 shall apply.
- 53.1.6 *Group* $(w_1w_1w_1)$
- 53.1.6.1 This group shall be used when any of the following phenomena are forecast: tropical cyclone, severe line squall, hail, thunderstorm, marked mountain waves, widespread sandstorm or duststorm, or freezing rain.
- 53.1.6.2 When corresponding equivalents in the form of letter abbreviations (Code table 4691) are added in accordance with regional air navigation agreements, the letter abbreviations shall immediately follow the $w_1w_1w_1$ figures without the insertion of any space.
- 53.1.7 Group $\left\{ \begin{array}{ll} N_sN_sN_sh_sh_s\\ \text{or}\\ \text{VVh}_sh_sh_s\\ \text{or}\\ \text{or SKC (or NSC)} \end{array} \right\}$

Regulations 51.6.1 to 51.6.3 inclusive shall apply.

- 53.1.8 Group 7hthththfhf
- 53.1.8.1 When the heights above mean sea level of both the base and top of a number of layers are forecast, the cloud and 7-groups shall be used in pairs for each layer.
- When the 0°C isotherm is forecast but no forecast is made for top of clouds, the 7-group shall have the form 7///h_fh_fh_f. If two cloud groups are given but only one 0°C isotherm is forecast, the order of the groups shall be cloud group, 7-group, cloud group, 7-group, as indicated in Regulation 53.1.8.1, and the second 7-group shall be given as 7h_th_th_t///. If one cloud group and two 0°C isotherms are forecast, the groups shall be given as cloud group, 7-group, 7-group, with the second 7-group given as 7///h_fh_fh_f.
- 53.1.9 Group 6I_ch_ih_ih_it_L
- 53.1.9.1 If required, this group shall be repeated as often as necessary to indicate more than one type or more than one layer of icing.
- 53.1.9.2 If the thickness of the layer for any one type of icing is greater than 2 700 metres, the group shall be repeated and the base indicated in the second group shall coincide with the top of the layer given in the preceding group.
- 53.1.10 Group 5Bh_Bh_Bh_Bt_L

Regulation 53.1.9.1 and 53.1.9.2 regarding icing shall equally apply to turbulence.

A-112 Volume I.1

53.1.11 Groups $(4h_xh_xh_xT_hT_h d_hd_hf_hf_hf_h)$

These groups shall always be used together and repeated for each level for which temperature and wind are forecast.

53.1.12 $Group (2h'_Ph'_PT_PT_P)$

This group shall be omitted when tropopause data are not forecast.

53.2 Section 2

- 53.2.1 Section 2 shall be omitted when jet-stream data are not forecast.
- 53.2.2 The groups QL_aL_aL_oL_o h´_jh´_jf_jf_j shall be repeated as often as necessary to indicate the position of the jet core and the wind to be encountered in the core of a jet which extends through a large portion of the area or through several zones.

53.3 Section 3

- 53.3.1 When the maximum wind is forecast but no forecast is made for the vertical wind shear, the last group of the section shall have the form $d_m d_m l$.
- 53.3.2 When only information for vertical wind shear is to be provided, the group h'mh'mfmfmfm is omitted from the coded forecast and the group dmdmvv shall have the form //vv.

53.4 Section 4 − Group 9i₃nnn

- The groups 91P₂P₂P₂, 92F_tL_aL_a, 93F_tL_oL_o, 94F_tGG, if required, shall always be placed at the end of the relevant part of the message. The groups 92F_tL_aL_a, 93F_tL_oL_o, 94F_tGG shall only be used to indicate the type of front, together with the position or time of passage. The type of weather during the frontal passage shall be indicated separately, e.g. by separating the forecasts into different periods, or by using the groups 96GGG_p and 97GGG_p, or by a combination of both methods.
- A forecast shall cover the period extending from G_1G_1 to G_2G_2 . A change group 96GGGp or 97GGGp shall be introduced when a change in some or all of the elements forecast is expected to occur at some intermediate time GG. Such a change group shall not be introduced until all the data groups necessary to describe the elements forecast in the period G_1G_1 to GG have been given. The change group shall be followed by a description of all the elements for which a change is forecast during the period G_p beginning at GG. When an element is not described in the data groups which follow the change group, the description of this element for the period between G_1G_1 and GG shall be considered to remain valid. When a group 96GGGp is used, the conditions described in the data groups which follow shall be considered to remain valid after the expiration of the time G_p . When necessary, a second change group referring to conditions at a later time GG shall be used.

Note: Plain-language equivalents which are used for the change group 9i₃nnn, in accordance with regional air navigation agreements, shall be those specified in Code table 1864.

53.4.3 Group 96GGG_p

- 53.4.3.1 The group 96GGG_p, with G_p set to zero (96GG0), shall be used to indicate the beginning of a self-contained part of the forecast indicated by GG. In this case, all forecast conditions given before the group 96GG0 are superseded by the conditions indicated after the group.
- The group 96GGG_p, with G_p coded 1 to 4, shall be used to indicate a change in forecast meteorological conditions expected to occur at either a regular or irregular rate at an unspecified time within the period beginning at GG and indicated by G_p. The duration of the period G_p shall normally not exceed two hours and in any case shall not exceed four hours.

53.4.4 Group 97GGG_p

The group $97GGG_p$, with G_p coded 1 to 9, shall be used to indicate frequent or infrequent temporary fluctuations to forecast meteorological conditions which are expected to last less than one hour in each instance and, in the aggregate cover, less than half of the period indicated by G_p . If there is a requirement for G_p greater than GG plus nine hours, the forecast period shall be divided.

Notes:

- (1) If the modified forecast condition is expected to last one hour or more, Regulation 53.4.3.1 or 53.4.3.2 applies: i.e. the change group 96GGG_p must be used at the beginning and end of the period during which conditions are expected to depart from those forecast prior to GG.
- (2) To keep forecasts clear and unambiguous, the use of change indicators should be carefully considered and kept to a minimum. In particular, the overlapping of change periods should be avoided. At any time during the validity of the ARFOR, only one possible variation to the prevailing forecast conditions should normally be indicated. The subdivision of the forecast period by 96GG0 should be used to avoid too complex forecasts in cases where many significant changes to weather conditions are expected to occur throughout the forecast period.

53.4.5 Group 9999C₂

53.4.5.1 The group 9999C₂ shall be used to indicate the probability of either the occurrence of an alternative value of a forecast element or the occurrence of temporary fluctuations.

Note: A probability of less than 30% of actual values deviating from those forecast is not considered to justify the use of the group 9999C₂. When the possibility of an alternative value is 50% or more, this should be indicated by the use of a group 96GGG_p as appropriate.

When used to indicate the probability of occurrence of an alternative value of a forecast element, the group 9999C₂ shall be followed immediately by an associated time group 99GGG_p. The groups 9999C₂ 99GGG_p, directly placed after the forecast element concerned, shall be followed immediately by the alternative value of that element.

Note: See Regulation 53.4.6.

- 53.4.5.3 When used to indicate the probability of occurrence of temporary fluctuations, the group 9999C₂ shall be placed immediately before the change group 97GGG_p.
- 53.4.5.4 The group 9999C₂ shall not be used in combination with the change group 96GGG_p.
- 53.4.6 Group 99GGG_p

The group $99GGG_p$, used in combination with the probability group $9999C_2$, shall indicate the time period G_p beginning at GG that the alternative value of a forecast element may occur.

53.4.7 Plain-language equivalents which are used for change group 9i₃nnn, in accordance with regional air navigation agreements, shall be those specified in Code table 1864.

53.5 Amended area forecast

An amended area forecast in code form shall be identified by the use of the prefix ARFOR AMD in place of ARFOR, and it shall cover the whole remaining validity period of the original ARFOR.

A-114 Volume I.1

FM 54-X Ext. ROFOR

Route forecast for aviation

(KMH or)

CODE FORM:

SECTION 1	ROFOR	(YYGGgg Z)	$Y_1Y_1G_1G_1G_2G_2$	KMH or KT or MPS	
	CCCC (VVVV) 5Bh _B h _B h _B t _L	$\begin{aligned} &(QL_aL_aL_oL_o)\\ &(w_1w_1w_1)\\ &(4h_xh_xh_xT_hT_h\end{aligned}$	$\begin{array}{ll} CCCC & 0i_2 \\ N_sN_sN_sh_sh_sh_s \\ d_hd_hf_hf_hf_h) \end{array}$	չzzz 7h _t h _t h _t h _f h _f h (2h´թh´	6I _c h _i h _i h _i t∟ _P T _P T _P)
SECTION 2	(11111	$QL_aL_aL_oL_o$	h´ _i h´ _i f _i f _i f _i)		
SECTION 3	(22222	h′mh′mfmf mfm	$(d_m d_m vv))$		
SECTION 4	9i₃nnn				

Notes:

- (1) ROFOR is the name of the code for an aviation forecast in figure code prepared for a route between two specified aerodromes.
- (2) See Notes (2) and (3) under FM 51 TAF.
- (3) The code form is divided into four sections as follows:

Section number	Symbolic figure group	Contents
1	_	Code identification and time groups; route forecast
2	11111	Jet-stream data (optional)
3	22222	Data of maximum wind and vertical wind shear (optional)
4	_	Supplementary phenomena

Sections 2, 3 and 4 are not transmitted separately.

(4) No aeronautical requirement for this code is stated by ICAO for international air navigation in ICAO Annex 3/WMO Technical Regulations, Volume II, [C.3.1].

REGULATIONS:

54.1 Section 1

54.1.1 The code name ROFOR shall appear as a prefix to individual coded route forecasts, followed by the group YYGGggZ, if required.

Note: See Regulation 51.1.2.

- 54.1.2 The forecast shall be considered as valid between the hours G_1G_1 and G_2G_2 at all points or in all sections along the route.
- 54.1.3 The group $Y_1Y_1G_1G_2G_2$ shall be immediately followed, with a space, by the unit of wind speed used and indicated by one of the letter code indicators KMH, KT or MPS, as the case may be.

Notes:

(1) KMH, KT and MPS are the standard ICAO abbreviations for kilometres per hour, knots and metres per second, respectively.

- (2) The unit of wind speed used is determined by national decision. However, the primary unit prescribed in ICAO Annex 5 for wind speed is the kilometre per hour (KMH), with the knot (KT) permitted for use as a non-SI alternative unit until a termination date is decided subject to a decision which is currently under review by ICAO.
- 54.1.4 Regulations 51.1.3 and 51.1.4 shall apply.
- 54.1.5 In describing forecast conditions, one of the two following methods shall be used:
 - (a) By dividing the route into sections ($i_2 = 0$ to 5 inclusive) and giving the details of conditions expected during the period over the extent of each section. Five-degree zones ($i_2 = 5$) may be combined if weather elements are sufficiently uniform;
 - (b) By selecting series of points along the route (i₂ = 6 to 9 inclusive) and forecasting the conditions at these points. Sufficient points must be selected to provide an adequate sampling of the various weather and wind conditions expected along the route.
- 54.1.6 Route designation
- 54.1.6.1 The route to which the forecast applies shall be given by the international four-letter location indicators CCCC of the aerodromes at either end of the route. Where it is desirable to specify the route in greater detail, group(s) QL_aL_aL_oL_o shall be included between CCCC groups to identify a sufficient number of additional points.
- 54.1.6.2 The forecast detail shall be given starting from the aerodrome of departure indicated by the first CCCC group.
- 54.1.6.3 The group 0i2zzz shall be used at the beginning of the forecast for each section or point.
- 54.1.6.4 Regulation 51.2.1 shall apply.
- 54.1.7 Forecast elements

Relevant aspects of Regulations 53.1.5 to 53.1.12 inclusive shall apply.

54.2 Section 2

Regulations 53.2.1 and 53.2.2 shall apply.

54.3 Section 3

Regulations 53.3.1 and 53.3.2 shall apply.

- 54.4 Section 4 Group 9i₃nnn
- 54.4.1 Regulation 53.4.1 shall apply.
- 54.4.2 In addition to Regulation 53.4, the groups 951//, 952L_aL_a, 953L_aL_a, 954L_oL_o, 955L_oL_o, or the corresponding plain-language alternative terminology (see Code table 1864), shall be used if it is necessary to indicate changes along the route.
- 54.4.3 Regulations 53.4.2 to 53.4.7 inclusive shall apply.
- 54.5 Amended route forecast

An amended route forecast in code form shall be identified by the use of the prefix ROFOR AMD in place of ROFOR, and it shall cover the whole remaining validity period of the original ROFOR.

A-116 Volume I.1

CODE FORM:

SECTION 0	RADOF	F ₁ F ₂ Y _r Y _r G _r G _r AAMMJJJ h _r h _r h _r h _r h _r h	$Y_0Y_0G_0G_0$ $Y_aY_aG_aG_ag_ag_a$	$Y_1Y_1G_1G_1G_pG_p$ $L_aL_aL_aL_aA$	$ \left\{ \begin{array}{l} \text{IIiii*} \\ \text{or} \\ \text{D} \dots \text{D**} \\ \text{L}_{o}\text{L}_{o}\text{L}_{o}\text{L}_{o}\text{D}_{o} \text{B} \end{array} \right. $
SECTION 1	11101	$Y^1Y^1G^1G^1g^1g^1$ (5nnnIS)	$L_a^1 L_a^1 L_a^1 L_a^1 A$ 6XXXs _n aa	$L_o^1 L_o^1 L_o^1 L_o^1 L_o^1 B$ (7XXXs _n aa)	h ¹ h ¹ h ¹ h
	11102	$Y^2Y^2G^2G^2g^2g^2$ (5nnnIS)	$L_a^2 L_a^2 L_a^2 L_a^2 A$ 6XXXs _n aa	$L_o^2 L_o^2 L_o^2 L_o^2 L_o^2 B$ (7XXXs _n aa)	h ² h ² h ² h ²
	111jj	Y ^j Y ^j G ^j G ^j g ^j (5nnnIS)	L _a ^j L _a ^j L _a ^j A 6XXXs _n aa	L _o ^j L _o ^j L _o ^j L _o ^j B (7XXXs _n aa)	h ^j h ^j h ^j h
SECTION 2	22201	$Y^1Y^1G^1G^1g^1g^1\\i_zs_ns_is_is_p)$	$L_a^1L_a^1L_a^1L_a^1A$	$L_o^1 L_o^1 L_o^1 L_o^1 L_o^1 B$	$(h_m h_m h_m h_m$
	22202	$Y^2Y^2G^2G^2g^2g^2$ $i_zs_ns_is_is_p)$	$L_a^2L_a^2L_a^2L_a^2A$	$L_o^2 L_o^2 L_o^2 L_o^2 L_o^2 B$	$(h_m h_m h_m h_m$
	222jj	Y ^j Y ^j G ^j G ^j g ^j i _z s _n s _i s _i s _p)	$L_a^j L_a^j L_a^j L_a^j A$	L ^J L ^J L ^J L ^J L ^J B	$(h_m h_m h_m h_m$

Notes:

- (1) RADOF is the name of the code used to provide forecast radiological trajectory dose for defined expected time of arrival and location.
- (2) A RADOF message is identified by the word RADOF.
- (3) The code form is divided into three sections:

Section number	Symbolic figure group	Contents
0	_	Indications of the data-processing centre originating the forecast and time of issue, initial time of analyses/forecasts used to produce the trajectory, period of validity of radiological trajectory forecast data, and identification of incident (activity or facility involved, time and location) to which trajectory is associated
1	111jj	Definition of arrival times of radiological contamination and trajectory locations (when relevant, isotope mass and element name), associated forecast radiological quantity, and data on radioactive substance concentration (total beta activity) in surface layer for each location
2	222jj	Definition of times and trajectory locations, associated mixing height, stability index and category for each location

^{*} Included in a fixed land station report only.

^{**} Included in a sea or mobile land station report only.

REGULATIONS:

	7.1	General
.,		General

- 57.1.1 The code name RADOF shall always be included at the beginning of a RADOF message.
- 57.1.2 When in printed form, the format of the RADOF message shall present the characteristics of a direct reading data table.
- 57.1.3 Use of sections
- 57.1.3.1 Radiological trajectory forecasts shall always contain at least Section 0 and the first five groups of Section 1.
- 57.1.3.2 In radiological trajectory forecasts of gamma dose in air, Section 1 shall in addition to the first five groups include the group 6XXXs_naa to give the expected radiological quantity at the forecast time and point position, in millisieverts (mSv).
- 57.1.3.3 In radiological trajectory forecasts of air concentration of named isotope type including gross beta, Section 1 shall in addition to the first five groups include the groups 5nnnIS 6XXXs_naa to give the isotope mass and element name and the expected radiological quantity at the forecast time and point position, in becquerels per cubic metre (Bq m⁻³).
- 57.1.3.4 When relevant data are available, the group 7XXXs_naa shall also be included to give the radioactive substance concentration (total beta activity) in the surface layer, in becquerels per cubic metre (Bq m⁻³).
- 57.1.3.5 When relevant forecast data are available, Section 2 shall be included in radiological trajectory forecasts to give the mixing height and/or stability index and category, as appropriate, for defined times and trajectory locations.

Note: Since the density of information required to be given on mixing height and stability index and category is generally more widespread, the sequence of times and forecast point positions to be included in Section 2 is not necessarily the same as in Section 1.

57.2 Section 0

- 57.2.1 The groups of this section shall constitute the first line of the text of the message.
- $57.2.2 \qquad \qquad \textit{Groups} \ \ F_1F_2Y_rY_rG_rG_r \ \ Y_0Y_0G_0G_0$

The data-processing centre originating the forecast shall be indicated by F_1F_2 and is followed by the date and time of issue of the forecast $(Y_rY_rG_rG_r)$ and the initial date and time of analyses/forecasts used to produce the trajectory $(Y_0Y_0G_0G_0)$ respectively.

57.2.3 Group $Y_1Y_1G_1G_1G_pG_p$

The trajectory forecast shall cover the period G_pG_p beginning at $Y_1Y_1G_1G_1$.

57.2.4 Groups
$$\begin{cases} IIiii* \\ or \\ D \dots D^{**} \end{cases}$$
 AAMMJJJ $Y_aY_aG_aG_ag_ag_a \ L_aL_aL_aL_aA \ L_oL_oL_oL_oB \ h_rh_rh_rh_ri_h$

These groups shall be included to identify the incident (activity or facility involved, time and location) to which the trajectory forecast is associated.

A-118 Volume I.1

^{*} Included in a fixed land station report only.

^{**} Included in a sea or mobile land station report only.

57.3 Section 1

Note: Sequence number jj = 01–99 indicates the data line(s) of subsequent forecast point positions given.

- 57.3.2 The forecast radiological quantity 6XXXs_naa, when relevant preceded by the isotope mass and element name (5nnnIS) and followed by data on radioactive substance concentration (total beta activity) in the surface layer (7XXXs_naa), shall be included in the same data line following the point position groups.
- 57.3.3 If several isotopes are forecast for the same time and point position, groups 5nnnIS 6XXXs_naa shall be repeated as required.

Note: In order to keep the characteristics of a direct reading data table, in that case the time and position groups should not be repeated and be replaced by blank spaces.

57.3.4 A data line consisting of relevant groups of this section shall be repeated for different forecast trajectory point positions, as required.

57.4 Section 2

57.4.1 When relevant data are available, the indicator group 222jj, the expected time of arrival of contamination and the forecast point position groups shall be included as the first four groups in the subsequent lines of the text of the message.

Note: See note to Regulation 57.3.1.

- 57.4.2 Data on mixing height $(h_m h_m h_m)$ and/or stability index and category $(i_z s_n s_i s_i s_p)$ shall be included in the same data line following the point position groups. i_z shall be encoded in accordance with Code table 1859 Stability index, which forecast value is given by $s_i s_i$ modified by s_n for the sign of the value; s_p shall be encoded in accordance with Code table 3847 Pasquill–Gifford stability category.
- 57.4.3 Regulation 57.3.4 shall apply.

FM 61-IV MAFOR Forecast for shipping

CODE FORM:

MAFOR

 $YYG_1G_1/$ 0AAAa_m GDF_mW_m (2VST_xT_n) (3D_KP_wH_wH_w)

Note: MAFOR is the name of the code for a forecast for shipping.

REGULATIONS:

61.1 Section 1

- 61.1.1 The code name MAFOR shall appear as a prefix to individual coded forecasts for shipping.
- 61.1.2 The code name MAFOR shall be included as the first line of the text of a meteorological bulletin of MAFOR forecasts. Individual coded forecasts in the bulletin shall not contain the code name MAFOR.
- 61.2 Group YYG₁G₁/

This group, indicating the date (day of month) and time (UTC) of the beginning of the period for which the whole forecast or set of forecasts is valid, shall not be repeated if forecasts for several areas (AAA) are given in the one message.

- 61.3 Group 0AAAa_m
- 61.3.1 This group shall indicate the maritime area to which the whole forecast or set of forecasts refers.
- 61.3.2 If the geographical name for the forecast region is used instead of the indicator AAAa_m, it shall be inserted at the place of this group.
- 61.4 Groups $1GDF_mW_m$ ($2VST_xT_n$) ($3D_KP_wH_wH_w$)
- This set of groups shall be repeated as many times as necessary to describe the changes in the meteorological conditions forecast in a given area, due attention being given to the need for strict economy in the number of groups used. The first group $1GDF_mW_m$ in which G = 1-8, and the following optional group(s), if used, then shall refer to the forecast weather commencing at the time given in the group $YYG_1G_1/$ and continuing through the period indicated by G. Subsequent groups $1GDF_mW_m$ (G = 1-8) shall give the period of time that the described weather is forecast to persist commencing at the end of the period covered by the preceding group $1GDF_mW_m$ (G = 1-8). If a phenomenon is forecast to occur occasionally in the same period, any set $1GDF_mW_m$ ($2VST_xT_n$) ($3D_KP_wH_wH_w$) (G = 1-8) shall be followed by a group $1GDF_mW_m$ (G = 9).

Note: The specific value of any of the elements given in the forecast should be understood to be necessarily approximate and the value of the element in question should accordingly be interpreted as representing the most probable mean of a range of values which the element may assume during the period of the forecast concerned and over the area concerned.

61.4.2 Group 1GDF_mW_m

This group shall indicate the period of time covered by the forecast, the direction and the force of the forecast wind and the forecast weather.

61.4.3 Group ($2VST_xT_n$)

FM 61 MAFOR

This optional group shall indicate the forecasts of visibility, state of sea and extreme air temperatures.

61.4.4	Group	$(3D_KP_WH_WH_W)$

- 61.4.4.1 This group shall indicate, as an optional feature, the direction, the period and the height of the forecast waves.
- 61.4.4.2 The direction from which the wave of longest period is travelling shall be given when waves from several directions are forecast.

A-122 Volume I.1

FM 62-VIII Ext. TRACKOB Report of marine surface observation along a ship's track

CODE FORM:

Notes:

- (1) TRACKOB is the name of the code for reporting consecutive marine surface observations along a ship's track.
- (2) A TRACKOB report containing observations taken on the same date along a ship's track during one day is identified by $M_iM_iM_iM_i = NNXX$ and the group YYMMJ, and terminated by the ship's call sign D D.
- (3) A bulletin may contain several TRACKOB reports.
- (4) The code is divided into three sections:

Section number	Symbolic figure group	Contents
1	_	Data for reporting identification and date
2	_	Data for reporting time, location, averaging periods, and marine surface parameters
3	_	Ship's call sign

REGULATIONS:

62.1 General

The code name TRACKOB shall not be included in the report.

62.2 Section 1

Section 1 shall be included as the first line of the text in every individual report.

62.3 Section 2

- 62.3.1 The groups $GGgg/Q_cL_aL_aL_aL_aL_aL_oL_oL_oL_oL_oL_o$ shall always be included in each individual observation within a report. The ship's position shall refer to its position at mid-point of beginning and end of observation.
- 62.3.2 In a TRACKOB report, the group 4m_Tm_Sm_ci_c shall be included only for the first observation and omitted for subsequent observations for which the averaging procedures are the same. Whenever any subsequent change occurs in the averaging procedures, the first observation using the subsequent averaging procedures shall include this group.
- 62.3.3 When data are available, the group $9d_0d_0c_0c_0$ shall be encoded 90000 if the sea-surface current speed is less than 0.05 metre per second (0.1 knot).
- 62.3.4 Section 2 shall be repeated as often as observations are available for a given date.

62.4 Section 3

The ship's call sign D \dots D shall be entered at the end of a TRACKOB report and shall terminate an individual report. In the absence of a ship's call sign, the word SHIP shall be used for D \dots D.

62.5 A bulletin of TRACKOB reports

In a bulletin of several TRACKOB reports from either the same ship or different ships, every individual TRACKOB report shall always include Sections 1, 2 and 3, and Section 2 shall conform to Regulation 62.3.4.

A-124 Volume I.1

FM 63-XI Ext. BATHY

Report of bathythermal observation

CODE FORM:

SECTION 1	$M_iM_iM_jM_j$	YYMMJ	GGgg/	$Q_cL_aL_aL_aL_aL_a$	$L_0L_0L_0L_0L_0L_0$	(i _u ddff)	(4s _n TTT)
SECTION 2	8888k ₁	$I_XI_XI_XX_RX_R$	z ₀ z ₀ T ₀ T ₀ 999zz (00000)	T ₀ z ₁ z ₁ T ₁ T z ₁ z ₁ T ₁ T			nTnTnTn nTnTnTn
SECTION 3	(66666	$(1Z_dZ_dZ_dZ_d)$	$(k_5D_cD_cV$	$(_{c}V_{c}))$			
SECTION 4	D D or 99999	$A_1b_wn_bn_bn_b$					

Notes:

- (1) BATHY is the name of the code for reporting bathythermal observations.
- (2) A BATHY report, or a bulletin of BATHY reports, is identified by M_iM_iM_iM_i (See Code table 2582).
- (3) The code form is divided into four sections:

Section number	Symbolic figure group	Contents
1	_	Identification and position data. Wind and air temperature (optional)
2	8888	Type of instrumentation and temperatures at either significant or selected depths
3	66666	Total water depth and surface current (optional)
4	— or 99999	Ship's call sign or station identification group $A_1b_wn_bn_bn_b$

REGULATIONS:

- 63.1 The code name BATHY shall not be included in the report.
- 63.2 Section 1
- 63.2.1 Each individual BATHY report, even if included in a bulletin of such reports, shall contain as the first group the identification group $M_i M_i M_j M_j$.
- 63.2.2 Groups $Q_cL_aL_aL_aL_aL_a$ $L_oL_oL_oL_oL_o$

Position shall be reported in tenths, hundredths or thousandths of a degree, depending on the capability of the positioning system. When the position is in tenths of a degree, the groups shall be encoded as $Q_cL_aL_aL_a/I$ $L_oL_oL_oL_o/I$. When the position is in hundredths of a degree, the groups shall be encoded as $Q_cL_aL_aL_aL_a/I$ $L_oL_oL_oL_oL_o/I$.

63.2.3 For the reporting of the value of the direction and speed of the wind, regulations for FM 13 SHIP shall apply.

Note: The unit of wind speed is indicated by $i_{\rm u}$ (Code table 1853).

63.3 Section 2

- 63.3.1 The group IxIxIxX_RX_R is mandatory and shall follow immediately after the 8888k₁ group.
- 63.3.2 If temperatures are reported at significant depths, the values shall:
 - (a) Be sufficient to reproduce basic features of the temperature profile;
 - (b) Define the top and the bottom of isothermal layers;
 - (c) In the upper 500 metres, never be more and usually less than 20 in number, even at the cost of loss of detail.
- 63.3.3 The group 00000 shall be included only when the temperature at the lowest depth of the sounding, which is reported in the last temperature group, is actually the bottom layer temperature.

63.4 Section 3

- 63.4.1 The inclusion of this section shall be determined by national decision.

63.5 Section 4

The ship's call sign $D \dots D$, or identifier group 99999 together with the station identification group $A_1b_wn_bn_bn_b$ if not already included in the report, shall be added by the coastal radio station receiving the report, or by the national collecting centre when preparing the report for inclusion in bulletins, as appropriate and required.

Notes:

- (1) See Regulation 12.1.7.
- (2) See Regulation 18.2.3, Notes (1), (2) and (3).

A-126 Volume I.1

FM 64-XI Ext. TESAC

Temperature, salinity and current report from a sea station

CODE FORM:

SECTION 1	$M_i M_i M_j M_j$	YYMMJ	GGgg/	$Q_cL_aL_aL_aL_aL_a$	$L_oL_oL_oL_oL_oL_o$	(i _u ddff)	(4s _n TTT)
SECTION 2	888k ₁ k ₂	$I_XI_XI_XX_RX_R$	$\begin{array}{c} 2z_{0}z_{0}z_{0}z_{0}\\ 2z_{1}z_{1}z_{1}z_{1}\end{array}$	- 0 0		₀ S ₀ S ₀ ₁ S ₁ S ₁	
			$2z_nz_nz_nz_n$	3T _n T _n T	_n T _n 4S _n S	$_{n}S_{n}S_{n}$	(00000)
SECTION 3	(66k ₆ k ₄ k ₃	$2z_0z_0z_0z_0$ $2z_1z_1z_1z_1$	d ₀ d ₀ c ₀ c ₀ c d ₁ d ₁ c ₁ c ₁ c				
		$2z_nz_nz_nz_n$	$d_n d_n c_n c_n c$	c _n)			
SECTION 4	(55555	$1Z_dZ_dZ_dZ_d$					
SECTION 5	D D or 99999	$A_1b_wn_bn_bn_b$					

Notes:

- (1) TESAC is the name of the code for reporting observations of temperature, salinity and current from a sea station.
- (2) A TESAC report, or a bulletin of TESAC reports, is identified by M_iM_iM_iM_i (See Code table 2582).
- (3) The code form is divided into five sections:

Section number	Symbolic figure group	Contents
1	_	Identification and position data. Wind and air temperature (optional)
2	888	Temperatures and salinity at either significant or selected depths
3	66	Current at selected and/or significant depths (optional)
4	55555	Total water depth (optional)
5	— or 99999	Ship's call sign or station identification group $A_1b_wn_bn_bn_b$

REGULATIONS:

64.1 The code name TESAC shall not be included in the report.

64.2 Section 1

64.2.1 Each individual TESAC report, even if included in a bulletin of such reports, shall contain as the first group the identification group M_iM_iM_j.

64.2.2 Groups Q_cL_aL_aL_aL_aL_a L_oL_oL_oL_oL_oL_o

Position shall be reported in tenths, hundredths or thousandths of a degree, depending on the capability of the positioning system. When the position is in tenths of a degree, the groups shall be encoded as $Q_cL_aL_aL_a//$ $L_oL_oL_oL_o//$. When the position is in hundredths of a degree, the groups shall be encoded as $Q_cL_aL_aL_a/$ $L_oL_oL_oL_oL_o/$.

64.2.3 For the reporting of the value of the direction and speed of the wind, regulations for FM 13 SHIP shall apply.

Note: The unit of wind speed is indicated by i_u (Code table 1853).

64.3 Section 2

64.3.1 Group I_XI_XI_XX_RX_R

This group is mandatory and shall follow immediately after the 888k₁k₂ group.

- 64.3.2 If temperatures and salinity are reported at significant depths, the values shall:
 - (a) Be sufficient to reproduce basic features of the temperature and salinity profile;
 - (b) Define the top and the bottom of isothermal/isohaline layers;
 - (c) In the upper 500 metres, never be more and usually less than 20 in number, even at the cost of loss of detail.
- Both temperature and salinity shall be reported for each significant depth selected. The criteria for selecting a significant depth may be based on the characteristics of the temperature profile or the characteristics of the salinity profile. When the measurement of one of the elements at any particular depth is not available, the corresponding group shall be omitted from the report.
- 64.3.4 The group 00000 shall be included only when the temperature (salinity) at the lowest depth of the sounding, which is (are) reported in the last groups of the section, is (are) actually the bottom layer temperature (salinity).

64.4 Section 3

The inclusion of this section shall be determined by national decision.

64.5 Section 4

- 64.5.1 The inclusion of this section shall be determined by national decision.
- 64.5.2 This section shall be omitted when group 00000 is included in Section 2.

64.6 Section 5

The ship's call sign $D \dots D$, or identifier group 99999 together with the station identification group $A_1b_wn_bn_bn_b$ if not already included in the report, shall be added by the coastal radio station receiving the report, or by the national collecting centre when preparing the report for inclusion in bulletins, as appropriate and required.

Notes:

- (1) See Regulation 12.1.7.
- (2) See Regulation 18.2.3, Notes (1), (2) and (3).

A-128 Volume I.1

FM 65-XI Ext. WAVEOB

Report of spectral wave information from a sea station or from a remote platform (aircraft or satellite)

CODE FORM:

SECTION 0	$M_iM_iM_jM_j \left\{ \right.$	$\left. \begin{array}{l} D \ldots D \\ or \\ A_1b_wn_bn_bn_b \\ or \\ I_6I_6I_6// \end{array} \right\}^{**}$	LWWAA	GGgg/	$\begin{cases} \text{IIiii*} \\ \text{or} \\ Q_c L_a L_a L_a L_a \end{cases}$	$L_0L_0L_0L_0^{**}$
	$00I_aI_mI_p$ (6H _{se} H _{se} H _{se} H _s			$P_p P_p P_p$ $P_{sa} P_{sa} P_{sa}$)	$ (4H_mH_mH_mH_m) $ $ (9d_dd_dd_sd_s) $	$(5P_aP_aP_aP_a)$
SECTION 1	(111B _T B _T	SSSS/ D'D BB/// nf _n f	D'D'D'/ BB/// nf _n x nf _d f _d f _d x)	$1f_1f_1f_1x$	$1f_df_df_dx$	
SECTION 2	(2222x	$C_m C_m C_m n_m n_m$ (or $n c_n c_n //$)	1c ₁ c ₁ c ₂ c ₂	3C ₃ C ₃ C ₄ C ₄		n –1 $c_{n-1}c_{n-1}c_nc_n$
SECTION 3	(3333x	$\begin{array}{c} C_{sm}C_{sm}C_{sm}n_{sm}n_{sm}\\ n-1c_{sn-1}c_{sn-1}c_{sn}c_{sm} \end{array}$		₁ C _{s2} C _{s2} C _{sn} C _{sn} //))	3c _{s3} c _{s3} c	_{S4} C _{S4}
SECTION 4	(4444	$1d_{a1}d_{a1}d_{a2}d_{a2} \\ nd_{a1}d_{a1}d_{a2}d_{a2}$	1r ₁ r ₁ r ₂ r ₂ nr ₁ r ₁ r ₂ r ₂)	2d _{a1} d _{a1} d _{a2} d	a2 2r ₁ r ₁ r ₂ r ₂	
SECTION 5	(5555I _b	$1A_1A_1A_1x$ $nA_nA_nA_nx$	$(1d_1d_1d_sd_s)$ $(nd_nd_nd_sd_s))$	$2A_2A_2A_2$	(2d ₂ d ₂ d ₅	_s d _s)

Notes:

- (1) WAVEOB is the name of the code for reporting spectral wave data from a sea station, or from an aircraft or satellite platform.
- (2) A WAVEOB report is identified by $M_iM_iM_jM_j = MMXX$.
- (3) The code form is divided into six sections (Sections 1 to 5 are optional). However, if any of Sections 2, 3, 4 or 5 are present, Section 1 must be present:

Section number	Symbolic figure group	Contents
0	_	Data for reporting identification (type, buoy identifier, date, time, location), indication of frequency or wave number, method of calculation, type of station, water depth, significant wave height and spectral peak period, or wave length, and optional wave parameters
1	111	Sampling interval and duration (or length) of record, and description of measurement system bands
2	2222	Maximum non-directional spectral density from heave sensor, and ratios of individual spectral densities to the maximum value
3	3333	Maximum non-directional spectral density from slope sensor, and ratios of individual spectral densities to the maximum value
4	4444	Directional wave functions. Mean and principle wave directions and first and second normalized polar Fourier coefficients, for bands described in Section 1
5	5555	Directional or non-directional spectral estimates by frequency or wave number, as indicated, and direction with directional spread

^{*} Included in a fixed sea station report only.

^{**} Included in a sea station or remote platform report only.

REGULATIONS:

65.1 General

65.1.1 The code name WAVEOB shall not be included in the report.

Note: See Regulation 18.2.3, Notes (1), (2) and (3).

- 65.1.2.1 Each individual WAVEOB report, whether or not included in a bulletin of such reports, shall contain as the first group the identification group M_iM_iM_i.
- A sea station shall be indicated by either the group D D or A₁b_wn_bn_bn_b. The position of a sea station shall be indicated by the groups Q_cL_aL_aL_aL_a L_oL_oL_oL_oL_o. A satellite shall be indicated by the group I₆I₆I₆// and an aircraft shall report //// for I₆I₆I₆//. A fixed sea station (other than an ocean weather station and a moored buoy), which is considered by the Member operating it to be in the same category as a land station, shall report its identification and position by means of the group IIiii.

Note: Data may be transmitted from a sea station or from a remote platform (aircraft or satellite).

In a report from a sea station (including an ocean weather station and a moored buoy), the latitude and longitude shall be encoded with the actual location of the station. In a satellite or aircraft report, the latitude and longitude shall indicate the (approximate) centre of the area observed.

65.1.3 Use of Sections 0 and 1

- 65.1.3.1 The first three data groups in Section 0, after the location, shall contain indicators showing if data are expressed as frequency or wave number, the method of calculation of data and type of platform, data on the water depth in metres, significant wave height in centimetres (or tenths of a metre) and spectral peak period in tenths of a second or spectral peak wave length in metres. Optional groups, when included, shall contain data on the maximum wave height, average wave period or average wave length, estimate of significant wave height from slope sensors, spectral peak wave period or peak wave length derived from slope sensors, average wave period or average wave length derived from slope sensors, and dominant wave direction and directional spread.
- When used, Section 1 shall contain the section identifier, the total number of bands described in the section, the sampling interval (in tenths of a second or in metres), the duration in seconds of record of the wave or the length in tens of metres, the number (BB) of bands described in the next two groups, the first centre frequency (Hz) or first centre wave number (metres)⁻¹, and the increment added to obtain the next centre frequency (Hz) or the next centre wave number (metres)⁻¹ and their associated exponents.

Note: In deriving the value of the first centre frequency or wave number and increment from the groups nf_nf_nx nf_df_dx , decimal points are assumed at the left of the numeric values. For example, for centre frequency, the groups 13004 11004 would be interpreted as a first centre frequency of 0.300 x 10^{-1} Hz and an increment of 0.100 x 10^{-1} Hz. (The maximum spectral density value C_mC_m in Section 2, or $C_{sm}C_{sm}C_{sm}$ in Section 3, is coded in a similar fashion.)

65.1.3.3 Except when BB = 00, the two groups for the first centre frequency or first centre wave number, and the increment added to obtain the next centre frequency or the next centre wave number (each time preceded by BB) shall be repeated (n) times as required to describe band distribution.

Note: If sets of data groups are greater than 9, the group identifier (n) for the tenth set will be 0, the group identifier for the eleventh will be 1, etc.

A-130 Volume I.1

^{*} Included in a fixed sea station report only.

^{**} Included in a sea station or remote platform report only.

65.1.3.4 BB shall be encoded BB = 00 when no increments are given and the following (n) groups are actual centre frequencies or actual centre wave numbers.

Note: The note under Regulation 65.1.3.3 applies if data groups are greater than 9.

65.1.4 Use of Sections 2 and 3

When used, Section 2 shall contain the section identifier, an exponent associated with the first data group on the maximum value for non-directional spectra (C_mC_mC_m) in m² Hz⁻¹ for frequencies or m³ for wave numbers from wave heave sensors, given as a three-digit number. The band number (n_mn_m) in which the maximum value for non-directional spectra occurs shall be included in the same group as the value. Subsequent groups shall contain ratios of individual spectra to the maximum (c₁c₁ to c_nc_n) as a percentage (00–99), with 00 meaning either zero or 100 per cent.

Notes:

- (1) See note under Regulation 65.1.3.2.
- (2) Confusion between a zero ratio and the maximum ratio (100 per cent) should not arise since the band number (n_mn_m) for the maximum has already been identified.
- Each group containing ratios shall begin with an odd number representing the unit value of the first band in the group. Thus, the number 1 shall identify values for the first and second or eleventh and twelfth or twenty-first and twenty-second, etc., bands. The last group shall contain two ratios for even numbers of bands and one ratio for odd numbers of bands. In the case of odd numbers of bands, the last two characters in the group shall be encoded as //.
- 65.1.4.3 When used, Section 3 shall contain the section identifier, and non-directional spectral data derived from wave slope sensors, analogous to Section 2. Regulations 65.1.4.1, with the exception of the section identifier, and 65.1.4.2 shall apply.

65.1.5 Use of Section 4

When used, Section 4 shall contain the section identifier and pairs of data groups of mean direction and principal direction from which waves are coming for the band indicated, relative to true north, in units of 4 degrees, and the first and second normalized polar coordinates derived from Fourier coefficients. The pairs of groups shall be repeated (n) times as required to describe the total number of bands given in Section 1.

Notes:

- (1) The note under Regulation 65.1.3.3 applies if pairs of data groups are greater than 9.
- (2) The mean direction and principal direction from which waves are coming will range from 00 (actual value 358° to less than 2°) to 89 (actual value from 354° to less than 358°). A value of 99 indicates the energy for the band is below a given threshold.
- (3) Placing $d_{a1}d_{a1}$ and $d_{a2}d_{a2}$ for each band in the same group, with r_1r_1 and r_2r_2 for the same band in the next group, allows a quick visual check of the state of the sea.
- (4) If d_{a1}d_{a1} ≈ d_{b2}d_{a2} and r₁r₁ > r₂r₂, there is a single wave train in the direction given by the common value of d_{a1}d_{a1} and d_{a2}d_{a2}.
- (5) If the coded value of $| d_{a1}d_{a1} d_{a2}d_{a2} | > 2$ and $r_1r_1 < r_2r_2$, a confused sea exists and no simple assumption can be made about the direction of the wave energy.

65.1.6 Use of Section 5

When used, this section shall contain the section identifier, an indicator (I_b) indicating whether the section includes directional or non-directional data, pairs of data groups of spectral estimates of the first to the n^{th} frequencies or wave numbers and the direction from which waves are coming in units of 4 degrees for spectral estimates (1) to (n) and their directional spread in whole degrees.

Notes:

(1) When non-directional spectra are transmitted, the group containing direction and directional spread may be omitted.

- (2) Complete directional spectra may be coded by repeating as many duplets as needed to define the entire spectrum. A partial directional spectrum may be coded by selecting the largest spectral estimate for any one frequency or wave number band over all directions and coding this for each frequency or wave number band. Secondary peaks may not be coded unless the full directional spectrum is transmitted.
- (3) For non-directional frequency spectra, the spectral estimates are in m² Hz⁻¹. For non-directional wave number spectra, the spectral estimates are in m³. For a complete directional frequency spectrum, spectral estimates are in m² Hz⁻¹ radian⁻¹. For a complete directional wave number spectrum, the spectral estimates are in m⁴. For incomplete directional spectra, whether in frequency or wave number, the units of the spectral estimates should be m² Hz⁻¹ or m³. That is, the total integrated energy within a frequency band is given rather than just that of the peak. If the spectral estimate is less than 0.100 x 10⁻⁵, the value of 0 must be used. The exception to this occurs when all subsequent estimates at higher frequencies are also 0, in which case only the zero immediately after the last non-zero spectral estimate need be included; all others need not be coded.
- (4) There may be cases when spectral estimates are given in integrated units, such as m², and it is necessary to convert these to the units of the code. This is done by calculating the bandwidth at a frequency by determining the frequency difference between midpoints on either side of the frequency in question. The integrated spectral estimate is then divided by this computed bandwidth.

A-132 Volume I.1

CODE FORM:

SECTION 1	$M_i M_i M_j I$	M _j YYGG	(000AC _i)	BBi _H i _H i _H	
SECTION 2	22	$XH_sH_sH_sH_s$			(GGgg)
SECTION 3	33	$XQQQe_Q$			(GGgg)
SECTION 4	44	t₀RRRR			
SECTION 5	55	$ts_nT_tT_tT_t$			
SECTION 6	66	E ₁ E ₁ E ₂ E ₂ E ₃	DDDss		

Notes:

- (1) HYDRA is the name of the code for reporting hydrological observations from a hydrological observing station.
- (2) A HYDRA report, or a bulletin of HYDRA reports, is identified by $M_iM_iM_j = HHXX$.
- (3) The HYDRA code form consists of six sections:
 - Section 1: Identification letters, day and hour of observation, station identification (using one or two groups);
 - Section 2: Hydrological data relating to stage;
 - Section 3: Hydrological data relating to discharge;
 - Section 4: Data relating to precipitation and snow cover;
 - Section 5: Data relating to air and water temperature;
 - Section 6: Data on the state of ice on the river, lake or reservoir.

Regional associations may decide which of the Sections 2, 3, 4, 5 and 6 of the code form are mandatory for the transmission of hydrological data for the international basins in the Region. Otherwise national Services may define such mandatory sections.

(4) Use of bracketed groups:

The bracketed groups are optional under certain conditions. They may or may not be included in the report as follows:

- (000AC_i) The use of this group is optional when the report is destined for national needs. For international exchange the inclusion of this group in the report is mandatory;
- (GGgg) The inclusion of this group is fixed regionally, or nationally when necessary.

REGULATIONS:

67.1 General

- 67.1.1 The code name HYDRA shall not be included in the report.
- 67.1.2 The identifier groups M_iM_iM_j YYGG 000AC_i shall be included as the first line of the text of the bulletin consisting of HYDRA reports of observations which were made at the same time, in the same Region and country.

- 67.1.3 Identification of hydrological observing stations:
 - (a) In an international report the two groups 000AC₁ BBi_Hi_Hi_H shall be used for full identification of the hydrological observing station;
 - (b) In a national report, the group 000AC_i may be omitted.
- In each individual report, whether it is separate or included in a bulletin, the location of the hydrological observing station shall always be defined by the group BBi_Hi_Hi_H in which BB is the international indicator of the basin and i_Hi_Hi_H is the identification number of the station. In addition, if the report is intended for international exchange, the group BBi_Hi_Hi_H shall be preceded by the group 000AC_i in the first line of the bulletin.
- 67.1.5 When data for a particular section are not transmitted, the indicator group of the section shall be omitted.
- 67.2 Sections
- 67.2.1 Within Sections 2, 3, 4 and 5, the groups shall be arranged in order of increasing figures of X, t_p and t.
- 67.2.2 If the ice condition refers to only one phenomenon, the same code figures shall be used for groups E_1E_1 and E_2E_2 . If the ice condition refers to two phenomena, two different code figures shall be used for groups E_1E_1 and E_2E_2 .

A-134 Volume I.1

FM 68-VI HYFOR

Hydrological forecast

CODE FORM:

SECTION 1	HYFOR	(000AC _i)	BBi _H i _H i _H		
SECTION 2	22	$F_H H_{s1} H_{s1} H_{s1} H_{s1}$	$F_HH_{s2}H_{s2}H_{s2}H_{s2}$	$M_1Y_1Y_1G_1G_1$	$(M_2Y_2Y_2G_2G_2)$
SECTION 3	33	$F_HQ_1Q_1Q_1e_Q$	$F_HQ_2Q_2Q_2e_Q$	$M_1Y_1Y_1G_1G_1$	$(M_2Y_2Y_2G_2G_2)$
SECTION 4	44	1P _i M ₁ Y ₁ Y ₁	$2P_iM_2Y_2Y_2$		

Notes:

- (1) HYFOR is the name of the code for the transmission of hydrological forecasts.
- (2) The HYFOR code form consists of four sections:
 - Section 1: Code name, station identification (using one or two groups);
 - Section 2 : Stage forecasts, and date-time of occurrence or date-times of the beginning and the end of the period for which forecasts are valid;
 - Section 3: Discharge forecasts, and date-time of occurrence or date-times of the beginning and the end of the period for which forecasts are valid;
 - Section 4: Forecasts of ice phenomena and dates of beginning and end of the period for which forecasts are valid.

Regional associations may decide which of the Sections 2, 3 and 4 of the code form are mandatory for the transmission of forecasts for international basins under their jurisdiction. Otherwise national Services may define such mandatory sections.

(3) Use of bracketed groups:

The bracketed groups are optional under certain conditions. They may or may not be included in the coded forecast as follows:

- (000AC_i) The use of this group is optional when the forecast is destined for national needs. For international exchange the inclusion of this group in the coded forecast is mandatory;
- (M₂Y₂Y₂G₂G₂) This group is used only when a hydrological forecast applies to a given period.

REGULATIONS:

68.1	General
68.1.1	The code name HYFOR shall appear as a prefix to individual forecasts.
68.1.2	The identifier groups HYFOR 000AC _i shall be included as the first line of the text of the bulletin consisting of HYFOR forecasts established for the hydrological observation stations situated in the same Region and country.
68.1.3	Regulation 67.1.3 shall apply.
68.1.4	Regulation 67.1.4 shall apply.
68.1.5	When forecasts for a particular section are not transmitted, the indicator group of the section shall be omitted.

68.2 Sections

- 68.2.1 In Sections 2, 3 and 4, the groups shall be arranged in order of increasing code figures of F_H and P_i .
- 68.2.2 In Sections 2 and 3 and for F_H = 8 or 9, one group $M_1Y_1Y_1G_1G_1$ only shall be used to define the date of occurrence of the forecast. For F_H = 1, 2, 3, 4, 5, 6 or 7, two groups $M_1Y_1Y_1G_1G_1$, $M_2Y_2Y_2G_2G_2$ define the beginning and the end of the period for which the forecast is expected to occur.
- 68.2.3 In Sections 2 and 3, the forecast value of the variable (level or discharge) is given by two successive groups beginning with the same code figure of F_H. The first group shall indicate the lower and the second shall indicate the upper limits of the forecast value.

A-136 Volume I.1

FM 71-XII CLIMAT

Report of monthly values from a land station

CODE FORM:

SECTION 0	CLIMAT	MMJJJ	IIiii			
SECTION 1	111	1P ₀ P ₀ P ₀ P ₀ 5eee 9m _e m _e m _R m _R m _S	$2\overline{PPPP}$ $6R_1R_1R_1R_1n_rr$ m_8	$3s_n \overline{TTTs}$ $3s_1 \overline{TTTs}$		$4s_{n}\overline{T_{x}T_{x}}\overline{T_{x}}s_{n}\overline{T_{n}T_{n}}T_{n}$ $8m_{P}m_{P}m_{T}m_{T}m_{Tx}m_{Tn}$
SECTION 2	(222		$P_0P_0P_0P_0$ $R_1R_1R_1R_1n_rn_r$	2PPPP 7S ₁ S ₁ S ₁	3s _n TTTs _t s _t s _t s 8у _Р у _Р утутутхутх	$4s_{n}\overline{T_{x}T_{x}T_{x}}s_{n}\overline{T_{n}T_{n}T_{n}}$ $9y_{e}y_{e}y_{R}y_{R}y_{S}y_{S})$
SECTION 3	(333	$\begin{array}{c} 0T_{25}T_{25}T_{30}T_{30} \\ 4R_{10}R_{10}R_{50}R_{50} \\ 8f_{10}f_{10}f_{20}f_{20}f_{30}f_{30} \end{array}$		Γ ₄₀ Τ ₄₀ ₀₀ R ₁₅₀ R ₁₅₀ εV ₂ V ₃ V ₃)	$2T_{n0}T_{n0}T_{x0}T_{x0} \\ 6s_{00}s_{00}s_{01}s_{01}$	$3R_{01}R_{01}R_{05}R_{05} \\ 7s_{10}s_{10}s_{50}s_{50}$
SECTION 4	(444	0s _n T _{xd} T _{xd} T _{xd} y _x y _x 3s _n T _{an} T _{an} T _{an} y _{an} y 6D _{ts} D _{ts} D _{gr} D _{gr}			$2s_n T_{ax} T_{ax} T_{ax} y_{ax}$ $5i_w f_x f_x f_x y_{fx} y_{fx}$	/ax

Notes:

- (1) CLIMAT is the name of the code for reporting monthly values from a land station.
- (2) The CLIMAT code form consists of five sections:

Section number	Symbolic figure group	Contents
0	_	Code name and groups MMJJJ IIiii
1	111	Monthly data of the month referred to in MMJJJ including number of days missing from the records. This section is mandatory
2	222	Monthly normals corresponding to the month referred to in MMJJJ including number of years missing from the calculation
3	333	Number of days in the month with parameters beyond certain thresholds during the month referred to in MMJJJ
4	444	Extreme values during the month referred to in MMJJJ and occurrence of thunderstorms and hail

REGULATIONS:

71.1	General
71.1.1	When one or several parameters of a group are not available, the missing parameter(s) shall be coded with a set of solidi (/). If all parameters of a group are not available, the group shall be omitted from the report.
71.1.2	When all parameters of a section are missing, except for Section 0 and Section 1, which are mandatory, the section shall be omitted.
71.1.3	The monthly data shall be coded in the code form which is in force during the month to which the data refer (e.g. if the CLIMAT code change is effective on 1 November, the CLIMAT data for October, transmitted in November, will be in the old code form; the first CLIMAT message in the new code form will be for November data, transmitted in December).

71.1.4 A CLIMAT bulletin shall contain reports for one specific month only.

71.2 Section 0

- 71.2.1 The code name CLIMAT and the groups MMJJJ IIiii shall appear as the prefix to an individual report.
- 71.2.2 The code name CLIMAT and the group MMJJJ shall be included as the first line of the text of a meteorological bulletin of CLIMAT reports. In this case, individual CLIMAT reports in the bulletin shall contain neither the code name CLIMAT nor the group MMJJJ, but shall begin with the group IIiii.

71.3 Section 1

71.3.1 Group $3s_n \overline{TTT} s_t s_t s_t$

This group shall contain both the average air temperature and the standard deviation of the daily values.

71.3.2 Group $6R_1R_1R_1R_1R_dn_rn_r$

If for a particular month the total amount of precipitation is zero, $R_1R_1R_1R_1$ shall be given as 0000 and R_d given by the highest number of quintile which has 0.0 as lower limit (e.g. in months with no rainfall in the 30-year period, $R_d = 5$).

71.3.3 *Group* 7S₁S₁S₁p₅p₅p₅

This group shall be coded to report the total duration of sunshine in whole hours, and the percentage of the normal that that value represents (pspsps).

Notes:

- (a) If the percentage of the normal is 1% or less but greater than zero, p_sp_sp_s shall be coded as 001.
- (b) If the normal is zero hours, p_sp_sp_s shall be coded as 999.
- (c) If the normal is not defined, p_sp_sp_s shall be coded as 3 solidi (///).

71.4 Section 2

71.4.1 Meteorological Services shall submit to the Secretariat, for distribution to the Members, complete normal data of the elements for stations to be included in CLIMAT bulletins. CLIMAT reports for the two months following the submission of such complete normal data to the Secretariat shall include the normals for the months in question, in the form given in Section 2. The same procedure shall be followed when Services consider it necessary to make amendments to previously published normal values.

Note: When normal data are included in the bulletins, the number of stations per bulletin may be reduced if necessary.

71.4.2 The normal data reported shall be deduced from observations made over a specific period defined by *Technical Regulations*.

Note: Section 2 of the code supplies the means to specify the start and finish years, and those years missing from the calculations where it is not possible to supply data for the full recommended period.

71.4.3 Group 3s_nTTTs_ts_ts_t

The standard deviation $s_t s_t s_t$ in this group shall be the normal of the standard deviation of the daily values.

71.4.4 Group $6R_1R_1R_1R_1n_rn_r$

If the normal precipitation for the month is zero, the entire group shall be coded as 6000000.

A-138 Volume I.1

71.5 Section 3

If the data portion of any group is equal to zero, that group shall be omitted from the report. For example, during one 30-day month the maximum is less than 25°C on 10 days, from 25°C to 29°C on 10 days, and from 30°C to 34°C on 10 days, the first group in Section 3 shall be coded as 02010 and the second group shall not be included in the report.

71.6 Section 4

71.6.1 In groups 0, 1, 2, 3, 4 and 5, if the extreme value occurred on only one day, the day of occurrence shall be coded as the last two digits in the group. If the extreme value occurred on more than one day, 50 shall be added to the first day and that value be coded as the last two digits in the group.

71.6.2 Group $7i_yG_xG_xG_nG_n$

This group shall be included only when a change in practice has occurred, that is when the time of reading of maximum temperature (G_xG_x) or the time of reading of minimum temperature (G_nG_n) has changed.

FM 72–XII CLIMAT SHIP Report of monthly means and totals from an ocean weather station

CODE FORM:

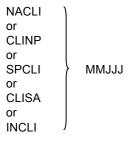
Note: CLIMAT SHIP is the name of the code for reporting monthly means and totals from an ocean weather station.

REGULATIONS:

72.1

- 72.1.1 The code name CLIMAT SHIP and the group MMJJJ shall appear as a prefix to an individual report.

 73.1.2 The code name CLIMAT SHIP and the group MMJJJ shall be included as the first line of
- 72.1.2 The code name CLIMAT SHIP and the group MMJJJ shall be included as the first line of the text of a meteorological bulletin of CLIMAT SHIP reports. In this case, individual reports in the bulletin shall contain neither the code name CLIMAT SHIP nor the group MMJJJ.
- 72.1.3 Regulations 71.1.3 and 71.1.4 shall apply.
- 72.1.4 Group R₁R₁R₁R₁R_d


Section 1

- 72.1.4.1 When monthly total precipitation is not available, the group $R_1R_1R_1R_d$ shall be omitted from the report and n_rn_r , in the preceding group, shall be coded //.
- 72.1.4.2 If for a particular month the total amount of precipitation is zero, $R_1R_1R_1$ shall be given as 0000 and R_d given by the highest number of quintile which has 0.0 as lower limit (e.g. in months with no rainfall in the 30-year period, R_d = 5).
- 72.2 Section 2
- 72.2.1 Regulation 71.4.1 shall apply.
- 72.2.2 In broadcasts of normal data, \overline{PPPP} , \overline{TTT} and $\overline{T_wT_wT_w}$ shall represent normal values deduced from observations over a 30-year normal period.

FM 73–VI

Report of monthly means for an oceanic area CLISA INCLI

CODE FORM:

$L_aL_aL_oL_on$	$\overline{P_1P_1P_2P_2P_3}$	$\overline{P_3P_4P_4P_5P_5}$	
L´aL´aL´oL´on´	P' ₁ P' ₁ P' ₂ P' ₂ P' ₃	P' ₃ P' ₄ P' ₅ P' ₅	
L´´aL´´aL´´oL´´on´´	P'' ₁ P'' ₁ P'' ₂ P'' ₂ P'' ₃	P'' ₃ P'' ₄ P'' ₅ P'' ₅	

Note: The code names NACLI, CLINP, SPCLI, CLISA and INCLI are the names of the code for reporting monthly means for the following oceanic areas:

NACLI for the North Atlantic;

CLINP for the North Pacific;

SPCLI for the South Pacific;

CLISA for the South Atlantic;

INCLI for the Indian Ocean.

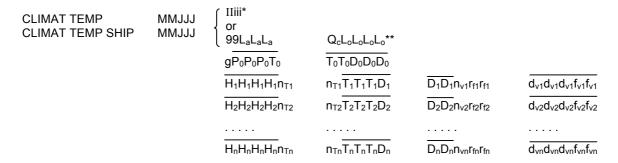
REGULATIONS:

- 73.1 The appropriate code name (NACLI, CLINP, etc.) and the group MMJJJ shall appear as a prefix to individual reports.
- 73.2 The appropriate code name (NACLI, CLINP, etc.) and the group MMJJJ shall be included as the first line of the text of a meteorological bulletin of such reports. Individual reports in the bulletin shall contain neither the code names nor the group MMJJJ.
- 73.3 When monthly means for oceanic areas are issued, they shall be reported in the form above as soon as possible after the end of the month.
- 73.4 The monthly mean data shall be coded in the code form which is in force during the month to which the data refer.
- 73.5 Groups $\overline{P_1P_1P_2P_2P_3}$ $\overline{P_3P_4P_4P_5P_5}$
- 73.5.1 For the zone between latitudes 20°N and 20°S, the pressure shall be given in tenths of a hectopascal; for other zones, it shall be given in whole hectopascals.
- 73.5.2 Every position group $L_aL_aL_oL_on$, $L'_aL'_aL'_oL'_on'$, etc., shall be followed by groups of the form $\overline{P_1P_1P_2P_2P_3}$, $\overline{P_3P_4P_4P_5P_5}$, ..., $\overline{P'_1P'_1P'_2P'_2P'_3}$, $\overline{P'_3P'_4P'_4P'_5P'_5}$, ..., etc.
- 74.5.3 The first pressure $\overline{P_1P_1}$ shall be the mean monthly pressure at mean sea level for the point of intersection of the parallel and the meridian specified by L_aL_a and L_oL_o in the preceding position group.

73.5.4 The pressures following, i.e. $\overline{P_2P_2}$, $\overline{P_3P_3}$, . . . , etc., shall be the values of the mean monthly pressure on the same parallel L_aL_a , but at points $L_oL_o \pm 5^\circ$, $L_oL_o \pm 10^\circ$, . . . , etc. The number given for n shall specify the number of the points on the parallel for which pressure is given.

Note: The succession of points for which pressures are given is in the direction east-west or westeast, the convenient direction for the ocean concerned being chosen. In *Weather Reporting* (WMO-No. 9), Volume C, this direction is specified in every case.

A-144 Volume I.1


FM 75-XII Ext. CLIMAT TEMP

Report of monthly aerological means from a land station

FM 76-XII Ext. CLIMAT TEMP SHIP

Report of monthly aerological means from a ocean weather station

CODE FORM:

Note: CLIMAT TEMP is the name of the code for reporting monthly aerological mean values from a land station. CLIMAT TEMP SHIP is the name of the code for reporting monthly aerological means from an ocean weather station.

REGULATIONS:

75.1 The code name CLIMAT TEMP or CLIMAT TEMP SHIP and the group MMJJJ shall appear as a prefix to an individual report.

Note: MM shall be used to indicate the unit of wind speed in addition to indicating the month. When wind speeds are given in knots, 50 shall be added to MM. When the speed is given in metres per second, MM shall not be modified.

- 75.2 The code name CLIMAT TEMP or CLIMAT TEMP SHIP together with the group MMJJJ shall be included as the first line of the text of a meteorological bulletin of CLIMAT TEMP or CLIMAT TEMP SHIP reports. In this case, individual reports in the bulletin shall contain neither the code names nor the code group MMJJJ.
- 75.3 The monthly mean data shall be coded in the code form which is in force during the month to which the data refer.
- 75.4 The monthly mean values of the upper-level element shall include information for station level and for the isobaric surfaces of 850, 700, 500, 300, 200, 150, 100, 50 and 30 hPa, if available. Solidi (/////) shall be reported for any missing value in the groups of a level for which any element or all are not available. No group shall be omitted at any level. Any missing element shall be reported by solidi.
- 75.5 The mean values of station-level pressure, temperature and dew-point depression shall be the monthly mean values at the time of release of the radiosonde.

Used in FM 75 only.

^{**} Used in FM 76 only.

75.6 Groups
$$\begin{cases}
\frac{\overline{H_1H_1H_1H_1}n_{T1}}{\overline{H_2H_2H_2H_2}n_{T2}} \\
\frac{\dots}{\overline{H_nH_nH_nH_n}}
\end{cases}$$

In the case of geopotentials above 9999 standard geopotential metres, the figures indicating the number of tens of thousands shall be omitted.

75.7 Groups
$$\begin{cases} & \overline{d_{v1}d_{v1}f_{v1}f_{v1}} \\ & \overline{d_{v2}d_{v2}d_{v2}f_{v2}f_{v2}} \\ & \underline{\cdots} \\ & \overline{d_{vn}d_{vn}d_{vn}f_{vn}f_{vn}} \end{cases}$$

- 75.7.1 The mean vector wind group shall be included in the message for all the reported isobaric surfaces. Solidi (/////) shall be reported for this group if the monthly mean vector wind is not computed for a reported isobaric surface.
- 75.7.2 To indicate wind speeds of three digits, i.e. of 100 to 199 knots inclusive, 500 shall be added to $\overline{d_{v1}d_{v1}d_{v1}}$, etc.
- 75.8 A CLIMAT TEMP or CLIMAT TEMP SHIP bulletin shall contain reports for one specific month only.

A-146 Volume I.1

FM 81-I SFAZI Synoptic report of bearings of sources of atmospherics

CODE FORM:

 $SFAZI \qquad (999II) \qquad iiiGG \qquad F_1I_jD_1D_1D_1 \qquad F_2I_jD_2D_2 \qquad \dots .$

Note: SFAZI is the name of the code for reporting the bearings of sources of atmospherics.

REGULATIONS:

81.1	The code name SFAZI shall appear as a prefix to an individual report.
81.2	The code name SFAZI shall be included as the first line of the text of a meteorological bulletin of SFAZI reports. In this case, individual reports in the bulletin shall not contain the code name.
81.3	Groups $F_1I_jD_1D_1$ $F_2I_jD_2D_2D_2$
81.3.1	As many groups as necessary shall be included to describe the different sources.
	Note: Stations are grouped into appropriate networks, each network with a coordinating centre, by arrangement among the Members concerned.
81.3.2	The centre axis shall be reported to the nearest degree.
81.4	Reports shall refer to observation periods terminating at the hours 0000, 0300, 0600, 0900, 1200, 1500, 1800 and 2100 UTC and data shall be transmitted for as many of these periods as possible, in addition to any daily summary (FM 83).
81.5	Reports shall be transmitted not later than three hours after the time to which the observations refer.

FM 82-I SFLOC

Synoptic report of the geographical location of sources of atmospherics

CODE FORM:

$$\begin{array}{c} \text{SFLOC} & \left\{ \begin{array}{c} 66600 \\ \text{or} \\ 66611 \\ \text{or} \\ 66666 \end{array} \right\} & \begin{array}{c} \text{GGx}_4 a_i A_i \\ 9 n_f x_4 a_i A_i \\ \end{array} & \begin{array}{c} L_a L_a L_o L_o k \\ L_a L_a L_o L_o k \\ \end{array} & \dots \end{array}$$

Note: SFLOC is the name of the code for reporting geographical location of sources of atmospherics.

REGULATIONS:

- 82.1 The code name SFLOC shall appear as a prefix to an individual report.
- 82.2 The code name SFLOC shall be included as the first line of the text of a meteorological bulletin of SFLOC reports. In this case, individual reports in the bulletin shall not contain the code name.
- 82.3 The first group shall indicate the method used for observations as follows:
 - shall indicate that atmospherics are located by means of a network of several direction-finders operating on the same individual atmospherics;
 - 66611 shall indicate that atmospherics are located by means of a network of several arrival-time stations operating on the same individual atmospherics;
 - 66666 shall indicate that atmospherics are located by means of a single-station rangebearing technique.
- 82.4 As many sections as necessary, beginning with 9-indicator groups, are included to describe the different sources.
- 82.5 Regulations 81.3.1, 81.4 and 81.5 shall apply.

FM 83-I SFAZU

Detailed report of the distribution of sources of atmospherics by bearings for any period up to and including 24 hours

CODE FORM:

SFAZU IIiii $YG_1G_2G_2$

999NI $g_1g_1D'_1D'_1D'_1$ $g_2g_2D'_2D'_2$ 999NI $g_1g_1D'_1D'_1D'_1$ $g_2g_2D'_2D'_2$

Note: SFAZU is the name of the code for reporting the distribution of sources of atmospherics by bearings for any period of time up to and including 24 hours.

REGULATIONS:

83.1	The code name SFAZU shall appear as a prefix to an individual report.
83.2	The code name SFAZU shall be included as the first line of the text of a meteorological bulletin of SFAZU reports. In this case, individual reports in the bulletin shall not contain the code name.
83.3	As many sections, beginning with 999-indicator groups, as necessary shall be included to describe the different sources.
83.4	Regulation 81.3.1 shall apply.

83.5 Summaries referring to the preceding 24-hour period shall be issued once daily.

FM 85-IX Ext. SAREP

Report of synoptic interpretation of cloud data obtained by a meteorological satellite

CODE FORM:

Part A

	$M_i M_i M_j M_j$	YYGGg	$\begin{cases} Iliii \\ or \\ 99L_aL_aL_a \end{cases}$	$Q_cL_oL_oL_oL_o$	
Name of cyclone	$n_t n_t L_a L_a L_a$ D D	$Q_cL_oL_oL_oL_o$	1A _t W _f a _t t _m	2S _t S _t //	$(9d_sd_sf_sf_s)$
Part B					
SECTION 1	$M_iM_iM_jM_j$	$YYG_sG_sg_s$	$\begin{cases} \text{Iliii} \\ \text{or} \\ 99L_aL_aL_a \end{cases}$	$Q_cL_oL_oL_oL_o$	
Name of satellite	$QL_aL_aL_oL_o$	$QL_aL_aL_oL_o$			
SECTION 2	$4S_fS_fC_mW_f$	$QL_aL_aL_oL_o$		$(9d_sd_sf_sf_s)$	
SECTION 3	(96///	/Lddf	$QL_aL_aL_oL_o$	/Lddf	$QL_aL_aL_oL_o$
				/Lddf	$QL_aL_aL_oL_o)$
SECTION 4	(97//s _c	$QL_aL_aL_oL_o$	$QL_aL_aL_oL_o$		etc.)
SECTION 5	51515	Code groups to b	oe developed regiona	lly	

Notes:

- (1) SAREP is the name of the code for reporting synoptic interpretation of cloud data obtained by a meteorological satellite.
- (2) A SAREP report from a land station is identified by M_iM_i = CC, a SAREP report from a sea station by M_iM_i = DD.
- (3) The code form is divided into two parts:

Part	Identifier letters (M_jM_j)	Contents
Α	AA	Information on tropical cyclone
В	BB	Information on significant features

Each part can be transmitted as a separate message.

(4) Part B is divided into five sections:

Section number	Indicator figures or symbolic figure	Contents		
1	_	Identification and position data		
2	4	Synoptic interpretation of cloud		
3	96	Wind information derived from the movement of cloud elements (optional)		
4	97	Snow or ice information (optional)		
5	51515	Code groups to be developed regionally		

REGULATIONS:

85.1	General			
85.1.1	The code name SAREP shall not be included in the report.			
85.1.2	The satellite read-out station which originates the report shall indicate its position by means of the group IIiii or the groups $99L_aL_aL_aQ_cL_oL_oL_o$.			
85.1.3	The ship's call sign D \dots D shall be included only in SAREP reports from a satellite readout station at sea.			
85.2	Part A			
85.2.1	For the reporting of the interpretation of cloud mass which is recognized as pertaining to a tropical cyclone, Part A shall be used.			
85.2.2	The time of the picture of the cyclone(s) shall be encoded by the group YYGGg.			
85.2.3	Whenever available the name of the cyclone shall be included.			
85.2.4	Tropical cyclones shall be numbered by successive numerals $n_t n_t$. The station originating SAREP reports shall maintain the number assigned to the cyclone as long as it exists or can be identified.			
85.2.5	The position of the centre of the cloud mass or the tropical cyclone or the eye of the cyclone, as appropriate, shall be reported by means of the groups $n_t n_t L_a L_a L_a Q_c L_o L_o L_o$.			
85.2.6	The movement of the centre of the tropical cyclone, when known, shall be included in the report by means of the group $9d_sd_sf_sf_s$.			
85.2.7	When two or more tropical cyclones are detected on the same photograph and thereby given the same time, the groups $n_t n_t L_a L_a L_a Q_c L_o L_o L_o L_o 1 A_t W_f a_t t_m 2 S_t S_t // (9 d_s d_s f_s f_s)$ shall be repeated for each cyclone, preceded by the name whenever it is known.			
85.3	Part B			
85.3.1	Section 1 – Identification and position data			
85.3.1.1	The name of the satellite on which the SAREP report is based shall be included in Section 1.			
85.3.1.2	The groups $QL_aL_aL_oL_o$ shall be used to delineate, in clockwise sequence, the analysed area.			
85.3.1.3	The first position group shall be repeated.			
85.3.2	Section 2 – Synoptic interpretation of cloud			
85.3.2.1	Code groups beginning with the indicator figure 4 shall be used for a description of the synoptic interpretation of significant features.			
85.3.2.2	The groups $QL_aL_aL_oL_o$ shall be used to delineate the significant features S_fS_f , exception S_fS_f is coded as 99. In this case, the position groups shall refer to the cloupattern indicated by C_m .			
85.3.2.3	For delineating areas in Section 2, the same rules shall be followed as indicated unde Section 1. When it is used in conjunction with $W_{\rm f}$, the position group may refer to a nearly circular cloud mass or cloud band. In the case of a nearly circular cloud mass the position group refers to the centre of the mass. In the case of a cloud band, the position groups refer to a line centrally located along the length of the band.			
85.3.2.4	The movement of the system under consideration, when known, shall be included in the report by means of the group $9d_sd_sf_sf_s$.			
85.3.2.5	Section 2 shall be used only to describe major synoptic-scale significant features or cloud masses. Mesoscale or more detailed descriptions shall be included in Section 5, their reporting being left to regional decision.			

A-154 Volume I.1

85.3.3	Section 3 – Wind information derived from the movement of cloud elements				
	Section 3 shall be used only by centres or stations having highly trained staff and computer facilities.				
85.3.4	Section 4 – Snow or ice information				
85.3.4.1	Section 4 shall be included only once a week or when major changes in snow cover or ice extension are observed, provided snow or ice information is available.				
85.3.4.2	For delineating areas in Section 4, the same rules shall be followed as indicated under Section 1.				
85.3.5	Section 5 – Code groups to be developed regionally				
	Detailed or mesoscale description of cloud information which is required to be reported shall be included in Section 5.				

Report of satellite remote upper-air soundings of pressure, temperature and humidity

CODE FORM:

Part A				
SECTION 1	$M_i M_i M_j M_j \\$	YYGG/	I ₆ I ₆ I ₆ I ₃ I ₄	F ₃ F ₃ F ₃ F ₄ F ₄ F ₄
SECTION 2	222	$QL_aL_aL_oL_o$	$(N_cN_cP_cP_cP_c)$	
SECTION 3	(333	$P_{A}P_{A}n_{L}n_{L}q$	$P_1P_1t_{L1}t_{L1}t_{L1}$ $P_2P_2t_{L2}t_{L2}t_{L2}$	
			$P_nP_nt_{Ln}t_{Ln}t_{Ln}$	
SECTION 4	(444	$P_{A}P_{A}n_{L}n_{L}q$	P ₁ P ₁ W _{L1} W _{L1} W _{L1} P ₂ P ₂ W _{L2} W _{L2} W _{L2}	
			$P_nP_nw_{Ln}w_{Ln}w_{Ln}$	
SECTION 5	(555	$s_n T_0 T_0 T_t T_t \\$	$(P_tP_tP_tI_5A_t))$	
Part B				
SECTION 1	$M_i M_i M_j M_j$	YYGG/	$I_6I_6I_6I_3I_4$	F ₃ F ₃ F ₃ F ₄ F ₄ F ₄
SECTION 2	222	$QL_aL_aL_oL_o$	$(N_cN_cP_cP_cP_c)$	
SECTION 5	(555	$s_n T_0 T_0 T_t T_t$	$(P_tP_tP_tI_5A_t))$	
SECTION 6	(666	P ₁ P ₁ P _n P _n u _p P ₁ P ₁ P _n P _n u _p	$egin{aligned} n_u A_T TTT_a \ n_u A_T TTT_a \ n_u A_T TTT_a \ & \dots \end{pmatrix}$	
SECTION 7	(777	$P_1P_1P_nP_nu_p$	$n_u A_w www \ n_u A_w www \ \dots$	
Part C				
SECTION 1	$M_i M_i M_j M_j$	YYGG/	I ₆ I ₆ I ₆ I ₃ I ₄	F ₃ F ₃ F ₃ F ₄ F ₄ F ₄
SECTION 2	222	$QL_aL_aL_oL_o$		
SECTION 3	333	$P_A P_A n_L n_L q$	P ₁ P ₁ t _{L1} t _{L1} t _{L1} P ₂ P ₂ t _{L2} t _{L2} t _{L2}	
			$P_nP_nt_{Ln}t_{Ln}t_{Ln}$	
Part D				
SECTION 1	$M_iM_iM_jM_j$	YYGG/	$I_{6}I_{6}I_{6}I_{3}I_{4}$	F ₃ F ₃ F ₃ F ₄ F ₄ F ₄
SECTION 2	222	$QL_aL_aL_oL_o$		
SECTION 6	666	$P_1P_1P_nP_nu_p$	$n_u A_T TTT_a$ $n_u A_T TTT_a$	

Notes:

- (1) SATEM is the name of the code for reporting satellite remote upper-air soundings of pressure, temperature and humidity
- (2) A SATEM report is identified by $M_iM_i = VV$
- (3) The SATEM code form consists of four parts as follows

Part	Identifier letters (M_jM_j)	Isobaric surfaces
A B	AA } BB }	Up to and including the 10-hPa surface
C D	CC }	Above the 10-hPa surface

Each part can be transmitted separately.

(4) The code form is divided into a number of sections as follows:

Section number	Symbolic figure group	Contents
1	_	Identification, input data and processing
2	222	Position data and cloud data
3	333	Data for thickness between given reference level and identified standard isobaric surfaces
4	444	Data for precipitable water content between given reference level and standard isobaric surfaces
5	555	Data for tropopause and surface temperature
6	666	Data for (mean) temperature between non-standard pressure levels
7	777	Data for precipitable water between non-standard pressure levels

REGULATIONS:

86.1 General

- 86.1.1 The code name SATEM shall not be included in the report.
- 86.1.2 Parts A and B shall contain data, in so far as available, only for levels up to and including the 10-hPa level. A report for Part A shall consist of Sections 1 and 2 plus one or more Sections 3, 4 and 5. A report for Part B shall consist of Sections 1 and 2 plus one or more Sections 5, 6 and 7.
- 86.1.3 Parts C and D shall contain data, in so far as available, only for levels above the 10-hPa level, up to and including the 0.1-hPa level.

86.2 Parts A and C

86.2.1 Section 1

- 86.2.1.1 The identification of the satellite shall be reported by means of $I_6I_6I_6$. $I_6I_6I_6$ defines the satellite name and one group contains $F_3F_3F_3$ (originating/generating centre) and $F_4F_4F_4$ (originating/generating sub-centre). If $F_4F_4F_4$ is not coded, it is replaced by three solidi (///).
- 86.2.1.2 The type of sensor used shall be indicated by means of I_3 . The type of processing performed shall be indicated by means of I_4 . The code table for I_3 will vary with each type of satellite.

A-158 Volume I.1

86.2.1.3 Satellite operators, where appropriate, shall therefore inform the WMO Secretariat, as early as possible before launch, of the proposed national coding procedures and code table for I_3 for each satellite to be launched. The Secretariat shall then inform all countries by suitable advance information of the specifications of the code table for I_3 and shall include this information in Volume II of the *Manual on Codes*.

86.2.2 Section 2

- 86.2.2.1 The geographical location of the sounding shall be indicated by means of the group QL₃L₃L₃L₃L₃.
- 86.2.2.2 When included in Section 2 of Part A, the group N_cN_cP_cP_cP_c shall contain data on the cloud cover in the area of the sounding. To describe cloud layers, the group shall be repeated as required.
- 86.2.2.3 The group N_cN_cP_cP_c shall be included in the report whenever the information on cloud cover (including nil when appropriate) is available and reliable.

86.2.3 Section 3

Section 3 shall contain the thickness between a standard reference level given by the pressure indicator P_AP_A and the standard isobaric surfaces indicated by $P_1P_1 \dots P_nP_n$.

86.2.4 Section 4

Section 4 shall contain the amount of precipitable water in a layer between a standard reference level indicated by P_AP_A and the standard isobaric surfaces indicated by $P_1P_1\dots P_nP_n$.

86.3 Parts B and D

86.3.1 Section 2

Regulation 86.2.2.2 shall apply, mutatis mutandis, to Part B.

86.3.2 Section 6

Section 6 shall contain mean temperature data for one or more specified layers indicated by pressure indicators P_1P_1 and P_nP_n . Each of these layers shall be divided from P_1P_1 into adjacent sublayers of variable thicknesses (n_u multiplied by u_p hPa), as required by the vertical locations of temperature measurement.

Note: A redundancy check can be performed on each layer P_1P_1 and P_nP_n of Section 6. The sum of code figures n_u for the layer, multiplied by the unit layer (indicated by u_p), must be equal to the pressure difference between P_1P_1 and P_nP_n .

FM 87-XI SARAD

Report of satellite clear radiance observations

CODE FORM:

SECTION 1	$M_i M_i M_j M_j$	YYGG/	$I_6I_6I_6I_3I_4$	F ₃ F ₃ F ₃ F ₄ F ₄ F ₄	
SECTION 2	222	$QL_aL_aL_oL_o$	$(N_cN_cP_cP_cP_c)$	//A ₂ A ₂ A ₂	
SECTION 3	$6c_1c_1c_nc_n$	$1uR_1R_1R_1$	$2uR_2R_2R_2$		$nuR_nR_nR_n$
SECTION 4	$7c_1c_1c_nc_n$	$1qT_1T_1T_{a1}$	$2qT_2T_2T_{a2}$		$nqT_{n}T_{n}T_{an}$

Notes:

- (1) SARAD is the name of the code for reporting satellite clear radiance.
- (2) A SARAD report is identified by the symbolic letters $M_iM_iM_i$ = WWXX.
- (3) The code form is divided into a number of sections as follows:

Section number	Indicator figures or symbolic figure group	Contents			
1	_	Identification, date and time			
2	222	Position, optional cloud information and zenith angle			
3	6	Clear radiance data, directly expressed in energy units			
4	7	Clear radiance data, indirectly expressed in equivalent blackbody temperature units			

(4) Part B is divided into five sections:

$$R = \frac{c_1 v^3}{\exp \frac{c_2 v}{T} \pm 1}$$

where

R Radiance in mW/(s.cm².sr.cm⁻¹)

T Equivalent blackbody temperature in K

v Wave number in cm⁻¹

 c_1 1.191 066 x 10⁻⁵ mW/(s.cm².sr.cm⁻⁴)

c₂ 1.438 833 K/(cm⁻¹).

REGULATIONS:

87.1 General

87.1.1 The code name SARAD shall not be included in the report.

Whenever it is not possible to report clear radiance data, directly expressed in energy units, with sufficient precision to achieve the temperature sounding accuracies needed (for example, to the nearest degree Celsius), Section 3 shall be omitted and Section 4 shall be used to report clear radiance data, indirectly expressed in equivalent blackbody temperature units.

87.1.3	Except for the case where Regulation 87.1.2 applies, Section 3 shall be used, and Section 4 shall not be included in the report.
87.2	Section 1
	Regulation 86.2.1 shall apply.
87.3	Section 2
	Regulations under 86.2.2 shall apply.
87.4	Section 3
87.4.1	Section 3 shall contain clear radiance data corresponding to the sounding identified by means of Section 1 for filter channel numbers arranged in the order of decreasing spectral wave length.
87.4.2	When clear radiance values are not available for filter channel numbers smaller than a given filter channel number, the clear radiance values relative to the filter channels for which no data are available shall not be included in the report. The lowest filter channel number for which data are included shall in all cases be indicated by means of c_1c_1 in group $6c_1c_1c_nc_n$.
87.4.3	When clear radiance values are not available for filter channel numbers greater than a given filter channel number, the clear radiance values relative to the filter channels for which no data are available shall not be included in the report. The highest filter channel number for which data are included shall in all cases be indicated by means of c_nc_n in group $6c_1c_1c_nc_n$.
87.4.4	When use is made of Regulations 87.4.2 and 87.4.3 to report abbreviated soundings, data for all filter channel numbers between c_1c_1 and c_nc_n shall be included in the report.
87.4.5	If the number of filter channels in operation exceeds a multiple of 10, the serial indicator figure preceding the clear radiance values in the report shall be reset to 1, 2, etc.
87.5	Section 4
87.5.1	Section 4 shall contain clear radiance data corresponding to the sounding identified by means of Section 1 for filter channel numbers arranged in the order of decreasing spectral wave length.
87.5.2	When clear radiance values are not available for filter channel numbers smaller than a given filter channel number, the clear radiance values relative to the filter channels for which no data are available shall not be included in the report. The lowest filter channel number for which data are included shall in all cases be indicated by means of c_1c_1 in group $7c_1c_1c_nc_n$.
87.5.3	When clear radiance values are not available for filter channel numbers greater than a given filter channel number, the clear radiance values relative to the filter channels for which no data are available shall not be included in the report. The highest filter channel number for which data are included shall in all cases be indicated by means of c_nc_n in group $7c_1c_1c_nc_n$.
87.5.4	When use is made of Regulations 87.5.2 and 87.5.3 to report abbreviated soundings,

A-162 Volume I.1

Regulation 87.4.5 shall apply.

87.5.5

data for all filter channel numbers between c_1c_1 and c_nc_n shall be included in the report.

Report of satellite observations of wind, surface temperature, cloud, humidity and radiation

CODE FORM:

SECTION 1	$M_i M_i M_j M_j$	YYMMJ	$GGggw_i \qquad I_6I_6I_6/\!/$	$F_3F_3F_3F_4F_4F_4$		
SECTION 2	(222	B₁B₂B₃nn	$U_{La}U_{Lo}U_{La}U_{Lo}/$	$P_cP_cT_cT_cT_a$	ddfff	
)	
SECTION 3	(333	B ₁ B ₂ B ₃ nn	$\begin{array}{l} U_{La}U_{Lo}P_{e}P_{e}\prime\\ \dots\\ \dots\\ \dots\\ \end{array}$	ddfff)		
SECTION 4	(444	B₁B₂B₃nn	$\begin{array}{c} U_{La}U_{Lo}T_sT_sT_a\\ \dots\\ \dots\\ \end{array}$			
SECTION 5	(555	B₁B₂B₃nn	$U_{La}U_{Lo}P_dP_d/$	$N_cN_cT_cT_cT_a$ \dots \dots		
SECTION 6	(666	B₁B₂B₃nn	U _{La1} U _{Lo1} U _{La2} U _{Lo2} U _{La3}	U _{L03} U _{La4} U _{L04} U _{La5} U _{L05}		H ₁ H ₂ H ₃ H ₄ H ₅)
SECTION 7	(777	P _b P _b ///	B ₁ B ₂ B ₃ nn U _{La1} U _{Lo1} U _L	_{a2} U _{Lo2} U _{La3} U _{Lo3} U _{La4} U 	_{Lo4} U _{La5} U _{Lo5}	$U_1U_2U_3U_4U_5$
SECTION 8	(888)	B ₁ B ₂ B ₃ nn	$\begin{array}{c} U_{La1}U_{Lo1}U_{La2}U_{Lo2}/\\ \dots \end{array}$		2uF _i F _i F _i	3uF _s F _s F _s

Notes:

- (1) SATOB is the name of the code for reporting satellite observations of wind, surface temperature, cloud, humidity and radiation.
- (2) A SATOB report is identified by the symbolic letters $M_iM_iM_jM_j = YYXX$
- (3) The code form is divided into a number of sections as follows:

Section number	Symbolic figure group	Contents
1	_	Time and identification data
2	222	Data for wind and cloud or water-vapour temperature at specified pressure levels
3	333	Data for wind at specified pressure levels
4	444	Data for surface temperatures
5	555	Data for clouds

FM 88 SATOB

Section number	Symbolic figure group	Contents
6	666	Data for maximum cloud-top altitude
7	777	Data for troposphere humidity
8	888	Data for radiation balance

(4) It is recommended that, within each section, a report should be confined to one geographical area. Proper transmission of each report is thereby ensured and the amount of data to be transmitted to individual users is reduced.

REGULATIONS:

88.1 General

- 88.1.1 The code name SATOB shall not be given in the report.
- 88.1.2 The report shall consist of Section 1 plus Section 8 or Section 1 plus one or more of Sections 2 to 7.
- 88.1.3 The data shall be arranged in 10-degree squares.

88.2 Section 1

Section 1 shall indicate the satellite name (Regulation 86.2.1.1 applies) and the time of the observation, except when Regulation 88.9.2 applies.

88.3 Section 2

Section 2 shall be included in the report when data on cloud or water-vapour temperature and winds computed from cloud movement or water-vapour motion are available.

88.4 Section 3

Section 3 shall be included in the report when data for winds computed from cloud movement or water-vapour motion are available, while cloud or water-vapour temperature data are not available.

88.5 Section 4

Section 4 shall be included in the report when surface temperature data are available.

88.6 Section 5

Section 5 shall contain data giving the individual percentage cloud cover of the various cloud layers and the temperature at the top of each layer. If available, the pressure at the top of the layer (in tens of hectopascals) shall be given by P_dP_d . If pressure is not available, P_dP_d shall be coded as I/I.

88.7 Section 6

Section 6 shall be included in the report when data on maximum cloud-top altitude are available.

A-164 Volume I.1

88.8 Section 7

Section 7 shall be included in the report when humidity data from a given level up to the tropopause are available. The group $P_bP_b/\!/\!/$ shall specify the lower level.

88.9 Section 8

- 88.9.1 Section 8 shall be included in the report when data for total radiation (for 24 hours) are available (outgoing: long-wave and short-wave; incoming: short-wave).
- 88.9.2 When Section 8 is included in the report, GGgg in Section 1 shall be coded as a series of solidi (////), while YY refers to the day over which the total radiation is integrated.

Section B

SPECIFICATIONS OF SYMBOLIC LETTERS (or groups of letters)

Symbolic letters and remarks as to the methods of coding

Note: General information about methods of observation will be found in the *Guide to Meteorological Instruments and Methods of Observation* (WMO-No. 8).

SYMBOLIC LETTERS AND REMARKS AS TO THE METHODS OF CODING

REMARK: When coding a value which can be directly transcribed into figures, and when the number of significant figures of this value (expressed in the units given in the relevant specification) is lower than the number of symbolic letters reserved for this element, one or more zeros, as appropriate, must be inserted at the left of the significant figure(s) of the reported value.

Example: If the altitude of the cloud base is 3 600 metres and must be reported in the cloud section of the FM 45 IAC code form, where the symbolic letters $H_bH_bH_b$ (altitude of cloud base in hundreds of metres) are reserved for this purpose, the code figure will be 036. Similarly, if the altitude of the cloud base is 800 metres, the code figure will be 008.

A	Mirage. (Code table 0101) (9-group in Section 3 of FM 12, FM 13 and FM 14)
_	Direction of latitude (N = North, S = South). (FM 22, FM 42, FM 50, FM 57)
_	WMO Regional Association in which the hydrological observing station is located (1 – Region I; 2 – Region II, etc.). (FM 67, FM 68)
A _C	Accuracy of the position of the centre or the eye of the tropical cyclone. (Code table 0104) (FM 20)
A _N	Type of anemometer. (Code table 0114) (FM 18)
A _T	Index of accuracy of layer mean air temperature data (supplied by operator). (FM 86)
A _a	Accident early notification – article applicable. (Code table 0131) (FM 22)
A _c	Cause of incident. (Code table 0133) (FM 22)
A _e	Incident situation. (Code table 0135) (FM 22)
A_{i}	Accuracy of the fix and repetition rate of atmospherics. (Code table 0139) (FM 82)
A_{t}	Accuracy of determination of the geographical position of the tropical cyclone. (Code table 0152) (FM 85)
_	Index of accuracy of tropopause data (supplied by operator). (FM 86)

A_w	Index of accuracy of precipitable water in the layer (supplied by operator). (FM 86)
A ₁	WMO Regional Association area in which buoy, drilling rig or oil- or gas-production platform has been deployed (1 – Region I; 2 – Region II, etc.). (Code table 0161) (FM 13, FM 18, FM 22, FM 63, FM 64, FM 65)
A_3	Day darkness, worst in direction D _a . (Code table 0163) (9-group in Section 3 of FM 12, FM 13 and FM 14)
AA	Activity or facility involved in incident. (Code table 0177) (FM 22, FM 57)
AAA	Maritime area. (FM 61)
$A_h A_h A_h$	Anemometer height expressed in decimetres. (FM 18)
$\left. \begin{array}{c} A_1 A_1 A_1 \\ A_2 A_2 A_2 \end{array} \right\}$	Spectral estimates of the first to n th frequencies (or wave numbers if so indicated). (FM 65)
$A_nA_nA_n$	(1) The use of frequency or wave number is indicated by symbolic letter I _a .
$A_2A_2A_2$	Zenith angle, in tenths of a degree. (FM 87)
AAAAA	Area. (FM 53)
a	Characteristic of pressure tendency during the three hours preceding the time of observation. (Code table 0200) (FM 12, FM 13, FM 14, FM 18)
a _C	Change in character of the eye during the 30 minutes preceding the time of observation. (Code table 0204) (FM 20)
a _l	Trend in behaviour of ice. (Code table 0210) (FM 44)
a _e	Tendency of echo pattern. (Code table 0235) (FM 20)
a _i	Distribution of atmospherics. (Code table 0239) (FM 82)
a _m	Portion of the maritime area. (Code table 0244) (FM 61)

A–170 Volume I.1

a _t	Apparent 24-hour change in intensity of the tropical cyclone. (Code table 0252) (FM 85)
a ₁	Reason for no report or ground equipment employed. (Code table 0262) (FM 39, FM 40)
$\left. \begin{array}{c} a_1 \\ a_2 \end{array} \right\}$	Hundreds figure of $a_1a_1a_1$, $a_2a_2a_2$. (FM 47, FM 49)
a ₃	Standard isobaric surface for which the geopotential is reported. (Code table 0264) (FM 12, FM 14)
a ₄	Type of measuring equipment used. (Code table 0265) (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)
a ₅	Type of report and unit of reported radiological quantity. (Code table 0266) (FM 22)
aa	Decimal exponent of radiological quantity or discharge of the main receiving water body. (FM 22, FM 57)
a_1a_1 a_2a_2	Tens and units figures of a ₁ a ₁ a ₁ , a ₂ a ₂ a ₂ . (FM 47, FM 49)
$a_1a_1a_1$ $a_2a_2a_2$ $\}$	Type of parameter. (Code table 0291) (FM 47, FM 49)
	(1) In the case of FM 49 GRAF, $a_2a_2a_2$ is replaced by 000 in the code form.
В	Direction of longitude (E = East, W = West). (FM 22, FM 42, FM 50, FM 57)
_	Turbulence. (Code table 0300) (FM 51, FM 53, FM 54)
B _A	Turbulence. (Code table 0302) (FM 42)
B_T	Type of release. (Code table 0324) (FM 22)
B _z	High-level turbulence. (Code table 0359) (FM 41)
	(1) High-level turbulence refers to the type of aircraft turbulence which is normally found above about 6 km, exclusive of turbulence in Cumulonimbus cloud. High-level turbulence is sometimes referred to as clear-air turbulence but does not exclude turbulence in Cirrus cloud.
ВВ	Number of bands described by the next two groups, except that BB = 00 indicates each of the following groups represents only a centre frequency or wave number. (FM 65)

BB (continued)

International indicator for basin in a given WMO Region (A).
 (FM 67, FM 68)

(1) This indicator defines the basin, or group of basins, in which the hydrological observing station is situated. This basin or group of basins may be international or national.

(2) The list of international indicators for basins is given in Volume II of the Manual on Codes.

B_RB_R Estimated surface friction. (Code table 0366)

(FM 15, FM 16)

 B_TB_T Total number of bands described.

(FM 65)

 B_tB_t Type of buoy. (Code table 0370)

(FM 18)

B₁B₂B₃ Number designating a 10° x 10° square in the geographical grid formed by the intersection of two meridians and two parallels of latitude. These four lines correspond to geographical coordinates which are in pairs of consecutive multiples of 10° and can therefore be expressed as follows:

 $I_a \times 10^\circ$, $(I_a + 1) \times 10^\circ$ (latitude)

 $I_0 \times 10^\circ$, ($I_0 + 1$) x 10° (longitude).

In the above expressions, I_a and I_o are positive integers that may vary between 0 and 8 and between 0 and 17 respectively. Both latitudes are either N or S and both longitudes are either E or W.

The square number is obtained by using the specifications below:

 $B_1 = Q - Octant of the globe. (Code table 3300)$

 $B_2 = I_a$.

 B_3 = Units figure of integer I_0 .

(FM 88)

- (1) That corner of square $B_1B_2B_3$ which corresponds to the geographical coordinates $I_a \times 10^\circ$ and $I_o \times 10^\circ$ is used as a reference point to obtain the coordinates of any point lying inside the square:
 - (a) To the nearest degree, by adding up to 9° to the coordinates of the corner in question:
 - (b) To the nearest tenth of a degree, by adding up to 9.9° to the coordinates of the corner in question.
- (2) Points lying on the 180° meridian will be encoded by using $B_3 = 8$ and $B_1 = 1$ in the northern hemisphere and $B_1 = 6$ in the southern hemisphere.
- (3) Each Pole will be encoded by $B_2 = 9$, $B_3 = 0$ and $B_1 = 1$ for the North Pole and $B_1 = 6$ for the South Pole.
- (4) Between 80° latitude and each of the Poles, the squares are reduced to triangles which nevertheless are covered by the above system.
- (5) The numbering system of squares is given in Code table 0371.

b_i Ice of land origin. (Code table 0439) (FM 12, FM 13, FM 14)

A-172 Volume I.1

 b_w Sub-area belonging to the area indicated by A₁. (Code table 0161) (FM 13, FM 18, FM 22, FM 63, FM 64, FM 65) $b_1 b_1$ Type of special level. (Code table 0491) (FM 47, FM 49) b_2b_2 In the case of FM 49 GRAF, b₂b₂ is replaced by 00 in the code form С Genus of cloud. (Code table 0500) (FM 12, FM 13, FM 14) The genus of the cloud of the reported layers shall be determined on the basis of the 10 genera of cloud and of their illustrations given in the International Cloud Atlas. Total concentration of all ice. (Code table 0501) (FM 44) Genus of cloud predominating in the layer. (Code table 0500) Clouds of the genera Cirrus, Cirrocumulus and Cirrostratus. (Code table 0509) Сн (FM 12, FM 13, FM 14, FM 35, FM 36, FM 38) The figure to be reported for C_H shall be determined on the basis of the detailed description of CH clouds and illustrations of them in the International Cloud Atlas in conjunction with specifications in Code table 0509. The figure C_H = 9 shall be used when the predominant C_H clouds are Cirrocumulus although small amounts of Cirrocumulus may be present in the C_H cloud system reported under C_H = 1 to 8. C_L Clouds of the genera Stratocumulus, Stratus, Cumulus and Cumulonimbus. (Code table 0513) (FM 12, FM 13, FM 14, FM 35, FM 36, FM 38) The figure to be reported for C_L shall be determined on the basis of the detailed description of the low clouds and illustrations of them in the International Cloud Atlas in conjunction with specifications in Code table 0513. C_{M} Clouds of the genera Altocumulus, Altostratus and Nimbostratus. (Code table 0515) (FM 12, FM 13, FM 14, FM 35, FM 36, FM 38) The figure to be reported for C_M shall be determined on the basis of the detailed description of C_M clouds and illustrations of them in the International Cloud Atlas in conjunction with specifications in Code table 0515. C_R Extent of runway contamination. (Code table 0519) (FM 15, FM 16) Special clouds. (Code table 0521) C_{S} (9-group in Section 3 of FM 12, FM 13 and FM 14) C_a Nature of clouds of vertical development. (Code table 0531) (9-group in Section 3 of FM 12, FM 13 and FM 14)

C _c	Coloration and/or convergence of clouds associated with a tropical disturbance. (Code table 0533) (9-group in Section 3 of FM 12, FM 13 and FM 14)
C _e	Concentration of the tertiary form of ice. (Code table 0501) (FM 44)
C_{i}	Indicator of the country for each basin (BB) in which the hydrological observing station is situated. (FM 67, FM 68)
	(1) The list of indicators for countries is given in Volume II of the <i>Manual on Codes</i> .
C_{m}	Major cloud configuration. (Code table 0544) (FM 85)
C_p	Concentration of the predominant form of ice. (Code table 0501) (FM 44)
C_{q}	Concentration of the quaternary form of ice. (Code table 0501) (FM 44)
Cs	Concentration of the secondary form of ice. (Code table 0501) (FM 44)
_	Cloud system. (Code table 0551) (FM 45)
C _t	Description of the top of cloud whose base is below the level of the station. (Code table 0552) (FM 12, FM 14)
C_{u}	Concentration of the quintary form of ice. (Code table 0501) (FM 44)
C ₀	Orographic clouds. (Code table 0561) (9-group in Section 3 of FM 12, FM 13 and FM 14)
C ₁	Concentration of the predominant stage of development of ice. (Code table 0501) (FM 44)
_	Confidence figure. (Code table 0562) (FM 45, FM 46)
C ₂	Concentration of the secondary stage of development of ice. (Code table 0501) (FM 44)
_	Probability in tens of per cent. (FM 53, FM 54)
	(1) C_2 cannot exceed 5 = 50 per cent. (If the probability of occurrence of an element exceeds 50 per cent, then that occurrence shall be the predominant feature of the forecast.)

A-174 Volume I.1

C ₃	Concentration of the tertiary stage of development of ice. (Code table 0501) (FM 44)
C_4	Concentration of the quaternary stage of development of ice. (Code table 0501) (FM 44)
C ₅	Concentration of the quintary stage of development of ice. (Code table 0501) (FM 44)
C,	Genus of cloud whose base is below the level of the station. (Code table 0500) (FM 12, FM 14)
C_2C_2	Probability in per cent rounded off to whole tens. (FM 51)
	(1) C_2C_2 cannot exceed 50 = 50 per cent. (If the probability of occurrence of an element exceeds 50 per cent, then that occurrence shall be the predominant feature of the forecast.)
$C_m C_m C_m$	Maximum non-directional spectral density derived from heave sensors, in $\rm m^2~Hz^{-1}$ for frequencies and $\rm m^3$ for wave numbers. (FM 65)
$C_{\text{sm}}C_{\text{sm}}C_{\text{sm}}$	Maximum non-directional spectral density derived from slope sensors, in $\rm m^2~Hz^{-1}$ for frequencies and $\rm m^3$ for wave numbers. (FM 65)
CCCC	ICAO international four-letter location indicator. (FM 15, FM 16, FM 51, FM 54)
$C_sC_sC_sC_s$	Four last digits of check sum. (FM 47)
c_{T}	Thermodynamic correction technique. (Code table 0659) (FM 39, FM 40)
C _i	Concentration or arrangement of sea ice. (Code table 0639) (FM 12, FM 13, FM 14)
C _w	Wind correction technique. (Code table 0659) (FM 39, FM 40)
$\begin{bmatrix} C_{s1}C_{s1} \\ C_{s2}C_{s2} \\ \cdots \end{bmatrix}$	The ratio of the spectral density derived from slope sensors for a given band, to the maximum spectral density given by $C_{\rm sm}C_{\rm sm}C_{\rm sm}$. (FM 65)
C _{sn} C _{sn}	(1) A coded value of 00 may indicate either zero, or that the band contains the maximum spectral density. Since the band containing the maximum value will have been identified, it will be obvious which meaning should be assigned.

c_0c_0	Sea-surface current speed, in tenths of a metre per second or tenths of a knot, in units indicated by $i_{\rm c}$. (FM 62)
	(1) $d_0d_0c_0c_0$ is encoded 0000 if the current speed is less than 0.05 metre per second (0.1 knot).
$\begin{bmatrix} C_1C_1 \\ C_2C_2 \\ \dots \end{bmatrix}$	The ratio of the spectral density derived from heave sensors for a given band, to the maximum spectral density given by $C_m C_m C_m$. (FM 65)
C _n C _n	(1) See Note (1) under $c_{s1}c_{s1}$, $c_{s2}c_{s2}$, $c_{sn}c_{sn}$
_	Number of filter channel which corresponds to the data included in the first (to $R_1R_1R_1$) and in the last (to $R_nR_nR_n$) positions. (FM 87)
	(1) Filter channel numbers range from 01 to a value determined by the instrumental characteristics.
$ \begin{array}{c} c_0c_0c_0 \\ c_1c_1c_1 \\ \dots \\ c_nc_nc_n \end{array} \right\} $	Speed of the current, in centimetres per second, at selected and/or significant depths starting with sea surface. (FM 18, FM 64)
D	True direction from which surface wind is blowing. (Code table 0700) (FM 61)
_	True direction towards which ice has drifted in the past 12 hours. (Code table 0700) (FM 44)
D_H	True direction from which $C_{\rm H}$ clouds are moving. (Code table 0700) (FM 12, FM 13, FM 14)
D_K	True direction from which swell is moving. (Code table 0700) (FM 61)
D_L	True direction from which C_L clouds are moving. (Code table 0700) (FM 12, FM 13, FM 14)
D_M	True direction from which $C_{\rm M}$ clouds are moving. (Code table 0700) (FM 12, FM 13, FM 14)
D _a	True direction in which orographic clouds or clouds with vertical development are seen. (Code table 0700) (FM 12, FM 13, FM 14)
_	True direction in which the phenomenon indicated is observed or in which conditions specified in the same group are reported. (Code table 0700) (9-group in Section 3 of FM 12, FM 13 and FM 14)
D _e	True direction towards which an echo pattern is moving. (Code table 0700) (FM 20)

A–176 Volume I.1

D _i	True bearing of principal ice edge. (Code table 0739) (FM 12, FM 13, FM 14)
	(1) If more than one ice edge can be stated, the nearest or most important shall be reported.
D_{p}	True direction from which the phenomenon indicated is coming. (Code table 0700) (9-group in Section 3 of FM 12, FM 13 and FM 14)
D _s	True direction of resultant displacement of the ship during the three hours preceding the time of observation. (Code table 0700) (FM 13)
D _v	Direction of observation given by one or two-letter indicators of the eight points of the compass (N, NE, etc.). (FM 15, FM 16)
D_w	True orientation of water feature given in $W_{t\cdot}$ (Code table 0755) (FM 44)
D_1	True direction of the point position from the station. (Code table 0700) (FM 45)
D_RD_R	Runway designator reported in accordance with ICAO Annex 14. (FM 15, FM 16)
D_cD_c	Surface current direction, in tens of degrees. (FM 63)
$D_{gr}D_{gr}$	Number of days in the month with hail. (FM 71)
D_tD_t	Dew-point depression at the tropopause level. (Code table 0777) (FM 35, FM 36, FM 37, FM 38)
$D_{ts}D_{ts}$	Number of days in the month with thunderstorm(s). (FM 71)
$\left.\begin{array}{c} D_0D_0\\ D_1D_1\\ \dots\\ D_nD_n \end{array}\right\}$	Dew-point depression at standard isobaric surfaces or at significant levels, starting with station level. (Code table 0777) (FM 35, FM 36, FM 37, FM 38)
DDD	Ice thickness, in centimetres. (FM 67)
$\left.\begin{array}{c} \overline{D_0D_0D_0} \\ \overline{D_1D_1D_1} \\ \ldots \\ \overline{D_nD_nD_n} \end{array}\right\}$	Monthly mean dew-point depression, in tenths of a degree Celsius, at specified isobaric surfaces starting with station level. (FM 75, FM 76)
$\left. \begin{array}{l} D_1D_1D_1 \\ D_2D_2D_2 \\ \text{etc.} \end{array} \right\}$	True direction, in whole degrees, of source. (FM 81)

D'₁D'₁D'₁ D'₂D'₂D'₂ True direction, in whole degrees, of the axis of the centre corresponding to g_1g_1 , g_2g_2 , etc. (FM 83)

 $D_{Pa}D_{Pa}D_{Pa}D_{Pa}$ Radius of protective action (to be) taken, in kilometres. (FM 22)

D´D´D´D´

Duration of record of wave, in seconds, or length of record of wave, in tens of metres. (FM 65)

- (1) The use of frequency or wave number is indicated by symbolic letter I_a.
- D....D Ship's call sign consisting of three or more alphanumeric characters. (FM 13, FM 20, FM 33, FM 36, FM 62, FM 63, FM 64, FM 65, FM 85)
- Call sign, consisting of three or more alphanumeric characters, for mobile land station making surface or upper-air observations or issuing a radiological report on a routine basis and/or in case of accident.

(FM 14, FM 22, FM 34, FM 38, FM 57)

- (1) It is recommended that this group should be encoded in the form A₁A₂DDD, where A₁A₂ are the two-letter geographical designators related to countries or territories as specified in Table C1, Part I of Attachment II–5 of the *Manual on the Global Telecommunication System* (Volume I). DDD are location designators comprising the first three letters of the name of the town or commune, where the mobile land station carried out upper-air sounding.
- d_T Amount of temperature change, the sign of the change being given by s_n . (Code table 0822) (FM 12, FM 13, FM 14)
- d_c Duration and character of precipitation given by RRR. (Code table 0833) (9-group in section 3 of FM 12, FM 13 and FM 14)
 - (1) If only one period of precipitation has occurred during the period covered by W_1W_2 , the duration is defined as the time elapsed from the beginning (a) until the end of the period of precipitation, if precipitation is not occurring at the time of observation, or (b) until the time of observation, if precipitation is occurring at the time of observation.
 - (2) If two or more periods of precipitation have occurred during the period covered by W₁W₂, the duration of precipitation is defined as the time elapsed from the beginning of the first period of precipitation, all or part of which occurred during the period covered by W₁W₂, (a) until the end of the last period of precipitation, if precipitation is not occurring at the time of observation, or (b) until the time of observation, if precipitation is occurring at the time of observation.
- d_p Decimal point locator (FM 39, FM 40)
 - (1) The decimal point locator is defined as the number of places to the left of the third significant figure. The decimal point must be so placed as to obtain the actual density in g m⁻³ by $p_1p_1p_1$.
 - (2) The third significant figure is always included in the value reported for symbol d_D.

For example: If air density is 120 g m⁻³, the group $9d_pp_1p_1p_1$ is coded 90120, d_p being 0. If air density is 1.20 g m⁻³, the group $9d_pp_1p_1p_1$ is coded 92120, d_p being 2. If air density is 0.281 g m⁻³, the group $9d_pp_1p_1p_1$ is coded 93281, d_p being 3.

A–178 Volume I.1

dd True direction, in tens of degrees, from which wind is blowing (or will blow). (Code table 0877; stations within 1° of the North Pole use Code table 0878) (FM 12, FM 13, FM 14, FM 18, FM 22, FM 39, FM 40, FM 45, FM 63, FM 64, FM 88) True direction (rounded off to the nearest 5°), in tens of degrees, from which wind is blowing. (FM 32, FM 33, FM 34, FM 41) Forecast true direction, in tens of degrees, from which wind will blow at the relevant grid point. (Code table 0877) (FM 50) True direction, in tens of degrees, from which wind is blowing, derived from movement of cloud elements. (Code table 0877) (FM 85) (1) When encoding wind direction that has been rounded off to the nearest 5°, the hundreds and tens figures of this rounded direction shall be reported by dd and the units figure shall be added to the hundreds figure of the wind speed. Examples: (a) 293°/162 knots shall be encoded (b) 292°/162 knots shall be encoded 162 162 Stations within 1° of the South Pole shall use Code table 0877 for reporting wind direction. These stations shall orient their azimuth rings so that the ring's zero coincides with the Greenwich meridian, e.g. wind from 0° longitude is coded 36, from 90°E longitude is coded 09, from 180° longitude is coded 18, and from 90°W longitude is coded 27, etc. $d_B d_B$ Drift direction of the buoy, expressed in tens of degrees, at the last known position of the buoy given in the groups YYMMJ GGgg/. (FM 18) $d_a d_a$ Extreme anticlockwise direction from the mean direction of the wind reported by dd. (FM 22) $d_{a1}d_{a1}$ Mean direction, in units of 4 degrees, from which waves are coming for the band indicated, relative to true north. (Code table 0880) (FM 65) A value of 99 indicates the energy for that band is below a given threshold. Principal direction, in units of 4 degrees, from which waves are coming for the band $d_{a2}d_{a2}$ indicated, relative to true north. (Code table 0880) (FM 65) See Note (1) under da1da1. (1) Extreme clockwise direction from the mean direction of the wind reported by dd. $d_c d_c$ (FM 22) $d_d d_d$ True direction, in units of 4 degrees, from which dominant wave is coming. (Code table 0880) (FM 65)

$d_h d_h$	True direction, in tens of degrees, from which wind will blow at the altitude indicated by $h_x h_x h_x$. (Code table 0877) (FM 53, FM 54)
$d_i d_i$	True direction, in tens of degrees, from which jet-stream wind is blowing (or will blow). (Code table 0877) (FM 45)
$d_m d_m$	True direction (rounded off to the nearest 5°), in tens of degrees, from which maximum wind is blowing. (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)
	(1) See Note (1) under dd.
_	True direction, in tens of degrees, from which maximum wind will blow at the flight level given by $n_m n_m n_m$. (Code table 0877) (FM 50)
_	True direction, in tens of degrees, from which maximum wind will blow at the height given by $h'_m h'_{m}$. (Code table 0877) (FM 53, FM 54)
d_sd_s	True direction, in tens of degrees, towards which the system or front is moving. (Code table 0877) (FM 20, FM 45, FM 46)
	(1) d_sd_s denotes the direction towards which the system is moving at the position indicated by the preceding group(s)
_	Directional spread, in whole degrees, of the dominant wave. (FM 65)
	(1) The value of the directional spread is normally less than one radian (about 57°)
_	True direction, in tens of degrees, towards which the tropical cyclone or system is moving. (Code table 0877) (FM 85)
$d_t d_t$	True direction (rounded off to the nearest 5°), in tens of degrees, from which wind is blowing at the tropopause level. (FM 35, FM 36, FM 37, FM 38)
	(1) See Note (1) under dd.
$d_w d_w$	True direction, in tens of degrees, from which waves are coming. (Code table 0877) (FM 45, FM 46)
$d_{w1}d_{w1} \atop d_{w2}d_{w2} \bigg\}$	True direction, in tens of degrees, from which swell waves are coming. (Code table 0877) (FM 12, FM 13, FM 14)
d_0d_0	True direction, in tens of degrees, towards which sea-surface current is moving. (Code table 0877) (FM 62)

A-180 Volume I.1

$\left. \begin{array}{c} d_0d_0 \\ d_1d_1 \\ \dots \\ d_nd_n \end{array} \right\}$	True direction (rounded off to the nearest 5°), in tens of degrees, from which wind is blowing at specified levels starting with surface level. (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)
	(1) See Note (1) under dd.
_	True direction, in tens of degrees, towards which sea current at selected and/or significant depths starting with the sea surface is moving. (Code table 0877) (FM 18, FM 64)
$\left. \begin{array}{c} d_1d_1 \\ d_2d_2 \\ \dots \\ d_nd_n \end{array} \right\}$	True direction, in tens of degrees, from which wind is blowing at the specified levels. (Code table 0877) (FM 39, FM 40)
_	True direction, in units of 4 degrees, from which waves are coming. (Code table 0880) (FM 65)
ddd	True direction, in degrees, rounded off to the nearest 10°, from which wind is blowing (or will blow). (FM 15, FM 16, FM 51)
_	True direction, in whole degrees, from which wind is blowing. (FM 42)
$d_n d_n d_n$	The extreme counterclockwise direction of a variable wind, reported with reference to true north and rounded off to the nearest 10°. (FM 15, FM 16)
$d_{ta}d_{ta}d_{ta}$	Main transport direction in atmosphere, in degrees from north. (FM 22)
$d_{tw}d_{tw}d_{tw}$	Main transport direction in water, in degrees from north. (FM 22)
$\left. \begin{array}{c} \overline{d_{v1}d_{v1}d_{v1}} \\ \overline{d_{v2}d_{v2}d_{v2}} \\ \cdots \end{array} \right\}$	True direction, in whole degrees, of the monthly mean vector wind at specified isobaric surfaces. (FM 75, FM 76)
$\left\{ \frac{\dots}{d_{vn}d_{vn}d_{vn}} \right\}$	(1) 500 shall be added to $\overline{d_v d_v d_v}$ when the speed of the monthly mean vector wind is 100 units or more up to 199 units.
$d_x d_x d_x$	The extreme clockwise direction of a variable wind, reported with reference to true north and rounded off to the nearest 10°. (FM 15, FM 16)
$d_i d_i d_i \\ d_i$	Mesh width of grid, along the i-axis of a cartesian grid at the latitude of true scale, in kilometres. (FM 47)
_	Mesh width of grid along the parallels of a geographical grid, in tenths of a degree. (FM 47)

$d_id_id_id_i$	Mesh width of grid, along the j-axis of a cartesian grid at the latitude of true scale, in kilometres. (FM 47)
_	Mesh width of grid along the meridians of a geographical grid, in tenths of a degree. (FM 47)
E	State of the ground without snow or measurable ice cover. (Code table 0901) (FM 12, FM 14)
E _R	Runway deposits. (Code table 0919) (FM 15, FM 16)
E _c	Characteristics of release. (Code table 0933) (FM 22)
E _e	Release behaviour over time. (Code table 0935) (FM 22)
E _h	Elevation above the horizon of the base of anvil of Cumulonimbus or of the summit of other phenomena. (Code table 0938) (9-group in Section 3 of FM 12, FM 13 and FM 14)
E _s	State of current or expected release. (Code table 0943) (FM 22)
E ₃	Slush condition under the ice layer. (Code table 0964) (FM 67)
E′	State of the ground with snow or measurable ice cover. (Code table 0975) (FM 12, FM 14)
E_sE_s	Thickness of ice accretion on ships, in centimetres. (FM 12, FM 13, FM 14)
$ \begin{bmatrix} E_1E_1\\E_2E_2 \end{bmatrix} $	Ice phenomena on river, lake or reservoir. (Code table 0977) (FM 67)
EEE	Amount of either evaporation or evapotranspiration, in tenths of a millimetre, during the preceding 24 hours. (FM 12, FM 13, FM 14)
e _C	Elevation angle of the top of the cloud indicated by C. (Code table 1004) (FM 12, FM 13, FM 14)
e _Q	Number of zeros after QQQ, $Q_1Q_1Q_1$ or $Q_2Q_2Q_2$ to obtain the discharge in dm 3 s $^{-1}$. (FM 67, FM 68)
e ₁	Type of isopleth and units of isopleth values uuu. (Code table 1062) (FM 45)

A–182 Volume I.1

e ₂	Type of isopleth and units of isopleth values uu. (Code table 1063) (FM 45, FM 46)
e'	Elevation angle of the top of the phenomenon above horizon; that is, the angle between the horizontal plane through the eye of the observer and the straight line form the eye of the observer to the top of the phenomenon. (Code table 1004) (9-group in Section 3 of FM 12, FM 13 and FM 14)
e _R e _R	Depth of deposit. (Code table 1079) (FM 15, FM 16)
$e_T e_T$	Type of thermodynamic sensing equipment. (Code table 1085) (FM 39, FM 40)
$e_w e_w$	Type of wind sensing equipment. (Code table 1095) (FM 39, FM 40)
eee	Mean vapour pressure for the month, in tenths of a hectopascal. (FM 71, FM 72)
F _H	Type of forecast given by the four figures which follow and indication of the number of date-time group(s) used. (Code table 1109) (FM 68)
F _c	Character of front. (Code table 1133) (FM 45, FM 46)
F _e	Tertiary form of ice. (Code table 1135) (FM 44)
Fi	Intensity of front. (Code table 1139) (FM 45, FM 46)
F_{m}	Forecast strength of surface wind. (Code table 1144) (FM 61)
F_p	Predominant form of ice. (Code table 1135) (FM 44)
	(1) If two or more forms of ice have the same concentration, selection of the predominant form shall be made in a decreasing size sequence.
F_q	Quaternary form of ice. (Code table 1135) (FM 44)
F_s	Secondary form of ice. (Code table 1135) (FM 44)
F _t	Type of front. (Code table 1152) (FM 45, FM 46, FM 53, FM 54)

F_{u}	Quintary form of ice. (Code table 1135) (FM 44)
F _x	Maximum wind force, in the period covered by W_1W_2 , on the Beaufort scale (0 = 10 Beaufort; 1 = 11 Beaufort; 2 = 12 Beaufort, etc.). (9-group in Section 3 of FM 12, FM 13 and FM 14)
	(1) The Beaufort scale of wind is given in Section E of this volume.
F_1 F_2 etc.	Intensity of points. (Code table 1162) (FM 81)
F_1F_2	Identification of originating/generating centre. (Common Code table C–1 – see Attachment I). (FM 47, FM 49, FM 57)
$F_LF_LF_L$	Outgoing long-wave radiation, in joules, integrated over 24 hours. (FM 88)
$F_iF_iF_i$	Incoming short-wave radiation, in joules, integrated over 24 hours. (FM 88)
$F_sF_sF_s$	Outgoing short-wave radiation, in joules, integrated over 24 hours. (FM 88)
F ₃ F ₃ F ₃	Identification of originating/generating centre (Common Code table C-1 – See Attachment I). (FM 86, FM 87, FM 88)
F ₄ F ₄ F ₄	Identification of originating/generating sub-centre (defined by centre $F_3F_3F_3$ if necessary – Table to be supplied to WMO Secretariat by centre). (FM 86, FM 87, FM 88)
FFFF	Amount of radiation, in kilojoules per square metre, over a 1-hour period. (FM 12, FM 13, FM 14)
F ₂₄ F ₂₄ F ₂₄ F ₂₄	Amount of radiation, in joules per square centimetre, over a 24-hour period. (FM 12, FM 13, FM 14)
f	Wind speed derived from movement of cloud elements. (Code table 1200) (FM 85)
$f_{\rm e}$	Speed of movement of echo pattern. (Code table 1236) (FM 20)
ff	Wind speed, in units indicated by i _w . (FM 12, FM 13, FM 14, FM 18, FM 22)
	(1) If wind speed is 99 units or more, see Regulation 12.2.2.3.3.
_	Wind speed, in knots or metres per second. (FM 15, FM 16, FM 51)
	(1) For wind speeds of 100 units or more, see Regulations 15.5.6 or 51.3.5, as appropriate.

A-184 Volume I.1

ff (continued) Wind speed, in knots. (FM 45) For wind speeds of 100 units or more, see Regulation 45.3.6.2. Wind speed, in units indicated by i_u. (FM 63, FM 64) $f_m f_m$ Maximum wind speed, in knots or metres per second. (FM 15, FM 16, FM 51) (1) See Note (1) under ff (second specification). $f_s f_s$ Speed, in knots, of system, front or area. (FM 20, FM 45, FM 46) f_sf_s denotes the speed of the system at the position indicated by the preceding group(s). Speed, in knots, of tropical cyclone or other system. (FM 85) Main transport speed in atmosphere, in metres per second. $f_{ta}f_{ta}$ (FM 22) $f_{tw}f_{tw}$ Main transport speed in water, in metres per second. (FM 22) $\overline{f_{v1}f_{v1}f_{v1}}$ Speed, in knots or metres per second, of the monthly mean vector wind at specified isobaric surfaces. $f_{v2}f_{v2}f_{v2}$ (FM 75, FM 76) $\overline{f_{vn}f_{vn}f_{vn}}$ $f_{10}f_{10}$ Number of days in the month with observed or recorded wind speed equal to or more than 10 metres per second or 20 knots. (FM 71) If continuous recording exists, the daily maximum of the mean wind speed over a 10-minute (1) period shall be used. If continuous recording does not exist, the maximum mean wind speed over a (2) 10-minute period, observed during the day, shall be used. In the absence of wind instruments, Regulation 12.2.2.3.2 shall apply. $f_{20}f_{20}$ Number of days in the month with observed or recorded wind speed equal to or more than 20 metres per second or 40 knots. (FM 71)

(1) See Notes (1) and (2) under $f_{10}f_{10}$.

Number of days in the month with observed or recorded wind speed equal to or more than 30 metres per second or 60 knots.

(FM 71)

 $f_{30}f_{30}$

(1) See Notes (1) and (2) under $f_{10}f_{10}$.

fff	Wind speed, in units indicated by i_w , of 99 units or more. (FM 12, FM 13, FM 14, FM 22)
	(1) See Regulation 12.2.2.3.3.
_	Wind speed, in metres per second or knots. (FM 32, FM 33, FM 34, FM 41, FM 88)
	(1) See Note (1) under dd.
	(2) See Note (1) under YY.
_	Wind speed, in metres per second or knots, at the altitude given by HH. (FM 39, FM 40)
	(1) See Note (1) under YY.
_	Wind speed, in knots, at the level given by $h_I h_I h_I. \\$ (FM 42)
_	Forecast wind speed, in knots, at the relevant grid point. (FM 50)
$f_d f_d f_d$	The increment to be added to the previous centre frequency or previous centre wave number, to obtain the next centre frequency (Hz) or the next centre wave number (m ⁻¹), in the series, the exponent being given by symbolic letter x. (FM 65)
$f_g f_g f_g$	Maximum derived equivalent vertical gust, in tenths of a metre per second. (FM 42)
$f_h f_h f_h$	Wind speed, in kilometres per hour or knots or metres per second, at the level given by $h_x h_x h_x$. (FM 53, FM 54)
f _i f _i f _i	Wind speed of the jet stream, in units indicated by $i_{\rm i}$. (FM 45)
_	Wind speed, in kilometres per hour or knots or metres per second, in the jet core. (FM 53, FM 54)
$f_m f_m f_m$	Maximum wind speed, in metres per second or knots. (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)
	(1) See Note (1) under dd.
	(2) See Note (1) under YY.
_	Maximum wind speed, in kilometres per hour or knots or metres per second, at the flight level given by $n_m n_m n_m. \\ \text{(FM 50)}$
_	Wind speed, in kilometres per hour or knots or metres per second, at the level given by $h'_m h'_m$. (FM 53, FM 54)

A–186 Volume I.1

 $f_t f_t f_t$ Wind speed, in metres per second or knots, at the tropopause level. (FM 35, FM 36, FM 37, FM 38) See Note (1) under dd. (1) (2)See Note (1) under YY. $f_x f_x f_x$ Highest gust wind speed observed or recorded during the month, in tenths of units indicated by iw. (FM 71) $f_0f_0f_0$ Wind speed, in metres per second or knots, at specified levels starting with station level. $f_1f_1f_1$ (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38) (1) See Note (1) under dd. $f_nf_nf_n\\$ (2)See Note (1) under YY. $f_1f_1f_1$ Wind speed, in metres per second or knots, at specified isobaric surfaces. (FM 39, FM 40) $f_2f_2f_2$ $f_n f_n f_n$ See Note (1) under YY. (1) The first centre frequency (Hz) in a series, or the first centre wave number (m⁻¹), the exponent being given by symbolic letter x. (FM 65) G Period covered by forecast. (Code table 1300) (FM 61) Period, to the nearest whole hour. G_p (FM 53, FM 54) If the period is less than half an hour, G_p shall be encoded as 0. GG Actual time of observation, to the nearest whole hour UTC. (FM 12, FM 13, FM 14, FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38, FM 67, FM 81, FM 82) In the case of surface observations, the actual time of observation is the time at which the (1) barometer is read. In the case of upper-air observations, the actual time of observation is the time at which the (2) balloon or rocket is actually released, or the time at which the aircraft actually takes off from the surface. In the case of atmospherics observation, the actual time of observation is the time at which the observation of all specified elements is completed. Actual time, rounded downwards to the nearest hour UTC, of the first AMDAR report in the bulletin. (FM 42) Valid time, to the nearest whole hour UTC, of the beginning of the forecast. (FM 51, FM 53, FM 54) See Regulations 51.8, 53.4 and 54.4.

GG (continued)	
_	Actual time, to the nearest whole hour UTC, of the observed satellite data. (FM 86, FM 87)
G_FG_F	Valid time, to the nearest whole hour UTC, of the temperature forecast. (FM 51)
G_cG_c	Actual time, to the nearest whole hour UTC, of the observed data from which the chart is prepared. (FM 44, FM 45, FM 46)
_	Actual time, to the nearest whole hour UTC, of:
	(a) Observations of data from which the analysed data field has been derived; or
	(b) Analysed data field from which the prognostic data field has been derived; or
	(c) End of period which was used to compute values (actual or prognostic) of mean field or field change.(FM 47, FM 49)
	(1) The time shall be one of the standard times for synoptic observations (surface or upper-air, as the case may be).
G_eG_e	Time, to the nearest whole hour UTC, of the end of the forecast period that began at GG. (FM 51)
G_nG_n	Principal time of daily reading in UTC (hours) of minimum extreme temperature. (FM 71)
G_pG_p	Number of whole hours to be added to G_cG_c to obtain the time at which the forecast is valid. (FM 44, FM 45, FM 46)
_	Period covered by the forecast, in whole hours. (FM 57)
G_rG_r	Time of issue of the report, on monitoring operation or release, in whole hours UTC. (FM 22)
_	Time of issue of the forecast, to the nearest whole hour UTC. (FM 57)
G_sG_s	Actual time, to the nearest whole hour UTC, of the satellite data used to prepare the chart. (FM 44)
G_xG_x	Principal time of daily reading in UTC (hours) of maximum extreme temperature. (FM 71)
G_0G_0	Initial time, in whole hours UTC, of analyses/forecasts used to produce the trajectory. (FM 57)

A-188 Volume I.1

G₁G₁ Time of commencement of period of forecast, in whole hours UTC. (FM 51, FM 53, FM 54, FM 61) When the period of forecast commences at midnight, G₁G₁ shall be encoded 00. Time, to the nearest whole hour UTC, specifying the beginning of the period covered by the forecast. (FM 57) Time, to the nearest whole hour UTC, defining the time or the beginning of the period covered by the forecast. (FM 68) Start of recording, to the nearest whole hour UTC. (FM 83) Time of ending of period of forecast, in whole hours UTC. G_2G_2 (FM 51, FM 53, FM 54) When the period of forecast ends at midnight, G₂G₂ shall be encoded 24. (1) When the period is between 25 and 48 hours after G₁G₁, G₂G₂ shall be encoded by adding 50 to the time of ending of period of forecast (however, this Note (2) does not apply to G₂G₂ in FM 51). Time, to the nearest whole hour UTC, defining the end of the period covered by the forecast. (FM 68) End of recording, to the nearest whole hour UTC. (FM 83) GGq Time of observation, in hours and tens of minutes UTC. (FM 20, FM 39, FM 40, FM 41, FM 85) The time to be reported in FM 20 is the time of the last radar exploration which was used to (1) draft the report. (2)The time to be reported in FM 39 and FM 40 is the time of firing of the rocket. The time to be reported in FM 41 is the time of observation, in hours and minutes UTC, expressed in the report received from the aircraft, with the last figure omitted. (4) In the case of FM 85, see Regulation 85.2.2. Mid-time, in hours and tens of minutes UTC, of the scanning period required to obtain the $G_sG_sg_s$ satellite picture used for the analysis. (FM 85) GGgg Time of observation, in hours and minutes UTC. (FM 12, FM 13, FM 14, FM 15, FM 16, FM 18, FM 22, FM 35, FM 36, FM 37, FM 38, FM 42, FM 62, FM 63, FM 64, FM 65, FM 67, FM 88) FM 12, FM 13, FM 14, FM 18: actual time of observation. (1) (2) FM 35, FM 36, FM 37, FM 38: actual time of launching the radiosonde.

Volume I.1 A–189

FM 63, FM 64: Time of launching the bathythermograph.

(3)

GGgg (continued)

- (4) FM 67: Time of occurrence of the observed maximum or observed minimum values of stage or discharges.
- (5) FM 88: Time of observation or time of mid-point observation for wind computation.
- Time, in hours and minutes UTC, of the beginning or the end of a forecast change, or at which specific forecast condition(s) is (are) expected.

(FM 15, FM 16, FM 22, FM 51)

GGggZ

Time of observation or forecast, in hours and minutes UTC, followed by the letter Z as an abbreviated indicator of UTC.

(FM 15, FM 16, FM 51, FM 53, FM 54)

- (1) FM 15: Actual time of observation.
- (2) FM 16: Time of occurrence of change(s) which justified the issue of the report.
- (3) FM 51: Time of issue of forecast.
- (4) FM 53, FM 54: Time of origin of forecast.

$G_FG_Fg_Fg_F$

Time, in whole hours UTC, at which the WINTEM message is valid. (FM 50)

- (1) As a result, g_Fg_F shall always be equal to 00.
- G_aG_ag_ag_a

Time of accident, in hours and minutes UTC.

(FM 22, FM 57)

 $G_eG_eg_eg_e$

Time of end of monitoring operation or release, in hours and minutes UTC.

(FM 22)

 $G_sG_sg_sg_s$

Time of start of monitoring operation or release, in hours and minutes UTC. (FM 22)

 $G^1G^1g^1g^1$ $G^2G^2g^2g^2$

. . . G^jG^jg^jg^j Time, in hours and minutes UTC, of expected arrival of radiological contamination at specified point location.

(FM 57)

g

Time of the observations used to compute the reported mean values of geopotential, temperature and humidity. (Code table 1400)

(FM 75, FM 76)

 g_0

Period of time, in hours, between the time of the observation and the time of the wind change, the time of occurrence of the maximum mean wind speed, or the time of temperature change.

(FM 12, FM 13, FM 14)

- (1) The period is the number of whole hours, disregarding the minutes. For example, if the time of occurrence is 45 minutes after the time of the observation, g₀ shall be encoded as 0; if the time of occurrence is 1 hour or more, but less than 2 hours after the observation, g₀ shall be encoded as 1; and so on.
- (2) The value of g_0 can be any whole number from 0 to 5.

A–190 Volume I.1

Number of hours to be added to, or subtracted from, the time given in the preamble, as $g_p g_p$ specified to obtain the time of the supplementary information. (FM 45, FM 46) Grid geometry and geographical support. (Code table 1487) g_rg_r (FM 47) (1) The grid geometries corresponding to code figures 01-08 are defined in Section 2. The grid geometries corresponding to code figure 99 are given in Weather Reporting (WMO-No. 9), Volume B (see NNN under centre F_1F_2). Time of appearance of centre, to the nearest whole hour UTC. g₁g₁ (FM 83) Time of disappearance of centre, to the nearest whole hour UTC. $g_{2}g_{2}$ (FM 83) Altitude of echo top. (Code table 1535) H_{e} (FM 20) Maximum altitude of cloud tops, corresponding to the first point out of five indicated by H_1 means of $U_{La1}U_{Lo1}$, $U_{La2}U_{Lo2}$, etc. (Code table 1561) (FM 88) As for H₁, but corresponding to the second, third, fourth and fifth points. (Code table 1561) H_2 H_3 (FM 88) H_4 H_5 HH Altitude, in kilometres, of the level for which data are reported. (FM 39, FM 40) H_wH_w Height of wind waves, in units of 0.5 metre. (FM 12, FM 13, FM 14) Height of forecast waves, in units of 0.5 metre. (FM 61) (1) The average value of the wave height (i.e. vertical distance between trough and crest) shall be reported or forecast, as obtained from the larger well-formed waves of the wave system being observed or forecast. Height of the waves less than 0.25 m shall be coded 00, height of the waves from 0.25 m to (2) less than 0.75 m shall be coded 01, height of the waves from 0.75 m to less than 1.25 m shall be coded 02, etc. $H_{wa}H_{wa}$ Height of waves, obtained by instrumental methods, in the same units as H_wH_w. (FM 12, FM 13, FM 14, FM 18) See Notes (1) and (2) under H_wH_w. (1) Height of swell waves, in the same units as H_wH_w. $H_{w1}H_{w1}$ $H_{w2}H_{w2}$ (FM 12, FM 13, FM 14) See Notes (1) and (2) under HwHw.

H'H' Altitude of the upper surface of clouds reported by C, in hundreds of metres. (FM 12, FM 14) H'H' = 99 - the upper surface of clouds is at altitude 9 900 metres or higher. $H_bH_bH_b$ Altitude of cloud base, in hundreds of metres. (FM 45) Geopotential of jet-stream core, in units indicated by ii. $H_iH_iH_i$ (FM 45) Significant wave height in decimetres. H_sH_sH_s (FM 15, FM 16) $H_tH_tH_t$ Altitude of tops of clouds, in hundreds of metres. (FM 45) Height of waves, obtained by instrumental methods, in units of 0.1 metre. $H_{wa}H_{wa}H_{wa}$ (FM 12, FM 13, FM 14, FM 18) (1) See Regulation 12.3.3.5 for the use of H_{wa}H_{wa}H_{wa}. See Note (1) under H_wH_w. (2) HHHH D-value or height reduced to the nearest standard isobaric surface, in tens of metres. (FM 41) Altitude of the level of maximum wind, in tens of standard geopotential metres. $H_mH_mH_mH_m$ (FM 32, FM 33, FM 34) Maximum wave height, in centimetres. (FM 65) In the event wave height can only be reported in tenths of a metre, the final digit in the group (1) shall be encoded as /. Significant wave height, in centimetres. H_sH_sH_sH_s (FM 65) (1) See Note (1) under H_mH_mH_mH_m. Stage, in centimetres, above zero of the gauge for the station. (FM 67) In case of negative stages, 5000 shall be added to the absolute value measured in centimetres. Estimate of significant wave height from slope sensors, in centimetres. $H_{se}H_{se}H_{se}H_{se}$ (FM 65) See Note (1) under H_mH_mH_mH_m. $H_{s1}H_{s1}H_{s1}H_{s1}$ Lower limit of forecast stage, in centimetres, above zero of the gauge for the station. (FM 68) In case of negative stages, 5000 shall be added to the absolute forecast value in centimetres. (1)

A-192 Volume I.1

 $H_{s2}H_{s2}H_{s2}H_{s2}$ Upper limit of forecast stage, in centimetres, above zero of the gauge for the station. (FM 68)

(1) See Note (1) under $H_{s1}H_{s1}H_{s1}H_{s1}$.

$H_1H_1H_1H_1$ $H_2H_2H_2H_2$

Altitude levels of reference in the atmosphere, in tens of metres, or depth levels of reference in the ocean, in metres.

(FM 47, FM 49)

- (1) In the case of analyses or prognoses relating to a layer between two levels, the upper level shall be indicated by $H_1H_1H_1H_1$ and the lower by $H_2H_2H_2$ (only for FM 47).
- (2) In the case of mean sea level, $H_2H_2H_2H_2 = 0000$.

$\frac{\overline{H_1H_1H_1H_1}}{\overline{H_2H_2H_2H_2}}$

 $H_nH_nH_nH_n$

Mean geopotentials of specified pressure surfaces, in standard geopotential metres. (FM 75, FM 76)

- (1) This value in standard geopotential metres is, for practical purposes, numerically equal to the height expressed in metres.
- (2) In the case of geopotentials above 9999 standard geopotential metres, the figures indicating the number of tens of thousands shall be omitted.
- h Height above surface of the base of the lowest cloud seen. (Code table 1600) (FM 12, FM 13, FM 14, FM 35, FM 36, FM 38)
 - (1) The term "height above surface" shall be considered as being the height above the official aerodrome elevation or above station level at a non-aerodrome station, or above the surface of the water in reports from ships.
- h_c Character of topography system. (Code table 3133) (FM 45)
- h_t Type of topography system. (Code table 3152) (FM 45)
- h_ah_a Geopotential of constant pressure surface, in tens of standard geopotential metres. (FM 45)
 - (1) For a HIGH or a LOW, h_ah_a is the geopotential at the centre. Along a ridge line, h_ah_a is the greatest geopotential and, along a trough line, it is the lowest geopotential.
- h_gh_g Height above the ground, in metres, at which diameter of deposit is observed (coded 99 for 99 m or more).

(9-group in Section 3 of FM 12, FM 13 and FM 14)

- h_sh_s Height of base of cloud layer or mass whose genus is indicated by C. (Code table 1677) (FM 12, FM 13, FM 14)
 - (1) If, notwithstanding the existence of fog, sandstorm, duststorm, blowing snow or other obscuring phenomena, the sky is discernible, the partially obscuring phenomena shall be disregarded. If, under the above conditions, the sky is not discernible, the 8-group is to be coded 89/h_sh_s with the appropriate vertical visibility value being coded for h_sh_s. The vertical visibility is defined as the vertical visual range into an obscuring medium. Vertical visibility is recorded to the same limits of accuracy as specified for cloud heights (Code table 1677).
 - (2) Heights are above surface (see Note (1) under h).

 h_th_t Height of the tops of the lowest clouds or height of the lowest cloud layer or fog. (Code

table 1677)

(9-group in Section 3 of FM 12, FM 13 and FM 14)

h'_Ph'_P Height^{*} of the tropopause level.

(FM 53, FM 54)

h'jh'j Height* of the level of the jet-stream core.

(FM 53, FM 54)

h'mh'm Height of the maximum wind level.

(FM 53, FM 54)

hhh Geopotential of an agreed standard isobaric surface given by a₃, in standard geopotential

metres, omitting the thousands digit.

(FM 12, FM 14)

h_Bh_Bh_B Height of lowest level of turbulence. (Code table 1690)

(FM 51, FM 53, FM 54)

(1) FM 51: heights are above surface (see Note (1) under h).

(2) FM 53, FM 54: heights are above sea level.

 $h_I h_I h_I$ Pressure altitude, in hundreds of feet.

(FM 42)

(1) Pressure altitude is a measure of height relative to the standard datum plane of 1013.2 hPa.

h_dh_dh_d Flight level, in hundreds of feet.

(FM 42)

 $h_f h_f h_f$ Altitude of the 0°C isotherm. (Code table 1690)

(FM 53, FM 54)

h_ih_ih_i Height of lowest level of icing. (Code table 1690)

(FM 51, FM 53, FM 54)

(1) See Notes (1) and (2) under h_Bh_Bh_B.

* These heights are indicated in ICAO flight level numbers with last figure omitted. The ICAO flight levels are related to a pressure datum of 1013.2 hPa and are separated by a nominal distance of 500 feet. Schema of coding:

Code figure	ICAO flight level number	Metres (approx.)	Feet
20	200	6 000	20 000
20	205	6 150	20 500
21	210	6 300	21 000
21	215	6 450	21 500
etc.	etc.	etc.	etc.

A-194 Volume I.1

 $h_sh_sh_s$

Height of base of cloud layer or mass, or observed or forecast vertical visibility. (Code table 1690)

(FM 15, FM 16, FM 51, FM 53, FM 54)

- (1) If, notwithstanding the existence of fog, sandstorm, duststorm, blowing snow or other obscuring phenomena, the sky is discernible, the partially obscuring phenomena shall be disregarded.
- (2) FM 15, FM 16, FM 51: heights are above surface (see Note (1) under h).
- (3) See Note (2) under h_Bh_Bh_B.

h_th_th

Altitude of cloud layer or mass. (Code table 1690)

(FM 53, FM 54)

 $h_x h_x h_x$

Altitude to which temperature and wind refer. (Code table 1690)

(FM 53, FM 54)

h₁h₁h₁ h₂h₂h₂ Geopotential of the standard isobaric surfaces P_1P_1 , P_2P_2 , . . . P_nP_n , in standard geopotential metres and tens of standard geopotential metres.

(FM 35, FM 36, FM 37, FM 38)

 $h_n h_n h_n$

- (1) Geopotentials of surfaces below sea level shall be reported by adding 500 to the absolute value of the geopotential.
- (2) The geopotential shall be reported in whole standard geopotential metres up to, but not including, 500 hPa and in tens of standard geopotential metres at 500 hPa and higher, omitting if necessary the thousands or tens of thousands digits.

_

Geopotential of the specified isobaric surfaces, in thousands or hundreds of standard geopotential metres.

(FM 39, FM 40)

(1) Geopotential of isobaric surfaces shall be reported in hundreds of standard geopotential metres at and between 70 hPa and 0.0001 hPa, and in thousands of standard geopotential metres at 0.00007 hPa and higher.

hhhh

Water depth, in metres.

(FM 65)

h_ah_ah_a

Actual release height, in metres.

(FM 22)

(1) Code figure 9999 shall indicate a height of 10 000 metres or above.

h_eh_eh_eh_e

Effective release height, in metres.

(FM 22)

(1) Code figure 9999 shall indicate a height of 10 000 metres or above.

 $h_m h_m h_m h_m$

Mixing height at the forecast point, in metres.

(FM 57)

(1) Code figure 9999 shall indicate a height of 10 000 metres or above.

 $h_r h_r h_r h_r$

Elevation of a surface observing station or pressure altitude of an airborne observing station, in either metres or tens of feet as indicated by i_h .

(FM 22, FM 57)

(1) Code figure 9999 shall indicate an altitude of 10 000 metres or above, or 100 000 feet or above, as the case may be.

 $h_0h_0h_0h_0$ Elevation of a mobile land station making surface or upper-air observations, in either metres or feet as indicated by i_m. (FM 14, FM 34, FM 38) $h^1h^1h^1h^1$ Height above mean sea level, in metres. $h^2h^2h^2h^2$ (FM 57) Code figure 999 shall indicate a height of 10 000 metres or above. h^jh^jh^jh T Density of points. (Code table 1700) (FM 83) Indicator for frequency or wave number. (Code table 1731) I_a (FM 65) I_{b} Indicator for directional or non-directional spectral wave data. (Code table 1732) (FM 65) Type of forecast ice accretion on the external parts of aircraft. (Code table 1733) I_c (FM 51, FM 53, FM 54) I_d Indicator used to specify the hundreds of hectopascals figure (in Part A of TEMP, TEMP SHIP, TEMP DROP and TEMP MOBIL reports) or tens of hectopascals figure (in Part C of TEMP, TEMP SHIP, TEMP DROP and TEMP MOBIL reports) of the pressure relative to the last standard isobaric surface for which the wind is reported. (Code table 1734) (FM 35, FM 36, FM 37, FM 38) When wind data are missing for one or more isobaric surfaces but are available for other isobaric surfaces below and above, a group (or groups) of solidi shall be included for the missing data. The wind group shall be omitted in the case of those isobaric surfaces for which no data are (2) available, provided wind data are not available for any still higher surface. Code figure I_d = 0 shall refer to the 1 000-hPa level. (3)When wind data are not available for any standard isobaric surfaces (either in Part A or in Part C), I_d shall be reported by means of a solidus (/). (5) The wind group relating to the surface level shall be included in the report; when the corresponding wind data are not available, this group shall be coded /////. If wind data are available up to and including the 250-hPa level, the wind group relating to the 200-hPa level shall also be included in the report and coded as //// except when the 250-hPa level is the highest standard isobaric surface reached by the sounding. The same rule shall apply to the 150-hPa level with regard to the 100-hPa level. Intensity of echoes. (Code table 1735) I_{e} (FM 20) Density of points. (Code table 1741) I_{i} (FM 81) I_{m} Indicator for method of calculation of spectral data. (Code table 1744) (FM 65)

A–196 Volume I.1

Possibility that plume will encounter change in wind direction and/or speed. (Code I_{n} table 1743) (FM 22) Indicator for type of platform. (Code table 1747) I_{p} (FM 65) I_{s} Ice accretion on ships. (Code table 1751) (FM 12, FM 13, FM 14) Indicator figure for instrument data used in processing (supplied by operator) (see I_3 Volume II). (FM 86, FM 87) Indicator figure for data-processing technique used. (Code table 1765) I_4 (FM 86, FM 87) I_5 Indicator figure for data-processing techniques used to identify tropopause level (supplied by operator), (see Volume II). (FM 86) IIBlock number. (FM 12, FM 20, FM 22, FM 32, FM 35, FM 39, FM 57, FM 65, FM 71, FM 75, FM 81, FM 83, FM 85) The block numbers define the area in which the reporting station is situated. They are allocated to one country or a part of it or more countries in the same Region. The list of block numbers for all countries is given in Weather Reporting (WMO-No. 9), Volume A. $I_XI_XI_X$ Instrument type for XBT, with fall rate equation coefficients. (Code table 1770) (FM 63, FM 64) $I_6I_6I_6$ Indicator figure for satellite identifier (supplied to WMO Secretariat by operators) (Common Code table C-5 - See Attachment I). (FM 65, FM 86, FM 87, FM 88) Odd deciles for geostationary satellites. (1) Even deciles for polar-orbiting satellites. (2) IS International two-letter characters of the isotope element name. (FM 22, FM 57) Aircraft identifier. $I_{\mathsf{A}}\dots I_{\mathsf{A}}$ (FM 42) The aircraft identifier is an alphanumeric which includes, either directly or indirectly, the airline (1) identifier and aircraft identifier and, in the case of an ASDAR report, the ASDAR flight unit In an AMDAR report from an ASDAR aircraft, the aircraft identifier, by convention, ends with (2) the letter Z. In the case of an AMDAR report from a non-ASDAR aircraft, the letter Z is not

Volume I.1 A–197

appended.

```
II . . . I
                 Data group as specified in Code table 0291 – a<sub>1</sub>a<sub>1</sub>a<sub>1</sub>/a<sub>2</sub>a<sub>2</sub>a<sub>2</sub> and by indicators n<sub>n</sub>, n<sub>1</sub> and n<sub>2</sub>.
                       (FM 47, FM 48)
i
                 Tendency of runway visual range values, indicated by i = U for increasing and i = D for
                 decreasing runway visual range values, and i = N when no distinct change in runway visual
                 range is observed.
                       (FM 15, FM 16)
                 Intensity or character of the weather element w<sub>e</sub> (type of weather). (Code table 1800)
                       (FM 45)
                 Indicator of type of instrumentation for evaporation measurement or type of crop for which
İΕ
                 evapotranspiration is reported. (Code table 1806)
                       (FM 12, FM 13, FM 14)
i_R
                 Indicator for inclusion or omission of precipitation data. (Code table 1819)
                       (FM 12, FM 13, FM 14)
                 Indicator for units of sea-surface current speed. (Code table 1833)
ic
                       (FM 62)
                 Indicator of sign and unit of elevation/altitude. (Code table 1840)
İh
                       (FM 22, FM 57)
                 Indicator for units of wind speed and height or pressure in the jet-stream core. (Code
İį
                 table 1841)
                       (FM 45)
                 Indicator for units of elevation, and confidence factor for accuracy of elevation. (Code
i<sub>m</sub>
                 table 1845)
                       (FM 14, FM 34, FM 38)
                 Sign indicator for the data in Section 3. (Code table 1851)
İs
                       (FM 47)
                 Indicator for units of wind speed and type of instrumentation. (Code table 1853)
i_{u}
                       (FM 63, FM 64)
                 Indicator for source and units of wind speed. (Code table 1855)
i_w
                       (FM 12, FM 13, FM 14, FM 18, FM 22, FM 71)
                 Indicator for type of station operation (manned or automatic) and for present and past
i<sub>x</sub>
                 weather data. (Code table 1860)
                       (FM 12, FM 13, FM 14)
                 Indicator to specify type of reading. (Code table 1857)
                       (FM 71)
                 Stability index. (Code table 1859)
i_z
                       (FM 57)
```

A–198 Volume I.1

```
Intensity of the phenomenon. (Code table 1861)
i_0
                      (9-group in Section 3 of FM 12, FM 13 and FM 14)
i_2
                 Zone type indicator. (Code table 1863)
                      (FM 54)
                      This symbol indicates the way in which the route is divided into sections.
                 Indicator for supplementary phenomena. (Code table 1864)
İз
                      (FM 53, FM 54)
                 Station number.
iii
                      (FM 12, FM 20, FM 22, FM 32, FM 35, FM 39, FM 57, FM 65, FM 71, FM 75, FM 81,
                      FM 83, FM 85)
                      See Section D of this volume.
                 (1)
                 Station number of station from which direction and distance of point position are given.
                      (FM 45)
                 National hydrological observing station identifier number within a given basin (BB).
i_H i_H i_H
                      (FM 67, FM 68)
                      The national station identifier number is a three-figure number allocated by the appropriate
                 (1)
                      Hydrological Service.
                      The list of hydrological observing station identifier numbers of all countries is given in
                 (2)
                      publication WMO-No. . . . (This publication will appear at a later stage.)
                 Coordinate of the first grid point of the data line along the i-axis of a cartesian grid, in half-
i_a i_a i_a
                 grid units.
                      (FM 47, FM 49)
                 Difference between the longitude of the point of reference of the geographical grid and the
                 longitude of the first grid point of the data line, in units of half-degrees.
                      (FM 47, FM 49)
                Indicator for phase of flight and type of observation.
i_p i_p i_p
                      (FM 42)
                      See Regulation 42.2.1.
iiii
                 i-coordinate of the Pole in grid units and tenths.
                      (FM 47)
J
                   Units digit of the year (UTC), i.e. 1974 = 4.
                      (FM 18, FM 62, FM 63, FM 64, FM 65, FM 88)
                 Tens and units digits of the year (UTC), i.e. 1974 = 74.
JJ
                      (FM 47, FM 49)
                 Hundreds, tens and units digits of the year (UTC), i.e. 1974 = 974.
JJJ
                      (FM 22, FM 39, FM 40, FM 57, FM 71, FM 72, FM 73, FM 75, FM 76)
```

j ₁	Supplementary information indicator. (Code table 2061) (FM 12, FM 13, FM 14)
jj	Sequence number indicating the data line(s) of subsequent forecast point positions given. (FM 57)
jjj	Supplementary information to be developed regionally (see Volume II). (FM 12, FM 14)
jajaja	Coordinate of the first grid point of the data line along the j-axis of a cartesian grid, in half-grid units. (FM 47, FM 49)
_	Difference between the latitude of the point of reference of the geographical grid and the latitude of the first grid point of the data line, in units of half-degrees. (FM 47, FM 49)
j2j3j4	Specifications relating to supplementary information. (Code table 2061) (FM 12, FM 13, FM 14)
jjjj	j-coordinate of the Pole in grid units and tenths. (FM 47)
j5j6j7j8j9	Supplementary group which follows $5j_1j_2j_3j_4$. (Code table 2061) (FM 12, FM 13, FM 14)
К	Effect of the ice on navigation. (Code table 2100) (FM 44)
k	Indicator for specifying the half-degrees of latitude and longitude. (Code table 2200) (FM 44, FM 45, FM 46, FM 82)
k ₁	Indicator for digitization. (Code table 2262) (FM 63, FM 64)
k ₂	Method of salinity/depth measurement. (Code table 2263) (FM 18, FM 64)
k ₃	Duration and time of current measurement (vector or Doppler current profiling method). (Code table 2264) (FM 18, FM 64)
k ₄	Period of current measurement (drift method). (Code table 2265) (FM 64)
k ₅	Indicator for the method of current measurement. (Code table 2266) (FM 63)

A-200 Volume I.1

 k_6 Method of removing the velocity and motion of the ship or buoy from current measurement. (Code table 2267) (FM 18, FM 64) Serial number of the data line. k_1k_1 (FM 47, FM 49) (1) $k_1k_1 = 99$ specifies the North Pole. $k_1k_1 = 98$ specifies the South Pole. Estimated level of wind data. (Code table 2300) L (FM 85) L_{a} Tenths of a degree of latitude. (FM 45, FM 46) Tenths of a degree of longitude. Lo (FM 45, FM 46) Latitude, in whole degrees. LaLa (FM 44, FM 45, FM 46, FM 53, FM 54, FM 82, FM 85, FM 86, FM 87) Type of line or feature being described. (Code table 2382) (FM 44) L_oL_o Longitude, in whole degrees. (FM 44, FM 45, FM 46, FM 53, FM 54, FM 82, FM 85, FM 86, FM 87) The hundreds digit shall be omitted for longitudes 100° to 180°. Latitude parallel, in whole degrees, along which pressure values are given. (FM 73) Meridian, in whole degrees, to which the first given pressure $(P_1P_1, P'_1P'_1, P''_1P''_1, \dots)$ refers. (FM 73) $L_aL_aL_a$ Latitude, in tenths of a degree. (FM 13, FM 14, FM 20, FM 33, FM 34, FM 36, FM 37, FM 38, FM 40, FM 41, FM 47, FM 72, FM 76, FM 85) Tenths shall be obtained by dividing the number of minutes by 6, disregarding the remainder. Latitude coordinates of grid points, where l_a^j is tenths of a degree of latitude ($l_a^j = 0$ or 5). (FM 50) $L_oL_oL_o$ Longitude, in degrees. (FM 47) See Regulation 47.3.9.

```
L_aL_aL_aL_a
                    Latitude, in degrees and minutes.
                           (FM 22, FM 42, FM 44, FM 57, FM 62, FM 65)
L_a^1L_a^1L_a^1L_a^1
                    Latitude of site of accident, in degrees and minutes.
                          (FM 22)
L_a^1L_a^1L_a^1L_a^1
                    Latitude coordinates of forecast position of radiological contamination, in degrees and
L_a^2L_a^2L_a^2L_a^2
                    minutes.
                          (FM 57)
L_a^j L_a^j L_a^j L_a^j
L_0L_0L_0L_0
                    Longitude, in tenths of a degree.
                           (FM 13, FM 14, FM 20, FM 33, FM 34, FM 36, FM 37, FM 38, FM 40, FM 41, FM 47,
                          FM 72. FM 76. FM 85)
                          See Note (1) under LaLaLa.
L_0^1 L_0^1 L_0^1 l_0^1
                    Longitude coordinates of grid points, where I_0^i is tenths of a degree of longitude (I_0^i = 0 or 5).
L_0^2 L_0^2 L_0^2 l_0^2
                           (FM 50)
L_0^i L_0^i L_0^i L_0^i
                          i may not exceed seven. See Regulation 50.3.5.
                   (1)
                    Latitude, in thousandths of a degree.
L_aL_aL_aL_aL_a
                           (FM 18, FM 63, FM 64)
                    Longitude, in degrees and minutes.
L_oL_oL_oL_oL_o
                           (FM 22, FM 42, FM 44, FM 57, FM 62, FM 65)
L<sub>0</sub><sup>1</sup>L<sub>0</sub><sup>1</sup>L<sub>0</sub><sup>1</sup>L<sub>0</sub><sup>1</sup> Longitude of site of accident, in degrees and minutes.
                           (FM 22)
L<sub>o</sub><sup>1</sup>L<sub>o</sub><sup>1</sup>L<sub>o</sub><sup>1</sup>L<sub>o</sub><sup>1</sup>L<sub>o</sub><sup>1</sup>) Longitude coordinates of forecast position of radiological contamination, in degrees and
L_0^2 L_0^2 L_0^2 L_0^2
                   minutes.
                          (FM 57)
L_o^j L_o^j L_o^j L_o^j
L_oL_oL_oL_oL_oL_o
                    Longitude, in thousandths of a degree.
                          (FM 18, FM 63, FM 64)
                    Multiplying factor to be applied to the standard mesh width indicated by didididi.
I_0I_0
                          (FM 47)
                          For example, l_0l_0 = 02 means a multiplication by a factor of 2.
                    Character of air mass. (Code table 2538)
M_h
                          (FM 45)
M_s
                    Source region of air mass. (Code table 2551)
                          (FM 45)
```

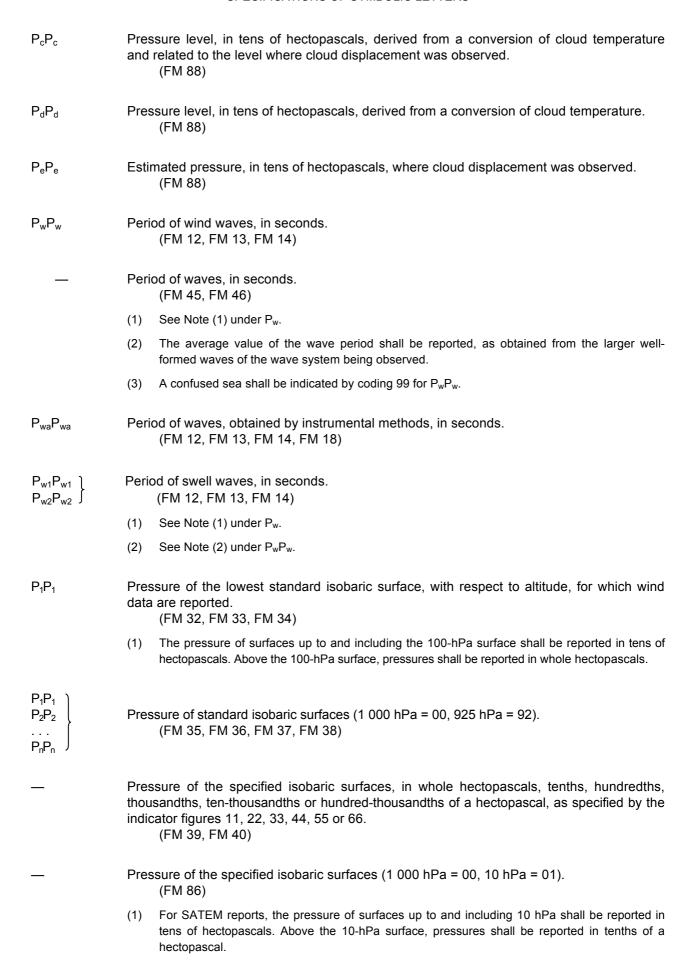
A-202 Volume I.1

M_{t}	Thermodynamic character of air mass. (Code table 2552) (FM 45)
M_{w}	Water-spout(s), tornadoes, whirlwinds, dust devils. (Code table 2555) (9-group in Section 3 of FM 12, FM 13 and FM 14)
M ₁	Month when the period covered by the forecast begins. (Code table 2562) (FM 68)
M ₂	Month when the period covered by the forecast ends. (Code table 2562) (FM 68)
ММ	Month of the year (UTC), i.e. 01 = January; 02 = February, etc. (FM 18, FM 22, FM 39, FM 40, FM 47, FM 49, FM 57, FM 62, FM 63, FM 64, FM 65, FM 71, FM 72, FM 73, FM 75, FM 76, FM 88)
	(1) In FM 75 and FM 76, MM shall be used to indicate the unit of wind speed in addition to indicating the month. When wind speeds are given in knots, 50 shall be added to MM. When the speed is given in metres per second, MM shall not be modified.
M_iM_i	Identification letters of the report. (Code table 2582) (FM 12, FM 13, FM 14, FM 20, FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38, FM 39, FM 40, FM 41, FM 62, FM 63, FM 64, FM 65, FM 67, FM 85, FM 86, FM 87, FM 88)
M_iM_i	Identification letters of the part of the report or the version of the code form. (Code table 2582) (FM 12, FM 13, FM 14, FM 20, FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38, FM 39, FM 40, FM 41, FM 62, FM 63, FM 64, FM 65, FM 67, FM 85, FM 86, FM 87, FM 88)
MMM	Number of Marsden squares in which the station is situated at the time of observation. (Code table 2590) (FM 14, FM 33, FM 34, FM 36, FM 37, FM 38, FM 40)
m	Movement. (Code table 2600) (FM 45, FM 46)
m _S	Averaging period for salinity. (Code table 2604) (FM 62)
m _T	Averaging period for sea temperature. (Code table 2604) (FM 62)
m_{Tn}	Number of days missing from the record for daily minimum air temperature. (FM 71)
	(1) If data are missing for 9 days or more, m_{Tn} shall be reported as 9.
m_{Tx}	Number of days missing from the record for daily maximum air temperature. (FM 71)
	(1) If data are missing for 9 days or more, m_{Tx} shall be reported as 9.

m _c	Averaging period for surface current direction and speed. (Code table 2604) (FM 62)
m_r	Method of reducing data. (Code table 2649) (FM 39, FM 40)
m_s	Stage of melting. (Code table 2650) (FM 44)
	(1) In case of unequal stages, the higher code figure shall be used.
mm	Procedure or model used to generate the data field. (Code table 2677) (FM 47)
m _P m _P	Number of days missing from the records for pressure. (FM 71)
$m_R m_R$	Number of days missing from the records for precipitation. (FM 71)
$m_S m_S$	Number of days missing from the records for sunshine duration. (FM 71)
$m_T m_T$	Number of days missing from the records for air temperature. (FM 71)
m _e m _e	Number of days missing from the records for vapour pressure. (FM 71)
N	Total cloud cover. (Code table 2700) (FM 12, FM 13, FM 14, FM 22, FM 45)
	(1) This symbolic letter shall embrace the total fraction of the celestial dome covered by clouds irrespective of their genus.
_	Number of the centre. (FM 83)
N_h	Amount of all the C_L cloud present or, if no C_L cloud is present, the amount of all the C_M cloud present. (Code table 2700) (FM 12, FM 13, FM 14, FM 35, FM 36, FM 38)
N_{m}	Cloud conditions over mountains and passes. (Code table 2745) (9-group in Section 3 of FM 12, FM 13 and FM 14)
N_s	Amount of individual cloud layer or mass whose genus is indicated by C. (Code table 2700) (FM 12, FM 13, FM 14)
N _t	Condensation trails. (Code table 2752) (9-group in Section 3 of FM 12, FM 13 and FM 14)

A-204 Volume I.1

Cloud conditions observed from a higher level. (Code table 2754) N_v (9-group in Section 3 of FM 12, FM 13 and FM 14) N Amount of cloud whose base is below the level of the station. (Code table 2700) (FM 12, FM 14) NN Identification number of a front or system. (FM 45) This number is assigned to the front or system by an analysis centre and is used for the same (1) front or system throughout its life even though the type of front changes, e.g. cold to quasistationary, etc. N_cN_c Percentage of cloud cover, as determined by the sounding instruments. (FM 86, FM 87, FM 88) Clear sky shall be coded 00, total cloud cover 99. (1) Sequential number of the 60 x 60 km square in the radar coordinate grid. (Code N_eN_e table 2776) (FM 20) NNN Catalogue number of grid used by centre F₁F₂. (FM 47, FM 49) See Weather Reporting (WMO-No. 9), Volume B. (1) Whenever the grid used does not appear in the above WMO publication, NNN shall be (2) encoded as 999 and Section 2 shall be used (only for FM 47). $N_sN_sN_s$ Category of cloud amount, few, scattered, broken or overcast, given by three-letter abbreviations FEW (1 to 2 oktas), SCT (3 to 4 oktas), BKN (5 to 7 oktas) or OVC (8 oktas). (FM 15, FM 16, FM 51, FM 53, FM 54) Number of consecutive isobaric surfaces for which wind data are reported, starting with the n surface specified by P₁P₁. (FM 32, FM 33, FM 34) Number of the points on latitude parallels L_aL_a, L'_aL'_a, L'_aL'_a, . . . etc., for which pressure is given. (FM 73) Number of atmospherics observed by the system at the geographical locations that follow, n_f during a 10-minute period within the hour immediately preceding the time of the report. (Code table 2836) (FM 82) Number of mean wind(s) reported. n_{m} (FM 41) Number of grid points per data group. n_p (FM 47)


```
Number of spot wind(s) reported.
n_s
                         (FM 41)
                   Number of unit thicknesses in sublayer.
n_{u}
                         (FM 86)
n_{v1}
                   Number of days for which wind observations are missing for the specified isobaric surface
                   concerned (n_v = 9 if observations are missing for 9 or more days).
n_{v2}
                         (FM 75, FM 76)
n_{\text{vn}}
                   Number of digits in which the value of a parameter for a level or a layer is coded for each
n_2
                   grid point.
                         (FM 47, FM 49)
                         If one parameter a<sub>1</sub>a<sub>1</sub>a<sub>1</sub> is reported for one level only, or for a layer, n<sub>1</sub> shall be used to specify
                         the number of digits, and n<sub>2</sub> shall be coded as 0 (in the case of FM 49 GRAF, n<sub>2</sub> is replaced by
                         0 in the code form).
                   (2)
                          If one parameter a<sub>1</sub>a<sub>1</sub>a<sub>1</sub> is reported for two special levels b<sub>1</sub> b<sub>1</sub> and b<sub>2</sub>b<sub>2</sub>, n<sub>1</sub> shall refer to level
                         b<sub>1</sub>b<sub>1</sub> and n<sub>2</sub> to level b<sub>2</sub>b<sub>2</sub>.
                   (3)
                         If two parameters a_1a_1a_1 and a_2a_2a_2 are reported, n_1 shall refer to parameter a_1a_1a_1 and n_2 to
                         parameter a2a2a2.
n_3
                   Evolution of clouds. (Code table 2863)
                         (9-group in Section 3 of FM 12, FM 13 and FM 14)
                   Evolution of clouds observed from a station at a higher level. (Code table 2864)
n_4
                         (9-group in Section 3 of FM 12, FM 13 and FM 14)
                   Unit is either millimetre or tens and units of hectopascals (coded 99 for 99 or more units).
nn
                         (9-group in Section 3 of FM 12, FM 13 and FM 14)
                   Serial number of the part of the complete analysis or prognosis which is transmitted
                   separately.
                         (FM 47, FM 49)
                         When the complete analysis or prognosis described by the grid has to be transmitted in a
                         number of separate parts, each of optimum length, the serial number of the part which is
                         transmitted shall be indicated by nn, and the total number of parts to be transmitted shall be
                         indicated by ntnt.
                   Number of points in 10-degree square.
                         (FM 88)
                   Number of icebergs within the area. (Code table 2877)
n_B n_B
                         (FM 44)
n_G n_G
                   Number of growlers and bergy bits within the area. (Code table 2877)
                         (FM 44)
                   Number of layers for which the thickness or precipitable water is reported.
n_L n_L
                         (FM 86)
```

A-206 Volume I.1

Indicator of reference code table for type of parameter a₁a₁a₁, a₂a₂a₂. (Code table 2890) $n_T n_T$ (FM 47, FM 49) $n_{T1}n_{T1}$ Number of days in the month for which temperature observations are missing for the specified isobaric surface concerned. $n_{T2}n_{T2}$ (FM 75, FM 76) $n_{Tn} n_{Tn}$ Number of data lines in the complete analysis or prognosis. $n_a n_a$ (FM 47, FM 49) If the Pole is a grid point of a geographical grid, the Pole shall be included as a singular data (1) Number of data groups on the data line. $n_g n_g$ (FM 47, FM 49) Maximum number of unit grid points on the grid lines in the grid system used. $n_i n_i$ (FM 47) $n_i n_i$ Maximum of unit grid lines in the grid system used. (FM 47) Number of the band in which the maximum non-directional spectral density determined by $n_m n_m$ heave sensors lies. (FM 65) Number of days in the month with precipitation equal to or greater than 1 millimetre. $n_r n_r$ (FM 71, FM 72) $n_{\text{sm}}n_{\text{sm}}$ Number of the band in which the maximum non-directional spectral density determined by slope sensors lies. (FM 65) Number of parts into which the complete analysis or prognosis has been split for $n_t n_t$ transmission purposes. (FM 47, FM 49) (1) See Note (1) under nn. Identification number of tropical cyclone, from 01 to 99. (FM 85) Number of level, starting with station level. $n_0 n_0$ (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38) n_1n_1 Station level shall be coded $n_0n_0 = 00$. (1) $n_n n_n$ Isotope mass. nnn (FM 22, FM 57) Specifications related to supplementary phenomena. (Code table 1864) (FM 53, FM 54)

Type and serial number of buoy. $n_b n_b n_b$ (FM 13, FM 18, FM 22, FM 63, FM 64, FM 65) Maximum wind flight level number. $n_m n_m n_m$ (FM 50) The last figure shall always be 0. (1) Tropopause flight level number. $n_t n_t n_t$ (FM 50) The last figure shall always be 0. (1) Flight level numbers for specified levels. $n_1n_1n_1$ (FM 50) $n_2n_2n_2$ $n_k n_k n_k$ The last figure shall always be 0. P_a Countermeasures taken near border. (Code table 3131) (FM 22) P_c Character of pressure system. (Code table 3133) (FM 45, FM 46) P_{i} Forecast ice phenomenon. (Code table 3139) (FM 68) P_t Type of pressure system. (Code table 3152) (FM 45, FM 46) P_{w} Period of waves. (Code table 3155) (FM 61) (1) The period of the waves is the time between the passage of two successive wave crests past a fixed point (it is equal to the wave length divided by the wave speed). The average value of the wave period shall be forecast, as obtained from the larger well-(2) formed waves of the wave system being forecast. PP Pressure at a constant level surface, in whole hectopascals. (FM 45, FM 46) For a HIGH or a LOW, PP shall be the pressure at the centre. Along a ridge line, PP shall be (1) the highest pressure and, along a trough line, it is the lowest pressure. P_AP_A Pressure at standard reference levels, in tens of hectopascals up to and at the 20-hPa surface (1 000 hPa = 00), and in tenths of a hectopascal at the 10-hPa surface and above (10 hPa = 00).(FM 86) P_bP_b Pressure, in tens of hectopascals, at the base of the reported humid layer. (FM 88)

A-208 Volume I.1

 $\begin{array}{c|c} \overline{P_1P_1}, & \overline{P_2P_2}, & \dots \\ \hline P'_1P'_1, & \overline{P'_2P'_2}, & \dots \\ \hline P''_1P''_1, & \overline{P''_2P''_2}, & \dots \end{array}$

Monthly mean pressures in oceanic areas.

(FM 73)

- (1) For units of pressure, see Regulation 73.5.1.
- PPP Pressure, in whole hectopascals. (FM 46)
- $P_aP_aP_a$ Pressure at the level at which the aircraft is flying, in hectopascals. (FM 41)
 - (1) This pressure is the one which corresponds, in the ICAO standard atmosphere, to the ICAO flight level indicated in the report received from the aircraft. It is the actual pressure at which the aircraft is flying.
- $P_cP_cP_c$ Pressure, in whole hectopascals, at the average cloud top, of the cloud cover as determined by the sounding instruments.

(FM 86, FM 87)

- P_mP_mP_m Pressure at the maximum wind level. (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)
 - (1) The pressure of surfaces up to and including the 100-hPa surface shall be reported in whole hectopascals. Above the 100-hPa surface, pressure shall be reported in tenths of a hectopascal.
- $P_sP_sP_s$ Pressure, in hectopascals, of standard constant pressure surface in which the line of maximum wind speed is given. (FM 45)
- $P_tP_tP_t$ Pressure at the tropopause level. (FM 35, FM 36, FM 37, FM 38, FM 86)
 - (1) See Note (1) under $P_mP_mP_m$.
- $P_{wa}P_{wa}P_{wa}$ Period of waves, obtained by instrumental methods, in tenths of a second. (FM 18)
 - (1) $P_{wa}P_{wa}P_{wa}$ shall be reported in addition to $P_{wa}P_{wa}$ when the following conditions have been met:
 - (a) The sea is not calm (i.e. $P_{wa}P_{wa}H_{wa}H_{wa}$ has not been reported as 0000);
 - (b) P_{wa}P_{wa} has not been reported as //;
 - (c) The station has the capability of accurately measuring instrumental wave period in units of 0.1 second.
 - (2) See Notes (1) and (2) under P_wP_w.

 $P_0P_0P_0$ $P_1P_1P_1$... P_0P_0 Pressure at specified levels.

(FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)

 $P_n P_n P_n$ (1) See Notes (1) and (2) under $P_w P_w$.

 $\overline{P_0P_0P_0}$ Monthly mean surface pressure, in whole hectopascals, omitting the thousands digit at the time of release of the radiosonde.

(FM 75, FM 76)

A-210 Volume I.1

 $P_2P_2P_2$ Pressure reduced to mean sea level, in whole hectopascals. (FM 53, FM 54) PPPP Pressure at mean sea level, in tenths of a hectopascal, omitting the thousands digit of hectopascals of the pressure value. (FM 12, FM 13, FM 14, FM 18) PPPP Monthly mean pressure, in tenths of a hectopascal, omitting the thousands digit or monthly mean geopotential, in standard geopotential metres, for surface stations. (FM 71, FM 72) PPPP shall indicate the pressure reduced to mean sea level or to an agreed datum level, as (1) indicated in Weather Reporting (WMO-No. 9), Volume A, or the geopotential of an agreed standard constant pressure level, as indicated in Weather Reporting (WMO-No. 9), Volume A. If the monthly mean pressure is 1 000 hPa or above, the first figure of PPPP shall be 0. (2) $P_{H}P_{H}P_{H}P_{H}$ QNH value, in whole hectopascals. (FM 15, FM 16) P_aP_aP_aP_a Average wave period, in tenths of a second, or average wave length, in metres. (FM 65) Spectral peak period derived from heave sensors, in tenths of a second, or spectral peak $P_{D}P_{D}P_{D}P_{D}$ wave length, in metres. (FM 65) $P_{sa}P_{sa}P_{sa}P_{sa}$ Average period derived from slope sensors, in tenths of a second, or average wave length, in metres. (FM 65) $\mathsf{P}_{\mathsf{sp}}\mathsf{P}_{\mathsf{sp}}\mathsf{P}_{\mathsf{sp}}\mathsf{P}_{\mathsf{sp}}$ Spectral peak period derived from slope sensors, in tenths of a second, or spectral peak

wave length, in metres.

(FM 65)

 $P_0P_0P_0P_0$ Pressure at station level, in tenths of a hectopascal, omitting thousands digit of hectopascals of the pressure value.

(FM 12, FM 14, FM 18, FM 22)

 $P_0P_0P_0P_0$ Monthly mean pressure at station level, in tenths of a hectopascal, omitting the thousands digit.

(FM 71)

If the monthly mean pressure at station level is 1 000 hPa or above, the first figure of P₀P₀P₀P₀ (1)

Pressure levels of reference, in tens of hectopascals (1 000 hPa = 00). p_1p_1 (FM 47, FM 49) p_2p_2

> (1) In the case of analyses or prognoses relating to a layer between two constant pressure surfaces, the upper level shall be indicated by p₁p₁ and the lower level by p₂p₂.

Volume I.1 A-211

ppp	Amount of pressure tendency at station level during the three hours preceding the time of observation, expressed in tenths of a hectopascal. (FM 12, FM 13, FM 14, FM 18)
p _S p _S p _S	Percentage of total sunshine duration relative to the normal. (FM 71)
p ₁ p ₁ p ₁	Density in g m ⁻³ , rounded to three significant figures, at the altitude given by HH. (FM 39, FM 40)
P ₂₄ P ₂₄ P ₂₄	Amount of surface pressure change during last 24 hours either positive, zero or negative, in tenths of a hectopascal. (FM 12, FM 13, FM 14)
Q	Octant of the globe. (Code table 3300) (FM 45, FM 46, FM 53, FM 54, FM 85, FM 86, FM 87)
Q_{A}	Location quality class (Code table 3302) (FM 18)
Q_{L}	Quality of location. (Code table 3311) (FM 18)
Q_N	Quality of the buoy satellite transmission. (Code table 3313) (FM 18)
Q_{P}	Quality of the pressure measurement. (Code table 3315) (FM 18)
Q_{TW}	Quality of the measurement of the water-surface temperature. (Code table 3319) (FM 18)
Q _c	Quadrant of the globe. (Code table 3333) (FM 13, FM 14, FM 18, FM 20, FM 33, FM 34, FM 36, FM 37, FM 38, FM 40, FM 41, FM 44, FM 47, FM 62, FM 63, FM 64, FM 65, FM 72, FM 76, FM 85)
Q_{d}	Quality control indicator. (Code table 3334) (FM 18)
Q_{d1}	Quality control indicator for temperature/salinity profile. (Code table 3334) (FM 18)
Q_{d2}	Quality control indicator for current profile. (Code table 3334) (FM 18)
Q_{l}	Quality control indicator for position. (Code table 3334) (FM 18)
Q _t	Quality control indicator for time. (Code table 3334) (FM 18)

A–212 Volume I.1

```
Indicator of position of group.
Q_x
                       (FM 18)
                       See Regulation 18.3.3.
                 Indicator of depth correction (indication whether probe depths are corrected using
Q_z
                 hydrostatic pressure or not). (Code table 3318)
                       (FM 18)
                 Quality of the housekeeping parameter (second word in first block of ARGOS platform
Q_2
                 transmitters terminal sensor data). (Code table 3363)
                       (FM 18)
                 Quality of the measurement of air temperature. (Code table 3363)
Q_4
                       (FM 18)
                 The first three digits of the discharge value in dm<sup>3</sup> s<sup>-1</sup>.
QQQ
                       (FM 67)
                       If the discharge is less than 100 dm<sup>3</sup> s<sup>-1</sup>, the first Q or QQ shall be numbered as 0 or 00, as
                 (1)
                       appropriate.
                       If the discharge is equal to or more than 100 dm<sup>3</sup> s<sup>-1</sup>, QQQ shall be the first three rounded
                 (2)
                       digits of the discharge value. The number of remaining digits is indicated by eq.
                 The first three digits of forecast discharge value (lower limit) in dm<sup>3</sup> s<sup>-1</sup>.
Q_1Q_1Q_1
                        (FM 68)
                       See Notes (1) and (2) under QQQ.
                 The first three digits of forecast discharge value (upper limit) in dm<sup>3</sup> s<sup>-1</sup>.
Q_2Q_2Q_2
                       (FM 68)
                 (1)
                       See Notes (1) and (2) under QQQ.
                 Relative confidence figure, in tens of per cent, as an overall quality measure of:
q
                       Thickness values; (FM 86)
                 (a)
                       Equivalent blackbody temperature values. (FM 87)
                 (b)
                       High figures mean high relative confidence.
                 (1)
                 (2)
                       A value of 0 means the relative confidence is not specified.
                 Message contraction and data scanning indicator. (Code table 3462)
q_1
                        (FM 47, FM 49)
                 Data contraction indicator. (Code table 3463)
q_2
                        (FM 47, FM 49)
                 The three most significant digits of the discharge of the main receiving water body, in cubic
qqq
                 metres per second.
                       (FM 22)
                    Composition of release. (Code table 3533)
R_c
                        (FM 22)
```

R_{d}	Frequency group within which $R_1R_1R_1R_1$ falls. (Code table 3534) (FM 71, FM 72)
R_{e}	Possibility of significant chemical toxic health effect. (Code table 3535) (FM 22)
_	Extent of all ridging. (Code table 0501) (FM 44)
R_h	Maximum height of ridging. (Code table 3538) (FM 44)
R_p	Possibility that plume will encounter precipitation in State in which incident occurred. (Code table 3548) (FM 22)
R_s	Rate of ice accretion on ships. (Code table 3551) (FM 12, FM 13, FM 14)
R_t	Time at which precipitation given by RRR began or ended. (Code table 3552) (9-group in section 3 of FM 12, FM 13 and FM 14)
	(1) When precipitation is occurring at the time of observation or has ended during the hour preceding the observation, the time reported is the "time precipitation began". When precipitation is not occurring at the time of observation and has not occurred in the hour preceding the observation, the time reported is the "time precipitation ended". When two or more periods of precipitation occur during the period covered by W ₁ W ₂ , the time (beginning or ending) of the last period of precipitation is reported.
R_{w}	Wave length of the radar. (Code table 3555) (FM 20)
RR	Amount of precipitation or water equivalent of solid precipitation, or diameter of solid deposit. (Code table 3570) (9-group in section 3 of FM 12, FM 13 and FM 14)
R ₀₁ R ₀₁	Number of days in the month with precipitation equal to or more than 1.0 mm. (FM 71)
R ₀₅ R ₀₅	Number of days in the month with precipitation equal to or more than 5.0 mm. (FM 71)
R ₁₀ R ₁₀	Number of days in the month with precipitation equal to or more than 10.0 mm. (FM 71)
$R_{50}R_{50}$	Number of days in the month with precipitation equal to or more than 50.0 mm. (FM 71)
R ₁₀₀ R ₁₀₀	Number of days in the month with precipitation equal to or more than 100.0 mm. (FM 71)

A-214 Volume I.1

R ₁₅₀ R ₁₅₀	Number of days in the month with precipitation equal to or more than 150.0 mm. (FM 71)
RRR	Amount of precipitation which has fallen during the period preceding the time of observation, as indicated by $t_{\rm R}$. (Code table 3590) (FM 12, FM 13, FM 14, FM 22)
$\left. \begin{array}{c} R_1R_1R_1 \\ R_2R_2R_2 \\ \dots \\ R_nR_nR_n \end{array} \right\}$	Radiance values, expressed in ergs with a scale factor as given by u. (FM 87)
RRRR	Total amount of precipitation or water equivalent of snow cover on the ground. (Code table 3596) (FM 67)
$R_cR_cR_cR_c$	Combination of up to four elements constituting the composition of release. (FM 22)
$R_xR_xR_xR_x$	Highest daily amount of precipitation during the month, in tenths of millimetres (coded 9998 for 999.8 mm or more, and coded 9999 for trace). (FM 71)
$R_1R_1R_1R_1$	Total precipitation for the month. (Code table 3596) (FM 71, FM 72)
R ₂₄ R ₂₄ R ₂₄ R ₂₄	Total amount of precipitation during the 24-hour period ending at the time of observation, in tenths of millimetres (coded 9998 for 999.8 mm or more, and coded 9999 for trace). (FM 12, FM 14)
r _m	Type of rocket motor. (Code table 3644) (FM 39, FM 40)
r _t	Distance between the end of the observed outermost spiral band and the centre of the tropical cyclone. (Code table 3652) (FM 20)
r _a r _a	Radiosonde/sounding system used. (Code table 3685) (FM 35, FM 36, FM 37, FM 38)
r _{f1} r _{f1} r _{f2} r _{f2}	Steadiness of wind at specified isobaric surfaces. (FM 75, FM 76)
r _{fn} r _{fn}	(1) The steadiness factor is the ratio of speed of the monthly mean vector wind to the speed of the monthly mean scalar wind expressed as a percentage. It is reported to the nearest one per cent.
r _i r _i	Distance, in nautical miles, that the ice has travelled during a 12-hour period. (FM 44)
r ₁ r ₁	First normalized polar coordinate derived from Fourier coefficients. (FM 65)

r ₂ r ₂	Second normalized polar coordinate derived from Fourier coefficients. (FM 65)
rrr	Range, in intervals of 5 km, for echoes at distances of 500 km or more. (FM 20)
rrrrrr	Reference value used as new zero for the parameter indicated by $a_1a_1a_1$ or $a_2a_2a_2$, in the same units as used for the parameter concerned. (FM 47, FM 49)
S	State of the sea. (Code table 3700) (9-group in Section 3 of FM 12, FM 13 and FM 14, FM 61)
	(1) The state of the sea is the state of agitation of the sea resulting from various factors such as wind, swell, currents, angle between swell and wind, etc.
_	Sign of temperature (P = positive or zero, M = negative). (FM 50)
S _C	Shape and definition of the eye of the tropical cyclone. (Code table 3704) (FM 20)
S _h	Type of temperature and height data. (Code table 3738) (FM 41)
_	Sign of the pressure altitude. (FM 42)
	(1) If pressure altitude is zero or positive (aircraft is at or above the standard datum plane of 1013.2 hPa), S _h shall be encoded as the letter F.
	(2) If pressure altitude is negative (aircraft is below the standard datum plane of 1013.2 hPa), S _h shall be encoded as the letter A.
S _i	Stage of development. (Code table 3739) (FM 12, FM 13, FM 14)
S ₀	Hoar frost or coloured precipitation. (Code table 3761) (9-group in Section 3 of FM 12, FM 13 and FM 14)
S ₁	Predominant stage of development of ice. (Code table 3763) (FM 44)
	(1) If two or more stages of development are of the same concentration, older stages of development shall have precedence over the younger stages.
_	Nature of the zone separated by the line formed by the points following the $2C_sS_1S_2Z_1$ group (part to the right of the line). (Code table 3762) (FM 45)
S ₂	Secondary stage of development of ice. (Code table 3763) (FM 44)

A–216 Volume I.1

S ₂ (continued)	
_	Nature of the zone separated by the line formed by the points following the $2C_sS_1S_2Z_1$ group (zone inside the line). (Code table 3762) (FM 45)
S ₃	Tertiary stage of development of ice. (Code table 3763) (FM 44)
S ₄	Quaternary stage of development of ice. (Code table 3763) (FM 44)
S ₅	Quintary stage of development of ice. (Code table 3763) (FM 44)
S ₆	Type of frozen deposit. (Code table 3764) (9-group in Section 3 of FM 12, FM 13 and FM 14)
S ₇	Character of snow cover. (Code table 3765) (9-group in Section 3 of FM 12, FM 13 and FM 14)
S ₈	Snow-storm phenomena (snow raised by wind). (Code table 3766) (9-group in Section 3 of FM 12, FM 13 and FM 14)
S'	State of the water surface in an alighting area. (Code table 3700) (9-group in Section 3 of FM 12, FM 13, FM 14, FM 15 and FM 16)
S′ ₇	Regularity of snow cover. (Code table 3775) (9-group in Section 3 of FM 12, FM 13 and FM 14)
S′ ₈	Evolution of drift snow. (Code table 3776) (9-group in Section 3 of FM 12, FM 13 and FM 14)
SS	Duration of sunshine in the past hour, in tenths of an hour. (FM 12, FM 13, FM 14)
_	Sign of the temperature. (FM 42)
	(a) If temperature is zero or positive, SS shall be encoded as the letters PS.
	(b) If temperature is negative, SS shall be encoded as the letters MS.
_	Section of front or of pressure system to which NN refers. (Code table 3777) (FM 45)
S_fS_f	Synoptic interpretation of significant features. (Code table 3780) (FM 85)
S_tS_t	Intensity of the tropical cyclone. (Code table 3790) (FM 85)

SSS	Duration of sunshine, in hours and tenths of an hour. (FM 12, FM 13, FM 14)
S ₁ S ₁ S ₁	Total sunshine for the month to the nearest hour. (FM 71)
SSSS	Sampling interval (in tenths of a second or in metres). (FM 65)
$S_0S_0S_0S_0$	Salinity, in hundredths of a part per thousand (‰) (practical salinity), at the surface. (FM 62)
$\left.\begin{array}{c} S_{0}S_{0}S_{0}S_{0}\\ S_{1}S_{1}S_{1}S_{1}\\ \dots\\ S_{n}S_{n}S_{n}S_{n}\end{array}\right\}$	Salinity, in hundredths of a part per thousand (‰), at either significant or selected depths starting with sea surface. (FM 18, FM 64)
$S_P S_P s_p s_p$	Supplementary information. (Code table 3778) (FM 12, FM 13, FM 14)
S _c	Nature of snow or ice interpreted from satellite information. (Code table 3833) (FM 85)
S _n	Sign of the data, and relative humidity indicator. (Code table 3845) (FM 12, FM 13, FM 14, FM 18, FM 22, FM 36, FM 62, FM 63, FM 64, FM 67, FM 71, FM 72, FM 86)
	(1) See Note (1) under UUU.
_	Sign of the exponent. (Code table 3845) (FM 22, FM 57)
_	Sign of the reference value indicated by rrrrrrr. (Code table 3845) (FM 47, FM 49)
S _p	Pasquill–Gifford stability category. (Code table 3847) (FM 57)
S_q	Nature and/or type of squall. (Code table 3848) (9-group in Section 3 of FM 12, FM 13 and FM 14)
Sr	Solar and infrared radiation correction. (Code table 3849) (FM 35, FM 36, FM 37, FM 38)
S_S	Indicator for the sign and type of measurement of sea-surface temperature. (Code table 3850) (FM 12, FM 13, FM 14)
S _W	Indicator for the sign and type of wet-bulb temperature reported. (Code table 3855) (FM 12, FM 13, FM 14)

A–218 Volume I.1

S_χ	Sign indicator for the data group which follows (Section 3) and for the cartesian coordinates of the Pole (Section 2). (Code table 3856) (FM 47)
S ₁	Type of navigation system. (Code table 3866) (FM 42)
_	Distance, in tens of kilometres, of the point position from the station. (FM 45)
	(1) When the distance is 100 kilometres, the direction shall be coded for symbol D_1 and zero shall be reported for symbol s_1 .
\$2	Type of system used. (Code table 3867) (FM 42)
_	Hundreds of kilometres to be added to s_1 . (FM 45)
s_3	Temperature precision. (Code table 3868) (FM 42)
SS	Depth of newly fallen snow. (Code table 3870) (9-group in Section 3 of FM 12, FM 13 and FM 14)
_	Depth, in centimetres, of layer of snow on ice. (FM 67)
	(1) Depth of snow more than, or equal to, 99 cm shall be coded 99.
S _a S _a	Tracking technique/status of system used. (Code table 3872) (FM 35, FM 36, FM 37, FM 38)
S_iS_i	Forecast value of stability index at point position. (FM 57)
S ₀₀ S ₀₀	Number of days in the month with snow depth more than 0 cm. (FM 71)
S ₀₁ S ₀₁	Number of days in the month with snow depth more than 1 cm. (FM 71)
S ₁₀ S ₁₀	Number of days in the month with snow depth more than 10 cm. (FM 71)
S ₅₀ S ₅₀	Number of days in the month with snow depth more than 50 cm. (FM 71)
SSS	Total depth of snow. (Code table 3889) (FM 12, FM 14)

Standard deviation of daily mean values relative to the monthly mean air temperature, in $S_tS_tS_t$ tenths of a degree Celsius. (FM 71) Approximate tenths value and sign (plus or minus) of the air temperature at the level given T_a by P_aP_aP_a. (Code table 3931) (FM 41) Approximate tenths value and sign of temperature. (Code table 3931) (FM 86, FM 88) When the temperature is computed to the nearest whole degree Celsius, code figure 0 or 1 is (1) used for Ta, as appropriate. Approximate tenths value and sign (plus or minus) of the air temperature at the tropopause T_{at} level. (Code table 3931) (FM 35, FM 36, FM 37, FM 38) $T_{a0} \\$ Approximate tenths value and sign (plus or minus) of: T_{a1} The air temperature at specified levels starting with station level; (Code table 3931) (FM 35, FM 36, FM 37, FM 38) (b) Equivalent blackbody temperature. (Code table 3931 (FM 87) T_c Tropical system characteristics. (Code table 3933) (FM 45, FM 46) T_{i} Tropical system intensity. (Code tables 3939, 3940) (FM 45, FM 46) Two separate code tables are provided for the cases of $T_1 = 0-8$ (Code table 3939) and $T_1 = 9$ (1) (Code table 3940). When $T_t = 9$, the code figure given for T_i indicates the force of the strongest wind in the reported cyclonic circulation or, in the case of a prognosis, the strongest wind force expected at the time of the prognosis. T_n Minimum air temperature. (Code table 3956) (FM 61) T_{t} Tropical circulation type. (Code table 3952) (FM 45, FM 46) T_{w} Variation of temperature during the period covered by W₁W₂, associated with glaze or rime. (Code table 3955) (9-group in Section 3 of FM 12, FM 13 and FM 14) Maximum air temperature. (Code table 3956) T_x (FM 61) T₁ Topography of greatest extent. (Code table 3962) (FM 44) (1) If two types are equal in extent, the higher code number is used first.

A-220 Volume I.1

T ₂	Topography of second greatest extent. (Code table 3962) (FM 44)
TT	Two-letter indicators preceding, without a space, the time group, where TT = AT (at), FM (from) or TL (until). (FM 15, FM 16, FM 22, FM 51)
_	Absolute value of air temperature, in whole degrees Celsius, at the height given by HH. (FM 39, FM 40)
	(1) The sign of temperature shall be disregarded; i.e. –57°C shall be coded as 57.
_	Tens and unit digits of air temperature, in degrees Celsius. (FM 41, FM 86)
	(1) The tenths of the temperature, which is measured in degrees and tenths, shall be indicated by means of T_a .
_	Forecast temperature, in whole degrees Celsius, at the relevant grid point. (FM 50)
$T_{F}T_{F}$	Forecast temperature, in whole degrees Celsius. (FM 51)
	(1) For negative values, T_FT_F shall be preceded by the letter M.
T_PT_P	Air temperature, in whole degrees Celsius, at the level given by h´ph´p. (FM 53, FM 54)
	(1) For negative values, T_PT_P shall be preceded by the letter M.
T_cT_c	Temperature of cloud top, in whole degrees Celsius, at pressure estimated from infrared observations of clouds. (FM 88)
	(1) This value is used to derive the pressure level P_cP_c in Section 2.
T_hT_h	Air temperature, in whole degrees Celsius, at the height indicated by $h_x h_x h_x$. (FM 53, FM 54)
	(1) For negative values, T _h T _h shall be preceded by the letter M.
$T_{n0}T_{n0}$	Number of days in the month with minimum air temperature less than 0°C. (FM 71)
T_sT_s	Temperature of the surface (land, water, ice, etc.), in whole degrees Celsius. (FM 15, FM 16, FM 88)
T_tT_t	Air temperature, in whole degrees Celsius, at the tropopause level. (FM 35, FM 36, FM 37, FM 38, FM 86)
	(1) This temperature, measured in degrees and tenths, is not rounded off to the next whole degree; only the whole degrees are indicated by T_tT_t . The tenths of this temperature shall be indicated by means of T_{at} .

$T_{v}T_{v}$	Variation in air temperature, in whole degrees Celsius. (9-group in Section 3 of FM 12, FM 13 and FM 14)
$T_{w}T_{w}$	Water temperature at resorts during the bathing season. (9-group in Section 3 of FM 12, FM 13 and FM 14)
$T_{x0}T_{x0}$	Number of days in the month with maximum air temperature less than 0°C. (FM 71)
T_0T_0	Temperature of the surface (land, water, ice, etc.), in whole degrees Celsius. (FM 86)
T_0T_0)	Tens and unit digits of:
$\begin{bmatrix} T_1T_1 \\ \dots \\ T_nT_n \end{bmatrix}$	(a) Air temperature not rounded off, in degrees Celsius, at specified levels starting with station level;(FM 35, FM 36, FM 37, FM 38)
	(b) Equivalent blackbody temperature, not rounded off, in degrees Celsius.(FM 87)
	(1) The tenths of the temperature, which is measured in degrees and tenths, shall be indicated by means of $T_{a0},T_{a1}\ldots T_{an}$.
$\left. egin{array}{c} T_1T_1 \ T_2T_2 \ \dots \end{array} \right\}$	Air temperature, in whole degrees Celsius, at the specified isobaric surfaces. (FM 39, FM 40)
T_nT_n	(1) See Note (1) under TT (second specification).
T ₂₅ T ₂₅	Number of days in the month with maximum air temperature equal to or more than 25°C. (FM 71)
$T_{30}T_{30}$	Number of days in the month with maximum air temperature equal to or more than 30°C. (FM 71)
T ₃₅ T ₃₅	Number of days in the month with maximum air temperature equal to or more than 35°C. (FM 71)
$T_{40}T_{40}$	Number of days in the month with maximum air temperature equal to or more than 40°C. (FM 71)
T'T'	Air temperature, in whole degrees Celsius. (FM 15, FM 16)
	(1) For negative values, T´T´ shall be preceded by the letter M.
$T'_dT'_d$	Dew-point temperature, in whole degrees Celsius. (FM 15, FM 16)
	(1) For negative values, T´dT´d shall be preceded by the letter M.
ттт	Air temperature, in tenths of a degree Celsius, its sign being given by s _n . (FM 12, FM 13, FM 14, FM 18, FM 22, FM 63, FM 64)

A-222 Volume I.1

TTT	Monthly mean air temperature, in tenths of degrees Celsius, its sign being given by $s_{\text{n}}. \\$ (FM 71, FM 72)
$T_AT_AT_A$	Air temperature, in tenths of degrees Celsius, at the level given by $h_{\rm I}h_{\rm I}h_{\rm I}.$ (FM 42)
$T_{an}T_{an}T_{an}$	Lowest air temperature of the month, in tenths of degrees Celsius, its sign being given by $s_{\text{\tiny n}}.$ (FM 71)
$T_axT_axT_ax$	Highest air temperature of the month, in tenths of degrees Celsius, its sign being given by s_n . (FM 71)
$T_{b}T_{b}T_{b}$	Wet-bulb temperature, in tenths of degrees Celsius, its sign being given by $s_{\text{w}}. \\$ (FM 12, FM 13, FM 14)
$T_dT_dT_d$	Dew-point temperature, in tenths of degrees Celsius, its sign being given by s _n . (FM 12, FM 13, FM 14, FM 18, FM 22) (1) See Note (1) under UUU.
	(1) Occ Note (1) under Occ.
_	Dew-point temperature, in tenths of degrees Celsius, its sign being given by SS. (FM 42)
	(1) See Note (1) under UUU.
$T_{n}T_{n}T_{n}$	Minimum air temperature, in tenths of degrees Celsius, its sign being given by s_n . (FM 12, FM 13, FM 14)
$\overline{T_{n}T_{n}T_{n}}$	Mean daily minimum air temperature of the month, in tenths of degrees Celsius, its sign being given by $s_{\rm n}$. (FM 71)
$T_{nd}T_{nd}T_{nd}$	Lowest daily mean air temperature of the month, in tenths of degrees Celsius, its sign being given by $s_{\text{n}}. \\ \text{(FM 71)}$
$T_tT_tT_t$	Temperature of the element indicated by t, in tenths of degrees Celsius, its sign being given by $s_{\rm n}.$ (FM 67)
$T_{w}T_{w}T_{w}$	Sea-surface temperature, in tenths of degrees Celsius, its sign being given by s_n . (FM 12, FM 13, FM 14, FM 18, FM 36, FM 62)
$\overline{T_wT_wT_w}$	Monthly mean of sea-surface temperature, in tenths of degrees Celsius, its sign being given by $s_{\rm n}.$ (FM 72)
$T_xT_xT_x$	Maximum air temperature, in tenths of degrees Celsius, its sign being given by $s_{\text{\tiny n}}.$ (FM 12, FM 13, FM 14)

 $\overline{T_xT_xT_x}$ Mean daily maximum air temperature of the month, in tenths of degrees Celsius, its sign being given by s_n. (FM 71) Highest daily mean air temperature of the month, in tenths of degrees Celsius, its sign $T_{xd}T_{xd}T_{xd}$ being given by s_n. (FM 71) Temperature, in tenths of degrees Celsius, at specified depths starting with sea $T_0T_0T_0$ surface. $T_1T_1T_1$ (FM 83) $T_nT_nT_n$ (1) For negative temperatures, 500 shall be added to the absolute value of the temperature in tenths of degrees Celsius. $T_0T_0T_0$ Mean monthly air temperature, in tenths of degrees Celsius, at specified isobaric surfaces starting with station level. $\overline{\mathsf{T}_1\mathsf{T}_1\mathsf{T}_1}$ (FM 75, FM 76) $T_nT_nT_n$ For negative temperatures, 500 shall be added to the absolute value of the mean temperature, (1) omitting the thousands digit for temperature equal to or less than – 50.0° Celsius. $\mathsf{T}_0\mathsf{T}_0\mathsf{T}_0\mathsf{T}_0$ Temperatures, in hundredths of degrees Celsius, at either significant or selected depths starting with sea surface. $T_1T_1T_1T_1$ (FM 18, FM 64) $T_nT_nT_nT_n$ For negative temperatures, 5000 shall be added to the absolute value of the temperature equal in degrees ° Celsius. Change indicators of trend forecasts and aerodrome forecasts (BECMG, TEMPO). TTTTT (FM 15, FM 16, FM 51) Specifications for these change indicators are given in the Technical Regulations (WMO-(1) No. 49, Volume II, [C.3.1]. t Nature of the temperature reading, the value of which is indicated by $s_n T_t T_t T_t$. (Code table 4001) (FM 67) Thickness of the predominant form of ice, snow depth not included. (Code table 4006) t_{E} (FM 44) Thickness of layer. (Code table 4013) t_L (FM 51, FM 53, FM 54) Duration of period of reference for amount of precipitation, ending at the time of the report. t_R (Code table 4019) (FM 12, FM 13, FM 14, FM 22) Time interval over which the movement of the centre or the eye of the tropical cyclone has t_{e} been calculated. (Code table 4035) (FM 20)

A-224 Volume I.1

t _m	Time interval over which the movement of the tropical cyclone has been calculated. (Code table 4044) (FM 85)
t _n	Tens digit of the altitude, expressed in units of 300 metres or 500 metres, which applies to the following data groups. (FM 32, FM 33, FM 34)
t _p	Period to which measurement of precipitation refers, and/or time at which water equivalent of snow is measured, both coded by RRRR. (Code table 4047) (FM 67)
	(1) This period or time always ends at the exact hour GG of the measurement.
t _w	Time of commencement of a phenomenon before the hour of observation. (Code table 4055) (9-group in Section 3 of FM 12, FM 13 and FM 14)
tt	Time before observation or duration of phenomena. (Code table 4077) (9-group in Section 3 of FM 12, FM 13 and FM 14)
ttt	Time interval between G _c G _c and
	(a) Time to which the prognosis of a data field refers; or
	 (b) The end of the period to which a prognosis of a mean data field or a data field change refers, in units expressed by u_t. (FM 47, FM 49)
$\left. \begin{array}{c} t_{L1}t_{L1}t_{L1} \\ t_{L2}t_{L2}t_{L2} \\ \dots \\ t_{Ln}t_{Ln}t_{Ln} \end{array} \right\}$	Thickness, in geopotential decameters, of layers between P_AP_A and respectively $P_1P_1\ldots P_nP_n$ (thousands figure omitted). (FM 86)
$t_b t_b t_b$	Length of averaging period or of data change period, in units expressed by $u_{\text{\scriptsize b}}.$ (FM 47)
U_La	Unit digit in the reported latitude. (FM 14, FM 33, FM 34, FM 36, FM 37, FM 38, FM 40)
_	Units in degrees (or tenths of a degree) in the reported latitude. (FM 88)
U_Lo	Units digit in the reported longitude. (FM 14, FM 33, FM 34, FM 36, FM 37, FM 38, FM 40)
_	Units in degrees (or tenths of a degree) in the reported longitude. (FM 88)
U ₁	Average relative humidity, in tens of per cent, of the layer between the pressure level indicated by P_bP_b and the level of the tropopause, at the first of the five points indicated by $U_{La1}U_{Lo1}$, $U_{La2}U_{Lo2}$, etc. (FM 88)

```
U_2
U_3
                 As for U<sub>1</sub>, but corresponding to the second, third, fourth and fifth points.
U_4
                 (FM 88)
U_5
U_{\nu}U_{\nu}
                 Variation in relative humidity, in per cent.
                      (9-group in Section 3 of FM 12, FM 13 and FM 14)
UUU
                 Relative humidity of the air, in per cent, the first figure being zero except for UUU = 100 per
                 cent.
                      (FM 12, FM 13, FM 14, FM 18, FM 42)
                 (1)
                       See Regulation 12.2.3.3.1.
                 Scale factor. (Code table 4200)
u
                      (FM 47, FM 49, FM 87, FM 88)
                 Unit of time for averaging period or data change period, expressed by tbtb. (Code
u_b
                 table 4232)
                      (FM 47)
                 Unit of thickness of sublayers. (Code table 4242)
u_p
                      (FM 86)
                 Unit of time for ttt. (Code table 4252)
u_t
                      (FM 47)
                 Units digit of the altitude, expressed in units of 300 metres or 500 metres, for the first data
U_1
                 group following.
                      (FM 32, FM 33, FM 34)
                 Units digit of the altitude, expressed in units of 300 metres or 500 metres, for the second
U_2
                 data group following.
                      (FM 32, FM 33, FM 34)
                 Units digit of the altitude, expressed in units of 300 metres or 500 metres, for the third data
U_3
                 group following.
                      (FM 32, FM 33, FM 34)
uu
                 Isopleth values, its units being given by e<sub>2</sub>.
                      (FM 45, FM 46)
uuu
                 Isopleth values, its units being given by e<sub>1</sub>.
                      (FM 45)
٧
                 Forecast surface visibility. (Code table 4300)
                      (FM 61)
V_b
                 Variation of visibility during the hour preceding the observation. (Code table 4332)
                      (9-group in Section 3 of FM 12, FM 13 and FM 14)
```

A-226 Volume I.1

 V_s Visibility seawards (from a coastal station). (Code table 4300) (9-group in Section 3 of FM 12, FM 13 and FM 14) V's Visibility over the water surface of an alighting area. (Code table 4300) (9-group in Section 3 of FM 12, FM 13 and FM 14) VV Horizontal visibility at surface. (Code table 4377) (FM 12, FM 13, FM 14) If the distance of visibility is between two of the distances given in Code table 4377, the code (1) figure for the smaller distance shall be reported; e.g. if the distance is 350 metres, code figure 03 shall be reported. Drifting speed, in cm s⁻¹, of the buoy at the last known position of the buoy given in the V_BV_B groups YYMMJ GGgg/. (FM 18) V_cV_c Surface current speed, in tenths of a knot. (FM 63) V_sV_s Visibility towards the sea. (Code table 4377) (9-group in Section 3 of FM 12, FM 13 and FM 14) V_1V_1 Number of days in the month with observed or recorded visibility less than 50 m. irrespective of the duration of the observational period. (FM 71) V_2V_2 Number of days in the month with observed or recorded visibility less than 100 m, irrespective of the duration of the observational period. (FM 71) Number of days in the month with observed or recorded visibility less than 1 000 m, V_3V_3 irrespective of the duration of the observational period. (FM 71) VVVV Horizontal visibility at surface, in metres, in increments of 50 metres up to 500 metres, in increments of 100 metres between 500 and 5 000 metres, and in increments of 1 000 metres between 5 000 metres up to 9 999 metres, with 9999 indicating visibility of 10 km and above. (FM 15, FM 16, FM 51, FM 53, FM 54) If the value is between two increments, it shall be rounded off downward to the lower of the two increments. For example, a visibility of 370 metres shall be reported as 0350, a visibility of 570 metres shall be reported as 0500, a visibility of 3 570 metres shall be reported as 3500, and a visibility of 5 700 metres shall be reported as 5000. $V_N V_N V_N V_N$ Minimum horizontal visibility at surface, in metres. (FM 15, FM 16) Runway visual range, in metres. $V_RV_RV_RV_R$ (FM 15, FM 16) (1) Runway visual range shall be reported in steps of 25 metres when the runway visual range is less than 400 metres; in steps of 50 metres when it is between 400 metres and 800 metres;

and in steps of 100 metres when the runway visual range is more than 800 metres. Any observed value which does not fit the reporting scale in use shall be rounded down to the nearest lower step in the scale.

$V_iV_iV_iV_i$	Information on the engineering status of the buoy. (FM 18)
V _p	Forward speed of phenomenon. (Code table 4448) (9-group in Section 3 of FM 12, FM 13 and FM 14)
V_S	Ship's average speed made good during the three hours preceding the time of observation. (Code table 4451) (FM 13)
VV	Vertical wind shear, in knots, per 300 metres. (FM 45, FM 53, FM 54)
V_aV_a	Absolute value of the vector difference between the maximum wind and the wind blowing at 1 km above the level of maximum wind, in units indicated by YY. (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)
V_bV_b	Absolute value of the vector difference between the maximum wind and the wind blowing at 1 km below the level of maximum wind, in units indicated by YY. (FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38)
VVV	Vertical wind shear, in knots, per 1 000 metres. (FM 45)
W	Weather during past hour. (Code table 4561) (FM 22)
W _C	Diameter or length of major axis of the eye of the tropical cyclone. (Code table 4504) (FM 20)
W_R	Type of weather phenomenon or cloud in the 60 x 60 km square detected by radar. (Code table 4530) $$ (FM 20)
$\left.\begin{matrix}W_{a1}\\W_{a2}\end{matrix}\right\}$	Past weather reported from an automatic weather station. (Code table 4531) (FM 12, FM 13, FM 14)
W_{f}	Mean width or mean diameter of the feature specified by S_fS_f , or mean diameter of the overcast cloud of the tropical cyclone. (Code table 4536) (FM 85)
W _m	Forecast weather. (Code table 4544) (FM 61)
W_t	Type of opening in the ice. (Code table 4552) (FM 44)

A-228 Volume I.1

```
Past weather. (Code table 4561)
W_1
                      (FM 12, FM 13, FM 14)
                 Weather. (Code table 4635)
We
                      (FM 45)
W_i
                 Method by which winds were determined. (Code table 4639)
                 Present weather reported from a manned weather station. (Code table 4677)
ww
                       (FM 12, FM 13, FM 14, FM 22, FM 45)
                 (1)
                      For correct use of the code, it is necessary to study with care Part III of the International Cloud
                      Atlas (WMO-No. 407) which deals with meteors other than clouds
                      The first figure of the scale ww indicates grosso modo a division of the scale into ten deciles,
                 (2)
                      numbered 0-9, which correspond to ten principal categories of weather. Firstly, the decile the
                      most suitable to the general state of the weather is chosen; then, in the complete list, the code
                      figure is chosen which best describes the weather at the time of observation or (where
                      specifically mentioned in the code) during the period of one hour immediately preceding it. In
                      making the choice of the decile or in determining the complete code figure ww, one does not
                      take into account meteorological phenomena which have been experienced more than one
                      hour before the observation
                 Present weather reported from an automatic weather station. (Code table 4680)
WaWa
                       (FM 12, FM 13, FM 14)
                 Significant weather. (Code table 4683)
W_SW_S
                      (FM 45, FM 46)
W_1W_1
                 Present weather phenomenon not specified in Code table 4677, or specification of present
                 weather phenomenon in addition to group 7wwW<sub>1</sub>W<sub>2</sub>. (Code table 4687)
                       (9-group in Section 3 of FM 12, FM 13 and FM 14)
w'w
                 Significant present and forecast weather. (Code table 4678)
                       (FM 15, FM 16, FM 51)
                 Amount, in millimetres, of precipitable water in a layer.
www
                       (FM 86)
W_{L1}W_{L1}W_{L1}
                 Amount, in millimetres, of precipitable water in layers between PAPA and respectively
W_{L2}W_{L2}W_{L2}
                 P_1P_1 \dots P_nP_n
                      (FM 86)
W_{Ln}W_{Ln}W_{Ln}
                 Forecast weather. (Code table 4691)
W_1W_1W_1
                       (FM 53, FM 54)
X
                 Time of measurement or period of reference and tendency of the element measured, the
                 value of which is indicated by H<sub>s</sub>H<sub>s</sub>H<sub>s</sub> or QQQe<sub>Q</sub>. (Code table 4700)
                       (FM 67)
```

Volume I.1 A-229

(1)

of the group which follow X.

This characteristic applies to the measurement of stage or discharge given by the four figures

Recorder type. (Code table 4770) X_RX_R (FM 63, FM 64) X_tX_t Type of drogue. (Code table 4780) (FM 18) XXX The three most significant digits of radiological quantity or release quantity. (FM 22, FM 57) Exponent for spectral wave data. (Code table 4800) Χ (FM 65) Hemisphere indicator. (Code table 4865) X_4 (FM 82) Form in which point position groups are given. (Code table 4887) X_1X_1 (FM 45) Type of analysis. (Code table 4892) $X_2X_2X_2$ (FM 45) Value designator of a given chart or analysis. (Code table 4892) $X_3X_3X_3$ (FM 45) Υ Day of the week (UTC). (Code table 4900) (FM 83) The day indicated by Y shall be the day of the report or of the group involved; it is, therefore, (1) the day of the observation and not the day of transmission. When information is given for a period which includes parts of two calendar days, Y shall refer (2)to the second calendar day. YY Day of the month (UTC), with 01 indicating the first day, 02 the second day, etc.: On which the actual time of observation falls: (FM 12, FM 13, FM 14, FM 15, FM 16, FM 18, FM 20, FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38, FM 39, FM 40, FM 41, FM 42, FM 62, FM 63, FM 64, FM 65, FM 67, FM 85, FM 86, FM 87, FM 88) Indicating the date (day) of the beginning of the period for which the whole forecast or set of forecasts is valid; (FM 53, FM 54, FM 61) Or indicating the day of the observation of the data, from which the chart is prepared; (FM 44, FM 45, FM 46, FM 47, FM 49)

A-230 Volume I.1

Indicating the date (day) on which part of the forecast commences or a forecast

In FM 32, FM 33, FM 34, FM 35, FM 36, FM 37, FM 38, FM 39, FM 40, FM 41 and FM 88, YY

shall be used to indicate the unit of wind speed in addition to indicating the day of the month. When wind speeds are given in knots, 50 shall be added to YY. When the speed is given in

On which the forecast was issued (FM 51);

metres per second, YY shall not be modified.

change commences (FM 51).

(d)

(1)

Y_FY_F	(a) Day of the month (UTC) on which the WINTEM message is valid; (FM 50)
	(b) Valid day of the month (UTC) of the temperature forecast (FM51).
Y_aY_a	Date of accident, calendar day. (FM 22, FM 57)
Y_bY_b	Year of beginning of the reference period. (FM 71)
Y_cY_c	Year of ending of the reference period. (FM 71)
Y_eY_e	(a) Date of end of monitoring operation or release, calendar day;(FM 22)
	(b) Day of month (UTC) of end of forecast change. (FM 51)
Y_rY_r	Date of issue of the report, calendar day. (FM 22)
_	Date of issue of the forecast, calendar day. (FM 57)
Y_sY_s	Date of start of monitoring operation or release, calendar day. (FM 22)
_	Day of the month (UTC) of observation of satellite data used for the preparation of the chart. (FM 44)
Y_0Y_0	Date of analyses/forecasts used to produce the trajectory, calendar day. (FM 57)
Y ₁ Y ₁	Day of the month of the beginning of the period of validity. (FM 51, FM 53, FM 54)
_	Date of the beginning of the period covered by the forecast, calendar day. (FM 57)
_	Day of the month (UTC) indicating the date or the beginning of the period covered by the forecast. (FM 68)
$ \left. \begin{array}{c} Y^1Y^1 \\ Y^2Y^2 \\ \dots \\ Y^jY^j \end{array} \right\}$	Date of expected arrival of radiological contamination at specified point location, calendar day. (FM 57)

Y_2Y_2	Day of the month (UTC) indicating the end of the period covered by the forecast. (FM 51, FM 68)
У Р У Р	Number of missing years within the reference period from the calculation of pressure normal. (FM 71)
y r y r	Number of missing years within the reference period from the calculation of normal for precipitation. (FM 71)
УsУs	Number of missing years within the reference period from the calculation of normal for sunshine duration. (FM 71)
УтУт	Number of missing years within the reference period from the calculation of normal for mean air temperature. (FM 71)
у тх у тх	Number of missing years within the reference period from the calculation of normal for mean extreme air temperature. (FM 71)
y an y an	Day of lowest air temperature during the month. (FM 71)
У ах У ах	Day of highest air temperature during the month. (FM 71)
У _е Уе	Number of missing years within the reference period from the calculation of vapour pressure normal. (FM 71)
$y_{fx}y_{fx}$	Day of highest observed or recorded wind speed during the month. (FM 71)
y_ny_n	Day of lowest daily mean air temperature during the month. (FM 71)
y r y r	Day of highest daily amount of precipitation during the month. (FM 71)
УxУx	Day of highest daily mean air temperature during the month. (FM 71)
ууууу	Position groups in the form indicated by the $333x_1x_1$ group. (FM 45)
Z _T	Character of the temperature reported by TT. (Code table 5122) (FM 39, FM 40)

A–232 Volume I.1

Z_0	Optical phenomena. (Code table 5161) (9-group in Section 3 of FM 12, FM 13 and FM 14)
Z_1	Nature of evolution of zone S_2 . (Code table 5162) (FM 45)
ZZ	Meteorological zone number by 5 degrees of longitude or latitude. (Code table 5177) (FM 54)
$Z_d Z_d Z_d \\$	Length of the cable at which the drogue is attached, in metres. (FM 18)
$Z_cZ_cZ_cZ_c$	Length of cable, in metres (thermistor strings). (FM 18)
$Z_dZ_dZ_dZ_d$	Total water depth, in metres. (FM 63, FM 64)
$Z_h Z_h Z_h Z_h$	Hydrostatic pressure of lower end of cable, in kPa. (FM 18)
Z _i	Present ice situation and trend of conditions over preceding three hours. (Code table 5239) (FM 12, FM 13, FM 14)
ZZ	Variation, location or intensity of phenomena. (Code table 4077) (9-group in Section 3 of FM 12, FM 13 and FM 14)
_	Depth, in hundreds of metres, starting with the surface. (FM 63)
$\begin{bmatrix} z_0z_0\\ z_1z_1\\ \dots\\ z_nz_n \end{bmatrix}$	Significant depths, in metres, starting with the surface. (FM 63)
ZZZ	Zone specification. (Code table 1863) (FM 54)
$ \left. \begin{array}{c} Z_0 Z_0 Z_0 Z_0 \\ Z_1 Z_1 Z_1 Z_1 \\ \dots \\ Z_n Z_n Z_n Z_n \end{array} \right\} $	Selected and/or significant depths, in metres, starting with the surface. (FM 18, FM 64)
// // 	Missing data.
,	(1) The number of solidi depends on the number of symbolic letters for which no data can be reported.

Section C

SPECIFICATIONS OF CODE FIGURES (code tables)

- a. Numbering system of international code tables
- b. Code tables

a. NUMBERING SYSTEM OF INTERNATIONAL CODE TABLES

When coding a report, analysis or forecast, symbolic letters or letter groups are replaced by figures, which specify the value or the state of the corresponding element. In some cases, the specification of the symbolic letter (or group of letters) is sufficient to permit a direct transcription into figures, e.g. GG or PPP. In other cases, these figures are obtained by means of a special code table for each element.

The code tables are used inversely for decoding incoming reports, analyses or forecasts, thus making available the information contained therein.

The code tables are numbered, each code table bearing a number consisting of four figures from 0100 up to 5299 and allotted in the alphabetical order of the symbols to which the code tables correspond. The attribution of the numbers is done in accordance with the following system:

The first two figures represent the number of the main letter of the symbol in alphabetical order. Capital letters are given an odd number, and small letters an even number: 01 for A, 02 for a, 03 for B, 04 for b 51 for Z and 52 for z.

The two last figures are allocated in accordance with the following scheme:

00 to 01	are reserved for code tables corresponding to a symbol composed of one letter only (X or x , for instance);
02 to 30	are reserved for code tables corresponding to symbols of the forms X_A to X_Z , x_A to x_Z and derived symbols such as X_{A0} or x_{A0} ;
31 to 60	are reserved for code tables corresponding to symbols of the forms X_a to X_z , x_a to x_z and derived symbols such as X_{a0} or x_{a0} ;
61 to 70	are reserved for code tables corresponding to symbols of the forms X_0 to X_n , or x_0 to x_n , n being any number;

71 to 99are reserved for code tables corresponding to symbols of the forms X´, XX, XXX, x´, xx, xxx or any similar forms such as X_bX_b , $X_0X_0X_0$, x_bx_b , $x_0x_0x_0$.

The numbering system and the numbers attributed to the code tables for the different elements are given in the following table.

Besides the specifications given by the code tables in worldwide use, other sets of code tables are established for regional use, which are numbered with a three-figure number ranging from 120 to 800, and are given in Volume II of the *Manual on Codes*.

NUMBERING SYSTEM OF INTERNATIONAL CODE TABLES

_				T			
0101	Α	0552	C_{t}	1063	e_2	1853	i _u
0104	A_{C}	0561	C_0	1079	e_Re_R	1855	i_w
0114	A_N	0562	C_1	1085	e_Te_T	1857	İ _y
0131	Aa	0639	Ci	1095	$e_w e_w$	1859	i _z
0133	Ac	0659	$C_{T},\;C_{W}$	1109	F _H	1860	i_{x}
0135	Ae		$D,D_H,D_K,D_L,$	1133	Fc	1861	i ₀
0139	A_{i}	0700	$D_M,D_a,D_e,D_p,$	1135	$F_e, F_p, F_q,$	1863	i ₂ , zzz
0152	A_t	l	D_s , D_1	1133	F_s, F_u	1864	i ₃ , nnn
0161	A_1, b_w	0739	Di	1139	F_{i}	2061	j ₁ , j ₂ j ₃ j ₄ , j ₅ j ₆ j ₇ j ₈ j ₉
0163	A_3	0755	D_w	1144	F _m	2100	K
0177	AA	(D_tD_t	1152	F_{t}	2200	k
0200	а		D_0D_0	1162	F_1 , F_2 , etc.	2262	k_1
0204	ac	0777	D_1D_1	1200	f	2263	k_2
0210	$a_{\scriptscriptstyle \mathrm{I}}$			1236	f _e	2264	k_3
0235	a _e		D_nD_n	1300	G	2265	k ₄
0239	a _i	0822	d_{T}	1400	g	2266	k ₅
0244	a _m	0833	d _c	1487	grgr	2267	k ₆
0252	a _t	1	$dd,d_hd_h,d_jd_j,$	1535	H _e	2300	L
0262	a ₁		$d_m d_m$, $d_s d_s$,	1561	H ₁ , H ₂ , H ₃ , H ₄ , H ₅	2382	L_iL_i , L_jL_j
0264	a_3		$d_w d_w$, $d_{w1} d_{w1}$,	1600	h	2538	M_h
0265	a ₄		$d_{w2}d_{w2},\ d_0d_0$	1677	h _s h _s , h _t h _t	2551	Ms
0266	a ₅		d_0d_0	ſ	h _B h _B h _B , h _f h _f h _f ,	2552	M_t
0291	a ₁ a ₁ a ₁ , a ₂ a ₂ a ₂	0877	d_1d_1	1690	$h_i h_i h_{i,} h_s h_s h_s$,	2555	M_w
0300	В				h _t h _t h _t , h _x h _x h _x	2562	M ₁ , M ₂
0302	B _A		d_nd_n	1700	I	2582	M_iM_i , M_jM_j
0324	B_T		d_1d_1	1731	Ia	2590	MMM
0359	B _z		d_2d_2	1732	I_{b}	2600	m
0366	B_RB_R		d_nd_n	1733	Ic	2604	m _S , m _T , m _c
0370	B_tB_t	0878	dd Polar	1734	I_d	2649	m _r
0371	$B_1B_2B_3$	($d_{a1}d_{a1},d_{a2}d_{a2}$	1735	I _e	2650	m_s
0439	b _i		d_dd_d	1741	Ij	2677	mm
0491	b ₁ b ₁ ,b ₂ b ₂	0880	d_1d_1 d_2d_2	1743	In	2700	N, N_h, N_s, N'
0500	C, C′			1744	I _m	2745	N _m
ſ	C, C _e , C _p , C _q ,		$d_n d_n$	1747	I _p	2752	N _t
0501 {	C_s , C_u , C_1 , C_2 ,	0901	Е	1751	I _s	2754	N _v
	C ₃ , C ₄ , C ₅ , R _e	0919	E _R	1765	I ₄	2776	N _e N _e
0509	Сн	0933	E _c	1770	$I_XI_XI_X$	2836	n _f
0513	CL	0935	E _e	1800	i	2863	n ₃
0515	C _M	0938	E _h	1806	i _E	2864	n ₄
0519	C _R	0943	Es	1819	i _R	2877	n _B n _B , n _G n _G
0521	C _S	0964	E ₃	1833	i _c	2890	n _T n _T
0531	C _a	0975	E'	1840	i _h	3131	P _a
0533	C _c	0977	E ₁ E ₁ , E ₂ E ₂	1841	i _j	3133	P _c , h _c
0544	C _m	1004	e _C , e'	1845	i _m	3139	P _i
0551		1062		1851		3152	
U00 I	C_s	1002	e ₁	1001	İs	3132	P _t , h _t

A-238 Volume I.1

NUMBERING SYSTEM OF INTERNATIONAL CODE TABLES

(continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	' 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3334 { Qt 3775 S'7 3956 T _n , T _x 4678 w'w' 3363 Q ₂ , Q ₄ 3776 S' ₈ 3962 T ₁ , T ₂ 4680 w _a w _a	
[Q _t 3775 S' ₇ 3956 T _n , T _x 4678 w'w' 4680 w _a w _a	
3462 q ₁ 3777 SS 4001 t 4683 w _s w _s	
3463 q ₂ 3778 S _P S _P S _p S _p 4006 t _E 4687 w ₁ w ₁	
3533 R _c 3780 S _f S _f 4013 t _L 4691 w ₁ w ₁ w ₁	
3534 R _d 3790 S _t S _t 4019 t _R 4700 X	
3535 R _e 3833 s _c 4035 t _e 4770 X _R X _R	
3538 R _h 3845 s _n 4044 t _m 4780 X _t X _t	
3548 R _p 3847 s _p 4047 t _p 4800 x	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3555 R _w 3850 s _s 4200 u 4892 x ₂ x ₂ x ₂ , x ₃	K 3 X 3
3570 RR 3855 s _w 4232 u _b 4900 Y	
3590 RRR 3856 s _x 4242 u _p 5122 Z _T	
$ \begin{cases} RRRR & 3866 & s_1 \\ 3596 & & \\ & & \\ \end{cases} $	
$R_1R_1R_1R_1$ 3867 S_2 4300 V, V _s , V' _s 5162 Z_1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
3685 r _a r _a 3872 s _a s _a 4448 v _p	
3700 S, S' 3889 sss 4451 v _s	

b. CODE TABLES

0101

Α	Mirage
Code figure	
0	No specification
1	Image of distant object raised (looming)
2	Image of distant object raised clear above the horizon
3	Inverted image of distant object
4	Complex, multiple images of distant object (images not inverted)
5	Complex, multiple images of distant object (some images being inverted)
6	Sun or moon seen appreciably distorted
7	Sun visible, although astronomically below the horizon
8	Moon visible, although astronomically below the horizon
Note:	When code figures 4, 5 or 6 apply, recognition of the objects is liable to be difficult.
	0104
Ac	Accuracy of the position of the centre or the eye of the tropical cyclone
Code figure	
1	Eye visible on radar scope, accuracy good (within 10 km)
2	Eye visible on radar scope, accuracy fair (within 30 km)
3	Eye visible on radar scope, accuracy poor (within 50 km)
4	Position of the centre within the area covered by the radar scope, determination by means of the spiral-band overlay, accuracy good (within 10 km)
5	Position of the centre within the area covered by the radar scope, determination by means of the spiral-band overlay, accuracy fair (within 30 km)
6	Position of the centre within the area covered by the radar scope, determination by means of the spiral-band overlay, accuracy poor (within 50 km)
7	Position of the centre outside the area covered by the radar scope, extrapolation by means of the spiral-band overlay
1	Accuracy undetermined
	0114
A_N	Type of anemometer
Code figure	
0	Cup rotor
1	Propeller rotor
2	Wind Observation through Ambient Noise (WOTAN)
1	Missing value (coded 15 in BUFR)

Accident early notification – article applicable
Articles 1 and 2
Article 3
Article 5.2
Reserved
Missing value
0133

UTSS

Cause of incident $\mathbf{A}_{\mathbf{c}}$ Code figure Incident State does not understand what happened 0 1 Incident State knows the cause of the incident 2 Reserved 3 Missing value

0135

\mathbf{A}_{e}	Incident situation
Code figure	
0	No improvement
1	Unstable
2	No deterioration
3	Improving
4	Stable
5	Deteriorating
6	Reserved
7	Missing value

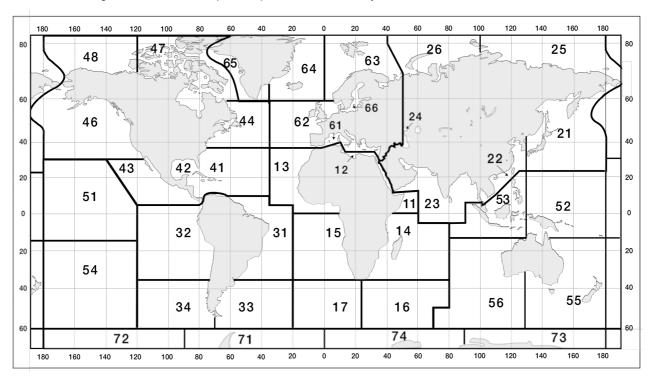
0139

$\mathbf{A}_{\mathbf{i}}$ Accuracy of the fix and repetition rate of atmospherics

Code		
figure	Accuracy of fix	Repetition rate
0	No assessment	No assessment
1	Estimated error less than 50 km	Less than 1 per second
2	Estimated error between 50 and 200 km	Less than 1 per second
3	Estimated error more than 200 km	Less than 1 per second
4	Estimated error less than 50 km	1 or more countable flashes per second
5	Estimated error between 50 and 200 km	1 or more countable flashes per second
6	Estimated error more than 200 km	1 or more countable flashes per second
7	Estimated error less than 50 km	Rate so rapid number cannot be counted
8	Estimated error between 50 and 200 km	Rate so rapid number cannot be counted
9	Estimated error more than 200 km	Rate so rapid number cannot be counted

Volume I.1 A-242

At Accuracy of determination of the geographical position of the tropical cyclone


Code figure	
0	Cyclone centre within 10 km of the transmitted position
1	Cyclone centre within 20 km of the transmitted position
2	Cyclone centre within 50 km of the transmitted position
3	Cyclone centre within 100 km of the transmitted position
4	Cyclone centre within 200 km of the transmitted position
5	Cyclone centre within 300 km of the transmitted position
1	Cyclone centre undetermined

0161

A₁ WMO Regional Association area in which buoy, drilling rig or oil- or gas-production platform has been deployed (1 – Region I; 2 – Region II, etc.)

 b_w Sub-area belonging to the area indicated by A_1

Note: Two digit-numbers in the map correspond to A_1 suffixed by b_w .

0163

A₃ Day darkness, worst in direction D_a

Code figure

0 Day darkness, bad

1 Day darkness, very bad

2 Day darkness, black

AA Activity or facility involved in incident Code figure Nuclear reactor on ground 1 2 Nuclear reactor at sea 3 **Nuclear reactor in space** 4 **Nuclear fuel facility** 5 Radioactive waste management facility 6 Transport of nuclear fuel or radioactive waste 7 Storage of nuclear fuel or radioactive waste 8 Manufacture of radio-isotopes 9 Use of radio-isotopes 10 Storage of radio-isotopes 11 Disposal of radio-isotopes 12 Transport of radio-isotopes 13 Use of radio-isotopes for power generation 14-19 Reserved 20 Fire in toxic chemical plant 21 Transport of toxic chemicals 22 Toxic chemical leakage into a river 23-29 Reserved 30 Other 31 Missing value 0200 Characteristic of pressure tendency during the three hours preceding the time of а observation Code figure 0 Increasing, then decreasing; atmospheric pressure the same or higher than three hours ago 1 Increasing, then steady; or increasing, then increasing more slowly 2 Increasing (steadily or unsteadily)* Atmospheric pressure now higher than three hours ago Decreasing or steady, then increasing; or 3 increasing, then increasing more rapidly

Decreasing (steadily or unsteadily)*

Steady or increasing, then decreasing; or decreasing, then decreasing more rapidly

then decreasing more slowly

Decreasing, then steady; or decreasing,

5

7

8

Steady; atmospheric pressure the same as three hours ago*

A-244 Volume I.1

Decreasing, then increasing; atmospheric pressure the same or lower than three hours ago

Atmospheric pressure now lower than three hours ago

^{*} For reports from automatic stations, see Regulation 12.2.3.5.3.

0204

a _c	Change in character of the eye during the 30 minutes preceding the time of observation
Code figure	
0	Eye has first become visible during the past 30 minutes
1	No significant change in the characteristics or size of the eye
2	Eye has become smaller with no other significant change in characteristics
3	Eye has become larger with no other significant change in characteristics
4	Eye has become less distinct with no significant change in size
5	Eye has become less distinct and decreased in size
6	Eye has become less distinct and increased in size
7	Eye has become more distinct with no significant change in size
8	Eye has become more distinct and decreased in size
9	Eye has become more distinct and increased in size
1	Change in character and size of eye cannot be determined

0210

Trend in behaviour of ice
No change
Ice situation improving (for navigation)
Ice situation worsening (for navigation)
Ice breaking up
Ice opening or drifting away
Ice increasing
Ice freezing together
Ice drifting in
Ice under pressure
Ice hummocking, or hummocking and screwing
Undetermined or unknown

0235

\mathbf{a}_{e}	Tendency of echo pattern			
Code figure	Tendency of intensity	Tendency of the area		
1	Decreasing	Decreasing		
2	Decreasing	No appreciable change		
3	Decreasing	Increasing		
4	No appreciable change	Decreasing		
5	No appreciable change	No appreciable change		
6	No appreciable change	Increasing		
7	Increasing	Decreasing		
8	Increasing	No appreciable change		
9	Increasing	Increasing		
1	Undetermined	Undetermined		

0239

$\mathbf{a_i}$	Distribution of atmospherics
Code	
figure	No standardar
0	No atmospherics
2	Isolated point of activity
4	Sources of atmospherics activity located in the <i>area</i> enclosed by lines joining successive points $L_aL_aL_oL_ok$
6	Origin of atmospherics activity approximating a <i>line</i> joining successive points L _a L _a L _o L _o k
9	No report due to technical reasons
	0244
a _m	Portion of the maritime area
Code figure	
0	Whole of the area AAA
1	NE quadrant of the area AAA
2	Eastern half of the area AAA
3	SE quadrant of the area AAA
4	Southern half of the area AAA
5	SW quadrant of the area AAA
6	Western half of the area AAA
7	NW quadrant of the area AAA
8	Northern half of the area AAA
9	Rest of the area AAA
	0252
	·
\mathbf{a}_{t}	Apparent 24-hour change in intensity of the tropical cyclone
Code figure	
0	Much weakening
1	Weakening
2	No change
3	Intensification
4	Strong intensification
9	Not observed previously
1	Undetermined

A-246 Volume I.1

a ₁	Reason for no report or ground equipment employed
Code figure	
0	Launch not scheduled
1	Rocket motor failure
2	Instrument (or) telemetry signal not received
3	Ground tracking equipment failure
4	Weather prohibited launch
5	Range restrictions prohibited launch
6	Lack of expendables prohibited launch
7	Radar only employed
8	Radar and telemetry equipment employed

Telemetry equipment only employed

9 Notes:

- (1) Code figures 0 to 6 shall be used to show the reason for no report when a scheduled launch is aborted, or when a launch is accomplished but no data are available.
- (2) Code figures 7 to 9 shall be used to show the type of ground equipment employed during a satisfactory launch.

0264

a₃ Standard isobaric surface for which the geopotential is reported

Code figure	
1	1 000 hPa
2	925 hPa
5	500 hPa
7	700 hPa
8	850 hPa

0265

a₄ Type of measuring equipment used

Code figure

- 0 Pressure instrument associated with wind-measuring equipment
- 1 Optical theodolite
- 2 Radiotheodolite
- 3 Radar
- 4 Pressure instrument associated with wind-measuring equipment but pressure element failed during ascent
- 5 VLF-Omega
- 6 Loran-C
- 7 Wind profiler
- 8 Satellite navigation
- 9 Reserved

a₅ Type of report and unit of reported radiological quantity

Code figure

- 1 Report of accidental radioactivity release to atmosphere, in becquerels (Bq)
- 2 Report of accidental radioactivity release to water, in becquerels (Bq)
- 3 Report of accidental radioactivity release to both atmosphere and water, in becquerels (Bq)
- 4 Report of accidental radioactivity release to ground water, in becquerels (Bq)
- 5 Report of named isotope concentration in precipitation, in becquerels per litre (Bg Γ⁻¹)
- Report of named isotope type including gross beta concentration in air, in becquerels per cubic metre (Bq m⁻³), and, if data available, the density of deposits, in becquerels per square metre (Bq m⁻²)
- Report of gamma dose in air along main transport path and, if data available, on land surface, in millisieverts (mSv)
- Report of an airborne observing station of named isotope type including concentration in air, in becquerels per cubic metre (Bq m⁻³), and/or report of gamma dose in air, in millisieverts (mSv)
- 9 Reserved

0291

 $a_1a_1a_1$, $a_2a_2a_2$ Type of parameter

Code figure	Field parameter	Reference value	Unit	Occurrence and/or intensity of phenomenon	Remarks
000	-	_	_		Indicates missing parameter
001	Pressure	0 hPa	1 hPa		
002	Geopotential height	0 gpm	10 gpm		
003	Geometrical height	0 m	10 m		
004	Temperature	0°C	1°C		
005	Maximum temperature	0°C	1°C		Surface level only
006	Minimum temperature	0°C	1°C		Surface level only
007	Temperature deviation from normal	0°C	1°C		
800	Potential temperature	0°C	1°C		
009	Pseudo-adiabatic potential temperature	0°C	1°C		
010	Dew-point temperature	0°C	1°C		
011	Dew-point depression (or deficit)	0°C	1°C		
012	Specific humidity	0 g kg ⁻¹	0.1 g kg ⁻¹		
013	Relative humidity	0 %	1 %		
014	Humidity mixing ratio	0 g kg ⁻¹	0.1 g kg ⁻¹		
015	Stability index	0°C	1°C		See Code table 2677 for specific parameters
016	Saturation deficit	0 hPa	0.1 hPa		
		(for a specific	: level)		
		0 gpm	10 gpm		
		(for a sp	ecific <i>layer</i>)		
017	4-layer lifted index	0°C	1°C		
018					Reserved
019 020	Wind direction	0°	10°		
020	Wind speed	0 m s ⁻¹	1 m s ⁻¹		
	•	-			TEMP code form
022	Wind direction and speed	0°, 0 m s ⁻¹	5°, 1 m s ⁻¹		TEMP code form

A-248 Volume I.1

025 024 025 025 026	Code figure	Field parameter	Reference value	Unit	Occurrence and/or intensity of phenomenon	Remarks
	}	Wind components	0 m s ⁻¹	1 m s ⁻¹		
027 028 029 Stream function	025	Wind speed		_		
Number N		Wind direction and speed	0°, 0 kt	5°, 1 kt		TEMP code form
030	}	Wind components	0 kt	1 kt		
031 Absolute vorticity 0 s ⁻¹ 10 ⁻² s ⁻¹ 10 ⁻² s ⁻¹ 10 ⁻³ s ⁻¹	029	Stream function	0 m ² s ⁻¹	10 ⁵ m ² s ⁻¹		
032 Relative vorticity advection 0 s ⁻² 10 ⁻⁸ s ⁻² 10 ⁻⁸ s ⁻² 10 ⁻⁸ s ⁻² 10 ⁻⁸ s ⁻² 10 ⁻⁸ s ⁻² 10 ⁻⁸ s ⁻¹ 10	030	Relative vorticity	0 s ⁻¹	10 ⁻⁵ s ⁻¹		
033	031	Absolute vorticity	0 s ⁻¹	10 ⁻⁵ s ⁻¹		
Notice N	032	Relative vorticity advection	0 s ⁻²			
Horizontal moisture divergence Geostrophic vorticity	033	Absolute vorticity advection	0 s ⁻²			
036 Geostrophic vorticity 0 s - 1 10 - 5 s - 1 037 Geostrophic vorticity advection 038 039 Velocity potential 0 m² s - 1 040 Vertical velocity (1) 0 cb s - 1 041 Vertical velocity (1) 0 cb r 1 042 Vertical velocity (1) 0 ms s - 1 043 Vertical velocity (1) 0 ms s - 1 044 Vertical velocity (1) 0 ms s - 1 045 Vertical velocity (1) 0 ms s - 1 046 Vertical wind shear 0 ms - 1 047 Vertical wind shear 0 ms - 1 048 Vertical wind shear 0 ms - 1 049 Vertical wind shear 0 mm - 1 040 Vertical wind shear 0 mm - 1 041 Vertical wind shear 0 mm - 1 042 Vertical wind shear 0 mm - 1 043 Vertical wind shear 0 mm - 1 044 Vertical wind shear 0 mm - 1 045 Vertical wind shear 0 mm - 1 046 Lapse rate 0°C/100 m 0.1°C/100 m 047 Precipitation amount 0 mm 1 mm 0 048 Convective precipitation amount 0 mm 1 mm 0 049 Precipitation amount 0 mm 1 mm 0 050 Precipitation amount 0 mm 1 mm 0 051 Snow depth 0 c cm 1 cm 0 052 Outgoing short-wave radiation 0 joule 0.1 joule (1 J = 10' ergs) 0 053 Outgoing short-wave radiation 0 joule 0.1 joule	034	Horizontal velocity divergence	0 s ⁻¹	10 ⁻⁵ s ⁻¹		
037 Geostrophic vorticity advection 0 s^2 10°8 s² 10°8 s	035	Horizontal moisture divergence	0 g kg ⁻¹ s ⁻¹	0.1 g kg ⁻¹ s ⁻¹		
038	036	Geostrophic vorticity	0 s ⁻¹			
039	037	Geostrophic vorticity advection	0 s ⁻²	10 ⁻⁹ s ⁻²		
040	038					Reserved
	039	Velocity potential	0 m ² s ⁻¹	10 ³ m ² s ⁻¹		
042 Vertical velocity (1) 0 hPa h ⁻¹ 1 hPa h ⁻¹ 1 hPa h ⁻¹ 043 Vertical velocity (7) 0 mm s ⁻¹ 1 mm s ⁻¹ /1 000 m 045 Vertical wind shear 0 ms ⁻¹ /1 000 m 1 m s ⁻¹ /1 000 m 046 Lapse rate 0°C/100 m 1 kt/1 000 m 047 Precipitable water 0 mm 1 mm 048 Convective precipitation amount 0 mm 1 mm 050 Precipitation rate 0 mm h ⁻¹ 1 mm h ⁻¹ 050 Precipitation amount 0 mm 1 mm 051 Snow depth 0 cm 1 cm 0utgoing long-wave radiation 0 joule 0.1 joule Integrated over 24 hours 053 Outgoing short-wave radiation 0 joule 0.1 joule Integrated over 24 hours 055 Incoming short-wave radiation 0 joule 0.1 joule Integrated over 24 hours 056 Incoming short-wave radiation 0 mm 1 mm Reserved 057 Afternoon SST warming 0°C 0.01°C Obstaction of sea level from mean	040	Vertical velocity (↓)	0 cb s ⁻¹	10 ⁻¹ cb s ⁻¹		
043 Vertical velocity (↑) 0 mm s²¹ 1 mm s² 1 m² 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s²¹ 1 mm s² 1 ms²	041	Vertical velocity (↓)	0 cb/12 h	1 cb/12 h		
044 Vertical wind shear	042	Vertical velocity (↓)	0 hPa h ⁻¹	1 hPa h ⁻¹		
045 Vertical wind shear 0 kt/1 000 m 1 kt/1 000 m 0.1°C/100 m 046 Lapse rate 0°C/100 m 0.1°C/100 m 0.1°C/100 m 047 Precipitable water 0 mm 1 mm 049 Precipitation rate 0 mm 1 mm h ⁻¹ 050 Precipitation amount 0 mm 1 mm 051 Snow depth 0 cm 1 cm Surface level only 052 Outgoing long-wave radiation 0 joule 0.1 joule Integrated over 24 hours 053 Outgoing short-wave radiation 0 joule 0.1 joule Integrated over 24 hours 054 Incoming short-wave radiation 0 joule 0.1 joule Integrated over 24 hours 055 Non-convective precipitation amount 0 mm 1 mm Reserved 056 Non-convective precipitation amount 0 mm 1 mm Reserved 056 Non-convective precipitation amount 0 mm 1 mm Reserved 057 Objection of sea level from mean 0 cm 0.01°C O.01°C <	043	Vertical velocity (↑)	0 mm s ⁻¹	1 mm s ⁻¹		
046	044	Vertical wind shear	0 m s ⁻¹ /1 000 m	1 m s ⁻¹ /1 000 m		
	045	Vertical wind shear	0 kt/1 000 m	1 kt/1 000 m		
Convective precipitation amount O mm O mic O i joule O i	046	Lapse rate	0°C/100 m	0.1°C/100 m		
049	047	Precipitable water	0 mm	1 mm		
050	048	Convective precipitation amount	0 mm	1 mm		
Sinow depth	049	Precipitation rate	0 mm h ⁻¹	1 mm h ⁻¹		
Outgoing long-wave radiation O joule O.1 joule (1 J = 10 ⁷ ergs) Outgoing short-wave radiation O joule O.1 joule (1 J = 10 ⁷ ergs) Integrated over 24 hours Incoming short-wave radiation O joule O.1 joule Integrated over 24 hours Integrated	050	Precipitation amount	0 mm	1 mm		Surface level only
Outgoing short-wave radiation Incoming short-wave radiation One of the precipitation amount O50 O50 Outgoing short-wave radiation Incoming short-wave radiation O50 Non-convective precipitation amount O50 O50 O50 O50 O50 O50 O50 O50 O50 O5	051	Snow depth	0 cm	1 cm		Surface level only
Incoming short-wave radiation O joule O.1 joule O.1 joule Integrated over 24 hours	052	Outgoing long-wave radiation	0 joule			Integrated over 24 hours
Non-convective precipitation amount Non-convective precipitation amount 1 mm 1 mm 1 mm Reserved	053	Outgoing short-wave radiation	0 joule	0.1 joule		Integrated over 24 hours
amount 056 057 058 Afternoon SST warming 0°C 059 Temperature anomaly 0°C 060 Deviation of sea level from mean 061 Sea temperature 0°C 062 Salinity 063 Density 064 Significant height of combined wind waves and swell 065 Direction of swell 066 Significant height of swell 067 Mean period of swell 068 Direction of wind waves 0°C 07 080 090 090 090 090 090 090 090 090 090	054	Incoming short-wave radiation	0 joule	0.1 joule		Integrated over 24 hours
Afternoon SST warming 0°C 0.01°C Temperature anomaly 0°C 0.01°C Deviation of sea level from mean 0 cm 1 cm Sea temperature 0°C 0.1°C Salinity 0°/ ₀₀ Density O64 Significant height of combined wind waves and swell O65 Direction of swell 0 m 0.5 m O66 Significant height of swell 0 m 0.5 m O67 Mean period of swell 0 s 1 s Direction of wind waves 0 m 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m Threshold value of 0.5 m	055		0 mm	1 mm		
Afternoon SST warming 0°C 0.01°C 0.	, L					Reserved
Temperature anomaly 0°C 0.01°C	_	Afternoon SST warming	0°C	0.01°C		
Deviation of sea level from mean 0 cm 0.1°C 0.1°		· ·				
Sea temperature 0°C 062 Salinity 063 Density 064 Significant height of combined wind waves and swell 065 Direction of swell 066 Significant height of swell 067 Mean period of swell 068 Direction of wind waves 069 Significant height of wind waves 060 07 08 08 08 08 08 08 08 08 0		•				
Salinity 062 Salinity 063 Density 064 Significant height of combined wind waves and swell 065 Direction of swell 066 Significant height of swell 067 Mean period of swell 068 Direction of wind waves 069 Significant height of wind waves 060 On 070 On 08						
Density O64 Significant height of combined wind waves and swell O65 Direction of swell O66 Significant height of swell O67 Mean period of swell O68 Direction of wind waves O69 Significant height of wind waves O69 Significant height of wind waves O60 O60 O61 O60 O62 O60 O63 Direction of wind waves O64 O65 Direction of wind waves O65 O66 O67 O68 O68 O68 O69 O69 O69 O69 O69 O69 O69 O69 O69 O69		•				
Significant height of combined wind waves and swell 0 m 0.5 m Threshold value of 0.5 m						
066Significant height of swell0 m0.5 mThreshold value of 0.5 m067Mean period of swell0 s1 s068Direction of wind waves0°10°069Significant height of wind waves0 m0.5 mThreshold value of 0.5 m		Significant height of combined	0 m	0.5 m		Threshold value of 0.5 m
067 Mean period of swell 0 s 1 s 068 Direction of wind waves 0° 10° 069 Significant height of wind waves 0 m 0.5 m Threshold value of 0.5 m	065	Direction of swell	0°	10°		
067 Mean period of swell 0 s 1 s 068 Direction of wind waves 0° 10° 069 Significant height of wind waves 0 m 0.5 m Threshold value of 0.5 m	066	Significant height of swell	0 m	0.5 m		Threshold value of 0.5 m
068 Direction of wind waves 0° 10° 5 m Threshold value of 0.5 m	067		0 s	1 s		
069 Significant height of wind waves 0 m 0.5 m Threshold value of 0.5 m		•	0°	10°		
			0 m	0.5 m		Threshold value of 0.5 m
070 Mean period of wind waves 0 s 1 s	070		0 s	1 s		

Code figure	Field parameter	Reference value	Unit	Occurrence and/or intensity of phenomenon	Remarks
071	Direction of current	0°	10°		
072	Speed of current	0 cm s ⁻¹	1 cm s ⁻¹		
073) 074	Current components	0 cm s ⁻¹	1 cm s ⁻¹		Relative to coordinate system used
075	Primary wave direction	0°	10°		
076	Primary wave period	0 s	1 s		
077	Secondary wave direction	0°	10°		
078	Secondary wave period	0 s	1 s		
079	Cloud cover		0, 1, 2, 3, 4, 5, 6, 7, 8		Cloud amount in oktas (see Code table 2677 for specific parameters)
080	Thunderstorm			0, 1	0 = absent, 1 = occurring
081	Tropical revolving storm			0, 1	0 = absent, 1 = occurring
082	Line squall			0, 1	0 = absent, 1 = occurring
083	Hail			0, 1	0 = absent, 1 = occurring
084	Turbulence (generally associated with cloud)			0, 1, 2	0 = nil or slight, 1 = moderate, 2 = severe
085	Clear air turbulence			0, 1, 2	0 = nil or slight, 1 = moderate, 2 = severe
086	lcing			0, 1, 2	0 = nil or slight, 1 = moderate, 2 = severe
087	Mountain waves			0, 1	0 = absent, 1 = occurring
088	Sandstorm/duststorm			0, 1	0 = absent, 1 = occurring
089	Freezing rain			0, 1	0 = absent, 1 = occurring
090	Ice concentration			0, 1	0 = no sea ice, 1 = occurrence of sea ice
091	Ice thickness	0 m	1 m		
092	Ice drift u-component	0 km/day	1 km/day		
093	Ice drift v-component	0 km/day	1 km/day		
094	Ice growth	0 dm	1 dm		
095	Ice convergence/divergence	0 s ⁻¹	1 s ⁻¹		
096					
097					Reserved
098					Neserveu
099					
100	Pressure	0 daPa	1 daPa		
101	Geopotential thickness	0 gpm	1 gpm		
102	Geopotential height	0 gpm	1 gpm		
103	Geometrical height	0 m	1 m		
104	Temperature	0°C	0.1°C		
105					
. }					Reserved
111					
	Specific humidity	0 kg kg ⁻¹	1 kg kg ⁻¹		
112	Relative humidity	0 kg kg 0 %	0.1 %		
113	Humidity mixing ratio	0 % 0 kg kg ⁻¹	1 kg kg ⁻¹		
114		0 kg kg 0°C	0.1°C		
115	Stability (lifted) index Saturation deficit	0 hPa	0.1°C 1 hPa		
116	Saturation delicit	0 gpm	1 gpm		

A-250 Volume I.1

Code figure	Field parameter	Reference value	Unit	Occurrence and/or intensity of phenomenon	Remarks
117					
118					Reserved
119					
120	Wind direction	0°	1°		
121					
: }					Reserved
128					
129	Stream function	0 m ² s ⁻¹	1 m ² s ⁻¹		
130	Relative vorticity	0 s ⁻¹	10-6 s ⁻¹		
131	Absolute vorticity	0 s ⁻¹	10-6 s ⁻¹		
132	Relative vorticity advection	0 s ⁻²	1 s ⁻²		
133	Absolute vorticity advection	0 s ⁻²	1 s ⁻²		
134	Horizontal velocity divergence	0 s ⁻¹	1 s ⁻¹		
135	Horizontal moisture divergence	0 kg kg ⁻¹ s ⁻¹ 0 s ⁻¹	1 kg kg ⁻¹ s ⁻¹ 1 s ⁻¹		
136	Geostrophic vorticity	0 s 0 s ⁻²	1 S		
137 138	Geostrophic vorticity advection	US	15		Reserved
139	Velocity potential	0 m ² s ⁻¹	1 m ² s ⁻¹		Reserveu
140	Vertical velocity (↓)	0 hPa s ⁻¹	1 hPa s ⁻¹		
141	Vertical velocity (↓)	0 dPa s ⁻¹	1 dPa s ⁻¹		
	tornour toroonsy (\$)	o ai a o	(1 microbar s ⁻¹)		
142			,		Reserved
143	Vertical velocity (↑)	0 m s ⁻¹	1 m s ⁻¹		
144	Vertical wind shear	0 m s ⁻¹ /1 m	1 m s ⁻¹ /1 m		
145					Reserved
146	Lapse rate	0°C/1 m	1°C/1 m		
147	Precipitable water	0 m	1 m		
148					Reserved
	Precipitation rate	0 m s ⁻¹	1 m s ⁻¹		
150	Precipitation amount	0 m	1 m		
151	Snow depth	0 m	1 m		
152	Outgoing long-wave radiation	0 joule	1 joule		
450	Outgoing short ways radiation	0 ioula	(1 J = 10 ⁷ ergs) 1 joule		
153 154	Outgoing short-wave radiation Incoming short-wave radiation	0 joule 0 joule	1 joule 1 joule		
155)	mooning short-wave radiation	Jouis	, jouie		
156					
157					Reserved
158					
159					
160	Deviation of sea level from mean	0 m	1 m		
161	Sea temperature	0°C	1°C		
162	Sea-surface temperature	0°C	0.01°C		
163	SST anomaly	0°C	0.01°C		
164	Significant height of combined	0 m	1 m		
40-	wind waves and swell	00	40		
165	Direction of swell	0°	1°		
166	Significant height of swell	0 m	1 m		Posomod
167					Reserved

169 S 170 171 D	Direction of wind waves Significant height of wind waves	0°		phenomenon	
170 171 D	Significant height of wind waves	U	1°		
170 171 D		0 m	1 m		
					Reserved
470 -	Direction of current	0°	1°		
172 S	Speed of current	0 m s ⁻¹	1 m s ⁻¹		
173	Current components	0 cm s ⁻¹	1 cm s ⁻¹		
174	current components	o cin s	i ciii s		
175					
176					
177 }					Reserved
178					
179			_		
	Mixed layer depth	0 cm	1 cm		
	Transient thermocline depth	0 cm	1 cm		
	Main thermocline depth	0 cm	1 cm		
183 N 184)	Main thermocline depth anomaly	0 cm	1 cm		
: }					Reserved
-					
201					
	Pressure reduced to mean sea level	0 hPa	1 hPa		
	Pressure tendency	0 hPa/3 h	0.1 hPa/3 h		
204					
•					Reserved
:					110001700
211					
212 V	Virtual temperature	0°C	1°C		
213)					
.					_
:					Reserved
220					
	Radar spectra				Direction and frequency
	Radar spectra				Direction and radial number
223 R	Radar spectra				Radial number and radial
					number
224					Reserved
225					
	Pressure anomaly	0 hPa	1 hPa		
	Geopotential height anomaly	0 gpm	1 gpm		Direction and fragment
	Wave spectra Wave spectra				Direction and frequency Direction and radial number
	wave spectra Wave spectra				Radial number and radial
230	3000114				number
231)					
.					
. }					Reserved
237					
1	Sigma coord. vertical velocity	0 s ⁻¹	1 s ⁻¹		

A-252 Volume I.1

Code figure	Field parameter	Reference value	Unit	Occurrence and/or intensity of phenomenon	Remarks
239					Decembed
240					Reserved
242	Absolute divergence	0 s ⁻¹	1 s ⁻¹		
243					Reserved
244	Relative divergence	0 s ⁻¹	1 s ⁻¹		
245	Vertical u-component shear	0 s ⁻¹	1 s ⁻¹		
246	Vertical v-component shear	0 s ⁻¹	1 s ⁻¹		
247					
: }					Reserved
254) 255	Vanaur praecura	0 hPa	1 hPa		
256	Vapour pressure	Ulifa	I IIFa		Reserved
257	Evaporation	0 mm	1 mm		TROSCI VOU
258	•				Reserved
259					Reserved
260	Thunderstorm probability	0 %	1 %		
261					
262					Reserved
263 J 264	Snowfall rate water equivalent	0 kg m ⁻²	1 kg m ⁻²		
265	Water equivalent of acc. snow	0 kg m ⁻²	1 kg m ⁻²		
266)					
: }					Reserved
271					
272	Convective cloud cover	0 %	1 %		
273	Low cloud cover	0 %	1 %		
	Medium cloud cover	0 %	1 %		
	High cloud cover	0 %	1 %		
276 277)	Cloud water	0 mm	1 mm		
278					
279					Reserved
280					
281	Land-sea mask			0, 1	0 = sea, 1 = land
282					Reserved
	Surface roughness	0 m	1 m		
	Albedo	0 %	1 %		
	Soil temperature	0°C	1°C		
286 287	Soil moisture content Vegetation	0 mm 0 %	1 mm 1 %		
288)			. ,		
289					
290					Reserved
291					
292					
293	Direction of ice drift	0°	10°		

Code figure	Field parameter	Reference value	Unit	Occurrence and/or intensity of phenomenon	Remarks
294	Speed of ice drift	0 km/day	1 km/day		
295					Reserved
.					
: (
310					
311	Net short-wave radiation (surface)	0 joule	0.1 joule		
312	Net long-wave radiation (surface)	0 joule	0.1 joule		
313	Net short-wave radiation (top of atmosphere)	0 joule	0.1 joule		
314	Net long-wave radiation (top of atmosphere)	0 joule	0.1 joule		
315	Long-wave radiation	0 joule	0.1 joule		
316	Short-wave radiation	0 joule	0.1 joule		
317	Global radiation	0 joule	0.1 joule		
318					_
319 }					Reserved
320					
321	Latent heat flux	0 joule	0.1 joule		
322 323	Sensible heat flux	0 joule 0 joule	0.1 joule 0.1 joule		
324	Boundary layer dissipation	o joule	o. i joule		
325 }					Reserved
326					
327	Image data				
328					
-					Reserved for use by
					originating centre
454					
455)					
-55					
. }					Reserved
998					
998)	Reserved for totally fixed formate 9990	 NN to 999999 for ov	 amnle:		Where applicable, the
	999 Reserved for totally fixed formats 999000 to 999999, for example: 999001 TTddfffTTddfffTTddfffTTddfffhh				indication of all groups
	TTddfff = temperature, wind direction and wind speed for				specifying the level of
	400-hPa, 300-hPa, 250-hPa and 200-hPa levels hh = height of tropopause in 300-metre units				reference is to be omitted
	hh = height of tropo Spaces between data groups omitted		; uiiit5		
	Note: Code figures 999000 to 999999 for a ₁ a ₁ a ₁ , a ₂ a ₂ a ₂ do not represent parameters. These				
	code figures are used to indicate various standard formats in which the data content is given and which will be defined in an appropriate publication.				
	and which will be defined in an appropriate publication.				

Notes:

- (1) The code figures 000 to 327 are used to represent parameters which are exchanged between a number of centres; since the products generated by centres can be extremely diverse, code figures 328 to 454 are reserved for definition by the originating centre, and may differ from centre to centre.
- (2) Where it is necessary for a centre to redefine this table completely, a code figure $n_T n_T = 01-99$ shall indicate the relevant redefined code table. The code figures $a_1 a_1 a_1$, $a_2 a_2 a_2$ shall then refer to the appropriate redefined code table.
- (3) The first part of Code table 0291 (code figures 000–099) shall be used without the inclusion in the report of the optional group $2n_Tn_Ta_1a_2$. Parameters in the latter part of the code table (100–999) can only be used with the inclusion in the report of the optional group $2n_Tn_Ta_1a_2$.

A-254 Volume I.1

В	Turbulence
Code figure	
0	None
1	Light turbulence
2	Moderate turbulence in clear air, occasional
3	Moderate turbulence in clear air, frequent
4	Moderate turbulence in cloud, occasional
5	Moderate turbulence in cloud, frequent
6	Severe turbulence in clear air, occasional
7	Severe turbulence in clear air, frequent
8	Severe turbulence in cloud, occasional
9	Severe turbulence in cloud, frequent

0302

B_A Turbulence Code figure 0 None (acceleration less than 0.15 g) 1 Light (acceleration from 0.15 g to, but not including 0.5 g) 2 Moderate (acceleration from 0.5 g to 1.0 g) 3 Severe (acceleration > 1.0 g)

Note: These accelerations, which may be positive or negative, are deviations from the normal acceleration of gravity (1.0 g).

0324

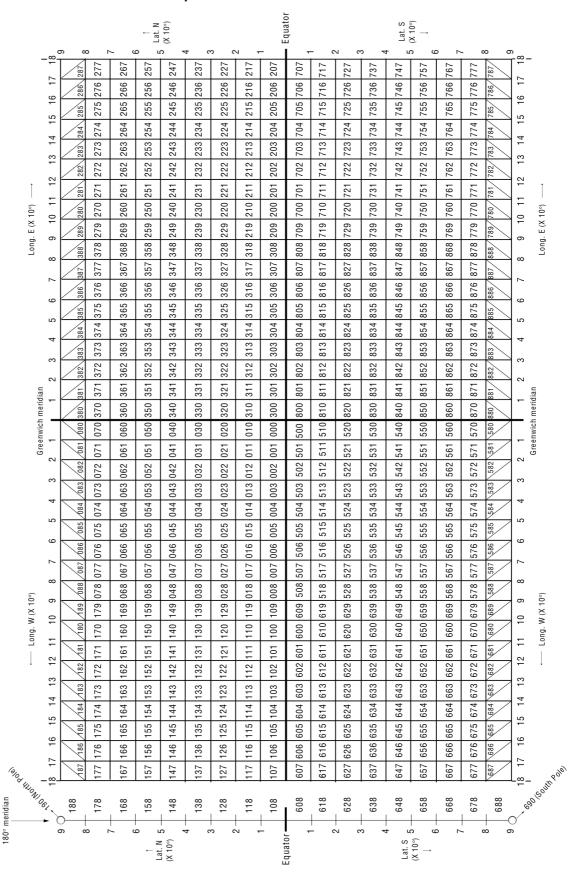
\mathbf{B}_{T}	Type of release
Code figure	
0	No release
1	Release to atmosphere
2	Release to water
3	Release to both atmosphere and water
4	Expected release to atmosphere
5	Expected release to water
6	Expected release to both atmosphere and water
7	Missing value
	0359
B _z	High-level turbulence
Code figure	

0

2

None Moderate

Severe


0366

B_RB_R	Estimated surface friction
Code figure	
00	Friction coefficient 0.00
01	Friction coefficient 0.01
	•••
88	Friction coefficient 0.88
89	Friction coefficient 0.89
90	Friction coefficient 0.90
91	Braking action poor
92	Braking action medium/poor
93	Braking action medium
94	Braking action medium/good
95	Braking action good
96–98	Reserved
99	Unreliable
<i>II</i>	Braking conditions not reported and/or runway not operational

0370

B_tB_t	Type of buoy
Code figure	
00	Unspecified drifting buoy
01	Standard Lagrangian drifter (Global Drifter Programme)
02	Standard FGGE-type drifting buoy (non-Lagrangian meteorological drifting buoy)
03	Wind measuring FGGE-type drifting buoy (non-Lagrangian meteorological drifting buoy)
04	Ice float
05–07	Reserved
80	Unspecified subsurface float
09	SOFAR
10	ALACE
11	MARVOR
12	RAFOS
13–15	Reserved
16	Unspecified moored buoy
17	Nomad
18	3-metre discus
19	10–12-metre discus
20	ODAS 30 series
21	ATLAS (e.g. TAO area)
22	TRITON
23	Reserved
24	Omnidirectional wave rider
25	Directional wave rider
26	Subsurface ARGO float
27–62	Reserved
<i>II</i>	Missing value (coded 63 in BUFR)

 $B_1B_2B_3$ Number designating a 10° x 10° square in the geographical grid formed by the intersection of two meridians and two parallels of latitude

(Code table 0371 - continued)

Notes:

- (1) The system of B₁B₂B₃ numbers is designed for use in code forms to report geographical positions by means of a minimum of code figures and, as a result, to achieve some economy in message length.
 - (a) The system is particularly suited to the cases where:
 - (b) Each position is associated with very few data;
 - (c) The number of positions to report is fairly high;
 - (d) The positions to report are relatively close to each other;

as may for instance occur with certain types of observational satellite data.

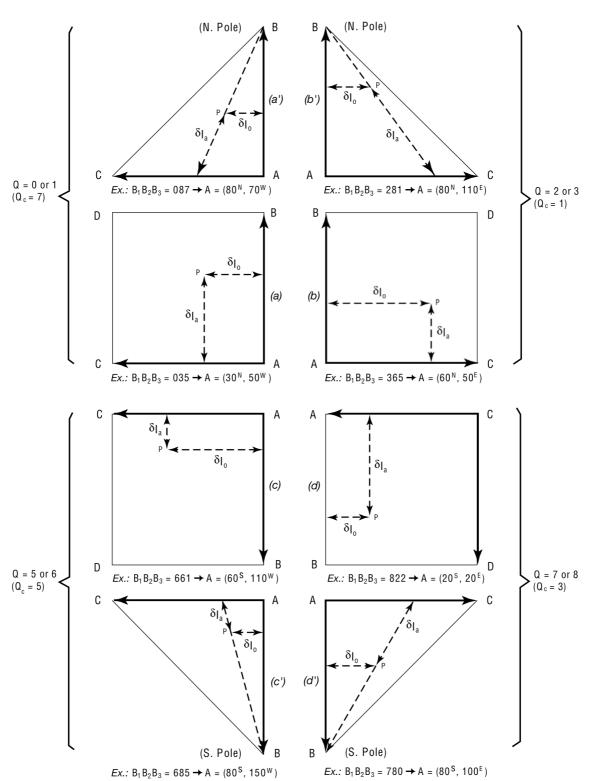
- (2) Each square derives its number partly from the octant of the globe (Q) and partly from the position of one of its corners, i.e. the one that possesses the lowest coordinates (I_a, I_o) (I_a and I_o are integers, expressed in units of 10°). For position-reporting purposes, that corner A can be taken as the origin of a reference frame formed by the sides AB (direction of increasing latitudes) and AC (direction of increasing longitudes) of the square. The geometrical position of the reference frame in question in each of the four quadrants of the globe is shown in Figure 1 (a), (b), (c) and (d) In the vicinity of each Pole, the "squares" become "triangles"; Figure 1 (a'), (b'), (c') and (d') show the position of the reference frame in these particular cases.
- (3) The position of any point P lying in a square is then defined by:
 - (a) The square number $B_1B_2B_3$;
 - (b) The difference δ_{la} in latitude between P and A;
 - (c) The difference δ_{lo} in longitude between P and A (δ_{la} and δ_{lo} are either expressed in whole degrees by $U_{La}U_{Lo}$, or in tenths of a degree by $U_{La}U_{Lo}U_{La}U_{Lo}$ (see Figure 1).
- (4) It is to be noted that δ_{la} and δ_{lo} will always be less than 10°; therefore, the points lying on sides BD and CD of the square do not belong to it but to adjacent squares;
- (5) Special cases which are a consequence of the foregoing.
 - (a) The 180° meridian

Special numbers have been assigned to its 10° line segments (= squares reduced to one side). Position reporting of a point P will in that case be limited to:

- (i) The B₁B₂B₃ number;
- (ii) δ_{la} only;
- (b) The Poles

Numbers 190 (North Pole) and 690 (South Pole) have been assigned to them.

(6) Generating formula:


$$B_1B_2B_3 = 100 Q + 10 \left(I_a + DEC \left(\frac{I_0}{10} \right) \right)$$

The above formula expresses $B_1B_2B_3$ as a function of the code figure Q for the octant of the globe and of the geographical coordinates of corner A of the square (DEC = decimal part of).

(See Figure 1.)

A-258 Volume I.1

0439

b_i	Ice of land origin
Code figure	
0	No ice of land origin
1	1–5 icebergs, no growlers or bergy bits
2	6–10 icebergs, no growlers or bergy bits
3	11–20 icebergs, no growlers or bergy bits
4	Up to and including 10 growlers and bergy bits – no icebergs
5	More than 10 growlers and bergy bits – no icebergs
6	1–5 icebergs, with growlers and bergy bits
7	6–10 icebergs, with growlers and bergy bits
8	11–20 icebergs, with growlers and bergy bits
9	More than 20 icebergs, with growlers and bergy bits – a major hazard to navigation
1	Unable to report, because of darkness, lack of visibility or because only sea ice is visible

A-260 Volume I.1

b ₁ b ₁ , b ₂ b	72 Type of special level
Code	
figure	
00	Customed structures
01	Ground surface
02	Cloud base level
03	Level of cloud tops
04	Level of 0°C isotherm
05	Level of adiabatic condensation
06	Maximum wind level
07	Tropopause
08–09	Reserved
10	Lower limit of layer of instability with hail and/or thunderstorms
11	Upper limit of layer of instability with hail and/or thunderstorms
12	Not used
13	Upper limit of tropical revolving storm
14	Lower limit of layer of moderate turbulence (generally associated with cloud)
15	Upper limit of layer of moderate turbulence (generally associated with cloud)
16	Lower limit of layer of severe turbulence (generally associated with cloud)
17	Upper limit of layer of severe turbulence (generally associated with cloud)
18	Lower limit of layer of moderate clear air turbulence
19	Upper limit of layer of moderate clear air turbulence
20	Lower limit of layer of severe clear air turbulence
21	Upper limit of layer of severe clear air turbulence
22	Lower limit of layer of moderate icing
23	Upper limit of layer of moderate icing
24	Lower limit of layer of severe icing
25	Upper limit of layer of severe icing
26	Lower limit of layer of mountain waves
27	Upper limit of layer of mountain waves
28	Lower limit of layer of sandstorm/duststorm
29	Upper limit of layer of sandstorm/duststorm
30	Lower limit of layer of freezing rain
31	Upper limit of layer of freezing rain
32–49	Reserved
50	Surface of reflectivity
51-59	Reserved
60	Sea surface
61	Thermocline
62-99	Reserved

Genus of cloud		
Genus of cloud predominating in the layer		
Genus of cloud whose base is below the level of the station		
Cirrus (Ci)		
• •		
, ,		
• •		
	ument detected clouds from AWS or cloud not visible owing to darkness, fog,	
	i, or other analogous phenomena	
•	,	
	0504	
	0501	
Total concentration of all ice		
Concentration of the tertiary form of ice		
Concentration of th	e predominant form of ice	
Concentration of th	e quaternary form of ice	
Concentration of the secondary form of ice		
Concentration of the quintary form of ice		
Concentration of the predominant stage of development of ice		
Concentration of the secondary stage of development of ice		
Concentration of the tertiary stage of development of ice		
Concentration of the quaternary stage of development of ice		
Concentration of the quintary stage of development of ice		
Extent of all ridging		
	(less than 1 okta)	
	(1 okta)	
	(2 oktas)	
	(3 oktas)	
	(4 oktas)	
	(5 oktas)	
	(6 oktas)	
	(7 oktas)	
110 without openings	(8 oktas without openings)	
	Cirrus (Ci) Cirrocumulus (Cc) Cirrostratus (Cs) Altocumulus (Ac) Altostratus (As) Nimbostratus (Ns) Stratocumulus (Sc) Stratus (St) Cumulus (Cu) Cumulonimbus (Cb) Not available for instruction of the Concentration of th	

A-262 Volume I.1

C_H Clouds of the genera cirrus, cirrocumulus and cirrostratus

Code figure	Technical specifications	Code figure	Technical specifications
0	No C _H clouds	0	No cirrus, cirrocumulus or cirrostratus
1	Cirrus fibratus, sometimes uncinus, not progressively invading the sky	1	Cirrus in the form of filaments, strands or hooks, not progressively invading the sky
2	Cirrus spissatus, in patches or entangled sheaves, which usually do not increase and sometimes seem to be the remains of the upper part of a cumulonimbus; or cirrus castellanus or floccus	2	Dense cirrus, in patches or entangled sheaves, which usually do not increase and sometimes seem to be the remains of the upper part of a cumulonimbus; or cirrus with sproutings in the form of small turrets or battlements, or cirrus having the appearance of cumuliform tufts
3	Cirrus spissatus cumulonimbogenitus	3	Dense cirrus, often in the form of an anvil, being the remains of the upper parts of cumulonimbus
4	Cirrus uncinus or fibratus, or both, progressively invading the sky; they generally thicken as a whole	4	Cirrus in the form of hooks or of filaments, or both, progressively invading the sky; they generally become denser as a whole
5	Cirrus (often in bands) and cirrostratus, or cirrostratus alone, progressively invading the sky; they generally thicken as a whole, but the continuous veil does not reach 45 degrees above the horizon	5	Cirrus (often in bands converging towards one point or two opposite points of the horizon) and cirrostratus, or cirrostratus alone; in either case, they are progressively invading the sky, and generally growing denser as a whole, but the continuous veil does not reach 45 degrees above the horizon
6	Cirrus (often in bands) and cirrostratus, or cirrostratus alone, progressively invading the sky; they generally thicken as a whole; the continuous veil extends more than 45 degrees above the horizon, without the sky being totally covered	6	Cirrus (often in bands converging towards one point or two opposite points of the horizon) and cirrostratus, or cirrostratus alone; in either case, they are progressively invading the sky, and generally growing denser as a whole; the continuous veil extends more than 45 degrees above the horizon, without the sky being totally covered
7	Cirrostratus covering the whole sky	7	Veil of cirrostratus covering the celestial dome
8	Cirrostratus not progressively invading the sky and not entirely covering it	8	Cirrostratus not progressively invading the sky and not completely covering the celestial dome
9	Cirrocumulus alone, or cirrocumulus predominant among the C _H clouds	9	Cirrocumulus alone, or cirrocumulus accompanied by cirrus or cirrostratus, or both, but cirrocumulus is predominant
I	C _H clouds invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or because of a continuous layer of lower clouds	I	Cirrus, cirrocumulus and cirrostratus invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or more often because of the presence of a continuous layer of lower clouds

Clouds of the genera stratocumulus, stratus, cumulus and cumulonimbus

Code figure	Technical specifications	Code figure	Technical specifications
0	No C _L clouds	0	No stratocumulus, stratus, cumulus or cumulonimbus
1	Cumulus humilis or cumulus fractus other than of bad weather,* or both	1	Cumulus with little vertical extent and seemingly flattened, or ragged cumulus other than of bad weather,* or both
2	Cumulus mediocris or congestus, with or without cumulus of species fractus or humilis or stratocumulus, all having their bases at the same level	2	Cumulus of moderate or strong vertical extent, generally with protuberances in the form of domes or towers, either accompanied or not by other cumulus or by stratocumulus, all having their bases at the same level
3	Cumulonimbus calvus, with or without cumulus, stratocumulus or Stratus	3	Cumulonimbus the summits of which, at least partially, lack sharp outlines, but are neither clearly fibrous (cirriform) nor in the form of an anvil; cumulus, stratocumulus or Stratus may also be present
4	Stratocumulus cumulogenitus	4	Stratocumulus formed by the spreading out of cumulus; cumulus may also be present
5	Stratocumulus other than stratocumulus cumulogenitus	5	Stratocumulus not resulting from the spreading out of cumulus
6	Stratus nebulosus or Stratus fractus other 6 than of bad weather,* or both	6	Stratus in a more or less continuous sheet or layer, or in ragged shreds, or both, but no Stratus fractus of bad weather*
7	Stratus fractus or cumulus fractus of bad weather,* or both (pannus), usually below altostratus or nimbostratus	7	Stratus fractus of bad weather* or cumulus fractus of bad weather,* or both (pannus), usually below altostratus or nimbostratus
8	Cumulus and stratocumulus other than stratocumulus cumulogenitus, with bases at different levels	8	Cumulus and stratocumulus other than that formed from the spreading out of cumulus; the base of the cumulus is at a different level from that of the stratocumulus
9	Cumulonimbus capillatus (often with an anvil), with or without cumulonimbus calvus, cumulus, stratocumulus, Stratus or pannus	9	Cumulonimbus, the upper part of which is clearly fibrous (cirriform), often in the form of an anvil; either accompanied or not by cumulonimbus without anvil or fibrous upper part, by cumulus, stratocumulus, stratus or pannus
I	C _L clouds invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena	1	Stratocumulus, stratus, cumulus and cumulonimbus invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena

^{* &}quot;Bad weather" denotes the conditions which generally exist during precipitation and a short time before and after.

A-264 Volume I.1

C_M Clouds of the genera altocumulus, altostratus and nimbostratus

Code figure	Technical specifications	Code figure	Technical specifications
0	No C _M clouds	0	No altocumulus, altostratus or nimbostratus
1	Altostratus translucidus	1	Altostratus, the greater part of which is semi- transparent; through this part the sun or moon may be weakly visible, as through ground glass
2	Altostratus opacus or nimbostratus	2	Altostratus, the greater part of which is sufficiently dense to hide the sun or moon, or nimbostratus
3	Altocumulus translucidus at a single level	3	Altocumulus, the greater part of which is semi-transparent; the various elements of the cloud change only slowly and are all at a single level
4	Patches (often lenticular) of altocumulus translucidus, continually changing and occurring at one or more levels	4	Patches (often in the form of almonds or fish) of altocumulus, the greater part of which is semi-transparent; the clouds occur at one or more levels and the elements are continually changing in appearance
5	Altocumulus translucidus in bands, or one or more layers of altocumulus translucidus or opacus, progressively invading the sky; these altocumulus clouds generally thicken as a whole	5	Semi-transparent altocumulus in bands, or altocumulus, in one or more fairly continuous layer (semi-transparent or opaque), progressively invading the sky; these altocumulus clouds generally thicken as a whole
6	Altocumulus cumulogenitus (or cumulo- nimbogenitus)	6	Altocumulus resulting from the spreading out of cumulus (or cumulonimbus)
7	Altocumulus translucidus or opacus in two or more layers, or altocumulus opacus in a single layer, not progressively invading the sky, or altocumulus with altostratus or nimbostratus	7	Altocumulus in two or more layers, usually opaque in places, and not progressively invading the sky; or opaque layer of altocumulus, not progressively invading the sky; or altocumulus together with altostratus or nimbostratus
8	Altocumulus castellanus or floccus	8	Altocumulus with sproutings in the form of small towers or battlements, or altocumulus having the appearance of cumuliform tufts
9	Altocumulus of a chaotic sky, generally at several levels	9	Altocumulus of a chaotic sky, generally at several levels
I	C _M clouds invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or because of continuous layer of lower clouds	I	Altocumulus, altostratus and nimbostratus invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or more often because of the presence of a continuous layer of lower clouds

0519

\mathbf{C}_{R} Extent of runway contamination Code figure Less than 10 per cent of runway contaminated (covered) 1 2 11 per cent to 25 per cent of runway contaminated (covered) 3-4 Reserved 5 26 per cent to 50 per cent of runway contaminated (covered) 6–8 Reserved 9 51 per cent to 100 per cent of runway contaminated (covered) I Not reported (e.g. due to runway clearance in progress)

0521

Cs	Special clouds
Code figure	
1	Nacreous clouds
2	Noctilucent clouds
3	Clouds from waterfalls
4	Clouds from fires
5	Clouds from volcanic eruptions

Note: A description of these clouds may be found in the *International Cloud Atlas* (WMO-No. 407), Volume I, Part II, Chapter 6.

0531

C_a	Nature of clouds of vertical development		
Code figure			
0	Isolated	l	Cumulus humilis and/or cumulus mediocris
1	Numerous	ſ	Camalas manins ana/or camalas medicens
2	Isolated	Cumulus congestus	Cumulus congestus
3	Numerous	ſ	oumulus congestus
4	Isolated	l	Cumulus
5	Numerous	ſ	Cumulus
6	Isolated	l	Cumulus and cumulonimbus
7	Numerous	ſ	Cumulus and Cumulominibus

A-266 Volume I.1

0533

C _c	Coloration and/or convergence of clouds associated with a tropical disturbance
Code figure	
1	Slight coloration of clouds at sunrise
2	Deep-red coloration of clouds at sunrise
3	Slight coloration of clouds at sunset
4	Deep-red coloration of clouds at sunset
5	Convergence of C _H clouds at a point below 45°
6	Convergence of C _H clouds at a point above 45° forming or increasing
7	Convergence of C _H clouds at a point below 45° dissolving or diminishing
8	Convergence of C _H clouds at a point above 45°
	0544
C _m	Major cloud configuration
Code figure	
0	Low stratus or fog
1	Stratiform
2	Stratocumulifom - closed cells
3	Cirriform
4	Cumuliform and stratiform
5	Cumuliform
6	Open cells – not associated with cumulonimbus
7	Open cells – cumulus and cumulonimbus
8	Cumulonimbus (may be associated with other cloud types)
9	Multi-layered
1	Undetermined
	0551
Cs	Cloud system
Code figure	
1	Thunder type
2	Depression type
3	Intense depression type
4	Depression with snow
5	Depression with warm sector
6	Depression with misty tail
7	Altocumulus
8	Altocumulus with lateral zone
9	Altocumulus with misty tail

0552

C _t	Description of the top of cloud whose base is below the level of the station
Code	
figure	
0	Isolated cloud or fragments of clouds
1	Continuous cloud
2	Broken cloud – small breaks flat tops
3	Broken cloud – large breaks
4	Continuous cloud
5	Broken cloud – small breaks undulating tops
6	Broken cloud – large breaks
7	Continuous or almost continuous waves with towering clouds above the top of the layer
8	Groups of waves with towering clouds above the top of the layer
9	Two or more layers at different levels
	0561
C ₀	Orographic clouds
Code figure	
1	Isolated orographic clouds, pileus, incus, forming
2	Isolated orographic clouds, pileus, incus, not changing
3	Isolated orographic clouds, pileus, incus, dissolving
4	Irregular banks of orographic cloud, föhn bank, etc., forming
5	Irregular banks of orographic cloud, föhn bank, etc., not changing
6	Irregular banks of orographic cloud, föhn bank, etc., dissolving
7	Compact layer of orographic cloud, föhn bank, etc., forming
8	Compact layer of orographic cloud, föhn bank, etc., not changing
9	Compact layer of orographic cloud, föhn bank, etc., dissolving
	0562
	0562
C ₁	Confidence figure
Code figure	
0	No specification
2	With confidence
5	Uncertain
8	Very doubtful

A–268 Volume I.1

C_{i} Concentration or arrangement of sea ice Code figure No sea ice in sight 0 1 Ship in open lead more than 1.0 nautical mile wide, or ship in fast ice with boundary beyond limit of visibility 2 Sea ice present in concentrations less than ³/₁₀ (³/₈), open water or very open pack ice Sea ice concentration $^{4}/_{10}$ to $^{6}/_{10}$ ($^{3}/_{8}$ to less than $^{6}/_{8}$), open pack ice 3 is uniform in the $^{7}/_{10}$ to $^{8}/_{10}$ ($^{6}/_{8}$ to less than $^{7}/_{8}$), close pack ice observation area $^{9}/_{10}$ or more, but not $^{10}/_{10}$ ($^{7}/_{8}$ to less than $^{8}/_{8}$), 5 very close pack ice Ship in ice or within 6 Strips and patches of pack ice with open 0.5 nautical mile of water between ice edge 7 Strips and patches of close or very close pack ice with areas of lesser concentration Sea ice concentration is not uniform in the observation area Fast ice with open water, very open or open pack ice to seaward of the ice boundary 9 Fast ice with close or very close pack ice to seaward of the ice boundary Unable to report, because of darkness, lack of visibility, or because ship is more than 0.5 nautical mile away from ice edge

0659

C _T	Thermodynamic correction technique
\mathbf{c}_{w}	Wind correction technique
Code figure	
0	No correction applied
1	US standard correction
2	UK standard correction
3	Japan standard correction

0700

D	Direction or bearing in one figure
D	True direction from which surface wind is blowing
D	True direction towards which ice has drifted in the past 12 hours
D_{H}	True direction from which C _H clouds are moving
D_{K}	True direction from which swell is moving
D_L	True direction from which C _L clouds are moving
D_{M}	True direction from which C _M clouds are moving
Da	True direction in which orographic clouds or clouds with vertical development are seen
D _a	True direction in which the phenomenon indicated is observed or in which conditions specified in the same group are reported
D_{e}	True direction towards which an echo pattern is moving
D_p	True direction from which the phenomenon indicated is coming
D _s	True direction of resultant displacement of the ship during the three hours preceding the time of observation
D_1	True direction of the point position from the station
Code	
figure 0	Calm (in D, D_K), or stationary (in D_s), or at the station (in D_a , D_1), or stationary or no clouds (in D_H , D_L , D_M)
1	NE
2	E
3	SE
4	S
5	SW
6	W
7	NW
8	N
9	All directions (in D_a , D_1), or confused (in D_K), or variable (in $D_{(wind)}$), or unknown (in D_s), or unknown or clouds invisible (in D_H , D_L , D_M)
1	Report from a coastal land station or displacement of ship not reported (in D_s only – see Regulation 12.3.1.2 (b))
	0739
D_{i}	True bearing of principal ice edge
Code figure	
0	Ship in shore or flaw lead
1	Principal ice edge towards NE
2	Principal ice edge towards E
3	Principal ice edge towards SE
4	Principal ice edge towards S
5	Principal ice edge towards SW
6	Principal ice edge towards W
7	Principal ice edge towards NW
8	Principal ice edge towards N
9	Not determined (ship in ice)

A–270 Volume I.1

Unable to report, because of darkness, lack of visibility or because only ice of land origin is visible

$\mathbf{D}_{\mathbf{w}}$	True orientation of water feature given in W_t
Code figure	
0	No distinct orientation
1	Major axis of feature orientated NE-SW
2	Orientated E – W
3	Orientated SE-NW
4	Orientated N-S
5	Parallels shore to E
6	Parallels shore to S
7	Parallels shore to W
8	Parallels shore to N
1	Undetermined or unknown

Dew-point depression at the tropopause level

 D_tD_t

 D_nD_n

0777

Dew-point depression in two figures

 $\begin{array}{c|c} D_0D_0 \\ D_1D_1 \\ \end{array}$ Dew-point depression at standard isobaric surfaces or at significant levels, starting with station level

Code figure	Degrees Celsius	Code figure	Degrees Celsius	Code figure	Degrees Celsius	Code figure	Degrees Celsius
00	0.0	25	2.5	50	5	75	25
							
01	0.1	26	2.6	51 52		76	26
02	0.2	27	2.7	52 53	Not used	77 70	27
03	0.3	28	2.8) Not used	78 70	28
04	0.4	29	2.9	54		79	29
05	0.5	30	3.0	55	<u> </u>	80	30
06	0.6	31	3.1	56	6	81	31
07	0.7	32	3.2	57	7	82	32
08	0.8	33	3.3	58	8	83	33
09	0.9	34	3.4	59	9	84	34
10	1.0	35	3.5	60	10	85	35
11	1.1	36	3.6	61	11	86	36
12	1.2	37	3.7	62	12	87	37
13	1.3	38	3.8	63	13	88	38
14	1.4	39	3.9	64	14	89	39
15	1.5	40	4.0	65	15	90	40
16	1.6	41	4.1	66	16	91	41
17	1.7	42	4.2	67	17	92	42
18	1.8	43	4.3	68	18	93	43
19	1.9	44	4.4	69	19	94	44
20	2.0	45	4.5	70	20	95	45
21	2.1	46	4.6	71	21	96	46
22	2.2	47	4.7	72	22	97	47
23	2.3	48	4.8	73	23	98	48
24	2.4	49	4.9	74	24	99	49
	No humidity data available						

0822

\mathbf{d}_{T}	Amount of temperature change, the sign of the change being given by s _n
Code figure	
0	ΔT = 10°C
1	ΔT = 11°C
2	ΔT = 12°C
3	ΔT = 13°C
4	ΔT = 14°C or more
5	$\Delta T = 5^{\circ}C$
6	$\Delta T = 6^{\circ}C$
7	$\Delta T = 7^{\circ}C$
8	$\Delta T = 8^{\circ}C$
9	$\Delta T = 9^{\circ}C$

d_c Duration and character of precipitation given by RRR

0833

Code figure						
0	Lasted less than 1 hour					
1	Lasted 1–3 hours	Only one period of precipitation has occurred during the period				
2	Lasted 3–6 hours	covered by W₁W₂				
3	Lasted more than 6 hours					
4	Lasted less than 1 hour					
5	Lasted 1–3 hours	Two or more periods of precipitation have occurred during the				
6	Lasted 3–6 hours	period covered by W ₁ W ₂				
7	Lasted more than 6 hours					
9	Unknown					

0877

Direction in two figures

	- · · · · · · · · · · · · · · · · · · ·
dd	True direction, in tens of degrees, from which wind is blowing (or will blow)
dd	Forecast true direction, in tens of degrees, from which wind will blow at the relevant grid point
dd	True direction, in tens of degrees, from which wind is blowing, derived from movement of cloud elements
$d_h d_h$	True direction, in tens of degrees, from which wind will blow at the height indicated by $h_x h_x h_x$
$d_j d_j$	True direction, in tens of degrees, from which jet-stream wind is blowing (or will blow)
$\mathbf{d_m}\mathbf{d_m}$	True direction, in tens of degrees, from which maximum wind will blow at the flight level given by $n_m n_m n_m$
$\mathbf{d_m}\mathbf{d_m}$	True direction, in tens of degrees, from which maximum wind will blow at the height given by $h'_m h'_m$
d_sd_s	True direction, in tens of degrees, towards which the system or front is moving
d_sd_s	True direction, in tens of degrees, towards which the tropical cyclone orsystem is moving
$d_w d_w$	True direction, in tens of degrees, from which waves are coming

A–272 Volume I.1

(Code table 0877 – continued)

•	,		
$d_{w1}d_{w1}$ $d_{w2}d_{w2}$	$igg\}$ True direction, in tens of de	egrees, fro	om which swell waves are coming
d_0d_0	True direction, in tens of de	egrees, to	wards which sea-surface current is moving
d_0d_0)		•
d_1d_1	True direction, in tens of de	egrees, to	wards which sea current at selected and/or significant
	depths starting with the se	a surface i	is moving
$d_n d_n$	J		
d₁d₁			
d_2d_2	brace True direction, in tens of de	egrees, fro	om which wind is blowing at the specified levels
$d_n d_n$			
Code	,	Code	
figure		figure	
00	Calm (no motion for d _s d _s ,	19	185° – 194°
	or no waves)	20	195° – 204°
01	5° – 14°	21	205° – 214°
02	15° – 24°	22	215° – 224°
03	25° – 34°	23	225° – 234°
04	35° – 44°	24	235° – 244°
05	45° – 54°	25	245° – 254°
06	55° – 64°	26	255° – 264°
07	65° – 74°	27	265° – 274°
80	75° – 84°	28	275° – 284°
09	85° – 94°	29	285° – 294°
10	95° – 104°	30	295° – 304°
11	105° – 114°	31	305° – 314°
12	115° – 124°	32	315° – 324°
13	125° – 134°	33	325° – 334°
14	135° – 144°	34	335° – 344°
15	145° – 154°	35	345° – 354°
16	155° – 164°	36	355° – 4°
17	165° – 174°	99	Variable, or all directions, or unknown
18	175° – 184°		(for $d_s d_s$), or waves confused, direction indeterminate

0878

dd True direction, in tens of degrees, from which wind is blowing (or will blow) at stations within 1° of the North Pole

Code figure	Wind coming from a meridian between	Code figure	Wind coming from a meridian between	Code figure	Wind coming from a meridian between	Code figure	Wind coming from a meridian between
00	Calm	10	95°W – 105°W	20	165°E – 155°E	30	65°E – 55°E
01	5°W – 15°W	11	105°W – 115°W	21	155°E – 145°E	31	55°E – 45°E
02	15°W – 25°W	12	115°W – 125°W	22	145°E – 135°E	32	45°E – 35°E
03	25°W – 35°W	13	125°W – 135°W	23	135°E – 125°E	33	35°E – 25°E
04	35°W – 45°W	14	135°W – 145°W	24	125°E – 115°E	34	25°E – 15°E
05	45°W – 55°W	15	145°W – 155°W	25	115°E – 105°E	35	15°E - 5°E
06	55°W – 65°W	16	155°W – 165°W	26	105°E - 95°E	36	5°E - 5°W
07	65°W – 75°W	17	165°W – 175°W	27	95°E – 85°E		
80	75°W – 85°W	18	175°W - 175°E	28	85°E - 75°E		
09	85°W – 95°W	19	175°E - 165°E	29	75°E – 65°E		

0880

$d_{a1}d_{a1}$	Mean direction, in units of 4 degrees, from which waves are coming for the band indicated, relative to true north
$d_{a2}d_{a2}$	Principal direction, in units of 4 degrees, from which waves are coming for the band indicated, relative to true north
$d_d d_d$	True direction, in units of 4 degrees, from which the dominant wave is coming
d_1d_1	
d ₂ d ₂	True direction, in units of 4 degrees, from which waves are coming
d_nd_n	
Code	
figure	
00	358° to less than 2°
01	2° to less than 6°
02	6° to less than 10°
89	354° to less than 358°
90-98	Not used
99	Ratio of the spectral density for the band to the maximum is less than 0.005

0901

E	State of the ground without snow or measurable ice cover
Code figure	
0	Surface of ground dry (without cracks and no appreciable amount of dust or loose sand)
1	Surface of ground moist
2	Surface of ground wet (standing water in small or large pools on surface)
3	Flooded
4	Surface of ground frozen
5	Glaze on ground
6	Loose dry dust or sand not covering ground completely
7	Thin cover of loose dry dust or sand covering ground completely
8	Moderate or thick cover of loose dry dust or sand covering ground completely
9	Extremely dry with cracks
Notes:	

Notes:

- (1) The definitions in the code for E for numbers 0 to 2 and 4 apply to representative bare ground and numbers 3 and 5 to 9 to an open representative area.
- In all instances, the highest code figures applicable shall be reported. (2)

Volume I.1 A-274

0919

\mathbf{E}_{R}	Runway deposits
Code figure	
0	Clear and dry
1	Damp
2	Wet and water patches
3	Rime and frost covered (depth normally less than 1 mm)
4	Dry snow
5	Wet snow
6	Slush
7	Ice
8	Compacted or rolled snow
9	Frozen ruts or ridges
1	Type of deposit not reported (e.g. due to runway clearance in progress)
	0933
E _c	Characteristics of release
Code figure	
0	No release
1	Release has stopped
2	Release
3	Release is continuing
4–6	Reserved
7	Missing value
	0935
E _e	Release behaviour over time
Code figure	
0	Release no longer occurring
1	Release still occurring
2	Release expected to increase in next six hours
3	Release expected to remain constant in next six hours
4	Release expected to decrease in next six hours
5–6	Reserved
7	Missing value

0938

E _h	Elevation above the horizon of the base of anvil of cumulonimbus or of the summit of other phenomena
Code figure	
1	Very low on the horizon
3	Less than 30° above the horizon
7	More than 30° above the horizon
	0943
Es	State of current or expected release
Code figure	
0	Gaseous
1	Particulate
2	Mixture of gaseous and particulate
3	Missing value
	0964
E ₃	Slush condition under the ice layer
Code figure	
0	No slush ice
1	Slush ice to approximately ¹ / ₃ of depth of the river, lake or reservoir
2	Slush ice from $^{1}/_{3}$ to $^{2}/_{3}$ of depth of the river, lake or reservoir
3	Slush ice to depth of the river, lake or reservoir greater than $^2 I_3$
	0975
Ε´	State of the ground with snow or measurable ice cover
Code figure	
0	Ground predominantly covered by ice
1	Compact or wet snow (with or without ice) covering less than one-half of the ground
2	Compact or wet snow (with or without ice) covering at least one-half of the ground but ground not completely covered
3	Even layer of compact or wet snow covering ground completely
4	Uneven layer of compact or wet snow covering ground completely
5	Loose dry snow covering less than one-half of the ground
6	Loose dry snow covering at least one-half of the ground but ground not completely covered
7	Even layer of loose dry snow covering ground completely
8	Uneven layer of loose dry snow covering ground completely
9	Snow covering ground completely; deep drifts
Notes	S:
(1)	The definitions in the code for E' apply to an open representative area.
(2)	In all instances, the highest code figures applicable shall be reported.

In the above code table, whenever reference is made to ice, it also includes solid precipitation other than snow.

A-276

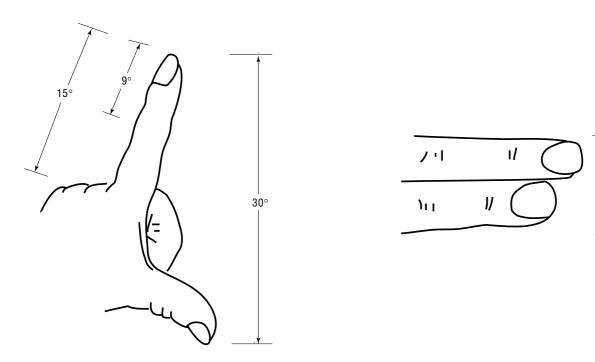
(3)

E ₁ E ₁ , E	₂ E ₂ Ice phenomena on the river, lake or reservoir
Code	
figure	
	The <i>first decile</i> (00 to 09) describes the conditions on the river, lake or reservoir prior to transport of ice:
00	Water surface free of ice
01	Ice along banks
02	Ice crystals
03	Ice slush
04	Ice floes from tributaries entering near the river, lake or reservoir station
	The second decile (10 to 19) describes the propagation of slush ice on the water surface of the river, lake or reservoir:
10	Floating slush ice covering approximately ¹ / ₃ (up to 30%) of the water surface
11	Floating slush ice covering about half (40% – 60%) of the water surface
12	Floating slush ice covering more than half (70% – 100%) of the water surface
	The third decile (20 to 29) describes the conditions on the river, lake or reservoir when ice is being transported:
20	Floating ice covering 10% of the water surface
21	Floating ice covering 20% of the water surface
22	Floating ice covering 30% of the water surface
23	Floating ice covering 40% of the water surface
24	Floating ice covering 50% of the water surface
25	Floating ice covering 60% of the water surface
26	Floating ice covering 70% of the water surface
27	Floating ice covering 80% of the water surface
28	Floating ice covering 90% of the water surface
29	Floating ice covering 100% of the water surface
	The fourth decile (30 to 39) describes the freezing-up of the river, lake or reservoir:
30	Water surface frozen at station, free upstream
31	Water surface frozen at station, free downstream
32	Water surface free at station, frozen upstream
33	Water surface free at station, frozen downstream
34	Ice floes near the station, water surface frozen downstream
35	Water surface frozen with breaks
36	Water surface completely frozen over
37	Water surface frozen over, with pile-ups
	The fifth decile (40 to 49) describes the state of the river, lake or reservoir when the ice cover is breaking up:
40	Ice melting along the banks
41	Some water on the ice
42	Ice waterlogged
43	Water holes in the ice cover
44	Ice moving
45	Open water in breaks
46	Break-up (first day of movement of ice on the entire water surface)
47	Ice broken artificially

(Code table 0977 - continued)

The sixth decile (50 to 59) describes the ice jams on the river, lake or reservoir: 50 Ice jam at the station 51 Ice jam below the station 52 Ice jam above the station 53 Scale and position of jam unchanged 54 Jam has frozen solid in the same place 55 Jam has solidified and expanded upstream 56 Jam has solidified and moved downstream 57 Jam is weakening 58 Jam broken up by explosives or other methods 59 Jam broken The seventh decile (60 to 69) describes the conditions at the mouth of the river when there is no continuous layer of ice: 60 Fractured ice 61 Ice piling up against the bank 62 Ice carried towards the bank 63 Band of ice less than 100 m wide fixed to banks 64 Band of ice 100 to 500 m wide fixed to banks 65 Band of ice wider than 500 m fixed to banks The eighth decile (70 to 79) describes the conditions in the mouth section of the river when ice cover is continuous: 70 Cracks in the ice, mainly across the line of flow

- 71 Cracks along the flow line
- 72 Smooth sheet of ice
- 73 Ice sheet with pile-ups


A-278 Volume I.1

- e_c Elevation angle of the top of the cloud indicated by C
- e' Elevation angle of the top of the phenomenon above horizon

Code figure

- 0 Tops of cloud not visible
- 1 45° or more
- 2 About 30°
- 3 About 20°
- 4 About 15°
- 5 About 12°
- 6 About 9°
- 7 About 7°
- 8 About 6°
- 9 Less than 5°

Note: Angular elevation may be estimated by a rough-and-ready method. The following illustration demonstrates that method:

At a distance of 30 cm (about a foot) from your eye, the span formed by your thumb and forefinger is about 30° . The total length of your forefinger is about 9° . The breadth of two fingers is about 6° .

e ₁ Code figure	Type of isopleth and units of isopleth values uuu
0	Relative or absolute contour or isallohypse; uuu in tens of standard geopotential metres (thousands figure omitted)
1	Dew point; uuu in whole degrees Celsius (add 500 for minus values)
2	Isotherm; uuu in whole degrees Celsius (add 500 for minus values)
3	Potential temperature; uuu in whole kelvins
4	Isobar or isallobar; uuu in whole hectopascals (thousands figure omitted)
5	Mixing ratio; uuu in tenths of a gramme/kilogramme
6	Saturation pressure; uuu in whole hectopascals (thousands figure omitted)
7	Relative humidity; uuu in units of percentage
8	Wind speed; uuu in knots
9	Streamline; uuu used as identification number
Note: metres.	For code figure 0 in a tropopause analysis, uuu shall be reported in hundreds of standard geopotential

1063

\mathbf{e}_2	Type of Isopieth and units of Isopieth values uu
Code figure	
0	Sea-wave height; uu in metres
1	Swell-wave height; uu in metres
2	Wave height (wave type undetermined); uu in metres
3	Wave direction; uu in tens of degrees
4	Wave period; uu in seconds
9	Sea temperature; uu in whole degrees Celsius

1079

e _R e _R	Depth of deposit
Code figure	
00	Less than 1 mm
01	1 mm
02	2 mm
03	3 mm
	•••
89	89 mm
90	90 mm
91	Reserved
92	10 cm
93	15 cm
94	20 cm
95	25 cm
96	30 cm
97	35 cm
98	40 cm or more
99	Runway or runways non-operational due to snow, slush, ice, large drifts or runway clearance, but depth not reported
<i>II</i>	Depth of deposit operationally not significant or not measurable

A–280 Volume I.1

e_Te_T	Type of thermodynamic sensing equipment
Code	
figure	
00	No thermodynamic sensor
01–49	Sonde
01	Arcasonde, experimental
02	Arcasonde 1A, thin film mount, 10 mil (Bt)
03	WOX1A and WOX4A, experimental
04	WOX1A, 10 mil (Bt)
05	WOX4A, 10 mil (Bt)
06	Walmet, thin film loop mount, 10 mil (Bt)
07	Sts, experimental (Bt)
08	Sts, thin film mount, 10 mil (Bt)
09	Datasonde, experimental (Bt)
10	Datasonde, thin film loop mount, 10 mil (Bt)
11	Pulsed sonde, experimental
12–19	Unassigned
20	MK-1, MK-2, experimental (Rw)
21	MK-1 (Rw)
22	MK-2 (Rw)
23–29	Unassigned
30	Echosonde, ES64-B, experimental (Rw)
30 31	Echosonde, ES64-B (Rw)
32	Echosonde, ES89P
_	
33–34 35	Unassigned
36	DMN sonde, thin wire
	DMN sonde, flat plate
37–44	Unassigned
45 46 40	UK rocketsonde MK-11 spiralized coiled 13 μm resistance wire element
46–49	Unassigned
50-54	Sphere
50	Sphere, experimental
51	Sphere, inflatable
52-54	Unassigned
55–59	Grenade
55	Grenade, experimental
56	Grenade
57-59	Unassigned
60–64	Denoity gouge
60	Density gauge
61–64	Density gauge, experimental Unassigned
01-04	onassigned
65–69	Pressure gauge
65	Pressure gauge, experimental
66–69	Unassigned
70–79	Remote sensing
70	Remote sensing, experimental
71–79	Unassigned

Note: When specifications indicating experimental equipment are reported, plain-language remarks explaining the experimental nature of the equipment shall be added at the end of the coded report.

$\mathbf{e}_{w}\mathbf{e}_{w}$	Type of wind sensing equipment
Code	
figure	
00	No wind sensor
01–09	Chaff
01	Chaff, experimental
02	Chaff, metallized
03–09	Unassigned
10–29	Parachute
10	Parachute, experimental
11	Parachute, 0.5 m to 3.5 m diameter
12	Parachute, 3.6 m to 5.5 m diameter
13	Parachute, greater than 5.5 m diameter
14	Mesh decelerator, experimental
15–29	Unassigned
30–49	Starute
30	Starute, experimental
31	Starute, 0.5 m to 3.5 m diameter
32	Starute, 3.6 m to 5.5 m diameter
33	Starute, greater than 5.5 m diameter
34–49	Unassigned
50–54	Sphere
50	Sphere, experimental
51	Sphere, inflatable
52–54	Unassigned
<i>55</i> – <i>59</i>	Grenade
55	Grenade, experimental
56–59	
	Unassigned
60–64	Chemical trail
60–64 60	•
	Chemical trail
60	Chemical trail Chemical trail, experimental Unassigned Meteor trail
60 61–64	Chemical trail Chemical trail, experimental Unassigned
60 61–64 65–69	Chemical trail Chemical trail, experimental Unassigned Meteor trail
60 61–64 65–69 65 66–69 70–79	Chemical trail Chemical trail, experimental Unassigned Meteor trail Meteor trail, experimental Unassigned Remote sensing
60 61–64 65–69 65 66–69 70–79	Chemical trail Chemical trail, experimental Unassigned Meteor trail Meteor trail, experimental Unassigned Remote sensing Remote sensing, experimental
60 61–64 65–69 65 66–69 70–79	Chemical trail Chemical trail, experimental Unassigned Meteor trail Meteor trail, experimental Unassigned Remote sensing
60 61–64 65–69 65 66–69 70–79	Chemical trail Chemical trail, experimental Unassigned Meteor trail Meteor trail, experimental Unassigned Remote sensing Remote sensing, experimental Unassigned

Note: When specifications indicating experimental equipment are reported, plain-language remarks explaining the experimental nature of the equipment shall be added at the end of the coded report.

A-282 Volume I.1

1109

Type of forecast given by the four figures which follow and indication of the number of F_H date-time group(s) used

Code figure	Type of forecast	Number of group(s) used to indicate date-time or period
1	Forecast of maximum stage or discharge	2
2	Forecast of minimum stage or discharge	2
3	Forecast of maximum daily discharge or of maximum daily mean stage	2
4	Forecast of minimum daily discharge or of minimum daily mean stage	2
5	Forecast of average daily stage or discharge	2
6	Forecast of maximum stage or discharge (above flood stage)	2
7	Forecast of mean stage or mean discharge	2
8	Forecast of stage or discharge	1
9	Forecast of specific stage or discharge (above flood stage)	1

Note: For code figures 6 and 9 of the code, the flood stage for each station shall normally be fixed regionally, otherwise nationally.

1133

F_c Character of front Code figure 0 No specification 1 Frontal activity area decreasing 2 Frontal activity area, little change 3 Frontal activity area increasing Intertropical 5 Forming or existence suspected 6 **Quasi-stationary** 7 With waves Diffuse 9 Position doubtful

Note: Intertropical fronts shall be indicated by using the tropical section of the code form.

Volume I.1 A-283

F _e	Tertiary form of ice
F _p	Predominant form of ice
F_q	Quaternary form of ice
F _s	Secondary form of ice
F _u	Quintary form of ice
Code figure	
0	No ice
1	Ice of land origin
2	Pancake ice
3	Brash ice, small ice cakes, ice cakes
4	Small ice floes (20-100 m across)
5	Medium ice floes (100-500 m across)
6	Big ice floes (500-2000 m across)
7	Vast ice floes (2-10 km across)
8	Giant ice floes (over 10 km across)
9	Fast ice
1	Undetermined or unknown

1139

Fi	Intensity of front
Code figure	
0	No specification
1	Weak, decreasing (including frontolysis)
2	Weak, little or no change
3	Weak, increasing (including frontogenesis)
4	Moderate, decreasing
5	Moderate, little or no change
6	Moderate, increasing
7	Strong, decreasing
8	Strong, little or no change
9	Strong, increasing

1144

F_{m} Forecast strength of surface wind

Code figure	Beaufort number	Code figure	Beaufort number
0	0-3	5	8
1	4	6	9
2	5	7	10
3	6	8	11
4	7	9	12

A-284 Volume I.1

$\mathbf{F}_{\mathbf{t}}$	Type of front
Code figure	
0	Quasi-stationary front at the surface
1	Quasi-stationary front above the surface
2	Warm front at the surface
3	Warm front above the surface
4	Cold front at the surface
5	Cold front above the surface
6	Occlusion
7	Instability line
8	Intertropical front
9	Convergence line
Note:	Intertropical fronts shall be indicated by using the tropical section of the code form.

1162

F_1, F_2, c	etc. Intensity of	of points
Code figure		
1	Dots)
2	Dots and dashes	weak
3	Dashes	J
4	Dots)
5	Dots and dashes	moderate
6	Dashes	J
7	Dots)
8	Dots and dashes	strong
9	Dashes	J

1200

f Wind speed derived from movement of cloud elements

Code figure	
0	0 to 9 m s ⁻¹
1	10 to 19 m s ⁻¹
2	20 to 29 m s ⁻¹
3	30 to 39 m s ⁻¹
4	40 to 49 m s ⁻¹
5	50 to 59 m s ⁻¹
6	60 to 69 m s ⁻¹
7	$70 \text{ to } 79 \text{ m s}^{-1}$
8	80 to 89 m s ⁻¹
9	90 m s ⁻¹ or more
1	Undetermined

fe Speed of movement of echo pattern Code figure 0 to 9 km h⁻¹ 0 10 to 19 km h⁻¹ 1 20 to 29 km h⁻¹ 2 30 to 39 km h⁻¹ 3 40 to 49 km h⁻¹ 50 to 59 km h⁻¹ 5 60 to 69 km h⁻¹ 6 70 to 79 km h⁻¹ 7 8 80 to 89 km h⁻¹ 90 km h⁻¹ or more 9 Undetermined 1300 G Period covered by forecast Code figure 0 Synopsis of meteorological conditions in the forecast area at the time of the beginning of the forecast period 1 Forecast valid for 3 hours Forecast valid for 6 hours 2 3 Forecast valid for 9 hours Forecast valid for 12 hours 5 Forecast valid for 18 hours Forecast valid for 24 hours 7 Forecast valid for 48 hours 8 Forecast valid for 72 hours 9 Occasionally 1400 Time of the observations used to compute the reported mean values of geopotential, g temperature and humidity Code

figure	
1	0000 UTC
2	1200 UTC
3	0000 and 1200 UTC
4	0600 UTC
5	1800 UTC
6	0600 and 1800 UTC
7	0000, 1200 and either 0600 or 1800 UTC
8	0600, 1800 and either 0000 or 1200 UTC
9	0000, 0600, 1200 and 1800 UTC
1	Other hours

Note: The times of observation are one hour or less from the reported times.

A-286 Volume I.1

g_rg_r Grid geometry and geographical support

(G = geographical; C = Cartesian)

		MAP PROJECTION		ORIGIN (OR REFERENCE POINT) DEFINED BY MEANS OF	
Code figure	Grid type	Туре	Latitude of true scale	Cartesian coordinate of the Pole	Geographical coordinate of origin (or of reference point)
01	G	_	_	_	х
02	С	Polar stereographic	60°	Х	_
03	С	Polar stereographic	60°	_	X
04	С	Lambert's conformal	30° – 60°	Х	_
05	С	Lambert's conformal	30° – 60°	_	X
06	С	Lambert's conformal	10° – 40°	Х	_
07	С	Lambert's conformal	10° – 40°	_	X
08	С	Mercator	22.5°	_	х
99	Details	specified in Weather Report	ing (WMO-No.	9), Volume B (see	NNN under centre F₁F₂)

1535

H _e	Altitude of echo top		
Code			
figure			
0	0 to less than 2 km		
1	2 to less than 4 km		
2	4 to less than 6 km		
3	6 to less than 8 km		
4	8 to less than 10 km		
5	10 to less than 12 km		
6	12 to less than 14 km		
7	14 to less than 16 km		
8	16 to less than 18 km		
9	18 km and above		
1	Undetermined		

H ₁ H ₂ H ₃ H ₄ H ₅	Maximum altitude of cloud tops
Code figure	
ngure 0	3 000 m or less
U	3 000 m or less
1	Above 3 000 m to 4 500 m
2	Above 4 500 m to 6 000 m
3	Above 6 000 m to 7 500 m
4	Above 7 500 m to 9 000 m
5	Above 9 000 m to 10 500 m
6	Above 10 500 m to 12 000 m
7	Above 12 000 m to 13 500 m
8	Above 13 500 m to 15 000 m
9	Above 15 000 m

1600

h Height above surface of the base of the lowest cloud seen

••	rieight above surface of the base of the lowest cloud seen
Code figure	
0	0 to 50 m
1	50 to 100 m
2	100 to 200 m
3	200 to 300 m
4	300 to 600 m
5	600 to 1 000 m
6	1 000 to 1 500 m
7	1 500 to 2 000 m
8	2 000 to 2 500 m
9	2 500 m or more, or no clouds
1	Height of base of cloud not known or base of clouds at a level lower and tops at a level higher than

Notes:

that of the station

- (1) A height exactly equal to one of the values at the ends of the ranges shall be coded in the higher range, e.g. a height of 600 m shall be reported by code figure 5.
- (2) Due to the limitation in range of the cloud-sensing equipment used by an automatic station, the code figures reported for h could have one of the three following meanings:
 - (a) The actual height of the base of the cloud is within the range indicated by the code figure; or
 - (b) The height of the base of the cloud is greater than the range indicated by the code figure but cannot be determined due to instrumental limitations; or
 - (c) There are no clouds vertically above the station.

A-288 Volume I.1

1677

h_sh_s
 Height of base of cloud layer or mass whose genus is indicated by C
 h_th_t
 Height of the tops of the lowest clouds or height of the lowest cloud layer or fog

	- 3	-		-	
Code figure	Metres	Code figure	Metres	Code figure	Metres
00	<30	34	1 020	67	5 100
01	30	35	1 050	68	5 400
02	60	36	1 080	69	5 700
03	90	37	1 110	70	6 000
04	120	38	1 140	71	6 300
05	150	39	1 170	72	6 600
06	180	40	1 200	73	6 900
07	210	41	1 230	74	7 200
80	240	42	1 260	75	7 500
09	270	43	1 290	76	7 800
10	300	44	1 320	77	8 100
11	330	45	1 350	78	8 400
12	360	46	1 380	79	8 700
13	390	47	1 410	80	9 000
14	420	48	1 440	81	10 500
15	450	49	1 470	82	12 000
16	480	50	1 500	83	13 500
17	510	51		84	15 000
18	540	52		85	16 500
19	570	53	Not used	86	18 000
20	600	54		87	19 500
21	630	55		88	21 000
22	660	56	1 800	89	>21 000
23	690	57	2 100	90	Less than 50 m
24	720	58	2 400	91	50 to 100 m
25	750	59	2 700	92	100 to 200 m
26	780	60	3 000	93	200 to 300 m
27	810	61	3 300	94	300 to 600 m
28	840	62	3 600	95	600 to 1 000 m
29	870	63	3 900	96	1 000 to 1 500 m
30	900	64	4 200	97	1 500 to 2 000 m
31	930	65	4 500	98	2 000 to 2 500 m
32	960	66	4 800	99	2 500 m or more,
33	990				or no clouds

Note: If the observed value is between two of the heights as given in the table, the code figure for the lower height shall be reported, except for code figures 90–99; in this decile, a value exactly equal to one of the heights at the ends of the ranges shall be coded in the higher range, e.g. a height of 600 m is reported by code figure 95.

h_Bh_Bh_B Height of lowest level of turbulence

 $\begin{array}{ll} h_f h_f h_f & \textit{Altitude of the 0°C isotherm} \\ h_i h_i h_i & \textit{Height of lowest level of icing} \end{array}$

h_sh_sh_s Height of base of cloud layer or mass, or observed or forecast vertical visibility

h_th_th_t Altitude of cloud layer or mass

h_xh_xh_x Altitude to which temperature and wind refer

Code figure	Metres	Code figure	Metres
000	<30	100	3 000
001	30	110	3 300
002	60	120	3 600
003	90	etc.	etc.
004	120	990	29 700
005	150	999	30 000 or more
006	180		
007	210		
800	240		
009	270		
010	300		
011	330		
etc.	etc.		
099	2 970		

Notes:

- (1) The code is direct reading in units of 30 metres.
- (2) The code table shall be considered as a coding device in which certain code figures are assigned values. These are discrete values, not ranges. Any observation or forecast of values to be coded in the code table shall be made without regard to the code table. The coding is then accomplished according to the following rule: If the observed or forecast value is between two of the heights as given in the table, the code figure for the lower height shall be reported.

1700

I Density of points Code figure 1 Low 2 Medium 3 High

1731

I_a Indicator for frequency or wave number

Code figure

- 0 Frequency (Hz)
- 1 Wave number (m⁻¹)

A-290 Volume I.1

I_b Indicator for directional or non-directional spectral wave data

Code figure

- 0 Non-directional
- 1 Directional

1733

I_c Type of forecast ice accretion on the external parts of aircraft

Code figure	
0	No icing
1	Light icing
2	Light icing in cloud
3	Light icing in precipitation
4	Moderate icing
5	Moderate icing in cloud
6	Moderate icing in precipitation
7	Severe icing
8	Severe icing in cloud
9	Severe icing in precipitation

1734

Indicator used to specify the hundreds of hectopascals figure (in Part A of TEMP, TEMP SHIP, TEMP DROP and TEMP MOBIL reports) or tens of hectopascals figure (in Part C of TEMP, TEMP SHIP, TEMP DROP and TEMP MOBIL reports) of the pressure relative to the last standard isobaric surface for which the wind is reported

Code				
figure	Wind group included up to and including the following standard isobaric surfaces:			
	Part A	Part C		
1	100 hPa or 150 hPa*	10 hPa		
2	200 hPa or 250 hPa**	20 hPa		
3	300 hPa	30 hPa		
4	400 hPa	_		
5	500 hPa	50 hPa		
6	_	_		
7	700 hPa	70 hPa		
8	850 hPa	_		
9	925 hPa	_		
0	1 000 hPa	_		
1	No wind group is included for any standard isobaric surface	No wind group is included for any standard isobaric surface		

^{*} In this case (150 hPa), the wind group relating to the 100-hPa level shall also be included and coded as //// except when 150 hPa is the highest standard isobaric surface reached by the sounding.

^{**} In this case (250 hPa), the wind group relating to the 200-hPa level shall also be included and coded as //// except when 250 hPa is the highest standard isobaric surface reached by the sounding.

I_{e}	Intensity of echoes	
Code figure	Specification	Reflectivity (mm ⁶ m ⁻³)
0	Very weak	0 to 2.30 x 10
1	Very weak (estimated)	_
2	Weak	2.31 x 10 to 9.40 x 10 ²
3	Weak (estimated)	_
4	Moderate	9.41 x 10 ² to 3.70 x 10 ⁴
5	Moderate (estimated)	_
6	Strong	3.71 x 10 ⁴ to 5.00 x 10 ⁵
7	Strong (estimated)	_
8	Very strong	5.00 x 10 ⁵
9	Very strong (estimated)	_
1	Undetermined	

1741

I_j	Density of p	oin	ts
Code figure			
0	1, 2 or 3 dots	i	
1	Weak)	
2	Moderate	}	Spread of source 10° or less
3	Strong	J	
4	Weak)	
5	Moderate	}	Spread of source 10° to 20°
6	Strong	J	
7	Weak)	
8	Moderate	}	Spread of source 20° to 40°
9	Strong	J	

3

Missing value

1743

I_{n}	Possibility that plume will encounter change in wind direction and/or speed
Code figure	
0	No significant change expected within the next six hours
1	Anticipated significant change expected within the next six hours
2	Reserved

A-292 Volume I.1

I _m Code figure	
1	Longuet–Higgins (1964)
2	Longuet–Higgins (F₃ method)
3	Maximum likelihood method
4	Maximum entropy method
5–9	Reserved
	1747
I _p Code figure	
0	Sea station
1	Automatic data buoy
2	Aircraft
3	Satellite
	1751
I _s Code figure	
1	Icing from ocean spray
2	Icing from fog
3	lcing from spray and fog
4	lcing from rain
5	lcing from spray and rain
	1765
I ₄	Data-processing technique used
Code figure	
0	Processing technique not specified
1	Clear path, using automated statistical regression
2	Partly cloudy path, using automated statistical regression
3	Cloudy path, using automated statistical regression
4	Clear path, using automated statistical regression with interactive quality control
5	Partly cloudy path, using automated statistical regression with interactive quality control
6	Cloudy path, using automated statistical regression with interactive quality control
7–9	Reserved
Notes	
(1)	Clear path means the sounding has been generated from clear radiances derived from actual clear s measurements. Tropospheric and stratospheric HIRS data, as well as MSU and SSU data, have been used.

- pot
- (2) Partly cloudy path means the sounding has been generated from clear radiances which have been calculated from partly cloudy spots. Tropospheric and stratospheric HIRS data, as well as MSU and SSU data, have been
- Cloudy path means the sounding has been generated only from stratospheric HIRS data, MSU data, and SSU data. Tropospheric HIRS data have not been used because of cloudy conditions.

Volume I.1 A-293

$I_XI_XI_X$ Instrument type for XBT, with fall rate equation coefficients

(See Common Code table C-3 in Attachment I.)

1800

i Intensity or character of the weather element w_e (type of weather)

(The column selected from this table depends on the code figures used for symbol w_{e})

Code figure	Height of base of significant cloud in metres	Visibility in metres	Wind force (Beaufort)	lcina		Turbulend	се	Squalls	Snow cover in centimetres
0	Less than 50	Less than 50	10	No specific	ation	Not specifie	d	No specification	No snow
1	50-99	50- 199	11	Light)	Light)	Rain, few	Up to 2
2	100–199	200– 499	12	Moderate	ln cloud	Moderate	cloud	Rain, scattered but numerous	Up to 5
3	200–299	500- 999	3	Severe] =	Severe	⊑	Rain, very numerous	Up to 10
4	300-599	1 000– 1 999	4	Light) e	Light) _	Snow, few	Up to 15
5	600–999	1 000– 3 999	5	Moderate	In precipitation	Moderate	clear air	Snow, scattered but numerous	Up to 25
6	1 000–1 499	4 000– 9 999	6	Severe	In pre	Severe	드	Rain and snow mixed, few	Up to 50
7	1 500–1 999	10 000–19 999	7					Rain and snow mixed, few	Up to 100
8	2 000–2 499	20 000–49 999	8					Rain and snow, scattered but numerous	Up to 200
9	2 500 or more, or no clouds	50 000 or more	9					Rain and snow, very numerous	200 or more

Note: When $w_e = 8$ = saturation, 0 shall be reported for i.

1806

i_E Indicator of type of instrumentation for evaporation measurement or type of crop for which evapotranspiration is reported

Code		
figure	Instrumentation or crop type	Type of data
0	USA open pan evaporimeter (without cover))
1	USA open pan evaporimeter (mesh covered)	
2	GGI-3000 evaporimeter (sunken)	Evaporation
3	20-m ² tank	
4	Others	J
5	Rice)
6	Wheat	
7	Maize	Evapotranspiration
8	Sorghum	
9	Other crops	J

A-294 Volume I.1

1819

i_R	Indicator for inclusion or omission of precipitation data			
Code figure	Precipitation data are reported:	Group 6RRRt _R is:		
0	In Sections 1 and 3	Included in both sections		
1	In Section 1	Included		
2	In Section 3	Included		
3	In none of the two Sections 1 and 3	Omitted (precipitation amount = 0)		
4	In none of the two Sections 1 and 3	Omitted (precipitation amount not available)		
		4000		

1833

i _c	Indicator for units of sea-surface current speed
Code figure	
0	Metres per second
1	Knots
9	No sea-current data available

1840

i _h	Indicator of sign and unit of elevation/altitude		
Code figure			
1	Elevation at/or above sea level, in metres		
2	Elevation at/or above sea level, in feet		
3	Elevation below sea level, in metres		
4	Elevation below sea level, in feet		
5	Altitude of aircraft, in tens of metres		
6	Altitude of aircraft, in tens of feet		
7	Negative altitude of aircraft, in tens of metres		
8	Negative altitude of aircraft, in tens of feet		

Note: In code figures 5 through 8, aircraft altitude is reported with reference to the standard datum plane 1013.25 hPa (29.92 inches of mercury).

1841

i _j	Indicator for units of wind speed and height or pressure in the jet-stream core		
Code figure			
0	Wind in m s ⁻¹		
1	Wind in km h ⁻¹	Geopotential of jet-stream core in hundreds of standard geopotential metres	
2	Wind in knots		
4	Wind in m s ⁻¹		
5	Wind in km h ⁻¹	Pressure in whole hectopascals	
6	Wind in knots		

i _m	Indicator for units of elevation, and confidence factor for accuracy of elevation		
Code figure	Units used	Confidence factor	
1	Metres	Excellent (within 3 metres)	
2	Metres	Good (within 10 metres)	
3	Metres	Fair (within 20 metres)	
4	Metres	Poor (more than 20 metres)	
5	Feet	Excellent (within 10 feet)	
6	Feet	Good (within 30 feet)	
7	Feet	Fair (within 60 feet)	
8	Feet	Poor (more than 60 feet)	

1851

i_s Sign indicator for the data in Section 3

Code	
figure	
_	

- 1 s_x is included
- s_x is not included; all values positive
- s_x is not included; all values negative
- 4 s_x is not included; all values of first element are positive, all values of second element are negative
- 5 s_x is not included; all values of first element are negative, all values of second element are positive
- s_x is not included; when the value is negative, the last digit is odd, whereas, when the value is positive, the last digit is even

Note: In the case of $i_s = 6$, the absolute values have been increased by 1, if necessary, to obtain the correct sign indicator.

1853

i_u Indicator for units of wind speed and type of instrumentation

Code figure	Units used	Instruments certified or otherwise	
0	Metres per second	Ships with uncertified instruments	
1	Knots	Simps with uncertified institutions	
3	Metres per second \	Land stations, and ships with certified instrumen	
4	Knots	Land Stations, and Simps with Certified instruments	

1855

i_w Indicator for source and units of wind speed

Code figure			
0	Wind speed estimated]	Wind speed in metres per second
1	Wind speed obtained from anemometer	J	wind speed in medes per second
3	Wind speed estimated	Ì	Wind speed in knots
4	Wind speed obtained from anemometer	ſ	wind speed in kilots

A-296 Volume I.1

İγ Indicator to specify type of reading

Code figure

- Maximum/minimum thermometers 1
- 2 **Automatic weather station**
- 3 Thermograph

1859

Stability index iz

Code

figure

- 0 No index available
- 1 **Total totals**
- 2 Showalter
- 3 **KO-index**
- Faust index 5-9 Reserved

1860

Indicator for type of station operation (manned or automatic) and for present and past ix weather data

Code figure	Type of station operation	Group 7wwW ₁ W ₂ or 7w _a w _a W _{a1} W _{a2}
1	Manned	Included
2	Manned	Omitted (no significant phenomenon to report)
3	Manned	Omitted (no observation, data not available)
4	Automatic	Included using Code tables 4677 and 4561
5	Automatic	Omitted (no significant phenomenon to report)
6	Automatic	Omitted (no observation, data not available)
7	Automatic	Included using Code tables 4680 and 4531

Note: Manned station operations use only the group $7wwW_1W_2$ and indicator $i_x = 1$, 2 and 3. Automatic station operations normally use the group $7w_aw_aW_{a1}W_{a2}$ and indicator $i_x = 5$, 6 and 7. However, only when an automatic station operation is sufficiently sophisticated and able to cope automatically with Code tables 4677 and 4561 should the group $7wwW_1W_2$ and indicator $i_x = 4$ be used.

1861

i₀ Intensity of the phenomenon

Code figure

- 0 Slight
- Moderate 1
- 2 Heavy or strong

Volume I.1 A-297

İ2 Zone type indicator ZZZ Zone specification 0i2ZZZ Up to the turning point indicated by the first group $QL_aL_aL_oL_o$ which appears between the index 00000 numbers at the beginning of the message 01QL_aL_a Up to latitude LaLa 02QL_oL_o Up to longitude LoLo 04nnn Up to a point at a distance of nnn kilometres from preceding point 050ZZ For the area indicated in 5° zone numbers 06QL_aL_a At latitude LaLa 07QL_oL_o At longitude L_oL_o 09nnn At a point at a distance of nnn kilometres from preceding point

1864

	la diseta a few essentante men		
i ₃	Indicator for supplementary phenomena		
nnn	Specifications related to supplementary phenomena		
9i₃nnn			
91P ₂ P ₂ P ₂	Forecast lowest mean sea pressure		
$92F_tL_aL_a$	Type of front and its position (track of aircraft approximately N–S)		
$93F_tL_oL_o$	Type of front and its position (track of aircraft approximately E–W)		
94F _t GG	Type of front and time of passage		
951//	Gradual change along the route		
$952L_aL_a$	Change at latitude L _a L _a north along the route		
953L _a L _a	Change at latitude L _a L _a south along the route ROFOR only*		
954L _o L _o	Change at longitude L₀L₀ east along the route		
955L _o L _o	Change at longitude L₀L₀ west along the route		
96GGG _p	(a) When $G_p = 0$: a self-contained part of the forecast beginning at GG. All prior forecast conditions are superseded		
	(b) When $G_p = 1$ to 4: change at either a regular or irregular rate at an unspecified time within the period beginning at GG and indicated by G_p		
97GGG _p	Frequent or infrequent temporary fluctuations taking place within the period indicated by Gp		
9999C ₂	(a) When used in combination with 99GGG _p : probability C ₂ of occurrence of an alternative value of a forecast element, indicated in tens of per cent		
	(b) When used in combination with $97GGG_p$: probability C_2 of occurrence of temporary fluctuation, indicated in tens of per cent		
99GGG _p	Used in combination with 9999C $_2$: time period G_p beginning at GG that the alternative value of a forecast element may occur		

^{*} In ROFOR, such a change group must be qualified by a change group relative to time.

Note: Local variations in ARFOR and ROFOR may be described, if necessary, by the following expressions:

LOC – locally (LOC, when used, will always be accompanied by plain language sufficient to identify the locality in which the phenomenon is expected)

LAN - inland

COT - at the coast

MAR - at sea

VAL - in valleys

CIT - near or over large towns

MON- above high ground or mountains

SCT - scattered (SCT is used when the phenomenon is expected to be scattered in space or time or in both)

A-298 Volume I.1

(Code table 1864 - continued)

Plain-language alternative terminology for the group 9i₃nnn

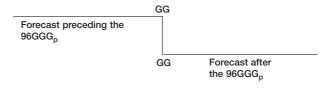
$91P_2P_2P_2$	Forecast lowest QFF (e.g. "Forecast QFF 1002")		
$92F_tL_aL_a\\$	The term FRONT should be used; the type is not normally designated; e.g. "FRONT 40 N"		
$93F_tL_oL_o$	The term FRONT should be used; the type is not normally designated; e.g. "FRONT 30 E"		
94F _t GG	The term FRONT should be used; the type is not normally designated; e.g. "FRONT 1200 UTC"		
951//	The term BECMG (without the time group) should be used for this type of change		
952L _a L _a	The form FM L_aL_aN should be used for this type of change where LaLa indicates the latitude (north) at which the change takes place		
953L _a L _a	The form FM L _a L _a S should be used for this type of change where LaLa indicates the latitude (south) at which the change takes place		
954L _o L _o	The form FM L₀L₀E should be used for this type of change where LoLo indicates the longitude (east) at which the change takes place		
955L _o L _o	The form FM L₀L₀W should be used for this type of change where LoLo indicates the longitude (west) at which the change takes place		
96GGG _p	(a) The form FMGG should be used to indicate the beginning of self-contained part of the forecast indicated by GG. All forecast conditions before FMGG are superseded by the conditions indicated thereafter		
	(b) The form BECMG GGG _e G _e should be used to indicate a change to forecast meteorological conditions expected to occur at either a regular or irregular rate at an unspecified time within the period beginning at GG and ending at G _e G _e . The duration of the period beginning		

97GGG $_p$ The form TEMPO GGG $_e$ G $_e$ should be used to indicate frequent or infrequent temporary fluctuations to forecast meteorological conditions which are expected to last less than one hour in each instance and, in the aggregate cover, less than half of the period beginning at GG and ending at G_e G $_e$

exceed four hours

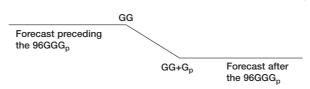
at GG and ending at GeGe shall normally not exceed two hours and in any case shall not

9999C₂ The form PROB (per cent) should be used for this group, either followed by GGG_eG_e to indicate the probability of occurrence of an alternative value of a forecast element (e.g. PROB30 1216), or followed by TEMPO GGG_eG_e to indicate the probability of occurrence of temporary fluctuations (e.g. PROB30 TEMPO 1216)

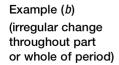

Pictorial illustration of changes or fluctuations (with time as abscissa and, for example, with h_sh_sh_s as ordinate in the diagrams)

 $96GGG_p$ – Change at specified time ($G_p = 0$)

Example

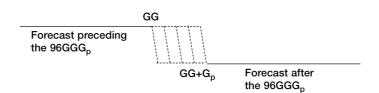

96GGG_p - Change at specified time (G_p = 0)

Example

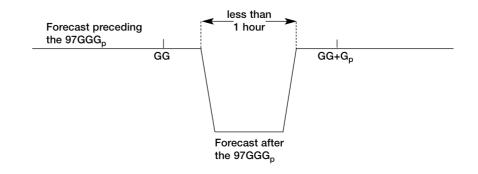



 $96GGG_p$ – Change at unspecified time within indicated time period ($G_p = 1 \text{ to } 4$)

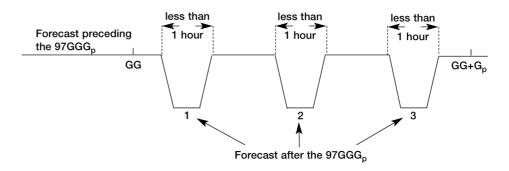
Example (a) (regular change throughout whole period)



(Code table 1864 - continued)



Example (c) (regular change at unspecified time throughout period)



97GGG_D - Temporary fluctuation(s)

Example (a)

Example (b)*

*1 + 2 + 3 = should be less than half the time indicated by G_p .

Examples show deteriorating conditions. For improvements, the examples should be taken upside down.

A-300 Volume I.1

j₁ Supplementary information indicator

$j_2j_3j_4$ Specifications relating to supplementary information

j₅j₆j₇j₈j₉ Supplementary group which follows 5j₁j₂j₃j₄

(a)

Code figure	j ₁	j ₂	j₃	j ₄	
0 1 2 3	Tens figure of evaporation or evapotranspiration	Units figure of evaporation or evapotranspiration	Tenths figure of evaporation or evapotranspiration	Indicator of type of instrumentation for evaporation measurement or type of crop for which evapotranspiration is reported	
4	Temperature change data indicator	Period between the time of observation and the time of temperature change	Sign of temperature change	Amount of temperature change	
5	Indicator for sunshine*	Tens figure of duration of sunshine. $j_2 = 3$ indicates that j_3j_4 reports duration of sunshine in past hour	Units figure of duration of sunshine	Tenths figure of duration of sunshine	
	Indicates the following group $j_5j_6j_7j_8j_9$ reports radiation	j_2 = 4 indicates the following group $4j_6j_7j_8j_9$ reports radiation during the previous hour. j_2 = 5 indicates the following group $5j_6j_7j_8j_9$ reports radiation during the preceding 24 hours	j ₃ = 0	j ₄ = 7 indicates the following group reports net short-wave radiation. j ₄ = 8 indicates the following group reports direct solar radiation	
6	Indicator for data on direction of cloud drift	Direction from which C _L clouds are moving	Direction from which C _M clouds are moving	Direction from which C _H clouds are moving	
7	Indicator for data on direction and elevation of cloud	Type of orographic clouds or of clouds with vertical development	Direction in which these clouds are seen	Elevation angle of the top of these clouds	
8 9	Indicator for data on surface pressure change (8 – positive or zero change; 9 –negative change)	Tens figure of surface pressure change	Units figure of surface pressure change	Tenths figure of surface pressure change	

^{*} In case of j_1 = 5, see Regulation 12.4.7.4.2.

(b)

Code figure	15 16		j ₇ j ₈		j ₉	
0 }	Sign of net radiation	Thousands figure of net radiation	Hundreds figure of net radiation	Tens figure of net radiation	Units figure of net radiation	
2 3 4 5 6 7 8 9	Indicator of type of solar or terrestrial radiation (code figures 0–6 used, 7–9 not used)	Thousands figure of solar or terrestrial radiation	Hundreds figure of solar or terrestrial radiation	Tens figure of solar or terrestrial radiation	Units figure of solar or terrestrial radiation	

K Effect of the ice on navigation

Code figure

- ngure
 - 0 Navigation unobstructed
 - 1 Navigation slightly impeded for unstrengthened ships
 - 2 Navigation difficult for unstrengthened ships and slightly impeded for strengthened ships
 - 3 Navigation difficult for strengthened ships
 - 4 Navigation very difficult for strengthened ships
 - 5 Navigation possible for strengthened ships only with ice-breaker assistance
 - 6 Channel open in the solid ice
 - 7 Navigation temporarily closed
 - 8 Navigation closed
 - 9 Navigation conditions unknown, e.g. owing to bad weather

2200

k Indicator for specifying the half-degrees of latitude and longitude

Code
figure

•		
0	Take L _a L _a L _o L _o as sent	
1	Add ¹ / ₂ degree to L _a L _a	east longitude 0° – 99°
2	Add ¹ / ₂ degree to L _o L _o	or
3	Add ¹ / ₂ degree to L _a L _a and L _o L _o	west longitude 100° – 180°
4*	Whole degrees	
5	Take L _a L _a L _o L _o as sent	
6	Add ¹ / ₂ degree to L _a L _a	west longitude 0° – 99°
7	Add ¹ / ₂ degree to L _o L _o	or
8	Add ¹ / ₂ degree to L _a L _a and L _o L _o	east longitude 100° – 180°
9*	Whole degrees	

^{*} When k = 4 or 9, the values of L_aL_a and L_oL_o are accurate to the nearest whole degree only; for all other values of k, the accuracy is to the nearest half-degree.

2262

k₁ Indicator for digitization

Code figure

- 7 Values at selected depths (data points fixed by the instrument or selected by any other method)
- 8 Values at significant depths (data points taken from traces at significant depths)

2263

k₂ Method of salinity/depth measurement

Code figure

- 0 No salinity measured
- 1 In situ sensor, accuracy better than $0.02^{0}/_{00}$
- 2 In situ sensor, accuracy less than $0.02^{0}/_{00}$
- 3 Sample analysis

A-302 Volume I.1

k_3	Duration and time of current measurement (vector of	or Doppler current profiling method)
Code figure		
1	Instantaneous	
2	Averaged over 3 minutes or less	between H–1 and H
3	Averaged over more than 3 minutes, but 6 at the most	between n=1 and n
4	Averaged over more than 6 minutes, but 12 at the most	J
5	Instantaneous)
6	Averaged over 3 minutes or less	between H–2 and H–1
7	Averaged over more than 3 minutes, but 6 at the most	between n=2 and n=1
8	Averaged over more than 6 minutes, but 12 at the most	J
9	Vector or Doppler current profiling method not used	
Note:	H = time of observation.	

2265

$\mathbf{k_4}$ Period of current measurement (drift method) Code figure 1 hour or less 1 2 More than 1 hour but 2 at the most 3 More than 2 hours but 4 at the most More than 4 hours but 8 at the most More than 8 hours but 12 at the most 6 More than 12 hours but 18 at the most More than 18 hours but 24 at the most 7 9 Drift method not used

2266

k ₅	Indicator for the method of current measurement
Code figure	
0	Reserved
1*	ADCP (Acoustic Doppler Current Profiler)
2	GEK (Geomagnetic ElectroKinetograph)
3	Ship's set and drift determined by fixes 3-6 hours apart
4	Ship's set and drift determined by fixes more than 6 hours but less than 12 hours apart
5	Drift of buoy
6	ADCP (Acoustic Doppler Current Profiler)

This entry should not be used. Code figure 6 should be used instead.

Method of removing the velocity and motion of the ship or buoy from current measurement k_6 Code figure Ship's motion removed by averaging 0 Ship's velocity removed by bottom tracking 1 Ship's motion removed by motion compensation 2 Ship's motion not removed 3 Ship's motion removed by averaging Ship's motion removed by motion compensation Ship's velocity removed by navigation 4 5 Ship's motion not removed Doppler current profiling method not used 6 7–9 Reserved Code figures 0, 1, 2 and 6 are also used for drifting buoys. Note:

2300

L	Estimated level of wind data
Code figure	
2	Low-cloud level
5	Middle-cloud level
8	High-cloud level

2382

L_iL_i , L_jL_j Type of line or feature being described

Code	
figure	
00	No specification
01	North-east of following line*
02	East of following line*
03	South-east of following line*
04	South of following line*
05	South-west of following line*
06	West of following line*
07	North-west of following line*
80	North of following line*
09	Within following lines*
10	Land
11	Radar
12	Satellite
13	Limits of observation
14	Limits of analysis
15	Estimated
16	Compacted edge
17	Diffused edge
18	Area of greater concentration
19	Area of lesser concentration

A-304 Volume I.1

(Code table 2382 – continued)

- 21 Ice edge
- 22 Concentration boundary
- 23 Fast ice
- 24 Lead
- 25 Polynya
- 26 Belt
- 27 Patch
- 28 Field
- 29 Ridged ice zone
- 30 Fracture zone
- 31 Iceberg
- 32 Scattered icebergs
- 33 Group of icebergs
- 34 Ice island
- 35 (Available for expansion)
- 50 Whole visual observed area
- 51 Whole visual observed area outside pack-ice area

Note: If only one set of code figure L_iL_i is used, L_iL_i shall be coded as 00.

* The line indicated by the position groups following the group $6L_iL_iL_jL_i$.

2538

M_h Character of air mass Code figure 0 No specification, or indeterminate 1 Continental (c) 2 Maritime (m)

2551

Ms	Source region of air mass					
Code figure						
0	No specification, or indeterminate					
1	Arctic (A)					
2	Polar (P)					
3	Tropical (T)					
4	Equatorial (E)					
5	Superior (S)					

M_{t} Thermodynamic character of air mass Code figure No specification 0 1 Indeterminate If not followed by another $33M_hM_sM_t$ group, means only one air mass present; if followed by another $33 M_{\text{h}} M_{\text{s}} M_{\text{t}}$ group, means "mixed" with air mass described in 2 Cold (k) the second group 3 Warm (w) 4 Indeterminate Is followed by another $33M_{\text{h}}M_{\text{s}}M_{\text{t}}$ group, the air mass reported in the first group 5 Cold (k) being above the air mass of the second group 6 Warm (w) 7 Indeterminate Is followed by another $33M_hM_sM_t$ group, the air mass in the first group being 8 Cold (k) "transitional" or "becoming" the air mass in the second group 9 Warm (w)

2555

M_w	Waterspout(s), tornadoes, whirlwinds, dust devils
Code figure	
0	Waterspout(s) within 3 km of station
1	Waterspout(s) more than 3 km from station
2	Tornado clouds within 3 km of station
3	Tornado clouds more than 3 km from station
4	Whirlwinds of slight intensity
5	Whirlwinds of moderate intensity
6	Whirlwinds of severe intensity
7	Dust devils of slight intensity
8	Dust devils of moderate intensity
9	Dust devils of severe intensity

2562

M_1	Month when the period covered by the forecast begins
M_2	Month when the period covered by the forecast ends
Code figure	
0	Current month
1	First month after the current month
2	Second month after the current month
3	Third month after the current month
4	Fourth month after the current month
5	Fifth month after the current month
6	Sixth month after the current month
7	Seventh month after the current month
8	Eighth month after the current month
9	Ninth month after the current month

A-306 Volume I.1

2582

 $M_i M_i$ Identification letters of the report $M_j M_j$ Identification letters of the part of the report or the version of the code form

Code form		M_iM_i				$M_j M_j$				
		Land station	Sea station	Aircraft	Satellite	Part A	Part B	Part C	Part D	No distinction
FM 12-XIV Ext.	SYNOP	AA								ХХ
FM 13-XIV Ext.	SHIP		ВВ							XX
FM 14-XIV Ext.	SYNOP MOBIL	00								XX
FM 18-XII	BUOY		ZZ							YY
FM 20-VIII	RADOB	FF	GG			AA	ВВ			
FM 32-XI Ext.	PILOT	PP				AA	ВВ	cc	DD	
FM 33-XI Ext.	PILOT SHIP		QQ			AA	ВВ	cc	DD	
FM 34-XI Ext.	PILOT MOBIL	EE				AA	ВВ	cc	DD	
FM 35-XI Ext.	TEMP	TT				AA	ВВ	СС	DD	
FM 36-XI Ext.	TEMP SHIP		UU			AA	ВВ	СС	DD	
FM 37-XI Ext.	TEMP DROP			XX		AA	ВВ	СС	DD	
FM 38-XI Ext.	TEMP MOBIL	П				AA	ВВ	CC	DD	
FM 39-VI	ROCOB	RR								ХХ
FM 40-VI	ROCOB SHIP		SS							ХХ
FM 41-IV	CODAR			LL						ХХ
FM 62-VIII Ext.	TRACKOB		NN							ХХ
FM 63-IX	BATHY		JJ							ХХ
FM 63-X Ext.	BATHY		IJ							YY
FM 63-XI Ext.	BATHY		JJ							vv
FM 64-IX	TESAC		KK							ХХ
FM 64-XI Ext.	TESAC		KK							YY
FM 65-XI Ext.	WAVEOB		ММ							xx
FM 67-VI	HYDRA	нн								xx
FM 85-IX	SAREP	СС	DD			AA	ВВ			
FM 86-XI	SATEM				vv	AA	ВВ	СС	DD	
FM 87-XI	SARAD				ww					xx
FM 88-XI	SATOB				YY					xx

MMM Number of Marsden square in which the station is situated at the time of observation

271	235	199	163	127	91	55	19	318	354	390	426	462	498	534
272 2	236 2	200 1	164 1	128 1	36	26	50	319 3	355 3	391 3	427 4	463 4	499 4	535 5
273 2	237 2	201	165 1	129 1	93	22	21	320 3	356 3	392 3	428 4	464 4	500 4	536 5
274 2	238 2	202 2	166 1	130 1	94	28	22	321 3	357 3	393 3	429 4		501 5	537 5
275 2	239 2	33	167 10	131 1:	95	29	23 2	322 3	358 3	394 3	430 4	466 465	502 5	538 5
276 2	240 2	204 203	168 1	32.1	96	9	24 2	323 3	329 3	395 33	431 4	467 4	503 50	539 5
277 27	241 2	205 20		133 1	6 26	61 6	25 2	324 3;		396 36	432 4	38 46	504 50	
278 27	242 24	206 20	170 169	13	6 86	•	26 2	325 33	31 360	397 39	433 4(469 468	202 20	541 540
279 27	243 24			134		3 62	1	326 32	361			0 4		
280 27		8 207	2 171	6 135	66 0	63	8 27		3 362	398	5 434	1 470	7 506	3 542
	5 244	9 208	3 172	7 136	1 100	5 64	9 28	8 327	4 363	0 399	6 435	2 471	8 507	4 543
8	6 245	209	4 173	3 137	2 101	65	59	9 328	5 364	400	7 436	3 472	9 508	5 544
3 282	7 246	210	174	138	3 102	99	30	329	9 365	2 401	8 437	4 473	0 509	5 545
1 283	3 247	211	176 175	140 139	103	29	3	330	998	3 402	9 438	5 474	51	7 546
284	248	3 21 2			104	68	32	331	367	403	439	3 475	511	3 547
285	249	213	177	141	105	69	33	332	368	404	440	476	512	548
286	250	214	178	142	106	02	34	333	698	405	441	477	513	549
287	251	215	179	143	107	7	35	334	370	406	442	478	514	550
288	252	216	180	144 143	108	72	36	335	371	407	443	479	515	551
253	217	181	145	109	73	37	-	300	336	372	408	444	480	516
254	218	182	146	110	42	88	2	301	337	373	409	445	481	517
255	219	183		- -	75	39	က	302	338	374	410		482	518
256 2	220	184 1	148 147	1121	92	40	4	303	339	375	411,	447 446	483 4	519 (
257 2	221	185 1		113 1	12	4	2	304	340	376	412	448	484	520 8
258 2	222	186 1	150 149	1141	82	42 ,	9	305	341 3	377 3	413 4	449	485 4	521 5
259 2		187.1	5	115 1	62	43 4	7	306	342 3	378 3	414 4	450 4	486 4	522 5
260 2	224 223	88 1	52 1	9	08	44	ω	307 3	343 3	379 3	2	4	487 4	523 5
			_	117 11	81 8	45	6		Ċ	380 37	16 41	4		
32 26	226 225	190 189	14	11811	82 8	46 4	9	309 308	345 344	381 38	417 416	53	489 488	525 524
266 265 264 263 262 261			55 15		83 8	47 4		310 30			418 4	457 456 455 454 453 452		526 5
26	229 228 227	193 192 191	91 2	122 121 120 119			2 11		.7 346	3 382	9	55	493 492 491 490	
26	9 22	33 19	7 15	112	5 84	9 48	_	2 311	348 347	384 383	420 419	94	92 46	8 25
9 7 9	0 52	9.	8 15	2 12	6 85	0 49	13	3 312		5 38	42	7 45	33 46	529 528 527
	231 230	2 194	160 159 158 157 156 155 154 153		86	20	4	4 313	0 349	6 385	2 421		4 48	0 52
268 267		196 195	156	124 123	87	51	15	314	350	386	423 422	460 459 458	2 494	530
	232		160		88	52	16	315	351	387	423	459	495	531
270 269	234 233	197	162 161	125	83	53	17	316	352	388	424		496	532
270	234	861	162	126	6	25	18	317	353	389	425	461	497	533

Note: For polar zones, see following page.

A-308 Volume I.1

	°0		
919	70° 180°	570	909
920	60° 17	571	209 809
921	160° 16	572	809
922	00 150	573	609
923 922	0 14(574 573	610 609
924	130°	275	611
925	0 120	929	612 (
926		277	613 (
927	1000	829	614
928		579	615 (
	°08	580 5	616 6
930 929			617 6
931 8		82 5	618 6
932 6	20°	583 582 581	619 6
933 9	longitudes	584 5	
934 9		585 5	621 620
	20° 20°	86 5	622 6
936 935		552 587 586	623 6
901 9	°	52 5	588 6
02 9		553 5	89 5
903 902	nde	554 5	590 589
904 8	longitudes	555 5	591 5
905 9	st lo	226 51	592 5
6 906	West I	557 5	593 5
6 206	9	558 5	594 5
6 806	70°	559 58	95 5
			96 292
10 9	。06 ·····	91 56	69 269
914 913 912 911 910 909	. 100°	62 5	98 5
12 9	110°	33 5(99 5(
13 9	120°	34 56	00 5
14 9	130°	55 56	01 6
15 9.	140°	36 56)2 6(
16 91	150°	37 56)3 6(
7 91	160°	18 56	14 60
918 917 916 915		569 568 567 566 565 564 563 562 561 560	605 604 603 602 601 600 599 598
91	180°	56	09
North of 80°		70°–80° South	South of 80°S

(Code table 2590 - continued

Note: The number to be coded for $U_{La}U_{Lo}$ in the position verifying group MMMU_{La}U_{Lo} is obtained by combining the second figure for L_a and the third figure for L_o in the reported position ($L_aL_aL_a$ $Q_cL_oL_oL_oL_o$). This number $U_{La}U_{Lo}$ is the number of the one-degree subdivision of the Marsden 10-degree square in which the ship is located at the time of observation.

When the ship is on the boundary between two (or four) 10-degree Marsden squares, the number to be coded for MMM is that of the Marsden 10-degree square in which the one-degree subdivision whose number is $U_{La}U_{Lo}$, as defined above, corresponds to the ship's position.

When the ship is on the meridian 0° or 180° , as well as on the Equator, the number used for reporting Q_c shall be taken into account for determining the relevant number of the Marsden 10-degree square.

Examples:

(1) For a ship located at 42.3°N and 30.0°W, the position is coded as follows:

$$Q_c = 7$$
, $L_aL_aL_a = 423$, $L_oL_oL_oL_o = 0300$

 $U_{La}U_{Lo}$ is therefore **20**. The ship is on the boundary line between Marsden squares 147 and 148. The relevant scheme of the annex ($Q_c = 7$) shows that the one-degree subdivision corresponding to the ship's position would be numbered 29 in Marsden square 147 and **20** in Marsden square 148. MMM is therefore to be coded 148.

(2) For a ship located at 40.0°S and 120.0°E, the position is coded as follows:

$$Q_c = 3$$
, $L_aL_aL_a = 400$, $L_oL_oL_oL_o = 1200$

 $U_{La}U_{Lo}$ is therefore 00. The ship is on the boundary point between Marsden squares 431, 432, 467 and 468. The relevant scheme of the annex (Q_c = 3) shows that the one-degree subdivision corresponding to the ship's position would be 90 in Marsden square 431, 99 in Marsden square 432, **00** in Marsden square 467, and 09 in Marsden square 468. MMM is therefore to be coded 467.

(See annex.)

A-310 Volume I.1

ANNEX

Subdivisions of the Marsden 10-degree squares into one-degree squares for the eight octants (Q) of the globe

				WE	EST									EA	ST					
99	98	97	96	95	94	93	92	91	90	90	91	92	93	94	95	96	97	98	99	
89									80	80									89	
79									70	70									79	
69									60	60									69	
59									50	50									59	E
49									40	40									49	I TO CIA
39									30	30									39	
29									20	20									29	
19									10	10									19	
09	08	07	06	05	04	03	02	01	00	00	01	02	03	04	05	06	07	08	09	
				Qc	= 7									Qc	= 1					
09	08	07	06	05	04	03	02	01	00	00	01	02	03	04	05	06	07	08	09	
19									10	10									19	
29									20	20									29	
39									30	30									39	
49									40	40									49	H
59									50	50									59	0
69									60	60									69	
79									70	70									79	
89									80	80									89	
99	98	97	96	95	94	93	92	91	90	90	91	92	93	94	95	96	97	98	99	

 $Q_c = 3$

Volume I.1 A–311

 $Q_c = 5$

m	Movement
Code figure	
0	No specification
1	Stationary
2	Little change
3	Becoming stationary
4	Retarding
5	Curving to left
6	Recurving
7	Accelerating
8	Curving to right
9	Expected to recurve

2604

 m_s Averaging period for salinity Averaging period for sea temperature \mathbf{m}_{T} Averaging period for surface current direction and speed m_c Code figure 0 Spot values 1 Less than 15 minutes From 15 to 45 minutes 3 More than 45 minutes Data not available 9

2649

m_r Method of reducing data Code figure 1 Manually – Nomogram 2 Electronic computer

Other method

Note: Code figure 1 shall be reported if all, or any portion, of the data reduction was manual. Code figure 2 shall be reported only when all the data reduction was by electronic computer.

2650

ms	Stage of melting
Code figure	
0	No melt
1	Discoloured ice
2	Flooded ice

9

A-312 Volume I.1

(Code table 2650 – continued)

3 Few puddles

- 4 Many puddles
- 5 Puddles with few thaw holes
- 6 Puddles with many thaw holes
- 7 Thaw holes, no puddles
- 8 Rotten ice
- 9 Refreezing/refrozen puddles
- / Undetermined or unknown

2677

mm	Procedure or model used to generate the data field
Code figure	
00	Subjective analysis
01-09	Subjective forecast
10–19	Objective (numerical) analysis
20-29	Barotropic (one layer) numerical forecast based on the primitive equations
30-39	Barotropic (one layer) numerical forecast based on other than the primitive equations
40-59	Baroclinic (multilayer) numerical forecast based on the primitive equations
60–79	Baroclinic (multilayer) numerical forecast based on other than the primitive equations
80-98	Other procedures or models
99	Not mentioned
Note: Volume E	Detailed specifications of each procedure or model are contained in <i>Weather Reporting</i> (WMO-No. 9), 3.

2700

N	Total cloud cover						
N_h	Amount of all the C _L cloud present	nt or, if no C_L cloud is present, the amount of all the C_M					
N_s	Amount of individual cloud layer or mass whose genus is indicated by C						
N'	Amount of cloud whose base is be	elow the level of the station					
Code figure							
0	0	0					
1	1 okta or less, but not zero	¹ / ₁₀ or less, but not zero					
2	2 oktas	$^{2}/_{10} - ^{3}/_{10}$					
3	3 oktas	⁴ /10					
4	4 oktas	⁵ /10					
5	5 oktas	⁶ /10					
6	6 oktas	$^{7}/_{10} - ^{8}/_{10}$					
7	7 oktas or more, but not 8 oktas	⁹ / ₁₀ or more, but not ¹⁰ / ₁₀					
8	8 oktas	¹⁰ /10					
9	Sky obscured by fog and/or other met	teorological phenomena					
I	Cloud cover is indiscernible for reaso observation is not made	ns other than fog or other meteorological phenomena, or					
Note:	For use of (/), see Regulation 12.1.4.						

2745

N_{m}	Cloud conditions over mountains and passes
Code figure	
0	All mountains open, only small amounts of cloud present
1	Mountains partly covered with detached clouds (not more than half the peaks can be seen)
2	All mountain slopes covered, peaks and passes free
3	Mountains open on observer's side (only small amounts of cloud present), but a continuous wall of cloud on the other side
4	Clouds low above the mountains, but all slopes and mountains open (only small amounts of cloud on the slopes)
5	Clouds low above the mountains, peaks partly covered by precipitation trails or clouds
6	All peaks covered but passes open, slopes either open or covered
7	Mountains generally covered but some peaks free, slopes wholly or partially covered
8	All peaks, passes and slopes covered
9	Mountains cannot be seen owing to darkness, fog, snowstorm, precipitation, etc.
	2752
N_t	Condensation trails
Code figure	
5	Non-persistent condensation trails
6	Persistent condensation trails covering less than ¹ / ₈ of the sky
7	Persistent condensation trails covering ¹ / ₈ of the sky
8	Persistent condensation trails covering ² / ₈ of the sky
9	Persistent condensation trails covering ³ / ₈ or more of the sky
	2754
N_{v}	Cloud conditions observed from a higher level
Code figure	
0	No cloud or mist
1	Mist, clear above
2	Fog patches
3	Layer of slight fog
4	Layer of thick fog
5	Some isolated clouds
6	Isolated clouds and fog below
7	Many isolated clouds
8	Sea of clouds
9	Bad visibility obscuring the downward view

A-314 Volume I.1

2776

N_eN_e Sequential number of the 60 × 60 km square in the radar coordinate grid

						N						
	00	01	02	03	04		05	06	07	80	09	
w «	10	11	12	13	14	T	15	16	17	18	19	
	20	21	22	23	24		25	26	27	28	29	→ E
	30	31	32	33	34		35	36	37	38	39	
	_40	41	42	43	44	+	45	46	47	48	49	
	50	51	52	53	54		55	56	57	58	59	
	60	61	62	63	64		65	66	67	68	69	
	70	71	72	73	74		75	76	77	78	79	
	80	81	82	83	84		85	86	87	88	89	
	90	91	92	93	94	¥	95	96	97	98	99	
						S						

2836

n_f Number of atmospherics observed by the system at the geographical locations that follow, during a 10-minute period within the hour immediately preceding the time of the report

Code figure	
0	1
1	2 or 3
2	4 to 8
3	9 to 15
4	16 to 24
5	25 to 35
6	36 to 48
7	49 to 63
8	64 to 80
9	81 or more
1	Not specified

2863

n ₃	Evolution of clouds
Code	
figure	
0	No change
1	Cumulification
2	Slow elevation
3	Rapid elevation
4	Elevation and stratification
5	Slow lowering
6	Rapid lowering
7	Stratification
8	Stratification and lowering
9	Rapid change

n₄ Evolution of clouds observed from a station at a higher level

Code figure 0 N

- 0 No change
- 1 Decrease and elevation
- 2 Decrease
- 3 Elevation
- 4 Decrease and lowering
- 5 Increase and elevation
- 6 Lowering
- 7 Increase
- 8 Increase and lowering
- 9 Intermittent fog at the station

2877

$n_B n_B$	Number of icebergs within the area

n_Gn_G Number of growlers and bergy bits within the area

Code figure		Code figure	
00	None	15	15
01	1	16	16
02	2	17	17
03	3	18	18
04	4	19	19
05	5	20	1–9
06	6	21	0–19
07	7	22	20–29
08	8	23	30–39
09	9	24	40–49
10	10	25	50–99
11	11	26	100–199
12	12	27	200–499
13	13	28	500 or more
14	14	99	No indication because counting has been impossible

Notes:

- (1) If the exact number, 1 to 19, is known, code figures 01 to 19 shall be used.
- (2) If the number is more than 19, or if the exact number can only be estimated, code figures 20 to 28 shall be used.
- (3) Code figure 99 shall only be used when it is absolutely impossible to make a reasonable estimate of the number.

2890

n_Tn_T Indicator of reference code table for type of parameter a₁a₁a₁, a₂a₂a₂

Code figure

00 Code table 0291

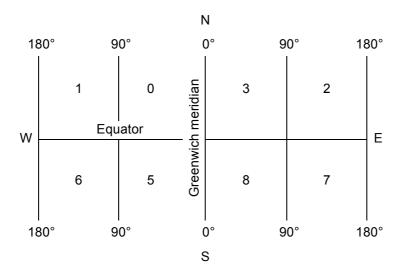
01-99 Reserved

A-316 Volume I.1

Pa	Countermeasures taken near border
code	Countermediates taken near border
figure	
0	No countermeasures
1	Evacuation
2	Sheltering
3	Prophylaxis
4	Water
5	Milk
6	Vegetables
7	Other food types
8–9	Reserved
1	Missing value
	3133
P_c	Character of pressure system
h _c	Character of topography system
Code figure	
0	No specification
1	LOW filling or HIGH weakening
2	Little change
3	LOW deepening or HIGH intensifying
4	Complex
5	Forming or existence suspected (cyclogenesis or anticyclogenesis)
6	Filling or weakening, but not disappearing
7	General rise of pressure (or height)
8	General fall of pressure (or height)
9	Position doubtful
	3139
P_i	Forecast ice phenomenon
Code figure	
1	Appearance of floating ice
2	Freeze-up in rivers, lakes or reservoirs
3	Ice break-up in rivers, lakes or reservoirs
4	Disappearance of ice

\mathbf{P}_{t}	Type of pressure system
ht	Type of topography system
Code figure	
0	Complex LOW
1	LOW
2	Secondary
3	Trough
4	Wave
5	HIGH
6	Area of uniform pressure (or height)
7	Ridge
8	Col
9	Tropical storm

3155


P_{w}	Period of waves
Code figure	
0	10 seconds
1	11 seconds
2	12 seconds
3	13 seconds
4	14 seconds or more
5	5 seconds or less
6	6 seconds
7	7 seconds
8	8 seconds
9	9 seconds
1	Calm or period not determined

3300

Q	Octant of the g	globe			
Code figure	Longitude	Hemisphere	Code figure	Longitude	Hemisphere
0	0° - 90°W		5	0° – 90°W	
1	90° – 180°W	10 a u4h a ua	6	90° – 180°W	a a u th a rm
2	180° - 90°E	northern	7	180° - 90°E	southern
3	90° – 0°E		8	90° – 0°E	

A–318 Volume I.1

(Code table 3300 - continued)

3302

Q_A Location quality class (range of radius of 66% confidence)

Code
figure

- 0 Radius ≥ 1500 m
- 1 500 m ≤ Radius < 1500 m
- 2 250 m ≤ Radius < 500 m
- 3 Radius < 250 m
- Location quality class information not available

3311

Q_L Quality of location

Code figure

- The value transmitted at the beginning of the report is a reliable value (location made over two satellite passes)
- The values at the beginning of the report are the latest known values (no location over the corresponding pass)
- 2 Dubious quality. The location was made over one pass only; a second solution is possible in five per cent of the cases

3313

Q_N Quality of the buoy satellite transmission

Code figure

- 0 Good quality (several identical reports have been received)
- 1 Dubious quality (no identical reports)

Q_P Quality of the pressure measurement

Code figure

- 0 Value within specified limits
- 1 Value outside specified limits

3318

Q_z Indicator of depth correction (indication whether probe depths are corrected using hydrostatic pressure or not)

Code figure

- 0 Depth are not corrected
- 1 Depth are corrected
- / Missing

3319

Q_{TW} Quality of the measurement of the water-surface temperature

Code figure

- 0 Value within limits
- 1 Value outside limits

3333

Q_c Indicator of depth correction

Code figure	Latitude	Longitude	$Q_c = 7$	N L	Q _c = 1
1	North	East		idia	
3	South	East	Equator	meridian	
5	South	West	W —	kich	— Е
7	North	West		Greenwich	
			$Q_c = 5$	S	$Q_c = 3$

Note: The choice is left to the observer in the following cases:

When the ship is on the Greenwich meridian or the 180th meridian ($L_0L_0L_0L_0$ = 0000 or 1800 respectively):

 $Q_c = 1$ or 7 (northern hemisphere) or

 $Q_c = 3 \text{ or } 5 \text{ (southern hemisphere)};$

- When the ship is on the Equator $(L_aL_aL_a = 000)$:

Q_c = 1 or 3 (eastern longitude) or

 $Q_c = 5$ or 7 (western longitude).

3334

\mathbf{Q}_{d}	Quality control indicator
\mathbf{Q}_{d1}	Quality control indicator for temperature/salinity profile
\mathbf{Q}_{d2}	Quality control indicator for current profile
Q_{l}	Quality control indicator for position
\mathbf{Q}_{t}	Quality control indicator for time
Code figure	
0	Data not checked
1	Data good
2	Data inconsistent
3	Data doubtful
4	Data wrong
5	Data value has been changed
Note:	These flags are the same as the IGOSS quality control flags.
	3363
Q_2	Quality of the housekeeping parameter (second word in first block of ARGOS platform transmitters terminal sensor data)
\mathbf{Q}_4	Quality of the measurement of air temperature
Code figure	
0	Value within limits

3462

\mathbf{q}_1	Message contraction	on and data scanning indicator
Code figure	Spaces included between data groups	Data line scanning mode
0	Yes	Normal
1	Yes	As described in Weather Reporting (WMO-No. 9), Volume B
2	No	Normal
3	No	As described in Weather Reporting (WMO-No. 9), Volume B

1

Value outside limits

q_2	Data contraction indicator
Code figure	
0	All data location groups and, where necessary, the group 9991010 included
1	Groups 999l₀l₀ k₁k₁nցnց iaiaiajajaja omitted
2	Groups 999l₀l₀ ngng iaiaiajajaja omitted
3	Groups ngng iaiajajaja omitted
4	Group iaiaiajajaja omitted
5	Group 999I₀I₀ omitted
Notos:	

Notes:

- Code figures 1, 2, 3, 4 and 5 for q_2 shall be used only when the relevant details are given in the appropriate (1) WMO publication so that the unambiguous reconstruction of the product is possible by using that publication.
- When $n_g n_g$ is omitted but $k_1 k_1$ is included, no solidi shall be included in the place of $n_g n_g$. The group will therefore be reported in the form of k_1k_1 .

3533

R_{c} Composition of release Code figure 0 Noble gases 1 lodines 2 Caesiums 3 **Transuranics** 4–9 Reserved I Missing value

3534

R_{d}	Frequency group within which $R_1R_1R_1R_1$ falls
Code figure	
0	Smaller than any value in the 30-year period
1	In the first quintile
2	In the second quintile
3	In the third quintile
4	In the fourth quintile
5	In the fifth quintile
6	Greater than any value in the 30-year period

3535

R_{e}	Possibility of significant chemical toxic health effect
Code figure	
0	No significant chemical toxic health effect
1	Significant chemical toxic health effect possible
2	Reserved
3	Missing value

A-322 Volume I.1

	3538
R_h	Maximum height of ridging
Code figure	
0	Level ice
1	1 m
2	2 m
3	3 m
4	4 m
5	5 m
6	6 m
7	7 m
8	8 m
9	9 m or more
I	Undetermined or unknown
	3548
R_p	Possibility that plume will encounter precipitation in State in which incident occurred
Code figure	
0	Plume will not encounter rain in incident State
1	Plume will encounter rain in incident State
2	Reserved
3	Missing value
	3551
R_s	Rate of ice accretion on ships
Code figure	
0	Ice not building up
1	Ice building up slowly
2	Ice building up rapidly
3	Ice melting or breaking up slowly
4	Ice melting or breaking up rapidly
	3552
R_{t}	Time at which precipitation given by RRR began or ended
Code figure	
1	Less than 1 hour before time of observation
2	1 to 2 hours before time of observation
3	2 to 3 hours before time of observation
4	3 to 4 hours before time of observation
5	4 to 5 hours before time of observation
6	5 to 6 hours before time of observation
7	6 to 12 hours before time of observation
8	More than 12 hours before time of observation

Volume I.1 A-323

9

Unknown

R_{w}	Wave length of the radar
Code figure	
1	10 to less than 20 mm
3	20 to less than 40 mm
5	40 to less than 60 mm
7	60 to less than 90 mm
8	90 to less than 110 mm
9	110 mm and greater

3570

RR Amount of precipitation or water equivalent of solid precipitation, or diameter of solid deposit

Code	mm	Code	mm	Code	mm
figure	mm	figure	mm	figure	mm
00	0	34	34	68	180
01	1	35	35	69	190
02	2	36	36	70	200
03	3	37	37	71	210
04	4	38	38	72	220
05	5	39	39	73	230
06	6	40	40	74	240
07	7	41	41	75	250
08	8	42	42	76	260
09	9	43	43	77	270
10	10	44	44	78	280
11	11	45	45	79	290
12	12	46	46	80	300
13	13	47	47	81	310
14	14	48	48	82	320
15	15	49	49	83	330
16	16	50	50	84	340
17	17	51	51	85	350
18	18	52	52	86	360
19	19	53	53	87	370
20	20	54	54	88	380
21	21	55	55	89	390
22	22	56	60	90	400
23	23	57	70	91	0.1
24	24	58	80	92	0.2
25	25	59	90	93	0.3
26	26	60	100	94	0.4
27	27	61	110	95	0.5
28	28	62	120	96	0.6
29	29	63	130	97	A little precipitation,
30	30	64	140		non-measurable
31	31	65	150	98	More than 400 mm
32	32	66	160	99	Measurement impossible
33	33	67	170		

A-324 Volume I.1

3590

RRR Amount of precipitation which has fallen during the period preceding the time of observation, as indicated by t_{R}

Code		Code	
figure		figure	
000	No precipitation	990	Trace
001	1 mm	991	0.1 mm
002	2 mm	992	0.2 mm
etc.	etc.	993	0.3 mm
988	988 mm	994	0.4 mm
989	989 mm or more	995	0.5 mm
		996	0.6 mm
		997	0.7 mm
		998	0.8 mm
		999	0.9 mm
		<i>III</i>	Precipitation not measured

Note: See Regulations 12.2.5.4, 22.5.2.1 and 22.5.2.2.

3596

water equivalent of snow cover on the ground

RRRR Total amount of precipitation or water equivalent of snow cover on the ground $R_1R_1R_1$ Total precipitation for the month

Code figure	
0000	No precipitation or no measurable
0001	1 mm
0002	2 mm
etc.	etc.
8898	8 898 mm
8899	8 899 mm or more

9999 More than zero and less than 1 mm

3644

r _m	Type of rocket motor
Code figure	
0	114 mm (4.5 in.), end burning
1	76 mm (3.0 in.), internal burning
2	Boosted, 114 mm (4.5 in.), end burning
3	Boosted, 76 mm (3.0 in.), internal burning
4	135 mm (5.3 in.), internal burning
5	160 mm (6.3 in.), internal burning

3652

rt Distance between the end of the observed outermost spiral band and the centre of the tropical cyclone

Code figure	
0	0 to less than 100 km
1	100 to less than 200 km
2	200 to less than 300 km
3	300 to less than 400 km
4	400 to less than 500 km
5	500 to less than 600 km
6	600 to less than 800 km
7	800 km or more
1	Doubtful or undetermined

3685

r_ar_a Radiosonde/sounding system used

(See common Code table C-2 in Attachment I.)

3700

S State of the sea

S' State of the water surface in an alighting area

Code figure	Descriptive terms	Height* in metres
0	Calm (glassy)	0
1	Calm (rippled)	0 – 0.1
2	Smooth (wavelets)	0.1 - 0.5
3	Slight	0.5 - 1.25
4	Moderate	1.25 – 2.5
5	Rough	2.5 – 4
6	Very rough	4 – 6
7	High	6 – 9
8	Very high	9 – 14
9	Phenomenal	Over 14

Notes:

- (1) * These values refer to well-developed wind waves of the open sea. While priority shall be given to the descriptive terms, these height values may be used for guidance by the observer when reporting the total state of agitation of the sea resulting from various factors such as wind, swell, currents, angle between swell and wind, etc.
- (2) The exact bounding height shall be assigned for the lower code figure; e.g. a height of 4 m is coded as 5.

A-326 Volume I.1

•	
Sc	Shape and definition of the eye of the tropical cyclone
Code	
figure 0	Circular
1	Elliptical – the minor axis is at least ³ / ₄ the length of the major axis
2	Elliptical – the minor axis is less than 3 /4 the length of the major axis \ well defined
3	Apparent double eye
4	Other shape
5	Ill defined
ı	Undetermined
,	Ondetermined
	3738
Sh	Type of temperature and height data
Code	
figure	
0	Observed air temperature – D-value positive
2	Observed air temperature – D-value negative
4	Observed air temperature – no D-value reported
6	Air temperature reduced to the nearest standard isobaric surface – height reduced to the nearest standard isobaric surface
	3739
Si	Stage of development
Code figure	
0	New ice only (frazil ice, grease ice, slush, shuga)
1	Nilas or ice rind, less than 10 cm thick
2	Young ice (grey ice, grey-white ice), 10–30 cm thick
3	Predominantly new and/or young ice with some first-year ice
4	Predominantly thin first-year ice with some new and/or young ice
5	All thin first-year ice (30–70 cm thick)
6	Predominantly medium first-year ice (70–120 cm thick) and thick first-year ice (>120 cm thick) with some thinner (younger) first-year ice
7	All medium and thick first-year ice
8	Predominantly medium and thick first-year ice with some old ice (usually more than 2 metres thick)
9	Predominantly old ice
I	Unable to report, because of darkness, lack of visibility or because only ice of land origin is visible or because ship is more than 0.5 nautical mile away from ice edge
	3761
S ₀	Hoar frost or coloured precipitation
Code figure	
0	Hoar frost on horizontal surfaces
1	Hoar frost on horizontal and vertical surfaces
2	Precipitation containing sand or desert dust
3	Precipitation containing volcanic ash

3762

S_1, S_2	Nature of the zone separated by the line formed by the points following the 2C _s S ₁ S ₂ Z
	group (S_1 is the part to the right of the line, S_2 is the zone inside the line)

Code figure	
0	Sky clear or slightly clouded
1	Sky cloudy or very cloudy
2	Anterior or lateral zone
3	Central zone
4	Posterior zone
5	Thunder zone
6	Fog
7	Connecting zone
8	Instability

9

3763

S ₁	Predominant stage of development of ice
S ₂	Secondary stage of development of ice
S ₃	Tertiary stage of development of ice
S ₄	Quaternary stage of development of ice
S ₅	Quintary stage of development of ice
Code figure	
0	No stage of development
1	New ice
2	Ice rind, dark nilas, light nilas
3	Grey ice
4	Grey-white ice
5	Thin first-year ice
6	Medium first-year ice
7	Thick first-year ice
8	Second-year ice
9	Multi-year ice
1	Undetermined or unknown

Stratus (below 800 m) or stratocumulus

A-328 Volume I.1

S₆ Type of frozen deposit

Code figure

- igure 0
- 1 Soft rime
- 2 Hard rime
- 3 Snow deposit

Glaze

- 4 Wet snow deposit
- 5 Freezing wet snow deposit
- 6 Compound deposits (at the same time glazed ice and rime, or rime and freezing wet snow, etc.)
- 7 Ground ice*
- * Ice or ice-encrusted snow on the surface of the ground. This forms as a result of freezing liquid precipitation rain, drizzle, thick fog droplets, wet snow, and also as a result of freezing snowmelt on the surface of the ground. Ground ice also includes snow which is compacted and ice-encrusted as a result of road traffic movement. Ground ice, as distinct from glaze, is observed only on the surface of the ground, and most often on the road.

3765

S₇ Character of snow cover Code figure 0 Light, fresh snow Fresh snow blown into drifts 2 Fresh compact snow 3 Old snow, loose 4 Old snow, firm 5 Old snow, moist 6 Loose snow, with surface crust

3766

S₈ Snowstorm phenomena (snow raised by the wind)

Code figure

8

- 0 Snow haze
- 1 Drifting snow, slight or moderate, with or without snow falling
- 2 Drifting snow, heavy, without snow falling
- 3 Drifting snow, heavy, with snow falling

Firm snow, with surface crust

Moist snow, with surface crust

- 4 Blowing snow, slight or moderate, without snow falling
- 5 Blowing snow, heavy, without snow falling
- 6 Blowing snow, slight or moderate, with snow falling
- 7 Blowing snow, heavy, with snow falling
- 8 Drifting and blowing snow, slight or moderate, impossible to determine whether snow is falling or not
- 9 Drifting and blowing snow, heavy, impossible to determine whether snow is falling or not

3775

S' ₇	Regularity of snow cover
Code figure	
0	Even snow cover, ground frozen, no drifts
1	Even snow cover, ground soft, no drifts
2	Even snow cover, state of ground unknown, no drifts
3	Snow cover moderately uneven, ground frozen, slight drifts
4	Snow cover moderately uneven, ground soft, slight drifts
5	Snow cover moderately uneven, state of ground unknown, slight drifts
6	Snow cover very uneven, ground frozen, deep drifts
7	Snow cover very uneven, ground soft, deep drifts
8	Snow cover very uneven, state of ground unknown, deep drifts
	3776
S′ ₈	Evolution of drift snow
Code figure	
0	Drift snow ended before the hour of observation
1	Intensity diminishing
2	No change
3	Intensity increasing
4	Continues, apart from interruption lasting less than 30 minutes
5	General drift snow has become drift snow near the ground
6	Drift snow near the ground has become general drift snow
7	Drift snow has started again after an interruption of more than 30 minutes
	3777
SS	Section of front or of pressure system to which NN refers
Code figure	
00	No section specified
01	North-east section
02	East section
03	South-east section
04	South section
05	South-west section
06	West section
07	North-west section
80	North section

A-330 Volume I.1

$S_pS_ps_ps_p$ Supplementary information

Note: The group $9S_PS_Ps_ps_p$ is used to give (additional) information about certain phenomena occurring at the time of observation and/or during the period covered by ww or W_1W_2 . The relevant time or time period may be indicated by inclusion of one or more time groups (decile 00–09), when and where appropriate.

9S_PS_PS_pS_p

Decile 00-09:	Time and variability
900tt	Time of commencement of weather phenomenon reported by ww in
900zz	Variability, location or intensity ∫ group 7wwW₁W₂
901tt	Time of ending of weather phenomenon reported by ww in group 7wwW ₁ W ₂
902tt	Time of commencement of weather phenomenon reported in the following
902zz	Variability, location or intensity
903tt	Time of ending of weather phenomenon reported in the preceding group 9S _P S _P s _p s _p
904tt	Time of occurrence of weather phenomenon reported in the following group 9S _P S _P s _p s _p
905tt	Duration of non-persistent weather phenomenon or time of commencement of persistent weather phenomenon reported by www in group 7wwW ₁ W ₂
906tt	Duration of non-persistent weather phenomenon or time of commencement of persistent weather phenomenon $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
907tt	Duration of period of reference, ending at the time of observation, of weather phenomenon reported in the following group $9S_PS_Ps_ps_p$
908	Not used
909R _t d _c	Time at which precipitation given by RRR began or ended and duration and character of precipitation

Decile 10-19: Wind and squall

910ff	Highest gust during the 10-minute period immediately preceding the observation			
911ff	Highest gust	during the period covered by W_1W_2 in group $7wwW_1W_2$, unless a different period of reference is indicated by group 907tt; or during the 10-minute period immediately preceding the time of observation indicated by group 904tt		
912ff	Highest mean wind speed			
913ff	Mean wind speed			
914ff	Lowest mean wind speed			
915dd	Direction of wind			
916tt	Pronounced clockwise shift in wind direction (veering)			
917tt	Pronounced anticlockwise shift in wind direction (backing)			
$918s_qD_p$	Nature and/or type of squall, and direction from which it approaches the station			
$919M_wD_a$	Waterspout(s), tornadoes, whirlwinds, dust devils			

Notes:

- (1) When wind speed reaches or exceeds 99 units (knots or m s $^{-1}$ as indicated by i_w), two groups shall be used in the same manner as in Section 1 of the code form. For example, to report a gust of 135 knots during the 10-minute period preceding the observation, the two groups would be coded 91099 00135.
- (2) The mean wind speed referred to in groups 912ff and 914ff is defined as time averaged instantaneous wind speed over a 10-minute interval throughout the period covered by W_1W_2 or as indicated by a preceding time group.
- (3) A significant change in wind speed and/or direction is reported by two 913ff and/or 915dd groups giving the speed and/or direction before and after the change. Time of change is given by the group 906tt preceding the second 913ff and/or 915dd groups. Variation in speed and/or direction of light and variable winds would not normally be reported, nor would a gradual change in speed and/or direction of a strong wind; by "significant" change is meant a sudden onset or cessation of a strong wind or a sudden change in speed and/or direction of a strong wind.

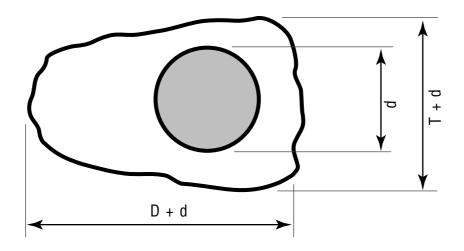
(Code table 3778 – continued)

938nn

939nn

 $939h_qh_q$

Decile 20-29:	State of the sea, icing phenomena and snow cover		
920SF _x	State of the sea and maximum wind force (F _x < 9 Beaufort)		
921SF _x	State of the sea and maximum wind force (F _x > 9 Beaufort)		
922S´V´s	State of the water surface and visibility at a seaplane alighting area		
923SS	State of the water surface in the alighting area and state of the sea in the open sea		
924SV _s	State of the sea and visibility seawards (from a coastal station)		
$925T_wT_w$	Water temperature at resorts during the bathing season		
926S ₀ i ₀	Hoar frost or coloured precipitation		
927S ₆ T _w	Frozen deposit		
928S ₇ S´ ₇	Character and regularity of snow cover		
929S ₈ S´ ₈	Drift snow		
Decile 30-39:	Amount of precipitation or dep	posit	
930RR	Amount of precipitation		overed by W ₁ W ₂ in group 7wwW ₁ W ₂ , unless
931ss	Depth of newly fallen snow	• •	f reference is indicated by group 907tt
932RR	Maximum diameter of hailston	nes	
933RR	Water equivalent of solid prec	ipitation on ground	
934RR	Diameter of glaze deposit		
935RR	Diameter of rime deposit		at the time of observation
936RR	Diameter of compound depos	it	
937RR	Diameter of wet-snow deposit		


Note: Diameter of the deposit is taken as the greatest distance along the axis of a cross-section of the deposit minus the diameter of the measuring rod (see figure below):

Height above ground, in metres, at which diameter of deposit reported in the preceding group

Rate of glaze accrual on a surface, in mm h⁻¹

Maximum diameter of hailstones, in millimetres

 $9S_PS_Ps_ps_p$ is observed

D – Diameter of glaze or rime deposit;

T – Thickness of glaze or rime deposit;

d – Diameter of measuring rod.

A-332 Volume I.1

(Code table 3778 – continued)

•	,		
Decile 40-49:	Clouds		
940Cn ₃	Evolution of clouds		
941CD _p	Direction from which clouds are moving		
942CD _a	Location of maximum concentration of clouds		
943C _L D _p	Direction from which low-level clouds are mo	oving	
944C _L D _a	Location of maximum concentration of low-le	evel clouds	
945h _t h _t	Height of the tops of the lowest clouds or hei	ight of the lowest cloud layer or fog	
946C _c D _a	-	f clouds associated with a tropical disturbance	
947Ce´	Elevation of clouds		
948C ₀ D _a	Orographic clouds		
949C _a D _a	Clouds of vertical development		
Decile 50-59:	Cloud conditions over mountains and passes, or in valleys or plains observed from a higher level		
950N _m n ₃	Cloud conditions over mountains and passes	S	
$951N_vn_4$	Fog, mist or low cloud in valleys or plains, ob	oserved from a station at a higher level	
952–957	Not used		
958E _h D _a	Location of maximum concentration of cloud	} .	
$959v_pD_p$	Forward speed and direction from which clouds are moving group 9S _P S _P S _p s _p		
Decile 60-69:	Present weather and past weather		
960ww	Present weather phenomenon observed simultaneously with and/or in addition to weather phenomenon reported by ww in group $7wwW_1W_2$		
961w ₁ w ₁	Present weather phenomenon observed simultaneously with and/or in addition to weather phenomenon reported by ww in group $7wwW_1W_2$, or amplification of present weather phenomenon reported by ww in group $7wwW_1W_2$		
962ww 963w ₁ w ₁	Amplification of weather phenomenon during preceding hour but not at the time of observation and reported by ww = 20-29 in group $7wwW_1W_2$		
964ww } 965w ₁ w ₁ }	Amplification of weather phenomenon during the period covered by W₁W₂ and reported by W₁ and/or W₂ in group 7wwW₁W₂		
966ww 967w ₁ w ₁	Weather phenomenon occurring at the time or during the period indicated by associated $9S_PS_PS_pS_p$ time groups		
968	Not used		
9696D _a	Rain at the station not associated with thund	erstorm in distance, direction D _a	
9697Da	Snow at the station not associated with thun	derstorm in distance, direction Da	
9698D _a	Shower at the station not associated with thu	understorm in distance, direction D _a	
Decile 70-79:	Location and movement of phenomena		
970E _h D _a)		γ ww in group 7wwW₁W₂	
971E _h D _a		ww in group 960ww	
972E _h D _a	Location of maximum concentration	w₁w₁ in group 961w₁w₁	
973E _h D _a	phenomenon reported by	W₁ in group 7wwW₁W₂	
974E _h D _a		W ₂ in group 7wwW ₁ W ₂	
975v _p D _p)		ww in group 7wwW1W ₂	
976v _p D _p		ww in group 960ww	
977v _p D _p	Forward speed and direction from which	w_1w_1 in group 961 w_1w_1	
978v _p D _p	it is moving, phenomenon reported by	W₁ in group 7wwW₁W₂	
979v _p D _p		W₂ in group 7wwW₁W₂	
,			

(Code table 3778 - continued)

Decile 80-89: Visibility

980V_sV_s Visibility towards the sea

981VV Visibility to NE 982VV Visibility to E 983VV Visibility to SE 984VV Visibility to S 985VV Visibility to SW 986VV Visibility to W 987VV Visibility to NW 988VV Visibility to N

989V_bD_a Variation of visibility during the hour preceding the time of observation and the direction in

which this variation has been observed

Decile 90-99: Optical phenomena and miscellaneous

990Z₀i₀ Optical phenomena

991ADa Mirage

99190 St Elmo's fire
992Nttw Condensation trails
993C_SD_a Special clouds
994A₃D_a Day darkness

995nn Lowest atmospheric pressure reduced to mean sea level during the period covered by W₁W₂

unless otherwise indicated by associated 9S_PS_Ps_ps_p time group(s), in tens and units of

hectopascals

 $996T_{\nu}T_{\nu}$ Sudden rise in air temperature, in whole degrees Celsius $997T_{\nu}T_{\nu}$ Sudden fall in air temperature, in whole degrees Celsius

 $998U_vU_v$ Sudden rise in relative humidity, in per cent $999U_vU_v$ Sudden fall in relative humidity, in per cent

Note: Groups $996T_vT_v$, $997T_vT_v$, $998U_vU_v$ and $999U_vU_v$ should *not* be used to report normal diurnal changes in temperature or humidity.

3780

S_fS_f Synoptic interpretation of significant features Code figure 00 Low-level ridge 01 Upper-level ridge, sharp 02 Upper-level ridge, medium 03 Upper-level ridge, broad 10 Quasi-stationary front, broken cloud pattern 11 Quasi-stationary front, continuous cloud mass 12 Cold front, broken cloud pattern 13 Cold front, continuous cloud mass 14 Warm front, broken cloud pattern 15 Warm front, continuous cloud mass 16 **Occluded front** 17 Squall-line 18 Non-frontal extra-tropical cloud band 20 Widening area in frontal cloud band 21 Well-developed frontal wave 22 Initial vortex associated with a front 23 Vortex occluding, cold air intrusion

A-334 Volume I.1

(Code	table	3780 -	 continue 	ed)

- 24 Mature vortex, fully occluded
- 25 Decaying vortex
- 26 Clouds forming due to waves forming to the lee of mountain ranges or other obstacles
- 27 Clouds due to eddies to the lee of islands or isolated obstacles
- 28 Clear area due to orographic föhn processes
- 29 Orographic cloud system
- 30 Positive vorticity advection maximum, enhanced Cu or Cb
- 31 Positive vorticity advection maximum (solid), cloud mass
- 32 Vorticity maximum, comma shape, without clear area downstream
- 33 Vorticity maximum, comma shape, with clear area downstream
- 34 Cut-off vortex
- 35 Secondary vorticity centre, spiralling Cu or Cb without cirrus plumes
- 36 Secondary vorticity centre, spiralling Cu or Cb with cirrus plumes
- 40 Low-level trough
- 41 Upper-level trough, determined through cold-frontal cloud mass
- 42 Upper-level trough, associated with a major cloud mass
- 43 Upper-level trough, preceded by crescent cloud formation
- 44 Upper-level trough, determined by cirrus plumes
- 50 Jet stream, determined by cirrus shadow or edge
- 51 Same as 50, with transversal streaks
- 52 Jet stream, determined through cirrus streaks
- 53 Same as 52, with transversal streaks
- Jet stream, determined from a change in the cloud texture
- 55 Jet stream, determined from a change in the cellular cloud pattern
- 60 Area of isolated Cb, Ci-plumes extend less than 1° latitude from the source
- 61 Same as 60, Ci-plumes extend more than 1° latitude from the source
- Area of Cb clusters, Ci-plumes extend less than 1° latitude from the source
- 63 Same as 62, Ci-plumes extend more than 1° latitude from the source
- 70 Intertropical convergence zone (ITCZ) without specification of characteristics
- 71 ITCZ as uniformly bright band of cumulonimbus with cirrus cover
- 72 ITCZ as an accumulation of cumulonimbus
- 73 ITCZ as banks of cumuliform clouds gathering along the axis of convergence lying along the direction of the trade winds
- 74 Bank of tropical clouds without cumulonimbus (Cb)
- 75 Bank of tropical clouds with Cb
- 76 Tropical wave
- 77 Wind shear line
- 88 Area of widespread sandstorm or duststorm
- 89 Area of widespread smoke
- 90 Ridge
- 91 Frontal cloud band
- 92 Frontal wave
- 93 Vortex
- 94 Convergence zone (including ITCZ)
- 95 Jet stream
- 96 Positive vorticity advection maximum (comma formation, enhanced convection, etc.)
- 97 Trough
- 98 Major cloud system
- 99 Synoptic interpretation of significant features is undetermined

Notes:

- (1) Code figures 90 to 99 may be used when more detailed synoptic interpretation is not possible.
- (2) In case of S_fS_f = 88, 89 or 98, the position groups in Section 2 delineate a major cloud system, an area of widespread sandstorm or duststorm or an area of smoke.

3790

S_tS_t	Intensity of the tropical cyclone		
Code figure	Current Intensity (CI Number)	Maximum sustained wind speed (knots)	Maximum sustained wind speed (m s ⁻¹)
00	Decaying		
15	1.5	25	13
20	2	30	15
25	2.5	35	18
30	3	45	23
35	3.5	55	28
40	4	65	33
45	4.5	77	39
50	5	90	46
55	5.5	102	52
60	6	115	59
65	6.5	127	65
70	7	140	72
75	7.5	155	79
80	8	170	87
99	Becoming extratropical		
<i>II</i>	Undetermined		

Note: The procedures for determining the Current Intensity (CI) Number from satellite imagery are explained in the *Guide on the Global Data-processing System* (WMO–No. 305).

3833

s_c Nature of snow or ice interpreted from satellite information

Code		
figure		
0]	Snow cover	f partial continuous
1 ∫	Snow cover	continuous
2	Shore ice	
3	Snow-covered	ice
4	Shelf ice	
5 ๅ		compact
6 }	Sea ice	compact broken scattered
7 J		scattered
8	Channel in sea	ice
9	lceberg(s)	

/ Nature of snow or ice undertermined

A-336 Volume I.1

Sn	Sign of the data, and relative humidity indicator
Sn	Sign of the exponent
Sn	Sign of the reference value indicated by rrrrrrr
Code figure	
0	Positive or zero
1	Negative
9	Relative humidity follows

Notes:

- (1) Code figures 2 to 8 are not used.
- (2) See Regulation 12.2.3.3.1 for the use of code figure 9.

3847

\mathbf{s}_{p}	Pasquill–Gifford stability category			
Code figure	Code figure			
0	Not available	5	С	
1	Α	6	D	
2	A-B	7	E	
3	В	8	F	
4	B-C	9	G	

3848

s_q	Nature and/or type of squall
Code figure	
0	Calm or light wind followed by a squall
1	Calm or light wind followed by a succession of squalls
2	Gusty weather followed by a squall
3	Gusty weather followed by a succession of squalls
4	Squall followed by gusty weather
5	General gusty weather with squall at intervals
6	Squall approaching station
7	Line squall
8	Squall with drifting or blowing dust or sand
9	Line squall with drifting or blowing dust or sand

3849

Sr	Solar and infrared radiation correction

Code figure

Codo

- 0 No correction
- 1 CIMO solar corrected and CIMO infrared corrected
- 2 CIMO solar corrected and infrared corrected
- 3 CIMO solar corrected only
- 4 Solar and infrared corrected automatically by radiosonde system
- 5 Solar corrected automatically by radiosonde system
- 6 Solar and infrared corrected as specified by country
- 7 Solar corrected as specified by country

3850

s_s Indicator for sign and type of measurement of sea-surface temperature

Code		
figure	Sign	Type of measurement
0	Positive or 0	Intake
1	Negative	Intake
2	Positive or 0	Bucket
3	Negative	Bucket
4	Positive or 0	Hull contact sensor
5	Negative	Hull contact sensor
6	Positive or 0	Other
7	Negative	Other

3855

s_w Indicator for the sign and type of wet-bulb temperature reported

Code figure

- 0 Positive or zero measured wet-bulb temperature
- 1 Negative measured wet-bulb temperature
- 2 Iced bulb measured wet-bulb temperature
- 5 Positive or zero computed wet-bulb temperature
- 6 Negative computed wet-bulb temperature
- 7 Iced bulb computed wet-bulb temperature

A-338 Volume I.1

3856

Code figure First element (if any) Second element (if any) 0 Positive or zero Positive or zero 1 Negative Positive or zero 2 Positive or zero Negative 3 Negative Negative 3866 S1 Type of navigation system Code figure 0 Inertial navigation system 1 OMEGA 3867 S2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available but not operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S3 Temperature precision Code figure 1 Low (precision near 2.0°C) High (precision near 1.0°C)	S _x	Sign indicator for coordinates of the	or the data group e Pole (Section 2)	which	follows	(Section	3)	and	for	the	Cartesian
0 Positive or zero Positive or zero 1 Negative Positive or zero 2 Positive or zero Negative 3 Negative Negative 3866 S1 Type of navigation system Code figure 0 Inertial navigation system 1 OMEGA 3867 S2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 3688 S3 Temperature precision Code figure 1 Low (precision near 2.0°C)		Floor alone and (16 amp)	0								
1 Negative Positive or zero 2 Positive or zero Negative 3 Negative Negative 3866 s ₁ Type of navigation system Code figure 0 Inertial navigation system 1 OMEGA 3867 s ₂ Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) Low (precision near 2.0°C)	_)							
2 Positive or zero Negative Negative Negative Negative 3866 S ₁ Type of navigation system Code figure 0 Inertial navigation system 1 OMEGA 3867 S ₂ Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 ACARS (ASDAR also available and operative) 5 LOW (precision near 2.0°C)											
3 Negative Negative 3866 \$1 Type of navigation system Code figure 0 Inertial navigation system 1 OMEGA 3867 \$2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) 5 Low (precision near 2.0°C)		_									
3866 S ₁ Type of navigation system Code figure 0 Inertial navigation system 1 OMEGA 3867 S ₂ Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) 1 Low (precision near 2.0°C)											
State of the state	3	Negative	Negative								
Code figure 0 Inertial navigation system 1 OMEGA 3867 \$2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) 3868 \$3 Temperature precision Code figure 1 Low (precision near 2.0°C)				3866							
Code figure 0 Inertial navigation system 1 OMEGA 3867 \$2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 ACARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) 3868 \$3 Temperature precision Code figure 1 Low (precision near 2.0°C)	S ₄	Type of navigation	n system								
figure 0 Inertial navigation system 1 OMEGA 3867 \$2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 CARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) Code figure 1 Low (precision near 2.0°C)	-	Type of havigation	n dydieni								
0 Inertial navigation system 1 OMEGA 3867 \$2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 6 ACARS (ASDAR also available and operative) 7 ACARS (ASDAR also available and operative) 8 ACARS (Code figure 1 Low (precision near 2.0°C)											
3867 S2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3 ACARS 4 CARS (ASDAR also available and operative) 5 ACARS (ASDAR also available and operative) Code figure 1 Low (precision near 2.0°C)	-	Inertial navigation s	system								
S2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S3 Temperature precision Code figure 1 Low (precision near 2.0°C)	1		•								
S2 Type of system used Code figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S3 Temperature precision Code figure 1 Low (precision near 2.0°C)											
Code figure 0				3867							
figure 0 ASDAR 1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)	S ₂	Type of system us	sed								
1 ASDAR (ACARS also available but not operative) 2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)											
2 ASDAR (ACARS also available and operative) 3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)	0	ASDAR									
3 ACARS 4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)	1	ASDAR (ACARS als	o available but not op	erative)							
4 ACARS (ASDAR also available but not operative) 5 ACARS (ASDAR also available and operative) 3868 S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)	2	ASDAR (ACARS als	o available and operat	ive)							
5 ACARS (ASDAR also available and operative) 3868 S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)	3	ACARS									
3868 S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)	4	ACARS (ASDAR als	o available but not op	erative)							
S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)	5	ACARS (ASDAR als	o available and operat	ive)							
S ₃ Temperature precision Code figure 1 Low (precision near 2.0°C)											
Code figure 1 Low (precision near 2.0°C)				3868							
figure 1 Low (precision near 2.0°C)	S_3	Temperature prec	ision								
figure 1 Low (precision near 2.0°C)	Code	-									
·											
0 High (precision near 1.0°C)	1	Low (precision near	r 2.0°C)								
	0	High (precision nea	r 1.0°C)								

3870

ss	Depth of nev	vly fallen snow			
Code figure	mm	Code figure	mm	Code figure	mm
00	0	34	340	68	1 800
01	10	35	350	69	1 900
02	20	36	360	70	2 000
03	30	37	370	71	2 100
04	40	38	380	72	2 200
05	50	39	390	73	2 300
06	60	40	400	74	2 400
07	70	41	410	75	2 500
80	80	42	420	76	2 600
09	90	43	430	77	2 700
10	100	44	440	78	2 800
11	110	45	450	79	2 900
12	120	46	460	80	3 000
13	130	47	470	81	3 100
14	140	48	480	82	3 200
15	150	49	490	83	3 300
16	160	50	500	84	3 400
17	170	51	510	85	3 500
18	180	52	520	86	3 600
19	190	53	530	87	3 700
20	200	54	540	88	3 800
21	210	55	550	89	3 900
22	220	56	600	90	4 000
23	230	57	700	91	1
24	240	58	800	92	2
25	250	59	900	93	3
26	260	60	1 000	94	4
27	270	61	1 100	95	5
28	280	62	1 200	96	6
29	290	63	1 300	97	Less than 1 mm
30	300	64	1 400	98	More than 4 000 mm
31	310	65	1 500	99	Measurement
32	320	66	1 600		impossible or
33	330	67	1 700		inaccurate

3872

s_as_a Tracking technique/status of system used

(See Common table C-7 in Attachment I.)

A-340 Volume I.1

SSS	Total depth of snow
Code figure	
ligure	
000	Not used
001	1 cm
etc.	etc.
996	996 cm
997	Less than 0.5 cm
998	Snow cover, not continuous
999	Measurement impossible or inaccurate
Note:	See Regulations 12.4.6.1 and 12.4.6.2.

3931

- \mathbf{T}_{a} Approximate tenths value and sign (plus or minus) of the air temperature at the level given by P_aP_aP_a
- Ta Approximate tenths value and sign of temperature
- \mathbf{T}_{at} Approximate tenths value and sign (plus or minus) of the air temperature at the tropopause level

T_{a0} Approximate tenths value and sign (plus or minus) of: T_{a1} The air temperature at specified levels starting with station level (a)

(b) Equivalent blackbody temperature

Tenths figure	Code figure			
of observed air temperature	Positive temperature	Negative temperature		
0 1 }	0	1		
2 3 }	2	3		
4 5	4	5		
6 }	6	7		
8 }	8	9		

3933

T _c	Tropical system characteristics
Code	

Code	
figure	

 T_{an}

- 0 No specification
- 1 Diffuse
- 2 Sharply defined
- 3 **Quasi-stationary**
- **Existence certain** 4
- 5 Existence uncertain
- 6 Formation suspected
- Position certain 7
- 8 Position uncertain
- 9 Movement doubtful

Volume I.1 A-341

T_i Tropical system intensity when $T_t = 0-8$

Code figure

- 0 No specification
- 1 Weak, decreasing
- 2 Weak, little or no change
- 3 Weak, increasing
- 4 Moderate, decreasing
- 5 Moderate, little or no change
- 6 Moderate, increasing
- 7 Strong, decreasing
- 8 Strong, little or no change
- 9 Strong, increasing

3940

T_i Tropical system intensity when $T_t = 9$

Code	Beaufort	Mean speed	Mean speed	Mean speed
figure	scale	in knots	in m s ⁻¹	in km h ⁻¹
0	Force 10	48-55	24.5-28.4	89-102
1	11	56-63	28.5-32.6	103-117
2	12	64–71	32.7-36.9	118–133
3	12	72-80	37.0-41.4	134–149
4	12	81 or over	41.5 or over	150 or over
5	5	17–21	8.0-10.7	29-38
6	6	22–27	10.8-13.8	39-49
7	7	28-33	13.9-17.1	50-61
8	8	34-40	17.2-20.7	62-74
9	9	41–47	20.8-24.4	75–88

Note: When $T_t = 9$, the code figure given for T_i indicates the force of the strongest wind in the reported cyclonic circulation or, in the case of a prognosis, the strongest wind force expected at the time of the prognosis.

3952

T_t Tropical circulation type

Code figure

- 0 Intertropical convergence zone
- 1 Shear line
- 2 Line or zone of convergence
- 3 Axis of doldrum belt
- 4 Trough in westerlies
- 5 Trough in easterlies
- 6 Low area
- 7 Surge line
- 8 Line or zone of divergence
- 9 Tropical cyclonic circulation

A-342 Volume I.1

3955

T_{w}	Variation of temperature during the period covered by W₁W₂, associated with glaze or rime
Code figure	
o O	Temperature steady
1	Temperature falling, without going below 0°C
2	Temperature rising, without going above 0°C
3	Temperature falling to a value below 0°C
4	Temperature rising to a value above 0°C
5	Irregular variation, oscillations of temperature passing through 0°C
6	Irregular variation, oscillations of temperature not passing through 0°C
7	Variation of temperature not observed
8	Not allocated
9	Variation of temperature unknown owing to lack of thermograph
	2056
	3956
$\mathbf{T}_{\mathbf{n}}$	Minimum air temperature
T_x	Maximum air temperature
Code figure	Temperature in degrees Celsius
0	Less than -10
1	−10 to −5
2	−5 to −1
3	About 0 (to nearly ± 1)
4	1 to 5
5	5 to 10
6	10 to 20
7	20 to 30
8	Greater than 30
9	Temperature not forecast
	3962
T ₁	Topography of greatest extent
T_2	Topography of second greatest extent
Code figure	
0	Level ice
1	Rafted ice
2	Finger-rafted ice
3	Hummocks
4	New ridges
5	Weathered ridges
6	Very weathered ridges
7	Aged ridges
8	Consolidated ridges

Volume I.1 A–343

9

Standing floe

Undetermined or unknown

4001

t	Nature of the temperature reading, the value of which is indicated by $s_n T_t T_t T_t$
Code figure	
1	Air temperature at the time of measurement
2	Dew-point temperature at the time of measurement
3	Maximum temperature of air during the preceding 24 hours
4	Minimum temperature of air during the preceding 24 hours
5	Water temperature at the time of measurement
Note:	Regional Associations may use the figures 6 to 9 for other specifications.
	4006
t _E	Thickness of the predominant form of ice, snow depth not included

Code figure	
0	Less than 5 cm
1	5 – 9 cm
2	10 – 19 cm
3	20 – 29 cm
4	30 – 39 cm
5	40 – 59 cm
6	60 – 89 cm
7	90 – 149 cm
8	150 – 249 cm
9	250 cm or more
1	Undetermined or unknown

4013

t _L	Thickness of layer	
Code figure		
0	Up to top of cloud	
1	300 m	
2	600 m	
3	900 m	
4	1 200 m	
5	1 500 m	
6	1 800 m	
7	2 100 m	
8	2 400 m	
9	2 700 m	

A-344 Volume I.1

t _R	Duration of period of reference for amount of precipitation, ending at the time of the report
Code figure	
1	Total precipitation during the 6 hours preceding the observation
2	Total precipitation during the 12 hours preceding the observation
3	Total precipitation during the 18 hours preceding the observation
4	Total precipitation during the 24 hours preceding the observation
5	Total precipitation during the 1 hour preceding the observation
6	Total precipitation during the 2 hours preceding the observation
7	Total precipitation during the 3 hours preceding the observation
8	Total precipitation during the 9 hours preceding the observation
9	Total precipitation during the 15 hours preceding the observation
Nietes.	

Notes:

- If the duration of the period of reference is not covered by Code table 4019 or the period does not end at the time of the report, t_R shall be coded 0.
- Members are recommended to avoid any deviations from international practices which require the use of code figure 0. The specification of code figure 0 should be indicated in Volume II of the Manual on Codes under national coding procedures.

4035

Time interval over which the movement of the centre or the eye of the tropical cyclone has te been calculated

Code figure	
0–2	Not used
3	During the preceding 15 minutes
4	During the preceding 30 minutes
5	During the preceding 1 hour
6	During the preceding 2 hours
7	During the preceding 3 hours
8	During the preceding 6 hours
9	During a period of more than 6 hours
1	Undetermined

Volume I.1 A-345

4044

t _m	Time interval over which the movement of the tropical cyclone has been calculated
Code figure	
0	Less than 1 hour
1	1 to less than 2 hours
2	2 to less than 3 hours
3	3 to less than 6 hours
4	6 to less than 9 hours
5	9 to less than 12 hours
6	12 to less than 15 hours
7	15 to less than 18 hours
8	18 to less than 21 hours
9	21 to less than 30 hours
I	Movement group is not included

4047

t_p Period to which measurement of precipitation refers, and/or time at which water equivalent of snow is measured, both coded by RRRR

Code	
figure	
0	Total precipitation during the 1 hour preceding the observation
1	Total precipitation during the 2 hours preceding the observation
2	Total precipitation during the 3 hours preceding the observation
3	Total precipitation during the 6 hours preceding the observation
4	Total precipitation during the 12 hours preceding the observation
5	Total precipitation during the 24 hours preceding the observation
6	Total precipitation during the 48 hours preceding the observation
7	Total precipitation during the last 10 days
8	Total precipitation during the calendar month preceding the observation
9	Water equivalent of the snow pack at the time of measurement
1	Water equivalent of the snow which has fallen during the 24 hours preceding the time of observation

4055

t_w Time of commencement of a phenomenon before the hour of observation

igure	
0	0 to ¹ /2 hour
1	¹ / ₂ to 1 hour
2	1 to 1 ¹ / ₂ hours
3	1 ¹ / ₂ to 2 hours
4	2 to 2 ¹ / ₂ hours
5	2 ¹ / ₂ to 3 hours
6	3 to 3 ¹ / ₂ hours
7	3 ¹ / ₂ to 4 hours
8	4 to 5 hours
9	5 to 6 hours

Code

A-346 Volume I.1

tt Time before observation or duration of phenomena zz Variation, location or intensity of phenomena

Code figure		Code figure	
00	At observation	36	3 hours 36 minutes
01	0 hour 6 minutes	37	3 hours 42 minutes
02	0 hour 12 minutes	38	3 hours 48 minutes
03	0 hour 18 minutes	39	3 hours 54 minutes
04	0 hour 24 minutes	40	4 hours 0 minute
05	0 hour 30 minutes	41	4 hours 6 minutes
06	0 hour 36 minutes	42	4 hours 12 minutes
07	0 hour 42 minutes	43	4 hours 18 minutes
08	0 hour 48 minutes	44	4 hours 24 minutes
09	0 hour 54 minutes	45	4 hours 30 minutes
10	1 hour 0 minute	46	4 hours 36 minutes
11	1 hour 6 minutes	47	4 hours 42 minutes
12	1 hour 12 minutes	48	4 hours 48 minutes
13	1 hour 18 minutes	49	4 hours 54 minutes
14	1 hour 24 minutes	50	5 hours 0 minute
15	1 hour 30 minutes	51	5 hours 6 minutes
16	1 hour 36 minutes	52	5 hours 12 minutes
17	1 hour 42 minutes	53	5 hours 18 minutes
18	1 hour 48 minutes	54	5 hours 24 minutes
19	1 hour 54 minutes	55	5 hours 30 minutes
20	2 hours 0 minute	56	5 hours 36 minutes
21	2 hours 6 minutes	57	5 hours 42 minutes
22	2 hours 12 minutes	58	5 hours 48 minutes
23	2 hours 18 minutes	59	5 hours 54 minutes
24	2 hours 24 minutes	60	6 hours 0 minute
25	2 hours 30 minutes	61	6 to 7 hours
26	2 hours 36 minutes	62	7 to 8 hours
27	2 hours 42 minutes	63	8 to 9 hours
28	2 hours 48 minutes	64	9 to 10 hours
29	2 hours 54 minutes	65	10 to 11 hours
30	3 hours 0 minute	66	11 to 12 hours
31	3 hours 6 minutes	67	12 to 18 hours
32	3 hours 12 minutes	68	More than 18 hours
33	3 hours 18 minutes	69	Time unknown
34	3 hours 24 minutes	70	Began during observation
35	3 hours 30 minutes	71	Ended during observation

(Code table 4077 - continued)

Code

figure

- 72 Began and ended during observation
- 73 Changed considerably during observation
- 74 Began after observation
- 75 Ended after observation
- 76 At station
- 77 At station, but not in distance
- 78 In all directions
- 79 In all directions, but not at station
- 80 Approaching station
- 81 Receding from station
- 82 Passing station in distance
- 83 Seen in distance
- 84 Reported in vicinity, but not at station
- 85 Aloft, but not near ground
- 86 Near ground, but not aloft
- 87 Occasional; occasionally
- 88 Intermittent; intermittently
- 89 Frequent; frequently; at frequent intervals
- 90 Steady; steady in intensity; steadily; no appreciable change
- 91 Increasing; increasing in intensity; has increased
- 92 Decreasing; decreasing in intensity; has decreased
- 93 Fluctuating; variable
- 94 Continuous; continuously
- 95 Very light; very weak; greatly below normal; very thin; very poor
- 96 Light; weak; below normal; thin; poor
- 97 Moderate; normal; average thickness; fair; gradually
- 98 Heavy; severe; thick; above normal; good; suddenly
- 99 Very heavy; killing; very severe; dense; greatly above normal; very thick; very good

Notes:

- (1) Code figures 00 to 69, which are used exclusively for tt, refer to the standard time of observation or, when duration of a phenomenon is reported, to the time period between its commencement and cessation.
- (2) Code figures 70 to 75, which combine time and variation, refer to the actual time the elements were observed.
- (3) Code figures 76 to 99, which are used exclusively for zz, refer to:
 - (a) The location of the phenomenon in relation to the station (76 to 86);
 - (b) Variation (87 to 94);
 - (c) Intensity (95 to 99).

A-348 Volume I.1

```
Scale factor
u
Code
figure
          1
 0
 1
          10
          100
 2
 3
          1 000
          10 000
 4
 5
          0.1
 6
          0.01
 7
          0.001
 8
          0.000 1
          0.000 01
 9
                                                       4232
          Unit of time for averaging period or data change period, expressed by tbtb
\mathbf{u}_{\mathsf{b}}
Code
figure
0-3
          Not used
 4
          Hour
 5
          Day
                          Averaging period
 6
          Month
 7
          Hour
 8
          Day
                          Data change period
 9
          Month
                                                       4242
          Unit of thickness of sublayers
\mathbf{u}_{\mathbf{p}}
Code
figure
 1
          0.1 hPa
 2
          1 hPa
 3
          2 hPa
 4
          5 hPa
 5
          10 hPa
 6
          20 hPa
          30 hPa
          50 hPa
 8
          100 hPa
 9
                                                       4252
          Unit of time for ttt
\mathbf{u}_{t}
Code
figure
 1
          Hour
 2
          Day
```

Volume I.1 A–349

3

Month

4300

V	Forecast surface visibility	
V_s	Visibility seawards (from a coastal station)	
V's	Visibility over the water surface of an alighting area	
Code figure		
0	Less than 50 m	
1	50–200 m	
2	200–500 m	
3	500–1 000 m	
4	1–2 km	
5	2–4 km	
6	4–10 km	
7	10–20 km	
8	20–50 km	
9	50 km or more	

4332

V_b	Variation of visibility during the hour preceding the observation
Code figure	
0	Visibility has not varied (sun* visible)
1	Visibility has not varied (sun* invisible)
2	Visibility has increased (sun* visible) towards direction D _a
3	Visibility has increased (sun* invisible)
4	Visibility has decreased (sun* visible)
5	Visibility has decreased (sun* invisible)
6	Fog coming from direction D _a
7	Fog has lifted, without dissipating
8	Fog has dispersed without regard to direction
9	Moving patches or banks of fog

^{*} Or sky (if sun is low), or moon or stars at night.

A-350 Volume I.1

VV	Horizontal visibility at surface
V ₂ V ₂	Visibility towards the sea

V_sV_s	Visibility toward	ls the sea			
Code figure	km	Code figure	km	Code figure	km
00	< 0.1	34	3.4	68	18
01	0.1	35	3.5	69	19
02	0.2	36	3.6	70	20
03	0.3	37	3.7	71	21
04	0.4	38	3.8	72	22
05	0.5	39	3.9	73	23
06	0.6	40	4	74	24
07	0.7	41	4.1	75	25
80	0.8	42	4.2	76	26
09	0.9	43	4.3	77	27
10	1	44	4.4	78	28
11	1.1	45	4.5	79	29
12	1.2	46	4.6	80	30
13	1.3	47	4.7	81	35
14	1.4	48	4.8	82	40
15	1.5	49	4.9	83	45
16	1.6	50	5	84	50
17	1.7	51)	85	55
18	1.8	52		86	60
19	1.9	53	Not used	87	65
20	2	54		88	70
21	2.1	55		89	> 70
22	2.2	56	6	90	< 0.05
23	2.3	57	7	91	0.05
24	2.4	58	8	92	0.2
25	2.5	59	9	93	0.5
26	2.6	60	10	94	1
27	2.7	61	11	95	2
28	2.8	62	12	96	4
29	2.9	63	13	97	10
30	3	64	14	98	20
31	3.1	65	15	99	≥ 50
32	3.2	66	16		
33	3.3	67	17		

v_p Forward speed of phenomenon

Code figure			
Ō	Less than 5 knots	Less than 9 km h ⁻¹	Less than 2 m s ⁻¹
1	5-14 knots	10- 25 km h ⁻¹	3- 7 m s ⁻¹
2	15-24 knots	26– 44 km h ⁻¹	8–12 m s ⁻¹
3	25-34 knots	45– 62 km h ⁻¹	13–17 m s ⁻¹
4	35-44 knots	63– 81 km h ⁻¹	18-22 m s ⁻¹
5	45-54 knots	82–100 km h ^{–1}	23-27 m s ⁻¹
6	55-64 knots	101–118 km h ^{–1}	28-32 m s ⁻¹
7	65-74 knots	119–137 km h ^{–1}	33-38 m s ⁻¹
8	75-84 knots	138–155 km h ^{–1}	39-43 m s ⁻¹
9	85 knots or more	156 km h ⁻¹ or more	44 m s ⁻¹ or more

4451

v_s Ship's average speed made good during the three hours preceding the time of observation

Code figure		
0	0 knot	0 km h ⁻¹
1	1- 5 knots	1–10 km h ^{–1}
2	6-10 knots	11–19 km h ^{–1}
3	11-15 knots	20–28 km h ^{–1}
4	16-20 knots	29–37 km h ⁻¹
5	21-25 knots	38–47 km h ⁻¹
6	26-30 knots	48–56 km h ⁻¹
7	31-35 knots	57–65 km h ^{–1}
8	36-40 knots	66–75 km h ^{–1}
9	Over 40 knots	Over 75 km h ⁻¹
1	Not applicable (report	t from a coastal land station) or not reported (see Regulation 12.3.1.2 (b)).

4504

W_C Diameter or length of major axis of the eye of the tropical cyclone

0	
Code figure	
0	Less than 5 km
1	5 to less than 10 km
2	10 to less than 15 km
3	15 to less than 20 km
4	20 to less than 25 km
5	25 to less than 30 km
6	30 to less than 35 km
7	35 to less than 40 km
8	40 to less than 50 km
9	50 km and greater
1	Undetermined

A-352 Volume I.1

W_R Type of weather phenomenon or cloud in the 60 × 60 km square detected by radar Code figure Stratiform cloud without precipitation 1 2 Convective cloud without phenomena 3 Continuous precipitation 4 **Showers** 5 Showers and continuous precipitation 6 Thunderstorm or thunderstorm and showers 7 Thunderstorm and continuous precipitation 8 Hail 9 Hail and other phenomena Undetermined

4531

$W_{a1} \ W_{a2}$	Past weather reported from an automatic weather station
Code figure	
0	No significant weather observed
1	VISIBILITY REDUCED
2	Blowing phenomena, visibility reduced
3	FOG
4	PRECIPITATION
5	Drizzle
6	Rain
7	Snow or ice pellets
8	Showers or intermittent precipitation
9	Thunderstorm

Note: The weather descriptions in this table are progressively complex, to accommodate the different levels of weather discrimination capability of various automatic stations. Stations having only basic sensing capability may use the lower code figures and basic generic descriptions (shown in capital letters). Stations with progressively higher discrimination capability shall use the more detailed descriptions (higher codes).

4536

 W_f Mean width or mean diameter of the feature specified by S_fS_f , or mean diameter of the overcast cloud of the tropical cyclone

Code figure	
-	
0	<1° of latitude
1	1° to less than 2° of latitude
2	2° to less than 3° of latitude
3	3° to less than 4° of latitude
4	4° to less than 5° of latitude
5	5° to less than 6° of latitude
6	6° to less than 7° of latitude
7	7° to less than 8° of latitude
8	8° to less than 9° of latitude
9	9° of latitude or more
1	Undetermined

4544

\mathbf{W}_{m}	Forecast weather
Code figure	
0	Moderate to good visibility (greater than 5 km)
1	Risk of accumulation of ice on superstructures (air temperature between 0 and -5°C)
2	Strong risk of accumulation of ice on superstructures (air temperature below -5°C)
3	Mist (visibility 1–5 km)
4	Fog (visibility less than 1 km)
5	Drizzle
6	Rain
7	Snow or rain and snow
8	Squally weather with or without showers
9	Thunderstorms

4552

\mathbf{W}_{t}	Type of opening in the ice
Code figure	
0	No openings
1	Crack
2	Very small fracture (0–49 m)
3	Small fracture (50–199 m)
4	Medium fracture (200–499 m)
5	Large fracture (500 m or more)
6	Lead, shore lead, flaw lead
7	Polynya, shore polynya, flaw polynya
8	Recurring polynya
9	Water between floes
1	Undetermined or unknown

A-354 Volume I.1

	4301
w	Weather during past hour
W ₁ W ₂	Past weather
Code figure	
0	Cloud covering ¹ / ₂ or less of the sky throughout the appropriate period
1	Cloud covering more than $^{1}/_{2}$ of the sky during part of the appropriate period and covering $^{1}/_{2}$ or less during part of the period
2	Cloud covering more than ¹ / ₂ of the sky throughout the appropriate period
3	Sandstorm, duststorm or blowing snow
4	Fog or ice fog or thick haze
5	Drizzle
6	Rain
7	Snow, or rain and snow mixed
8	Shower(s)
9	Thunderstorm(s) with or without precipitation
	4635
W _e	Weather
Code figure	
1	Height of base of significant cloud
2	Visibility
3	Wind force
4	lcing
5	Turbulence
6	Squalls
7	Snow cover
8	Saturation (area of 100% relative humidity; i = 0)
Note:	See Code table 1800 for intensity or character of w _e .
	4639
$\mathbf{W_{i}}$	Method by which winds were determined
Code figure	
1	Wind derived from cloud motion observed in the infrared channel
2	Wind derived from cloud motion observed in the visible channel
3	Wind derived from motion observed in the water vapour channel
4	Wind derived from motion observed in a combination of spectral channels

ww Present weather reported from a manned weather station

ww = 00–49 No precipitation at the station at the time of observation		No precipitation at the station at the time of observation		
ww = 00-19 No precipitation, fog, ice fog (except for 11 and 12), duststorm, sandstorm, drifting blowing snow at the station* at the time of observation or, except for 09 and 17, during preceding hour				
	Code figure			
ر د	(00	Cloud development not observed or not observable		
No meteors except photometeors	01	Clouds generally dissolving or becoming less developed Characteristic change of the state of sky		
ex o	02	State of sky on the whole unchanged during the past hour		
z ď	03	Clouds generally forming or developing		
	(04	Visibility reduced by smoke, e.g. veldt or forest fires, industrial smoke or volcanic ashes		
ke	05	Haze		
or smo	06	Widespread dust in suspension in the air, not raised by wind at or near the station at the time of observation		
Haze, dust, sand or smoke	07	Dust or sand raised by wind at or near the station at the time of observation, but no well-developed dust whirl(s) or sand whirl(s), and no duststorm or sandstorm seen; or, in the case of ships, blowing spray at the station		
ze, du	08	Well-developed dust whirl(s) or sand whirl(s) seen at or near the station during the preceding hour or at the time of observation, but no duststorm or sandstorm		
Ŧ	09	Duststorm or sandstorm within sight at the time of observation, or at the station during the preceding hour		
	10	Mist		
	11	Patches shallow fog or ice fog at the station, whether on land or sea, not		
	12	More or less continuous deeper than about 2 metres on land or 10 metres at sea		
	13	Lightning visible, no thunder heard		
	14	Precipitation within sight, not reaching the ground or the surface of the sea		
	15	Precipitation within sight, reaching the ground or the surface of the sea, but distant, i.e. estimated to be more than 5 km from the station		
	16	Precipitation within sight, reaching the ground or the surface of the sea, near to, but not at the station		
	17	Thunderstorm, but no precipitation at the time of observation		
	18	Squalls at or within sight of the station during the preceding hour or at the time		
	19	Funnel cloud(s)** ∫ of observation		
ww = 20-	-29	Precipitation, fog, ice fog or thunderstorm at the station during the preceding hour but not at the time of observation		
	20	Drizzle (not freezing) or snow grains		
	21	Rain (not freezing)		
	22	Snow not falling as shower(s)		
	23	Rain and snow or ice pellets		
	24	Freezing drizzle or freezing rain		
	25	Shower(s) of rain		
	26	Shower(s) of snow, or of rain and snow		
	27	Shower(s) of hail,*** or of rain and hail***		
	28	Fog or ice fog		
	29	Thunderstorm (with or without precipitation)		

A-356 Volume I.1

(Code table 4677 – continued)

Code	
figure	

ww = 30–39	Duststorm, sandstorm, drifting or blowing snow
30 31	 has decreased during the preceding hour no appreciable change during the
31	Slight or moderate duststorm or sandstorm The appreciable change during the preceding hour
32	 has begun or has increased during the preceding hour
33	 has decreased during the preceding hour
34	- no appreciable change during the preceding hour
35	 has begun or has increased during the preceding hour
36	Slight or moderate drifting snow generally low below eye level)
37	Heavy drifting snow
38	Slight or moderate blowing snow generally high (above eye level)
39	Heavy blowing snow
ww = 40–49	Fog or ice fog at the time of observation
40	Fog or ice fog at a distance at the time of observation, but not at the station during the preceding hour, the fog or ice fog extending to a level above that of the observer
41	Fog or ice fog in patches
42	Fog or ice fog, sky visible has become thinner during the preceding hour
43	Fog or ice fog, sky invisible
44	Fog of ice fog, sky visible no appreciable change during the preceding hour
45	Fog or ice fog, sky invisible
46	Fog or ice fog, sky visible has begun or has become thicker during the preceding
47	Fog or ice fog, sky invisible hour
48	Fog, depositing rime, sky visible
49	Fog, depositing rime, sky invisible
ww = 50–99	Precipitation at the station at the time of observation
ww = 50–59	Drizzle
50	Drizzle, not freezing, intermittent } slight at time of observation
51	Drizzle, not freezing, continuous
52	Drizzle, not freezing, intermittent
53	Drizzle, not freezing, continuous
54	Drizzle, not freezing, intermittent heavy (dense) at time of observation
55	Drizzle, not freezing, continuous
56	Drizzle, freezing, slight
57	Drizzle, freezing, moderate or heavy (dense)
58	Drizzle and rain, slight
59	Drizzle and rain, moderate or heavy
ww = 60–69	Rain
60	Rain, not freezing, intermittent slight at time of observation
61	Rain, not freezing, continuous
62	Rain, not freezing, intermittent moderate at time of observation
63	Rain, not freezing, continuous
64	Rain, not freezing, intermittent heavy at time of observation
	Rain, not freezing, continuous

(Code table 4677 – continued)

(Code table 4677 –	continued)					
Code						
figure						
66	Rain, freezing, slight					
67	Rain, freezing, moderate or heavy					
68	Rain or drizzle and snow, slight					
69	Rain or drizzle and snow, moderate or heavy					
ww = 70-79	Solid precipitation not in showers					
70	Intermittent fall of snowflakes slight at time of observation					
71	Continuous fall of snowflakes					
72	Intermittent fall of snowflakes moderate at time of observation					
73	Continuous fall of snowflakes					
74	Intermittent fall of snowflakes heavy at time of observation					
75	Continuous fall of snowflakes					
76	Diamond dust (with or without fog)					
77	Snow grains (with or without fog)					
78	Isolated star-like snow crystals (with or without fog)					
79	Ice pellets					
ww = 80-99	Showery precipitation, or precipitation with current or recent thunderstorm					
80	Rain shower(s), slight					
81	Rain shower(s), moderate or heavy					
82	Rain shower(s), violent					
83	Shower(s) of rain and snow mixed, slight					
84	Shower(s) of rain and snow mixed, moderate or heavy					
85	Snow shower(s), slight					
86	Snow shower(s), moderate or heavy					
87)	Shower(s) of snow pellets or small hail, with or - slight					
88 ∫	without rain or rain and snow mixed — moderate or heavy					
89]	Shower(s) of hail,**** with or without rain or rain - slight					
90 ∫	and snow mixed, not associated with thunder — moderate or heavy					
91	Slight rain at time of observation					
92	Moderate or heavy rain at time of observation					
93	Slight snow, or rain and snow mixed or hail*** at time of observation Thunderstorm during the preceding hour but not at time of observation					
94	Moderate or heavy snow, or rain and snow mixed or hail*** at time of observation					
95	Thunderstorm, slight or moderate, without hail,*** but with rain and/or snow at time of observation					
96	Thunderstorm, slight or moderate, with hail*** at time of observation					
97	Thunderstorm, heavy, without hail, *** but with rain and/or snow at time of observation					
98	Thunderstorm combined with duststorm or sandstorm at time of observation					
99	Thunderstorm, heavy, with hail*** at time of observation					
	""" The second of the second o					

^{*} The expression "at the station" refers to a land station or a ship.

A-358 Volume I.1

^{**} Tornado cloud or waterspout.

^{***} Hail, small hail, snow pellets. French: grêle, grésil ou neige roulée.

^{****} French: grêle.

w'w' Significant present and forecast weather

QUALIFIER			WEATHER PHENOMENA						
INTENSITY OR PROXIMITY DESCRIPTOR		PRECIPITATION		OBSCURATION		OTHER			
	1		2		3		4		5
-	Light	МІ	Shallow	DZ	Drizzle	BR	Mist	РО	Dust/sand whirls (dust
	Moderate (no qualifier)	вс	Patches	RA	Rain	FG	Fog		devils)
+	Heavy	PR	Partial (covering part	SN	Snow	FU	Smoke	SQ	Squalls
	(well developed in the case of		of the aerodrome)	SG	Snow grains	VA	Volcanic ash	FC	Funnel cloud(s) (tornado or
	dust/sand whirls (dust	DR	Low drifting	PL	Ice pellets	DU	Widespread dust		waterspout)
	devils) and funnel clouds)	BL	Blowing	GR	Hail	SA	Sand	SS	Sandstorm
vc	In the vicinity	SH	Shower(s)	GS	Small hail and/or snow pellets	HZ	Haze	DS	Duststorm
		TS	Thunderstorm		peliets				
		FZ	Freezing (supercooled)	UP	Unknown precipitation				

The w'w' groups shall be constructed by considering columns 1 to 5 in the table above in sequence, that is, intensity, followed by description, followed by weather phenomena. An example could be: +SHRA (heavy shower(s) of rain).

Notes:

- (1) Entries in this code table are based on the descriptions of hydrometeors and lithometeors found in the *International Cloud Atlas* (WMO-No 407), Volume I.
- (2) Regulation 15.8 shall apply.
- (3) More than one form of precipitation shall be combined, the dominant type of precipitation being reported first, for example +SNRA.
- (4) More than one phenomenon other than a precipitation combination noted shall be reported in separate w'w' groups in the order of the columns, for example –DZ FG.
- (5) Intensity shall be indicated only with precipitation, precipitation associated with showers and/or thunderstorms, duststorm or sandstorm, and funnel clouds.
- (6) Not more than one descriptor shall be included in a w'w' group, for example -FZDZ.
- (7) The descriptors MI, BC and PR shall be used only in combination with the letter abbreviation FG, for example MIFG
- (8) The descriptor DR (low drifting) shall be used for dust, sand or snow raised by the wind to less than two metres above the ground. BL (blowing) shall be used to indicate dust, sand or snow raised by the wind to a height of two metres or more above the ground. The descriptors DR and BL shall be used only in combination with the letter abbreviations DU, SA and SN, for example BLSN.
- (9) When blowing snow is observed with snow falling from cloud, both phenomena are reported, e.g. SN BLSN. When due to blowing snow the observer cannot determine whether or not snow is also falling from cloud, then only BLSN shall be reported.

(Code table 4678 - continued)

36-39

Reserved

- (10) The descriptor SH shall be used only in combination with one or more of the letter abbreviations RA, SN, GS, GR and UP to indicate precipitation of the shower type at the time of observation, for example SHSN.
- (11) The descriptor TS, if not used on its own, shall be used only in combination with one or more of the letter abbreviations RA, SN, GS, GR and UP to indicate thunderstorm with precipitation at the aerodrome, for example TSSNGS.
- (12) The descriptor FZ shall be used only in combination with the letter abbreviations FG, DZ, RA and UP for example FZRA.
- (13) The proximity qualifier VC shall be used only in combination with the letter abbreviations TS, DS, SS, FG, FC, SH, PO, BLDU, BLSA, BLSN and VA.
- (14) UP is to be used only in reports from fully automated stations unable to distinguish precipitation type.

4680

$\mathbf{W}_{\mathbf{a}}\mathbf{W}_{\mathbf{a}}$	Present weather reported from an automatic weather station
Code figure	
00	No significant weather observed
01	Clouds generally dissolving or becoming less developed during the past hour
02	State of sky on the whole unchanged during the past hour
03	Clouds generally forming or developing during the past hour
04	Haze or smoke, or dust in suspension in the air, visibility equal to, or greater than, 1 km
05	Haze or smoke, or dust in suspension in the air, visibility less than 1 km
06–09	Reserved
10	Mist
11	Diamond dust
12	Distant lightning
13–17	Reserved
18	Squalls
19	Reserved

Code figures 20–26 are used to report precipitation, fog (or ice fog) or thunderstorm at the station during the preceding hour but not at the time of observation.

20	Fog
21	PRECIPITATION
22	Drizzle (not freezing) or snow grains
23	Rain (not freezing)
24	Snow
25	Freezing drizzle or freezing rain
26	Thunderstorm (with or without precipitation)
27	BLOWING OR DRIFTING SNOW OR SAND
28	Blowing or drifting snow or sand, visibility equal to, or greater than, 1 km
29	Blowing or drifting snow or sand, visibility less than 1 km
30	FOG
31	Fog or ice fog in patches
32	Fog or ice fog, has become thinner during the past hour
33	Fog or ice fog, no appreciable change during the past hour
34	Fog or ice fog, has begun or become thicker during the past hour
35	Fog, depositing rime

A-360 Volume I.1

(Code table 4680 – continued)

PRECIPITATION

40

41	Precipitation, slight or moderate
42	Precipitation, heavy
43	Liquid precipitation, slight or moderate
44	Liquid precipitation, heavy
45	Solid precipitation, slight or moderate
46	Solid precipitation, heavy
47	Freezing precipitation, slight or moderate
48	Freezing precipitation, heavy
49	Reserved
50	DRIZZLE
51	Drizzle, not freezing, slight
52	Drizzle, not freezing, siight Drizzle, not freezing, moderate
53	Drizzle, not freezing, moderate Drizzle, not freezing, heavy
54	Drizzle, freezing, slight
55	Drizzle, freezing, siight Drizzle, freezing, moderate
56	Drizzle, freezing, moderate Drizzle, freezing, heavy
50 57	
	Drizzle and rain, slight
58 50	Drizzle and rain, moderate or heavy Reserved
59	Reserved
60	RAIN
61	Rain, not freezing, slight
62	Rain, not freezing, moderate
63	Rain, not freezing, heavy
64	Rain, freezing, slight
65	Rain, freezing, moderate
66	Rain, freezing, heavy
67	Rain (or drizzle) and snow, slight
68	Rain (or drizzle) and snow, moderate or heavy
69	Reserved
70	SNOW
71	Snow, slight
72	Snow, moderate
73	Snow, heavy
74	Ice pellets, slight
75	Ice pellets, moderate
76	Ice pellets, heavy
77	Snow grains
78	Ice crystals
79	Reserved
90	CUOMED(C) or INTERMITTENT PRECIPITATION
80	SHOWER(S) or INTERMITTENT PRECIPITATION
81	Rain shower(s) or intermittent rain, slight
82	Rain shower(s) or intermittent rain, moderate
83	Rain shower(s) or intermittent rain, heavy
84	Rain shower(s) or intermittent rain, violent

85	Snow shower(s) or intermittent snow, slight
86	Snow shower(s) or intermittent snow, moderate
87	Snow shower(s) or intermittent snow, heavy
88	Reserved
89	Hail
90	THUNDERSTORM
91	Thunderstorm, slight or moderate, with no precipitation
92	Thunderstorm, slight or moderate, with rain showers and/or snow showers
93	Thunderstorm, slight or moderate, with hail
94	Thunderstorm, heavy, with no precipitation
95	Thunderstorm, heavy, with rain showers and/or snow showers
96	Thunderstorm, heavy, with hail
97–98	Reserved
99	Tornado

Notes:

- (1) This code table includes terms on several levels to cover simple and increasingly complex stations.
- (2) Generic terms for weather (e.g. fog, drizzle) are intended for use at stations capable of determining types of weather but no other information. Generic terms are included in the code table using all capital letters.
- (3) Code figures for generic precipitation (code figures 40–48) are arranged in order of increasing complexity. For example, a very simple station that can sense only the presence or absence of precipitation would use code figure 40 (precipitation). At the next level, a station capable of sensing amount but not type would use code figure 41 or 42. A station capable of sensing gross type (liquid, solid, freezing) and amount would use code figures 43–48. A station capable of reporting actual types of precipitation (e.g. drizzle or rain), but not the amount, would use the appropriate whole decile number (e.g. 50 for generic drizzle, 60 for generic rain).

4683

$\mathbf{w_s}\mathbf{w_s}$	Significant weather
Code	
figure	
00	Area of heavy swell
11	Area of strong winds (6 and 7 Beaufort)
22	Area of medium cloud
33	Area of low cloud
44	Area of poor visibility
55	Area of gales (8 Beaufort or more)
66	Area of continuous precipitation
77	Area of squally weather
88	Area of heavy showers
99	Area of thunderstorms

A-362 Volume I.1

$\mathbf{W}_1\mathbf{W}_1$	Present weather phenomenon not specified in Code table 4677, or specification of present weather phenomenon in addition to group $7wwW_1W_2$
Code figure	
Decile 0	0–09
00-03	Not used
04	Volcanic ash suspended in the air aloft
05	Not used
06	Thick dust haze, visibility less than 1 km
07	Blowing spray at the station
08	Drifting dust (sand)
09	Wall of dust or sand in distance (like haboob)
Decile 1	0–19
10	Snow haze
11	Whiteout
12	Not used
13	Lightning, cloud to surface
14–16	Not used
17	Dry thunderstorm
18	Not used
19	Tornado cloud (destructive) at or within sight of the station during preceding hour or at the time of observation
Decile 2	0–29
20	Deposition of volcanic ash
21	Deposition of dust or sand
22	Deposition of dew
23	Deposition of wet snow
24	Deposition of soft rime
25	Deposition of hard rime
26	Deposition of hoar frost
27	Deposition of glaze
28	Deposition of ice crust (ice slick)
29	Not used
Decile 3	
30	Duststorm or sandstorm with temperature below 0°C
31–38	Not used
39	Blowing snow, impossible to determine whether snow is falling or not
Decile 4	0–49
40	Not used
41	Fog on sea
42	Fog in valleys
43	Arctic or Antarctic sea smoke
44	Steam fog (sea, lake or river)
45	Steam fog (land)
46	Fog over ice or snow cover
47	Dense fog, visibility 60–90 m
48	Dense fog, visibility 30–60 m
40	Dance for visibility less than 20 m

Volume I.1 A–363

49

Dense fog, visibility less than 30 m

(Code table 4680 - continued

```
Decile 50-59
 50
                                            less than 0.10 mm h<sup>-1</sup>
                                            0.10-0.19 mm h<sup>-1</sup>
 51
 52
                                            0.20-0.39 mm h<sup>-1</sup>
                                            0.40-0.79 mm h-1
 53
             Drizzle, rate of fall
 54
                                            0.80-1.59 mm h<sup>-1</sup>
                                            1.60-3.19 mm h<sup>-1</sup>
 55
                                            3.20-6.39 mm h<sup>-1</sup>
 56
                                            6.4 mm h<sup>-1</sup> or more
 57
 58
             Not used
             Drizzle and snow (ww = 68 or 69)
 59
Decile 60-69
60
                                           less than 1.0 mm h<sup>-1</sup>
                                           1.0-1.9 mm h<sup>-1</sup>
61
                                           2.0-3.9 mm h<sup>-1</sup>
62
63
                                           4.0-7.9 mm h-1
             Rain, rate of fall
                                           8.0-15.9 mm h-1
64
65
                                           16.0-31.9 mm h<sup>-1</sup>
                                           32.0-63.9 mm h<sup>-1</sup>
66
                                           64.0 mm h<sup>-1</sup> or more
67
68-69
           Not used
Decile 70-79
                                           less than 1.0 cm h<sup>-1</sup>
70
71
                                           1.0-1.9 cm h<sup>-1</sup>
72
                                           2.0-3.9 cm h<sup>-1</sup>
                                           4.0-7.9 cm h<sup>-1</sup>
73
             Snow, rate of fall
                                           8.0-15.9 cm h<sup>-1</sup>
74
                                           16.0-31.9 cm h<sup>-1</sup>
75
                                           32.0-63.9 cm h<sup>-1</sup>
76
                                           64.0 cm h<sup>-1</sup> or more
77
78
           Snow or ice crystal precipitation from a clear sky
79
           Wet snow, freezing on contact
Decile 80-99
80
           Precipitation of rain (ww = 87-99)
81
           Precipitation of rain, freezing (ww = 80-82)
82
           Precipitation of rain and snow mixed
83
           Precipitation of snow
           Precipitation of snow pellets or small hail
84
85
           Precipitation of snow pellets or small hail, with rain
86
           Precipitation of snow and snow mixed pellets or
                                                                               (ww = 26-27)
                                                                               (ww = 68 \text{ or } 69)
           small hail, with rain
                                                                               (ww = 87-99)
87
           Precipitation of snow pellets or small hail, with snow
88
           Precipitation of hail
89
           Precipitation of hail, with rain
90
           Precipitation of hail, with rain and snow mixed
91
           Precipitation of hail, with snow
92
           Shower(s) or thunderstorm over sea
93
           Shower(s) or thunderstorm over mountains
94-99
           Not used
```

A-364 Volume I.1

4691

w₁w₁w₁ Forecast weather

Code		
figure	Abbreviation	
111	TS	Thunderstorm
222	TRS	Tropical cyclone
333	LSQ	Severe line squall
444	HAIL	Hail
555	MTW	Marked mountain waves
666	SAND	Widespread sandstorm
777	DUST	Widespread duststorm
888	FZR	Freezing rain

4700

X Time of measurement or period of reference and tendency of the element measured, the value of which is indicated by $H_sH_sH_s$ or $QQQe_Q$

Code figure	Nature and time or period of measurement	Tendency during the three hours preceding the observation
0	Value at time of observation	Stationary
1	Value at time of observation	Falling
2	Value at time of observation	Rising
3	Value at 3 hours before the observation	
4	Value at 6 hours before the observation	
5	Value at 12 hours before the observation	
6	Value at 24 hours before the observation	
7	Mean value on the preceding day	
8	Maximum value during preceding 24 hours	
9	Minimum value during preceding 24 hours	
1	Value at time of observation	Unknown

4770

X_RX_R Recorder type

(See Common Code table C-4 in Attachment I.)

X _t X _t Type of drogue					
Code					
figure					
0 Unspecified drogue					
1 Holey sock					
2 TRISTAR					
3 Window shade					
4 Parachute					
5 Non-Lagrangian sea anchor					
	Reserved (to be developed)				
// Missing value (coded 31 in BUFR)					
	4800				
x Exponent for spectral wave data					
Code					
figure 0 10 ⁻⁵					
1 10 ⁻⁴ 2 10 ⁻³					
•					
4					
^					
4					
$7 10^2$					
8 10 ³ 9 10 ⁴					
9 10°					
	4865				
x ₄ Hemisphere indicator					
Code					
figure 0 Northern hemisphere					
1 Southern hemisphere					
Todatiem nemisphere					
	4887				
	4007				
x_1x_1 Form in which point position groups	are giver				
Code figure					
00 Positions in form $L_aL_aL_oL_ok$ (northern he	emisphere)				
·	Positions in form $L_aL_aL_oL_ok$ (southern hemisphere)				
22 Positions in form L _a L _a L _o L _o k (equatorial)	. ,				
66 Positions in form iiiD ₁ s ₁					
88 Positions in form QL _a L _a L _o L _o					

A–366 Volume I.1

$\mathbf{X}_2\mathbf{X}_2\mathbf{X}_2$	Type of analysis			
$X_3X_3X_3$	Value designator of a given chart or analysis			
Code figure	$\mathbf{x}_2\mathbf{x}_2\mathbf{x}_2$	x ₃ x ₃ x ₃		
000	Jet-stream analysis	_		
111	Constant level chart	In tens of standard geopotential metres		
222	Isobaric (constant pressure) surface	In whole hectopascals (except that for the 1 000-hPa chart, $x_3x_3x_3 = 000$)		
333	Isentropic chart	In whole kelvins		
444	Cross-section chart	_		
555	Thickness pattern chart	To be followed by two $00x_3x_3x_3$ groups giving the pressure of the upper and lower isobaric surfaces respectively in whole hectopascals (except that for the 1 000-hPa chart, $x_3x_3x_3 = 000$)		
666	Pressure or geopotential change chart	In whole hectopascals, or in tens of standard geopotential metres		
777	Isothermal chart	In whole degrees Celsius (add 500 for minus values)		
888	Flow analysis	In whole hectopascals x ₃ x ₃ x ₃ is indicated by ///		
999	Tropopause analysis	x ₃ x ₃ x ₃ is indicated by ///		
<i>III</i>	Upper-wind analysis	_		

Note: When $x_2x_2x_2 = 666$, the 86668 group shall be followed by either 81118 or 82228 to indicate whether the chart is for a constant level or a constant pressure surface.

4900

1	Sunday	5	Thursday
2	Monday	6	Friday
3	Tuesday	7	Saturday
4	Wednesday		
			5122
\mathbf{Z}_{T}	Character of the te	mperatui	re reported by TT
Code figure			
0	0° or higher		

Code figure

Day of the week (UTC)

-1° to -99° inclusive

Missing

-100° to -199° inclusive

Υ

Code

figure

5

5161

Z_0	Optical phenomena
Code figure	
0	Brocken spectre
1	Rainbow
2	Solar or lunar halo
3	Parhelia or anthelia
4	Sun pillar
5	Corona
6	Twilight glow
7	Twilight glow on the mountains (Alpenglühen)
8	Mirage
9	Zodiacal light

5162

Z₁ Nature of evolution of zone S₂

Code igure	
0	No change
1	Increasing in intensity without extension
2	Extending without increase of intensity
3	Extending and increasing in intensity
4	Stopped by the high ground
5	Weakening as it advances
6	Weakening in position
7	Disintegrating or rapidly dissipating
8	Dissipating in the valleys
9	Dissipating on the heights

A–368 Volume I.1

ZZ Meteorological zone number by 5 degrees of longitude or latitude

EAST-WEST ZONES		NORTH-SOUTH ZONES		
Zone No.	Longitude west	Longitude east	Zone No.	Latitude
01	0°- 5°	180° – 175°	51	90°N – 85°N
02	5° - 10°	175° – 170°	52	85°N – 80°N
03	10° – 15°	170° – 165°	53	80°N – 75°N
04	15° – 20°	165° – 160°	54	75°N – 70°N
05	20° – 25°	160° – 155°	55	70°N – 65°N
06	25° – 30°	155° – 150°	56	65°N – 60°N
07	30° – 35°	150° – 145°	57	60°N – 55°N
08	35° – 40°	145° – 140°	58	55°N – 50°N
09	40° – 45°	140° – 135°	59	50°N – 45°N
10	45° – 50°	135° – 130°	60	45°N – 40°N
11	50° – 55°	130° – 125°	61	40°N – 35°N
12	55° – 60°	125° – 120°	62	35°N – 30°N
13	60° – 65°	120° – 115°	63	30°N – 25°N
14	65° – 70°	115° – 110°	64	25°N – 20°N
15	70° – 75°	110° – 105°	65	20°N – 15°N
16	75° – 80°	105° – 100°	66	15°N – 10°N
17	80° – 85°	100° – 95°	67	10°N – 5°N
18	85° – 90°	95° – 90°	68	5°N - 0°
19	90° – 95°	90° – 85°	69	0° - 5°S
20	95° – 100°	85° – 80°	70	5°S – 10°S
21	100° – 105°	80° – 75°	71	10°S – 15°S
22	105° – 110°	75° – 70°	72	15°S – 20°S
23	110° – 115°	70° – 65°	73	20°S – 25°S
24	115° – 120°	65° – 60°	74	25°S – 30°S
25	120° – 125°	60° – 55°	75	30°S – 35°S
26	125° – 130°	55° – 50°	76	35°S – 40°S
27	130° – 135°	50° – 45°	77	40°S – 45°S
28	135° – 140°	45° – 40°	78	45°S – 50°S
29	140° – 145°	40° – 35°	79	50°S – 55°S
30	145° – 150°	35° – 30°	80	55°S – 60°S
31	150° – 155°	30° – 25°	81	60°S – 65°S
32	155° – 160°	25° – 20°	82	65°S – 70°S
33	160° – 165°	20° – 15°	83	70°S – 75°S
34 35	165° – 170°	15° – 10°	84	75°S – 80°S
35 36	170° – 175°	10°– 5° 5°– 0°	85 86	80°S – 85°S
36	175° – 180°	5°- 0°	86	85°S – 90°S

Present ice situation and trend of conditions over preceding three hours $\mathbf{Z}_{\mathbf{i}}$ Code figure Ship in open water with floating ice in sight 0 1 Ship in easily penetrable ice; conditions improving 2 Ship in easily penetrable ice; conditions not changing 3 Ship in easily penetrable ice; conditions worsening Ship in ice difficult to penetrate; conditions improving 4 5 Ship in ice difficult to penetrate; conditions not changing Ship in ice 6 Ice forming and floes freezing together Ship in ice difficult 7 Ice under slight pressure to penetrate and Ice under moderate or severe pressure conditions 8 worsening 9 Ship beset Unable to report, because of darkness or lack of visibility

A-370 Volume I.1

Section D

SYSTEM OF STATION INDEX NUMBERS

- a. Meteorological observing stations
- b. Hydrological observing stations

a. METEOROLOGICAL OBSERVING STATIONS

A station index number in the form IIiii is included in the reports of meteorological observations made at land meteorological stations or aboard lightships using land code forms. This group permits the identification of the meteorological station at which the observation has been made.

The station index number is composed of the block number (II) and the station number (iii).

The block number defines the area in which the reporting station is situated. The station index numbers have been allocated as follows:

Region I:	Africa	60001 – 69998
Region II:	Asia	20001 - 20099 20200 - 21998 23001 - 25998 28001 - 32998 35001 - 36998 38001 - 39998 40350 - 48599 48800 - 49998 50001 - 59998
Region III:	South America	80001 – 88998
Region IV:	North America, Central America and the Caribbean	70001 – 79998
Region V:	South-West Pacific	{ 48600 - 48799 90001 - 98998
Region VI:	Europe	$ \begin{pmatrix} 00001 - 19998 \\ 20100 - 20199 \\ 22001 - 22998 \\ 26001 - 27998 \\ 33001 - 34998 \\ 37001 - 37998 \\ 40001 - 40349 \end{pmatrix} $
Stations in	the Antarctic	80001 – 88998

Block numbers are allotted to the services within each Region by regional agreement.

Station numbers (iii) corresponding to a common block number (II) except 89 are usually distributed so that the zone covered by this block number is divided into horizontal strips; e.g., one or several degrees of latitude. Where possible, station numbers within each strip increase from west to east and the first figure of the three-figure station number increases from north to south.

Station index numbers for stations in the Antarctic are allocated by the Secretary-General in accordance with the following scheme:

Each station has an international number 89xxy, where xx indicates the nearest 10° meridian which is numerically lower than the station longitude. For east longitudes, 50 is added; e.g., 89124 indicates a station between 120° and 130°W and 89654 indicates a station between longitudes 150° and 160°E. The figure "y" is allocated roughly according to the latitude of the station with "y" increasing towards the south.

For stations for which international numbers are no longer available within the above scheme, the algorithm will be expanded by adding 20 to xx for west longitudes (range of index numbers 200–380) and 70 for east longitudes (range of index numbers 700–880) to provide new index numbers.

SYSTEM OF STATION INDEX NUMBERS

Antarctic stations which held numbers before the introduction of this scheme in 1957 retain their previously allocated index numbers.

Station index numbers consisting of one figure repeated five times, e.g. 55555, 77777, etc., or ending with 000 or 999, or duplicating special code indicators used in code forms including station index numbers, shall not be assigned to meteorological stations (see list of these special code indicators in the note hereafter).

Modifications to the index numbers of synoptic land stations or aeronautical meteorological stations on land, the reports of which are included in international exchanges, shall be made effective on 1 January or 1 July. They shall be communicated to the Secretariat at least six months prior to becoming effective.

Other information relating to station index numbers shall be sent to the Secretariat at least two months prior to becoming effective.

The general list of station index numbers is published by the WMO Secretariat in a separate volume (*Weather Reporting* (WMO–No. 9), Volume A).

Positions of reporting ships or aircraft are given as geographical coordinates by position groups in the appropriate code forms. However, in order that a meteorological service or centre may follow and recognize the successive reports of a given ship, it is recommended that additional information be given in the report, permitting the identification of the ship. This information is given, whenever possible, by the inclusion of the call sign of ships. These call signs shall also be included in all collective messages of reports from selected and supplementary ships. In cases where the inclusion of the call signs is not possible, selected and supplementary ships are identified by name or by special numbers.

In the case of transport aircraft and for this same purpose, provision is made for the necessary identification information in the first group of the report.

Note: Figure groups used as special code indicators in FM 20, FM 32, FM 35 and FM 85 and which shall not be assigned to meteorological stations, in addition to groups consisting of one figure repeated five times and those ending with 000 or 999:

21212	Data for fixed regional and/or significant levels with respect to wind follow. (FM 32)
21212	Data for significant levels with respect to wind follow. (FM 35)
31313	Data on sounding system, launch time and sea-surface temperature follow. (FM 35)
41414	Cloud information follows. (FM 35)
51515 52525 53535 54545 55555 56565 57575 58585 59595	Additional data in regional code follow. (FM 20, FM 32, FM 35, FM 85)
61616 62626 63636 64646 65656 66666 67676 68686 69696	Additional data in national code follow. (FM 20, FM 32, FM 35)

A- 374 Volume I.1

b. HYDROLOGICAL OBSERVING STATIONS

An international hydrological observing station identification number in the form $(000AC_i)$ BBi_Hi_Hi_H is included in the reports of hydrological observation for a hydrological station and in a hydrological forecast. The two groups permit the identification of the WMO Region (A), country (C_i), river basin or group of basins (BB) and the station $(i_Hi_Hi_H)$.

The allocation of identification numbers is the responsibility of regional associations, for C_i and BB, and Member countries, for i_{HiHiH} .

A Region may have a maximum of 99 indicators for large basins or groups of small basins. The number BB = 00 is not used.

If a country straddles several basins (BB), it should nevertheless have only one and the same figure for C_i.

If a basin BB comprises all or part of the territory of more than ten countries, C_i should be allocated starting with the largest countries, giving joint national numbers to others (the smallest). In the latter case, the national identification numbers of the station ($i_H i_H i_H$) should be allocated by regional agreement.

Alternatively large river basins composed of more than nine countries may be divided into several subbasins, each one of which may be allocated a separate BB; thus the number of countries will be less than ten in each BB.

In each country and for a portion of a basin BB, the national identification numbers of stations ($i_H i_H i_H$) increase from 010 to 999 from west to east and from north to south. The numbers from $i_H i_H i_H = 000$ to $i_H i_H i_H = 009$ may be reserved to designate the identification of hydrological forecast centres.

Modifications to the identification numbers of hydrological observing stations, the reports of which are included in international exchanges, shall be made effective on 1 January or 1 July. They shall be communicated to the Secretariat at least six months prior to becoming effective.

Other information relating to station identification numbers shall be sent to the Secretariat at least two months prior to becoming effective.

The lists of C_i and BB are published in Volume II of the *Manual on Codes* (WMO–No. 306) and the lists of $i_H i_H i_H$ will be published in a separate volume (Operational Hydrology Report No. . . ., WMO–No. . . .). (This publication will appear at a later stage.)

Section E BEAUFORT SCALE OF WIND

BEAUFORT SCALE OF WIND

ORT	DESCRIPTIVE		UIVALENT AT A S RES ABOVE OPEN				SPECIFICATIONS		Probable wave	Probable wave
BEAUFORT NUMBER	TERM	Mean velocity in knots	m s ⁻¹	km h ⁻¹	m.p.h.	Land	Sea	Coast	height* in metres	height* in feet
0	Calm	< 1	0-0.2	< 1	< 1	Calm; smoke rises vertically	Sea like a mirror	Calm	_	_
1	Light air	1–3	0.3–1.5	1–5	1–3	Direction of wind shown by smoke drift but not by wind vanes	Ripples with the appearance of scales are formed, but without foam crests	Fishing smack just has steerage way	0.1 (0.1)	1/4 (1/4)
2	Light breeze	4–6	1.6–3.3	6–11	4–7	Wind felt on face; leaves rustle; ordinary vanes moved by wind	Small wavelets, still short but more pronounced; crests have a glassy appearance and do not break	Wind fills the sails of smacks which then travel at about 1–2 knots	0.2 (0.3)	¹ /2 (1)
3	Gentle breeze	7–10	3.4–5.4	12–19	8–12	Leaves and small twigs in constant motion; wind extends light flag	Large wavelets; crests begin to break; foam of glassy appearance; perhaps scattered white horses	Smacks begin to careen and travel about 3–4 knots	0.6 (1)	2 (3)
4	Moderate breeze	11–16	5.5–7.9	20–28	13–18	Raises dust and loose paper; small branches are moved	Small waves, becoming longer; fairly frequent white horses	Good working breeze, smacks carry all canvas with good list	1 (1.5)	3 ¹ /2 (5)
5	Fresh breeze	17–21	8.0–10.7	29–38	19–24	Small trees in leaf begin to sway; crested wavelets form on inland waters	Moderate waves, taking a more pronounced long form; many white horses are formed (chance of some spray)	Smacks shorten sail	2 (2.5)	6 (8 ¹ /2)
6	Strong breeze	22–27	10.8–13.8	39–49	25–31	Large branches in motion; whistling heard in telegraph wires; umbrellas used with difficulty	Large waves begin to form; the white foam crests are more extensive everywhere (probably some spray)	Smacks have double reef in mainsail; care required when fishing	3 (4)	9 ¹ /2 (13)
7	Near gale	28–33	13.9–17.1	50–61	32–38	Whole trees in motion; inconvenience felt when walking against wind	Sea heaps up and white foam from breaking waves begins to be blown in streaks along the direction of the wind	Smacks remain in harbour and those at sea lie to	4 (5.5)	13 ¹ /2 (19)
8	Gale	34–40	17.2–20.7	62–74	39–46	Breaks twigs off trees; generally impedes progress	Moderately high waves of greater length; edges of crests begin to break into the spindrift; the foam is blown in well-marked streaks along the direction of the wind	All smacks make for harbour, if near	5.5 (7.5)	18 (25)
9	Strong gale	41–47	20.8–24.4	75–88	47–54	Slight structural damage occurs (chimney pots and slates removed)	High waves; dense streaks of foam along the direction of the wind; crests of waves begin to topple, tumble and roll over; spray may affect visibility	_	7 (10)	23 (32)
10	Storm	48–55	24.5–28.4	89–102	55–63	Seldom experienced inland; trees uprooted; considerable structural damage occurs	Very high waves with long overhanging crests; the resulting foam, in great patches, is blown in dense white streaks along the direction of the wind; on the whole, the surface of the sea takes on a white appearance; the tumbling of the sea becomes heavy and shock-like; visibility affected	_	9 (12.5)	29 (41)
11	Violent storm	56-63	28.5–32.6	103–117	64–72	Very rarely experienced; accompanied by widespread damage	Exceptionally high waves (small and medium-sized ships might be for a time lost to view behind the waves); the sea is completely covered with long white patches of foam lying along the direction of the wind; everywhere the edges of the wave crests are blown into froth; visibility affected	_	11.5 (16)	37 (52)
12	Hurricane	64 and over	32.7 and over	118 and over	73 and over		The air is filled with foam and spray; sea completely white with driving spray; visibility very seriously affected	_	14 (—)	45 (—)

This table is only intended as a guide to show roughly what may be expected in the open sea, remote from land. It should never be used in the reverse way; i.e., for logging or reporting the state of the sea. In enclosed waters, or when near land, with an offshore wind, wave heights will be smaller and the waves steeper. Figures in brackets indicate the probable maximum height of waves.

National practices regarding the coding of certain elements in reports, analyses or forecasts for international exchange

NATIONAL PRACTICES REGARDING THE CODING OF CERTAIN ELEMENTS IN REPORTS, ANALYSES OR FORECASTS FOR INTERNATIONAL EXCHANGE

Reporting of horizontal visibility at surface in meteorological reports

By WMO circular letter W/SY/CO (PR-3195) of 16 September 1980, Members were invited to inform the Secretariat of their national practices regarding the coding of horizontal visibility at surface (VV) in meteorological reports.

The information received is given below. This table will be kept up to date through supplements.

Member	Practices conform to Regulation 12.2.1.3.1	Other procedures used	No information available
Afghanistan	Х		_
Albania			X
Algeria			X
Angola			X
Antigua and Barbuda			X
Argentina	Χ		
Armenia	X		
Australia		X	
Austria	X		
Azerbaijan	Χ		
Bahamas	Χ		
Bahrain	Χ		
Bangladesh			X
Barbados			X
Belarus	Χ		
Belgium	Χ		
Belize			X
Benin	X		
Bolivia (Plurinational State of)			X
Bosnia and Herzegovina			X
Botswana			Χ
Brazil	Χ		
British Caribbean Territories			X
Brunei Darussalam			X
Bulgaria	Χ		
Burkina Faso	Χ		
Burundi			X
Cambodia			Χ
Cameroon	Χ		
Canada		X	
Cape Verde	X		
Central African Republic	Χ		
Chad			X
Chile			X
China		X	
Colombia	Χ		
Comoros			Χ
Congo			X
Costa Rica			X
Côte d'Ivoire	X		

Member	Practices conform to Regulation 12.2.1.3.1	Other procedures used	No information available
Croatia			Х
Cuba			X
Curaçao and Sint Maarten	Χ		
Cyprus	Χ		
Czech Republic	Χ		
Democratic People's Republic of Korea			X
Democratic Republic of the Congo	Χ		
Denmark		Χ	
Djibouti			Χ
Dominica			Χ
Dominican Republic	Χ		
Ecuador			X
Egypt	Χ		
El Salvador	Χ		
Eritrea			X
Estonia			X
Ethiopia	Х		
Fiji			X
Finland		X	
France	Χ		
French Polynesia	X		
Gabon	X		
Gambia			Х
Georgia	Χ		,
Germany		X	
Ghana	Χ	,,	
Greece	X		
Guatemala	~		Х
Guinea			X
Guinea-Bissau			X
Guyana			X
Haiti			X
Honduras			X
Hong Kong, China	X		χ
Hungary	X		
Iceland	X	Х	
India	X	^	
Indonesia	X		
Iran, Islamic Republic of	X		Х
			X
Iraq	V		^
Ireland	X X		
Israel	X		
Italy	^		~
Jamaica	V		X
Japan	X		
Jordan	X		
Kazakhstan	X		
Kenya	X		

A–384 Volume I.1

Member	Practices conform to Regulation 12.2.1.3.1	Other procedures used	No information available
Kuwait	Х		
Kyrgyzstan	X		
Lao People's Democratic Republic			X
Latvia			Х
Lebanon			X
Lesotho			Х
Liberia			Х
Libya	Χ		
Lithuania			X
Luxembourg	Χ		
Macao, China			Χ
Madagascar	Χ		
Malawi	Χ		
Malaysia	Х		
Maldives			X
Mali	Χ		
Malta	Χ		
Mauritania	X		
Mauritius	X		
Mexico	X		
Micronesia, Federated States of	χ		X
Monaco			X
Mongolia			X
Montenegro			^
Morocco	Χ		
Mozambique	X		
Myanmar	X		
Namibia	X		Х
Nepal			X
Netherlands	X		^
	X		Х
New Caledonia		V	^
New Zealand		Χ	V
Nicaragua	V		X
Niger	X		V
Nigeria			X
Niue		V	X
Norway	V	X	
Oman	X		
Pakistan	X		
Panama	Х		
Papua New Guinea			X
Paraguay			X
Peru			X
Philippines	Х		
Poland			X
Portugal	X		
Qatar			X
Republic of Korea	X		

Member	Practices conform to Regulation 12.2.1.3.1	Other procedures used	No information available
Republic of Moldova	X		
Romania	Χ		
Russian Federation	X		
Rwanda		X	
Saint Lucia			X
Sao Tome and Principe			Χ
Saudi Arabia	Х		
Senegal			Х
Serbia			
Seychelles	Χ		
Sierra Leone	^		Х
Singapore			X
Slovakia	Χ		A
Slovenia	X		X
			X
Solomon Islands			
Somalia			X
South Africa			X
Spain	V		X
Sri Lanka	X		
Sudan	X		
Suriname			X
Swaziland			Х
Sweden		X	
Switzerland			X
Syrian Arab Republic	X		
ajikistan	X		
hailand	X		
The former Yugoslav Republic of Macedonia	X		
Togo	X		
「onga			X
Frinidad and Tobago	Χ		
unisia	Χ		
⁻ urkey	Χ		
urkmenistan	Х		
Jganda			Χ
Jkraine	Х		
Jnited Arab Emirates			Х
Jnited Kingdom of Great Britain and Northern Ireland	Х		
Jnited Republic of Tanzania	X		
Jnited States of America		X	
		Α	Х
Jruguay	X		^
/anuatu	X		
	X		
/enezuela (Bolivarian Republic of)			
/iet Nam	X		V
'emen	V		X
'ambia	X		
Zimbabwe			Х

A–386 Volume I.1

Information on the procedures used by Members other than those specified by Regulation 12.2.1.3.1 is given below:

Australia: When the horizontal visibility is not the same in different directions, the greatest distance prevailing over half or more of the horizon is given for VV. Significant reductions of visibility in other sectors are given in plain language at the end of the report.

Canada: The horizontal visibility which is reported in all surface observations is the "prevailing visibility" which is defined as the maximum visibility value common to sectors comprising one-half or more of the horizon circle.

China: The effective visibility is defined as the longest distance of visibility over more than one-half of all the directions.

Denmark: At manually operated stations if the horizontal visibility is not the same in different directions, the shorter distance is given for VV. However, if local phenomena reduce the visibility in a sector covering less than one-quarter of the horizon, this sector is disregarded provided that the visibility in it is 1 km or more. At automatic stations the visibility is given as a short distance – or a point – measurement.

Finland: When the horizontal visibility is not the same in different directions, the shortest distance shall be given for VV. However, visibility reduction in one or several small sectors caused by local phenomena is disregarded.

Germany: If the horizontal visibility is not the same in different directions, the shorter distance is given for VV. However, small sectors of the horizon in which local phenomena reduce visibility are disregarded, provided the extent of the sector or sectors concerned is not more than 30 degrees of the horizon circle in whole.

Iceland: When the horizontal visibility is not the same in different directions, the shortest distance shall be given for VV. Reduction of visibility confined to a sector of not more than 45 degrees shall not influence the selection of the code figure for VV. This reduction in visibility may be caused, for example, by precipitation, fog or haze not present at the observing station at the time of observation.

New Zealand: If the horizontal visibility is not the same in different directions, the shortest distance shall be given for VV or VVVV. However, if in one or more small sectors visibility is reduced, these are disregarded, provided the extent of the sector or sectors concerned is not more than one-quarter of the horizon circle in whole. When the horizontal visibility is 10 km or more, VVVV is coded in the form V'V'KM, where V'V' is the visibility in whole kilometres.

Norway: If the horizontal visibility is not the same in different directions, the shortest distance shall be given for VV. However, small sectors of the horizon in which local phenomena such as showers or distant fog reduce the visibility are disregarded. The total of such small sectors should be less than 45 degrees.

Rwanda: If the horizontal visibility is not the same in different directions, the shorter distance is given for VV. However, if in one or more small sectors visibility is reduced, these are disregarded, provided the extent of the sector or sectors concerned is not more than one-quarter of the horizon circle.

Sweden: Regulation 12.2.1.3.1 is practiced with the following restriction: a reduction of the visibility within a limited area, extended at most 45 degrees of the horizon, shall not influence the choice of the code figure for VV. This reduction of the visibility can be caused by precipitation, fog or mist which is not present at the station at the time of observation.

United States of America: The national practice is to report the greatest visibility equalled or exceeded throughout at least half the horizon circle, which needs not necessarily be continuous. If this distance is between two values given in the code table, the code figure for the lower code table value will be reported.

Volume I.1 A–387

ATTACHMENTS

- I. Common code tables to binary and alphanumeric codes (copy of Volume I.2, Part C/c.: Common Features to Binary and Alphanumeric Codes)
- II. List of alphanumeric code tables related to BUFR Table B
- III. International Seismic Code

COMMON CODE TABLES TO BINARY AND ALPHANUMERIC CODES

COMMON CODE TABLE C-1: Identification of originating/generating centre

F₁F₂ for alphanumeric codes

F₃F₃F₃ for alphanumeric codes

Code table 0 in GRIB Edition 1/Code table 0 01 033 in BUFR Edition 3

Octet 5 in Section 1 of GRIB Edition 1/Octet 6 in Section 1 of BUFR Edition 3

COMMON CODE TABLE C-2: Radiosonde/sounding system used

Code table $3685 - r_a r_a$ (Radiosonde/sounding system used) – for alphanumeric codes Code table 0 02 011 (Radiosonde type) in BUFR

COMMON CODE TABLE C-3: Instrument make and type for water temperature profile measurement with fall rate equation coefficients

Code table 1770 – $I_XI_XI_X$ (Instrument type for XBT, with fall rate equation coefficients) – for alphanumeric codes

Code table 0 22 067 (Instrument type for water temperature profile measurement) in BUFR

COMMON CODE TABLE C-4: Water temperature profile recorder types

Code table $4770 - X_R X_R$ (Recorder type) – for alphanumeric codes Code table 0 22 068 (Water temperature profile recorder types) in BUFR

COMMON CODE TABLE C-5: Satellite identifier

 $I_6I_6I_6$ for alphanumeric codes Code table 0 01 007 in BUFR Code used in GRIB Edition 2

COMMON CODE TABLE C-6: List of international units

(Used only in Volume I.2, Parts B and C)

COMMON CODE TABLE C-7: Tracking technique/status of system used

Code table $3872 - s_a s_a$ for alphanumeric code Code table 0 02 014 in BUFR

COMMON CODE TABLE C-1: Identification of originating/generating centre

F₁F₂ for alphanumeric codes Common Code table $\begin{cases} F_3F_3F_3 \text{ for alphanumeric codes} \\ \text{Code table 0 in GRIB Edition 1/Code table 0 01 033 in BUFR Edition 3} \\ \text{Octet 5 in Section 1 of GRIB Edition 1/Octet 6 in Section 1 of BUFR Edition 3} \end{cases}$

Code figure for F₁F₂	Code figure for $F_3F_3F_3$	Octet 5 in Section 1 of GRIB Edition 1 Octet 6 in Section 1 of BUFR Edition 3	
00	000	0	WMO Secretariat
			01-09: WMCs
01	001	1	Melbourne
02	002	2	Melbourne
03	003	3)
04	004	4	Moscow
05	005	5	Moscow
06	006	6)
07	007	7	US National Weather Service – National Centres for Environmental Prediction (NCEP)
08	800	8	US National Weather Service Telecommunications Gateway (NWSTG)
09	009	9	US National Weather Service – Other
			10–25: Centres in Region I
10	010	10	Cairo (RSMC)
11	011	11)
12	012	12	Dakar (RSMC)
13	013	13)
14	014	14	Nairobi (RSMC)
15	015	15)
16	016	16	Casablanca (RSMC)
17	017	17	Tunis (RSMC)
18	018	18	Tunis-Casablanca (RSMC)
19	019	19)
20	020	20	Las Palmas
21	021	21	Algiers (RSMC)
22	022	22	ACMAD
23	023	23	Mozambique (NMC)
24	024	24	Pretoria (RSMC)
25	025	25	La Réunion (RSMC)
			26–40: Centres in Region II
26	026	26	Khabarovsk (RSMC)
27	027	27)
28	028	28	New Delhi (RSMC)
29	029	29)
30	030	30	Novosibirsk (RSMC)
31	031	31)
32	032	32	Tashkent (RSMC)
33	033	33	Jeddah (RSMC)
34	034	34	Tokyo (RSMC), Japan Meteorological Agency

A-392 Volume I.1

Code figure for F ₁ F ₂	Code figure for $F_3F_3F_3$	Octet 5 in Section 1 of GRIB Edition 1 Octet 6 in Section 1 of BUFR Edition 3	
35	035	35)
36	036	36	Bangkok
37	037	37	Ulaanbaatar
38	038	38	Beijing (RSMC)
39	039	39	
40	040	40	Seoul
			41–50: Centres in Region III
41	041	41	Buenos Aires (RSMC)
42	042	42	
43	043	43	Brasilia (RSMC)
44	044	44)
45	045	45	Santiago
46	046	46	Brazilian Space Agency – INPE
47	047	47	Colombia (NMC)
48	048	48	Ecuador (NMC)
49	049	49	Peru (NMC)
50	050	50	Venezuela (Bolivarian Republic of) (NMC)
			51–63: Centres in Region IV
51	051	51	Miami (RSMC)
52	052	52	Miami (RSMC), National Hurricane Centre
53	053	53	Montreal (RSMC)
54	054	54)
55	055	55	San Francisco
56	056	56	ARINC Centre
57	057	57	US Air Force – Air Force Global Weather Central
58	058	58	Fleet Numerical Meteorology and Oceanography Center, Monterey, CA, United States
59	059	59	The NOAA Forecast Systems Laboratory, Boulder, CO, United States
60	060	60	United States National Center for Atmospheric Research (NCAR)
61	061	61	Service ARGOS – Landover
62	062	62	US Naval Oceanographic Office
63	063	63	International Research Institute for Climate and Society (IRI)
			64–73: Centres in Region V
64	064	64	Honolulu (RSMC)
65	065	65	Darwin (RSMC)
66	066	66)
67	067	67	Melbourne (RSMC)
68	068	68	Reserved
69	069	69	Wellington (RSMC)
70	070	70)
71	071	71	Nadi (RSMC)
72	072	72	Singapore
73	073	73	Malaysia (NMC)

Code figure for F ₁ F ₂	Code figure for F ₃ F ₃ F ₃	Octet 5 in Section 1 of GRIB Edition 1 Octet 6 in Section 1 of BUFR Edition 3	
			74–99: Centres in Region VI
74	074	74	UK Meteorological Office – Exeter (RSMC)
75	075	75)
76	076	76	Moscow (RSMC)
77	077	77	Reserved
78	078	78	Offenbach (RSMC)
79	079	79)
80	080	80	Rome (RSMC)
81	081	81)
82	082	82	Norrköping
83	083	83)
84	084	84	Toulouse (RSMC)
85	085	85	Toulouse (RSMC)
86	086	86	Helsinki
87	087	87	Belgrade
88	088	88	Oslo
89	089	89	Prague
90	090	90	Episkopi
91	091	91	Ankara
92	092	92	Frankfurt/Main
93	093	93	London (WAFC)
94	094	94	Copenhagen
95	095	95	Rota
96	096	96	Athens
97	097	97	European Space Agency (ESA)
98	098	98	European Centre for Medium-Range Weather Forecasts (ECMWF) (RSMC
99	099	99	De Bilt
			Additional Centres
Not applicable	100	100	Brazzaville
Not applicable	101	101	Abidjan
Not applicable	102	102	Libya (NMC)
Not applicable	103	103	Madagascar (NMC)
Not applicable	104	104	Mauritius (NMC)
Not applicable	105	105	Niger (NMC)
Not applicable	106	106	Seychelles (NMC)
Not applicable	107	107	Uganda (NMC)
Not applicable	108	108	United Republic of Tanzania (NMC)
Not applicable	109	109	Zimbabwe (NMC)
Not applicable	110	110	Hong Kong, China
Not applicable	111	111	Afghanistan (NMC)
Not applicable	112	112	Bahrain (NMC)
Not applicable	113	113	Bangladesh (NMC)
Not applicable	114	114	Bhutan (NMC)
Not applicable	115	115	Cambodia (NMC)
Not applicable	116	116	Democratic People's Republic of Korea (NMC)

A-394 Volume I.1

Code figure for F ₁ F ₂	Code figure for F ₃ F ₃ F ₃	Octet 5 in Section 1 of GRIB Edition 1 Octet 6 in Section 1 of BUFR Edition 3	
Not applicable	117	117	Islamic Republic of Iran (NMC)
Not applicable	118	118	Iraq (NMC)
Not applicable	119	119	Kazakhstan (NMC)
Not applicable	120	120	Kuwait (NMC)
Not applicable	121	121	Kyrgyzstan (NMC)
Not applicable	122	122	Lao People's Democratic Republic (NMC)
Not applicable	123	123	Macao, China
Not applicable	124	124	Maldives (NMC)
Not applicable	125	125	Myanmar (NMC)
Not applicable	126	126	Nepal (NMC)
Not applicable	127	127	Oman (NMC)
Not applicable	128	128	Pakistan (NMC)
Not applicable	129	129	Qatar (NMC)
Not applicable	130	130	Yemen (NMC)
Not applicable	131	131	Sri Lanka (NMC)
Not applicable	132	132	Tajikistan (NMC)
Not applicable	133	133	Turkmenistan (NMC)
Not applicable	134	134	United Arab Emirates (NMC)
Not applicable	135	135	Uzbekistan (NMC)
Not applicable	136	136	Viet Nam (NMC)
Not applicable	137–139	137–139	Reserved for other centres
Not applicable	140	140	Bolivia (Plurinational State of) (NMC)
Not applicable	141	141	Guyana (NMC)
Not applicable	142	142	Paraguay (NMC)
Not applicable	143	143	Suriname (NMC)
Not applicable	144	144	Uruguay (NMC)
Not applicable	145	145	French Guiana
Not applicable	146	146	Brazilian Navy Hydrographic Centre
Not applicable	147	147	National Commission on Space Activities (CONAE) – Argentina
Not applicable	148–149	148–149	Reserved for other centres
Not applicable	150	150	Antigua and Barbuda (NMC)
Not applicable	151	151	Bahamas (NMC)
Not applicable	152	152	Barbados (NMC)
Not applicable	153	153	Belize (NMC)
Not applicable	154	154	British Caribbean Territories Centre
Not applicable	155	155	San José
Not applicable	156	156	Cuba (NMC)
Not applicable	157	157	Dominica (NMC)
Not applicable	158	158	Dominican Republic (NMC)
Not applicable	159	159	El Salvador (NMC)
Not applicable	160	160	US NOAA/NESDIS
Not applicable	161	161	US NOAA Office of Oceanic and Atmospheric Research
Not applicable	162	162	Guatemala (NMC)
Not applicable	163	163	Haiti (NMC)
Not applicable	164	164	Honduras (NMC)
Not applicable	165	165	Jamaica (NMC)
Not applicable	166	166	Mexico City

Code figure for F ₁ F ₂	Code figure for $F_3F_3F_3$	Octet 5 in Section 1 of GRIB Edition 1 Octet 6 in Section 1 of BUFR Edition 3	
Not applicable	167	167	Curaçao and Sint Maarten (NMC)
Not applicable	168	168	Nicaragua (NMC)
Not applicable	169	169	Panama (NMC)
Not applicable	170	170	Saint Lucia (NMC)
Not applicable	171	171	Trinidad and Tobago (NMC)
Not applicable	172	172	French Departments in RA IV
Not applicable	173	173	US National Aeronautics and Space Administration (NASA)
Not applicable	174	174	Integrated Science Data Management/Marine Environmental Data Service (ISDM/MEDS) – Canada
Not applicable	175	175	University Corporation for Atmospheric Research (UCAR) – United States
Not applicable	176	176	Cooperative Institute for Meteorological Satellite Studies (CIMSS) – United States
Not applicable	177	177	NOAA National Ocean Service – United States
Not applicable	178–189	178–189	Reserved for other centres
Not applicable	190	190	Cook Islands (NMC)
Not applicable	191	191	French Polynesia (NMC)
Not applicable	192	192	Tonga (NMC)
Not applicable	193	193	Vanuatu (NMC)
Not applicable	194	194	Brunei Darussalam (NMC)
Not applicable	195	195	Indonesia (NMC)
Not applicable	196	196	Kiribati (NMC)
Not applicable	197	197	Federated States of Micronesia (NMC)
Not applicable	198	198	New Caledonia (NMC)
Not applicable	199	199	Niue
Not applicable	200	200	Papua New Guinea (NMC)
Not applicable	201	201	Philippines (NMC)
Not applicable	202	202	Samoa (NMC)
Not applicable	203	203	Solomon Islands (NMC)
Not applicable	204	204	National Institute of Water and Atmospheric Research (NIWA – New Zealand)
Not applicable	205–209	205–209	Reserved
Not applicable	210	210	Frascati (ESA/ESRIN)
Not applicable	211	211	Lannion
Not applicable	212	212	Lisbon
Not applicable	213	213	Reykjavik
Not applicable	214	214	Madrid
Not applicable	215	215	Zurich
Not applicable	216	216	Service ARGOS – Toulouse
Not applicable	217	217	Bratislava
Not applicable	218	218	Budapest
Not applicable	219	219	Ljubljana
Not applicable	220	220	Warsaw
Not applicable	221	221	Zagreb
Not applicable	222	222	Albania (NMC)
Not applicable	223	223	Armenia (NMC)
Not applicable	224	224	Austria (NMC)
Not applicable	225	225	Azerbaijan (NMC)

A-396 Volume I.1

Code figure for F ₁ F ₂	Code figure for F ₃ F ₃ F ₃	Octet 5 in Section 1 of GRIB Edition 1 Octet 6 in Section 1 of BUFR Edition 3	
Not applicable	226	226	Belarus (NMC)
Not applicable	227	227	Belgium (NMC)
Not applicable	228	228	Bosnia and Herzegovina (NMC)
Not applicable	229	229	Bulgaria (NMC)
Not applicable	230	230	Cyprus (NMC)
Not applicable	231	231	Estonia (NMC)
Not applicable	232	232	Georgia (NMC)
Not applicable	233	233	Dublin
Not applicable	234	234	Israel (NMC)
Not applicable	235	235	Jordan (NMC)
Not applicable	236	236	Latvia (NMC)
Not applicable	237	237	Lebanon (NMC)
Not applicable	238	238	Lithuania (NMC)
Not applicable	239	239	Luxembourg
Not applicable	240	240	Malta (NMC)
Not applicable	241	241	Monaco
Not applicable	242	242	Romania (NMC)
Not applicable	243	243	Syrian Arab Republic (NMC)
Not applicable	244	244	The former Yugoslav Republic of Macedonia (NMC)
Not applicable	245	245	Ukraine (NMC)
Not applicable	246	246	Republic of Moldova (NMC)
Not applicable	247	247	Operational Programme for the Exchange of weather RAdar information (OPERA) – EUMETNET
Not applicable	248	248	Montenegro (NMC)
Not applicable	249	249	Reserved for other centres
Not applicable	250	250	COnsortium for Small scale MOdelling (COSMO)
Not applicable	251	251	Meteorological Cooperation on Operational NWP (MetCoOp)
Not applicable	252	252	Max Planck Institute for Meteorology (MPI-M)
Not applicable	253	253	Reserved for others centres
Not applicable	254	254	EUMETSAT Operation Centre
Not applicable	255	255	Missing value
Not applicable	256–999	Not applicable	Not used

Notes:

- (1) The closed bracket sign) indicates that the corresponding code figure is reserved for the previously named centre.
- (2) With GRIB or BUFR, to indicate whether the originating/generating centre is a sub-centre or not, the following procedure should be applied:

In GRIB edition 1, use octet 26 of section 1, or in BUFR edition 3, use octet 5 of section 1, with the following meaning:

Code figure

1 to 254

Not a sub-centre, the originating/generating centre is the centre defined by octet 5 in section 1 of GRIB edition 1, or by octet 6 in section 1 of BUFR edition 3.

Identifier of the sub-centre which is the originating/generating centre. The identifier of the sub-centre is allocated by the associated centre which is defined by octet 5 in section 1 of GRIB edition 1, or by octet 6 in section 1 of BUFR edition 3. The sub-centre identifiers should be supplied to the WMO Secretariat by the associated centre(s) for publication.

(3) For the definitions of sub-centres provided to the WMO Secretariat, see Common code table C-12.

COMMON CODE TABLE C-2: Radiosonde/sounding system used

 $Common\ Code\ table\ \left\{\begin{array}{l} Code\ table\ 3685-r_ar_a\ (Radiosonde/sounding\ system\ used)-for\ alphanumeric\ codes\\ Code\ table\ 0\ 02\ 011\ (Radiosonde\ type)\ in\ BUFR \end{array}\right.$

Date of assignment of number (necessary after 30/06/2007)	Code figure for r _a r _a (Code table 3685)	Code figure for BUFR (Code table 0 02 011)	
Not applicable	00	0	Reserved
Before	01	1	iMet-1-BB (United States)
Not applicable	02	2	No radiosonde – passive target (e.g. reflector)
Not applicable	03	3	No radiosonde – active target (e.g. transponder)
Not applicable	04	4	No radiosonde – passive temperature-humidity profiler
Not applicable	05	5	No radiosonde – active temperature-humidity profiler
Not applicable	06	6	No radiosonde – radio-acoustic sounder
Before	07	7	iMet-1-AB (United States)
Not applicable	08	8	No radiosonde – (reserved)
Not applicable	09	9	No radiosonde – system unknown or not specified
Before	10	10	VIZ type A pressure-commutated (United States)
Before	11	11	VIZ type B time-commutated (United States)
Before	12	12	RS SDC (Space Data Corporation – United States)
Before	13	13	Astor (no longer made – Australia)
Before	14	14	VIZ MARK I MICROSONDE (United States)
Before	15	15	EEC Company type 23 (United States)
Before	16	16	Elin (Austria)
Before	17	17	Graw G. (Germany)
Before	18	18	Graw DFM-06 (Germany)
Before	19	19	Graw M60 (Germany)
Before	20	20	Indian Meteorological Service MK3 (India)
Before	21	21	VIZ/Jin Yang MARK I MICROSONDE (Republic of Korea)
Before	22	22	Meisei RS2-80 (Japan)
Before	23	23	Mesural FMO 1950A (France)
Before	24	24	Mesural FMO 1945A (France)
Before	25	25	Mesural MH73A (France)
Before	26	26	Meteolabor Basora (Switzerland)
Before	27	27	AVK-MRZ (Russian Federation)
Before	28	28	Meteorit MARZ2-1 (Russian Federation)
Before	29	29	Meteorit MARZ2-2 (Russian Federation)
Before	30	30	Oki RS2-80 (Japan)
Before	31	31	VIZ/Valcom type A pressure-commutated (Canada)
Before	32	32	Shanghai Radio (China)
Before	33	33	UK Met Office MK3 (UK)
Before	34	34	Vinohrady (Czech Republic)
Before	35	35	Vaisala RS18 (Finland)
Before	36	36	Vaisala RS21 (Finland)

A–398 Volume I.1

Date of assignment of number (necessary after 30/06/2007)	Code figure for r _a r _a (Code table 3685)	Code figure for BUFR (Code table 0 02 011)	
Before	37	37	Vaisala RS80 (Finland)
Before	38	38	VIZ LOCATE Loran-C (United States)
Before	39	39	Sprenger E076 (Germany)
Before	40	40	Sprenger E084 (Germany)
Before	41	41	Sprenger E085 (Germany)
Before	42	42	Sprenger E086 (Germany)
Before	43	43	AIR IS – 4A – 1680 (United States)
Before	44	44	AIR IS – 4A – 1680 X (United States)
Before	45	45	RS MSS (United States)
Before	46	46	AIR IS – 4A – 403 (United States)
Before	47	47	Meisei RS2-91 (Japan)
Before	48	48	VALCOM (Canada)
Before	49	49	VIZ MARK II (United States)
Before	50	50	Graw DFM-90 (Germany)
Before	51	51	VIZ-B2 (United States)
Before	52	52	Vaisala RS80-57H
Before	53	53	AVK-RF95 (Russian Federation)
Before	54	54	Graw DFM-97 (Germany)
Before	55	55	Meisei RS-01G (Japan)
Before	56	56	M2K2 (France)
Before	57	57	Modem M2K2-DC (France)
Before	58	58	AVK-BAR (Russian Federation)
Before	59	59	Modem M2K2-R 1680 MHz RDF radiosonde with pressure sensor chip (France)
Before	60	60	Vaisala RS80/MicroCora (Finland)
Before	61	61	Vaisala RS80/Loran/Digicora I, II or Marwin (Finland)
Before	62	62	Vaisala RS80/PCCora (Finland)
Before	63	63	Vaisala RS80/Star (Finland)
Before	64	64	Orbital Sciences Corporation, Space Data Division, transponder radiosonde, type 909-11-XX, where XX corresponds to the model of the instrument (United States)
Before	65	65	VIZ transponder radiosonde, model number 1499–520 (United States)
Before	66	66	Vaisala RS80/Autosonde (Finland)
Before	67	67	Vaisala RS80/Digicora III (Finland)
Before	68	68	AVK-RZM-2 (Russian Federation)
Before	69	69	MARL-A or Vektor-M-RZM-2 (Russian Federation)
Before	70	70	Vaisala RS92/Star (Finland)
Before	71	71	Vaisala RS90/Loran/Digicora I, II or Marwin (Finland)
Before	72	72	Vaisala RS90/PC–Cora (Finland)
Before	73	73	Vaisala RS90/Autosonde (Finland)
Before	74	74	Vaisala RS90/Star (Finland)

Date of assignment of number (necessary after 30/06/2007)	Code figure for $r_a r_a$ (Code table 3685)	Code figure for BUFR (Code table 0 02 011)	
Before	75	75	AVK-MRZ-ARMA (Russian Federation)
Before	76	76	AVK-RF95-ARMA (Russian Federation)
Before	77	77	GEOLINK GPSonde GL98 (France)
Before	78	78	Vaisala RS90/Digicora III (Finland)
Before	79	79	Vaisala RS92/Digicora I, II or Marwin (Finland)
Before	80	80	Vaisala RS92/Digicora III (Finland)
Before	81	81	Vaisala RS92/Autosonde (Finland)
Before	82	82	Sippican MK2 GPS/STAR (United States) with rod thermistor, carbon element and derived pressure
Before	83	83	Sippican MK2 GPS/W9000 (United States) with rod thermistor, carbon element and derived pressure
Before	84	84	Sippican MARK II with chip thermistor, carbon element and derived pressure from GPS height
Before	85	85	Sippican MARK IIA with chip thermistor, carbon element and derived pressure from GPS height
Before	86	86	Sippican MARK II with chip thermistor, pressure and carbon element
Before	87	87	Sippican MARK IIA with chip thermistor, pressure and carbon element
Before	88	88	MARL-A or Vektor-M-MRZ (Russian Federation)
Before	89	89	MARL-A or Vektor-M-BAR (Russian Federation)
Not applicable	90	90	Radiosonde not specified or unknown
Not applicable	91	91	Pressure only radiosonde
Not applicable	92	92	Pressure only radiosonde plus transponder
Not applicable	93	93	Pressure only radiosonde plus radar reflector
Not applicable	94	94	No pressure radiosonde plus transponder
Not applicable	95	95	No pressure radiosonde plus radar reflector
Not applicable	96	96	Descending radiosonde
Before	97	97	BAT-16P (South Africa)
Before	98	98	BAT-16G (South Africa)
Before	99	99	BAT-4G (South Africa)
	Not available	100	Reserved for BUFR only
	01	101	Not vacant
	Not available	102–106	Reserved for BUFR only
	07	107	Not vacant
	Not available	108–109	Reserved for BUFR only
01/01/2008	10	110	Sippican LMS5 w/Chip Thermistor, duct mounted capacitance relative humidity sensor and derived pressure from GPS height
01/01/2008	11	111	Sippican LMS6 w/Chip Thermistor, external boom mounted capacitance relative humidity sensor, and derived pressure from GPS height
Needed	12	112	Vacant
15/09/2010	13	113	Vaisala RS92/MARWIN MW32 (Finland)
03/11/2011	14	114	Vaisala RS92/DigiCORA MW41 (Finland)

A-400 Volume I.1

Date of assignment of number (necessary after 30/06/2007)	Code figure for r _a r _a (Code table 3685)	Code figure for BUFR (Code table 0 02 011)	
01/12/2011	15	115	PAZA-12M/Radiotheodolite-UL (Ukraine)
01/12/2011	16	116	PAZA-22/AVK-1 (Ukraine)
02/05/2012	17	117	Graw DFM-09 (Germany)
	18	118	Not vacant
Needed	19	119	Vacant
	20–21	120–121	Not vacant
02/05/2012	22	122	Meisei RS-11G GPS radiosonde w/thermistor, capacitance relative humidity sensor, and derived pressure from GPS height (Japan)
03/11/2011	23	123	Vaisala RS41/DigiCORA MW41 (Finland)
03/11/2011	24	124	Vaisala RS41/AUTOSONDE (Finland)
03/11/2011	25	125	Vaisala RS41/MARWIN MW32 (Finland)
	26–27	126–127	Not vacant
15/09/2011	28	128	AVK – AK2-02 (Russian Federation)
15/09/2011	29	129	MARL-A or Vektor-M – AK2-02 (Russian Federation)
01/01/2010	30	130	Meisei RS-06G (Japan)
03/11/2011	31	131	Taiyuan GTS1-1/GFE(L) (China)
03/11/2011	32	132	Shanghai GTS1/GFE(L) (China)
03/11/2011	33	133	Nanjing GTS1-2/GFE(L) (China)
Needed	34–36	134–136	Vacant
	37	137	Not vacant
Needed	38–40	138–140	Vacant
03/11/2011	41	141	Vaisala RS41 with pressure derived from GPS height/DigiCORA MW41 (Finland)
03/11/2011	42	142	Vaisala RS41 with pressure derived from GPS height/ AUTOSONDE (Finland)
Needed	43–46	143–146	Vacant
	47	147	Not vacant
02/05/2012	48	148	PAZA-22M/MARL-A
	49	149	Not vacant
Needed	50	150	Vacant
	51	151	Not vacant
03/11/2011	52	152	Vaisala RS92-NGP/Intermet IMS-2000 (United States)
	53–59	153–159	Not vacant
Needed	60	160	Vacant
	61	161	Not vacant
Needed	62–66	162–166	Vacant
	67–72	167–172	Not vacant
Needed	73	173	Vacant
	74–76	174–176	Not vacant
15/03/2010	77	177	Modem GPSonde M10 (France)
	78–81	178–181	Not vacant

Date of assignment of number (necessary after 30/06/2007)	Code figure for r _a r _a (Code table 3685)	Code figure for BUFR (Code table 0 02 011)	
07/11/2012	82	182	Lockheed Martin LMS-6 w/chip thermistor; external boom mounted polymer capacitive relative humidity sensor; capacitive pressure sensor and GPS wind
07/11/2012	83	183	Vaisala RS92-D/Intermet IMS 1500 w/silicon capacitive pressure sensor, capacitive wire temperature sensor, twin thin-film heated polymer capacitive relative humidity sensor and RDF wind
	84–89	184–189	Not vacant
	Not available	190–196	Reserved for BUFR only
	97–99	197–199	Not vacant
	Not available	200–254	Reserved for BUFR only
		255	Missing value

Notes:

- (1) References to countries in brackets indicate the manufacturing location rather than the country using the instrument.
- (2) Some of the radiosondes listed are no longer in use but are retained for archiving purposes.
- (3) The alphanumeric code format reports only 2 digits, and the first digit for BUFR is identified from the date: the first digit is 0 if the introduction of the radiosonde for observation was before 30 June 2007, or 1 otherwise. Entries in the second part of the table (after 99), which are declared "Vacant" can be used for new radiosondes because the 2-digit number was originally attributed to sondes, which are no longer used. This system has been adopted to accommodate reporting in TEMP traditional alphanumeric code format up to the time BUFR is fully used for radiosounding reports.

A-402 Volume I.1

COMMON CODE TABLE C-3: Instrument make and type for water temperature profile measurement with fall rate equation coefficients

Code table $1770 - I_XI_XI_X$ (Instrument type for XBT, with fall rate equation coefficients) for alphanumeric codes

Common Code table
- Tor alphanument codes
Code table 0 22 067 (Instrument type for water temperature profile measurement) in

0.1.5	Code figure for	Meaning		
Code figure for $I_XI_XI_X$	BUFR	Instrument	Equation coeff	ficients
ΙΟΙ Ιχίχίχ	(Code table 022 067)	make and type	а	ь
001	1	Sippican T-4	6.472	-2.16
002	2	Sippican T-4	6.691	-2.25
011	11	Sippican T-5	6.828	-1.82
021	21	Sippican Fast Deep	6.346	-1.82
031	31	Sippican T-6	6.472	-2.16
032	32	Sippican T-6	6.691	-2.25
041	41	Sippican T-7	6.472	-2.16
042	42	Sippican T-7	6.691	-2.25
051	51	Sippican Deep Blue	6.472	-2.16
052	52	Sippican Deep Blue	6.691	-2.25
061	61	Sippican T-10	6.301	-2.16
071	71	Sippican T-11	1.779	-0.255
081	81	Sippican AXBT (300m probes)	1.52	0.0
201	201	TSK T-4	6.472	-2.16
202	202	TSK T-4	6.691	-2.25
211	211	TSK T-6	6.472	-2.16
212	212	TSK T-6	6.691	-2.25
221	221	TSK T-7	6.472	-2.16
222	222	TSK T-7	6.691	-2.25
231	231	TSK T-5	6.828	-1.82
241	241	TSK T-10	6.301	-2.16
251	251	TSK Deep Blue	6.472	-2.16
252	252	TSK Deep Blue	6.691	-2.25
261	261	TSK AXBT		
401	401	Sparton XBT-1	6.301	-2.16
411	411	Sparton XBT-3	5.861	-0.0904
421	421	Sparton XBT-4	6.472	-2.16
431	431	Sparton XBT-5	6.828	-1.82
441	441	Sparton XBT-5DB	6.828	-1.82
451	451	Sparton XBT-6	6.472	-2.16
461	461	Sparton XBT-7	6.472	-2.16
462	462	Sparton XBT-7	6.705	-2.28
471	471	Sparton XBT-7DB	6.472	-2.16
481	481	Sparton XBT-10	6.301	– 2.16
491	491	Sparton XBT-20	6.472	-2.16
501	501	Sparton XBT-20DB	6.472	-2.16
510	510	Sparton 536 AXBT	1.524	0
700	700	Sippican XCTD Standard		
710	710	Sippican XCTD Deep		
720	720	Sippican AXCTD		

Volume I.1 A-403

	Code figure for	Meaning		
Code figure for $I_XI_XI_X$	BUFR	Instrument	Equation coeffici	ents
10. 141414	(Code table 022 067)	make and type	а	b
730	730	Sippican SXCTD		
741	741	TSK XCTD/XCTD-1	3.42543	-0.47
742	742	TSK XCTD-2	3.43898	-0.31
743	743	TSK XCTD-2F	3.43898	-0.31
744	744	TSK XCTD-3	5.07598	-0.72
745	745	TSK XCTD-4	3.68081	-0.47
751	751	TSK AXCTD		
780	780	Sea-Bird SBE21 SEACAT Thermosalinograph	Not applicab	le
781	781	Sea-Bird SBE45 MicroTSG Thermosalinograph	Not applicab	le
800	800	Mechanical BT	Not applicab	le
810	810	Hydrocast	Not applicab	le
820	820	Thermistor chain	Not applicab	le
825	825	Temperature (sonic) and pressure probes	Not applicab	le
830	830	CTD	Not applicab	le
831	831	CTD-P-ALACE float	Not applicab	le
837	837	ARVOR_C, SBE conductivity sensor		
838	838	ARVOR_D, SBE conductivity sensor		
839	839	PROVOR-II, SBE conductivity sensor		
840	840	PROVOR, no conductivity sensor	Not applicab	le
841	841	PROVOR, Sea-Bird conductivity sensor	Not applicab	le
842	842	PROVOR, FSI conductivity sensor	Not applicab	le
843	843	Polar Ocean Profiling System (POPS), PROVOR, SBE CTD		
844	844	Profiling float, ARVOR, Sea-Bird conductivity sensor		
845	845	Webb Research, no conductivity sensor	Not applicab	le
846	846	Webb Research, Sea-Bird conductivity sensor	Not applicab	le
847	847	Webb Research, FSI conductivity sensor	Not applicab	le
848	848	APEX-EM, SBE conductivity sensor		
849	849	APEX_D, SBE conductivity sensor		
850	850	SOLO, no conductivity sensor	Not applicab	le
851	851	SOLO, Sea-Bird conductivity sensor	Not applicab	le
852	852	SOLO, FSI conductivity sensor	Not applicab	le
853	853	Profiling float, SOLO2 (SCRIPPS), Sea-Bird conductivity sensor		
854	854	S2A, SBE conductivity sensor	Not applicab	le
855	855	Profiling float, NINJA, no conductivity sensor	Not applicab	le
856	856	Profiling float, NINJA, SBE conductivity sensor	Not applicab	le

A-404 Volume I.1

Codo figuro	Code figure for	Meaning		
Code figure for $I_XI_XI_X$	BUFR (Code table 022 067)	Instrument make and type	Equation <i>a</i>	coefficients b
857	857	Profiling float, NINJA, FSI conductivity sensor	Not ap	pplicable
858	858	Profiling float, NINJA, TSK conductivity sensor	Not ap	pplicable
859	859	Profiling float, NEMO, no conductivity sensor	Not ap	pplicable
860	860	Profiling float, NEMO, SBE conductivity sensor	Not ap	pplicable
861	861	Profiling float, NEMO, FSI conductivity sensor	Not ap	pplicable
862	862	SOLO_D, SBE conductivity sensor		
863	863	NAVIS-A, SBE conductivity sensor		
864	864	NINJA_D, SBE conductivity sensor		
865	865	NOVA, SBE conductivity sensor		
866–899	866–899	Reserved		
900	900	Sippican LMP-5 XBT	9.727	-0.0000473
901	901	Ice-tethered Profiler (ITP), SBE CTD		
902–994	902–994	Reserved		
995	995	Instrument attached to marine mammals	Not ap	pplicable
996	996	Instrument attached to animals other than marine mammals	Not ap	pplicable
997–999	997–999	Reserved		
	1000–1022	Reserved		
	1023	Missing value		

Notes:

- (1) The depth is calculated from coefficients a and b and the time t as follows: $z = at + 10^{-3}bt^2$.
- (2) All unassigned numbers are reserved for future use.
- (3) The values of *a* and *b* are supplied for information only.

COMMON CODE TABLE C-4: Water temperature profile recorder types

 $\label{eq:common_code} \text{Common Code table } \left\{ \begin{array}{l} \text{Code table 4770} - X_R X_R \, (\text{Recorder type}) - \text{for alphanumeric codes} \\ \text{Code table 0 22 068 } (\text{Water temperature profile recorder types}) \, \text{in BUFR} \end{array} \right.$

Code figure for $X_R X_R$	Code figure for BUFR (Code table 0 22 068)	Meaning
01	1	Sippican Strip Chart Recorder
02	2	Sippican MK2A/SSQ-61
03	3	Sippican MK-9
04	4	Sippican AN/BHQ-7/MK8
05	5	Sippican MK-12
06	6	Sippican MK-21
07	7	Sippican MK-8 Linear Recorder
08	8	Sippican MK-10
10	10	Sparton SOC BT/SV Processor Model 100
11	11	Lockheed-Sanders Model OL5005
20	20	ARGOS XBT-ST
21	21	CLS-ARGOS/Protecno XBT-ST Model-1
22	22	CLS-ARGOS/Protecno XBT-ST Model-2
30	30	BATHY Systems SA-810
31	31	Scripps Metrobyte Controller
32	32	Murayama Denki Z-60-16 III
33	33	Murayama Denki Z-60-16 II
34	34	Protecno ETSM2
35	35	Nautilus Marine Service NMS-XBT
40	40	TSK MK-2A
41	41	TSK MK-2S
42	42	TSK MK-30
43	43	TSK MK-30N
45	45	TSK MK-100
46	46	TSK MK-130 Compatible recorder for both XBT and XCTD
47	47	TSK MK-130A XCTD recorder
48	48	TSK AXBT RECEIVER MK-300
49	49	TSK MK-150/MK-150N Compatible recorder for both XBT and XCTD
50	50	JMA ASTOS
60	60	ARGOS communications, sampling on up transit
61	61	ARGOS communications, sampling on down transit
62	62	Orbcomm communications, sampling on up transit
63	63	Orbcomm communications, sampling on down transit
64	64	Iridium communications, sampling on up transit
65	65	Iridium communications, sampling on down transit
70	70	CSIRO Devil-1 XBT acquisition system
71 	71	CSIRO Devil-2 XBT acquisition system
72	72	TURO/CSIRO QuoII XBT Acquisition System
80	80	Applied Microsystems Ltd, MICRO-SVT&P
81	81	Sea Mammal Research Unit, Univ. St Andrews, UK, uncorrected salinity
00	00	from a sea mammal mounted instrument
82	82	Sea Mammal Research Unit, Univ. St Andrews, UK, corrected salinity from
0.0	00	a sea mammal mounted instrument
99	99	Unknown
	127	Missing value

Note: All unassigned numbers are reserved for future use.

A-406 Volume I.1

COMMON CODE TABLE C-5: Satellite identifier

 $\label{eq:common_code} \mbox{Common Code table} \left\{ \begin{array}{l} I_6I_6I_6 \mbox{ for alphanumeric codes} \\ \mbox{Code table 0 01 007 in BUFR} \\ \mbox{Code used in GRIB Edition 2} \end{array} \right.$

(Code table 0 01 007)	Code figure for $I_6I_6I_6$	Code figure for BUFR	Code figure for GRIB	
001-099: Numbers allocated to Europe		(Code table 0 01 007)	Edition 2	
001 1 1 1 2 ERS 1 002 2 2 ERS 2 003 3 3 3 METOP-1 (Metop-B) 004 4 4 4 METOP-2 (Metop-A) 005 5 5 METOP-3 (Metop-C) 005 5 5 METOP-3 (Metop-C) 020 20 20 SPOT 1 021 21 21 SPOT 2 022 22 SPOT 3 023 23 23 SPOT 4 040 40 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 44 PAZ 046 46 46 SMOS 047 47 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 METEOSAT 5 054 54 54 METEOSAT 6 055 55 METEOSAT 7 055 55 55 METEOSAT 7 056 56 56 METEOSAT 7 057 57 METEOSAT 1 058 58 METEOSAT 7 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 050 60 60 ENVISAT 070 70 METEOSAT 1 100-199: Numbers allocated to Japan	000	0	0	Reserved
002 2 2 2 ERS 2 003 3 3 3 METOP-1 (Metop-B) 004 4 4 4 4 METOP-2 (Metop-A) 005 5 5 METOP-3 (Metop-C) 020 20 20 SPOT 1 021 21 21 SPOT 2 022 22 22 SPOT 3 023 23 SPOT 4 040 40 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 5 053 53 53 METEOSAT 7 055 55 55 METEOSAT 7 056 56 56 METEOSAT 7 057 57 METEOSAT 7 058 58 58 METEOSAT 1 059 59 59 METEOSAT 1 059 59 59 METEOSAT 1 050 120 120 ADEOS 121 121 121 ADEOS II 122 122 122 GCOM-W1 140 140 140 GOSAT 150 GMS 3 151 151 GMS 3		001–099: N	lumbers allocated to Eur	rope
003 3 METOP-1 (Metop-B) 004 4 4 METOP-2 (Metop-A) 005 5 5 METOP-3 (Metop-C) 020 20 SPOT 1 021 21 21 SPOT 2 022 22 SPOT 3 023 23 SPOT 4 040 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 PAZ 046 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 METEOSAT 6 054 54 METEOSAT 7 055 55 METEOSAT 8 056 56	001	1	1	ERS 1
004	002	2	2	ERS 2
004 4 4 METOP-2 (Metop-A) 005 5 5 METOP-3 (Metop-C) 020 20 20 SPOT 1 021 21 21 SPOT 2 022 22 22 SPOT 3 023 23 23 SPOT 4 040 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 PAZ 046 46 SMOS 047 47 47 CryoSat-2 048 48 AEOLUS 050 50 METEOSAT 3 051 51 METEOSAT 4 052 52 METEOSAT 5 053 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 METEOSAT 10 058 58 METEOSAT 10	003	3	3	METOP-1 (Metop-B)
005 5 5 METOP-3 (Metop-C) 020 20 SPOT 1 021 21 21 SPOT 2 022 22 22 SPOT 3 023 23 23 SPOT 4 040 40 40 OERSTED 041 41 41 CHAMP 042 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 PAZ 046 46 M6 SMOS 047 47 47 CryoSat-2 048 48 AEOLUS 050 50 METEOSAT 3 051 51 METEOSAT 4 052 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 METEOSAT 7 055 55 METEOSAT 8 056 56 METEOSAT 10 058 58 METEOSAT 11 100-199: Num	004	4	4	METOP-2 (Metop-A)
021 21 21 SPOT 2 022 22 22 SPOT 3 023 23 23 SPOT 4 040 40 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 10 058 58 58 METEOSAT 10 058 58 58 METEOSAT 1 059 59 METEOSAT		5	5	
021 21 21 SPOT 2 022 22 22 SPOT 3 023 23 23 SPOT 4 040 40 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 10 058 58 58 METEOSAT 10 058 58 58 METEOSAT 1 059 59 METEOSAT	020	20	20	SPOT 1
022 22 22 SPOT 3 023 23 23 SPOT 4 040 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 TanDEM-X 044 44 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 METEOSAT 7 055 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 METEOSAT 10 058 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT				
023 23 SPOT 4 040 40 OERSTED 041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT <				
041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 44 PAZ 046 46 5MOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 10 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 070 70 METEOSAT 11 100-199: Numbers allocated to Japan 120 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 GMS 3 151 151 151 GMS 4				
041 41 41 CHAMP 042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 44 PAZ 046 46 5MOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 10 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 METEOSAT 1 059 59 METEOSAT 1 070 70 METEOSAT 11 100-199: Numbers allocated to Japan 120 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 GMS 3 151 151 151 GMS 4	040	40	40	OEDSTED
042 42 42 TerraSAR-X 043 43 43 TanDEM-X 044 44 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS				
043 43 43 TanDEM-X 044 44 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 METEOSAT 10 058 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 <td< td=""><td></td><td></td><td></td><td></td></td<>				
044 44 44 PAZ 046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 METEOSAT 4 052 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 ADEOS II 122 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4				
046 46 46 SMOS 047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 ADEOS 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS 3 151 151 151 GMS 4			_	
047 47 47 CryoSat-2 048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 METEOSAT 7 055 55 METEOSAT 8 056 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 100-199: Numbers allocated to Japan 120 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4				· · ·
048 48 48 AEOLUS 050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 METEOSAT 7 055 55 METEOSAT 8 056 56 METEOSAT 9 057 57 METEOSAT 10 058 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 ADEOS II 122 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4				
050 50 METEOSAT 3 051 51 51 METEOSAT 4 052 52 52 METEOSAT 6 053 53 53 METEOSAT 7 054 54 54 METEOSAT 8 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4				-
051 51 51 METEOSAT 4 052 52 52 METEOSAT 5 053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 60 ENVISAT 070 70 METEOSAT 11 100–199: Numbers allocated to Japan 120 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 151 GMS 4	048	48	48	AEOLUS
052 52 METEOSAT 5 053 53 METEOSAT 6 054 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 METEOSAT 9 057 57 METEOSAT 10 058 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 150 GMS 3 151 151 151 GMS 4	050	50	50	METEOSAT 3
053 53 53 METEOSAT 6 054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120—199: Numbers allocated to Japan 121 121 121 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 151 GMS 4	051	51	51	METEOSAT 4
054 54 54 METEOSAT 7 055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	052	52	52	METEOSAT 5
055 55 55 METEOSAT 8 056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 HEEOSAT 11 120 ADEOS 121 121 121 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	053	53	53	METEOSAT 6
056 56 56 METEOSAT 9 057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 120 HEOSAT 11 121 121 121 121 ADEOS II 122 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	054	54	54	METEOSAT 7
057 57 57 METEOSAT 10 058 58 58 METEOSAT 1 059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 100–199: Numbers allocated to Japan 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	055	55	55	METEOSAT 8
058 58 58 METEOSAT 1 059 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 100–199: Numbers allocated to Japan 120 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	056	56	56	METEOSAT 9
059 59 59 METEOSAT 2 060 60 ENVISAT 070 70 METEOSAT 11 100–199: Numbers allocated to Japan 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	057	57	57	METEOSAT 10
060 60 ENVISAT 070 70 70 METEOSAT 11 100–199: Numbers allocated to Japan 120 120 ADEOS 121 121 ADEOS II 122 122 GCOM-W1 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	058	58	58	METEOSAT 1
070 70 70 METEOSAT 11 100–199: Numbers allocated to Japan 120 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	059	59	59	METEOSAT 2
100–199: Numbers allocated to Japan 120 120 120 ADEOS 121 121 121 ADEOS II 122 122 GCOM-W1 140 140 140 GOSAT 150 150 GMS 3 151 151 GMS 4	060	60	60	ENVISAT
120 120 120 ADEOS 121 121 121 ADEOS II 122 122 122 GCOM-W1 140 140 140 GOSAT 150 150 150 GMS 3 151 151 151 GMS 4	070	70	70	METEOSAT 11
121 121 121 ADEOS II 122 122 122 GCOM-W1 140 140 140 GOSAT 150 150 150 GMS 3 151 151 151 GMS 4		100–199: 1	Numbers allocated to Jap	oan
122 122 122 GCOM-W1 140 140 140 GOSAT 150 150 150 GMS 3 151 151 GMS 4	120	120	120	ADEOS
140 140 140 GOSAT 150 150 150 GMS 3 151 151 GMS 4	121	121	121	ADEOS II
150 150 150 GMS 3 151 151 151 GMS 4	122	122	122	GCOM-W1
151 151 151 GMS 4	140	140	140	GOSAT
	150	150	150	GMS 3
152 152 152 GMS 5	151	151	151	GMS 4
	152	152	152	GMS 5

Volume I.1 A-407

Code figure for $I_6I_6I_6$	Code figure for BUFR (Code table 0 01 007)	Code figure for GRIB Edition 2	
171	171	171	MTSAT-1R
172	172	172	MTSAT-2
173	173	173	Himawari-8
174	174	174	Himawari-9
		ers allocated to the Unite	d States
200	200	200	NOAA 8
201	201	201	NOAA 9
202	202	202	NOAA 10
203	203	203	NOAA 11
204	204	204	NOAA 12
205	205	205	NOAA 14
206	206	206	NOAA 15
207	207	207	NOAA 16
208	208	208	NOAA 17
209	209	209	NOAA 17
209			
220	220	220	LANDSAT 5
221	221	221	LANDSAT 4
222	222	222	LANDSAT 7
223	223	223	NOAA 19
224	224	224	NPP
240	240	240	DMSP &
241	241	241	DMSP 8
242	242	242	DMSP 9
243	243	243	DMSP 10
244	244	244	DMSP 11
245	245	245	DMSP 12
246	246	246	DMSP 13
247	247	247	DMSP 14
248	248	248	DMSP 15
249	249	249	DMSP 16
250	250	250	GOES 6
251	251	251	GOES 7
252	252	252	GOES 8
253	253	253	GOES 9
254	254	254	GOES 10
255			GOES 10
	255 256	255	GOES 12
256		256	
257	257	257	GOES 13
258	258	258	GOES 14
259	259	259	GOES 15
260	260	260	JASON 1
261	261	261	JASON 2
281	281	281	QUIKSCAT
282	282	282	TRMM
283	283	283	CORIOLIS

A-408 Volume I.1

Code figure for	Code figure for	Code figure for	
$I_6I_6I_6$	BUFR (Code table 0 01 007)	GRIB Edition 2	
285	285	285	DMSP17
286	286	286	DMSP18
	300–399: Numbers	allocated to the Russian	n Federation
310	310	310	GOMS 1
311	311	311	GOMS 2
320	320	320	METEOR 2-21
321	321	321	METEOR 3-5
322	322	322	METEOR 3M-1
323	323	323	METEOR 3M-2
341	341	341	RESURS 01-4
	400–499:	Numbers allocated to In	dia
410	410	410	KALPANA-1
421	421	421	Oceansat-2
430	430	430	INSAT 1B
431	431	431	INSAT 1C
432	432	432	INSAT 1D
440	440	440	Megha-Tropiques
441	441	441	SARAL
450	450	450	INSAT 2A
451	451	451	INSAT 2B
452	452	452	INSAT 2E
470	470	470	INSAT 3A
471	471	471	INSAT 3D
472	472	472	INSAT 3E
		Numbers allocated to Ch	nina
500	500	500	FY-1C
501	501	501	FY-1D
510	510	510	FY-2
512	512	512	FY-2B
513	513	513	FY-2C
514	514	514	FY-2D
515	515	515	FY-2E
520	520	520	FY-3A
521	521	521	FY-3B
		lumbers allocated to Eur	•
=00		ers allocated to the Unit	
700	700	700	TIROS M (ITOS 1)
701	701	701	NOAA 1
702	702	702	NOAA 2
703 704	703 704	703 704	NOAA 3
704 705	704 705	704 705	NOAA 4 NOAA 5
705 706	705 706	705 706	NOAA 5 NOAA 6
70 0 707	706	706 707	NOAA 7
707	707	707	TIROS-N
710	710	710	GOES (SMS 1)
711	711	710	GOES (SMS 1)
			- /

Code figure for $I_{\theta}I_{\theta}I_{\theta}$	Code figure for BUFR (Code table 0 01 007)	Code figure for GRIB Edition 2	
700			TOREY
720	720	720	TOPEX
721	721	721	GFO (GEOSAT follow on)
722	722	722	GRACE A
723	723	723	GRACE B
731	731	731	GOES 1
732	732	732	GOES 2
733	733	733	GOES 3
734	734	734	GOES 4
735	735	735	GOES 5
740	740	740	COSMIC-1
741	741	741	COSMIC-2
742	742	742	COSMIC-3
743	743	743	COSMIC-4
744	744	744	COSMIC-5
745	745	745	COSMIC-6
763	763	763	NIMBUS 3
764	764	764	NIMBUS 4
765	765	765	NIMBUS 5
766	766	766	NIMBUS 6
767	767	767	NIMBUS 7
780	780	780	ERBS
781	781	781	UARS
782	782	782	EARTH PROBE
783	783	783	TERRA
784	784	784	AQUA
785	785	785	AURA
786	786	786	C/NOFS
787	787	787	CALIPSO
788	788	788	CloudSat
	800–849: Numbers	allocated to other satellit	e operators
000			
800	800	800	SUNSAT
810	810	810	COMS-1
811	811	811	COMS-2
820	820	820	SAC-C
821	821	821	SAC-D
825	825	825	KOMPSAT-5
850	850	850	Combination of TERRA and AQUA
851	851	851	Combination of NOAA 16 to NOAA 19
852	852	852	Combination of Metop-1 to Metop-3
853	853	853	Combination of METEOSAT and DMSP
854	854	854	Non-specific mixture of geostationary and low Earth-orbiting satellites
870–998	870–998	870–998	Reserved
999 Missing value	999–1022	999–65534	Reserved
ogg wildding value	1023	65535	Missing value
	1023	00000	iviissii iy value

Note: Within the ranges 000 to 849 and 870 to 998, even deciles indicate polar-orbiting satellites and odd deciles indicate geostationary satellites. The range from 850 to 869 shall be used to indicate combinations of satellites, so the aforementioned decile rule does not apply to values in this range.

A-410 Volume I.1

COMMON CODE TABLE C-6: List of international units

(Used only in Volume I.2, Parts B and C)

COMMON CODE TABLE C-7: Tracking technique/status of system used

 $\mbox{Common Code table } \left\{ \begin{array}{l} \mbox{Code table } 3872 - s_a s_a \mbox{ for alphanumeric codes} \\ \mbox{Code table } 0 \mbox{ 22 014 in BUFR} \end{array} \right.$

Code figure for $s_a s_a$	Code figure for BUFR (Code table 0 02 041)	
00	0	No windfinding
01	1	Automatic with auxiliary optical direction finding
02	2	Automatic with auxiliary radio direction finding
03	3	Automatic with auxiliary ranging
04	4	Not used
05	5	Automatic with multiple VLF-Omega signals
06	6	Automatic cross chain Loran-C
07	7	Automatic with auxiliary wind profiler
08	8	Automatic satellite navigation
09–18	9–18	Reserved
19	19	Tracking technique not specified
		TRACKING TECHNIQUES/STATUS OF ASAP SYSTEM
		STATUS OF SHIP SYSTEM
20	20	Vessel stopped
21	21	Vessel diverted from original destination
22	22	Vessel's arrival delayed
23	23	Container damaged
24	24	Power failure to container
24–28	25–28	Reserved for future use
29	29	Other problems
		SOUNDING SYSTEM
30	30	Major power problems
31	31	UPS inoperative
32	32	Receiver hardware problems
33	33	Receiver software problems
34	34	Processor hardware problems
35	35	Processor software problems
36	36	NAVAID system damaged
37	37	Shortage of lifting gas
38	38	Reserved
39	39	Other problems
		LAUNCH FACILITIES
40	40	Mechanical defect
41	41	Material defect (hand launcher)
42	42	Power failure
43	43	Control failure

A-412 Volume I.1

Code figure for $s_a s_a$	Code figure for BUFR (Code table 0 02 041)	
44	44	Pneumatic/hydraulic failure
45	45	Other problems
46	46	Compressor problems
47	47	Balloon problems
48	48	Balloon release problems
49	49	Launcher damaged
		DATA ACQUISITION SYSTEM
50	50	R/S receiver antenna defect
51	51	NAVAID antenna defect
52	52	R/S receiver cabling (antenna) defect
53	53	NAVAID antenna cabling defect
54–58	54–58	Reserved
59	59	Other problems
		COMMUNICATIONS
60	60	ASAP communications defect
61	61	Communications facility rejected data
62	62	No power at transmitting antenna
63	63	Antenna cable broken
64	64	Antenna cable defect
65	65	Message transmitted power below normal
66–68	66–68	Reserved
69	69	Other problems
70	70	All systems in normal operation
71–98	71–98	Reserved
99	99	Status of system and its components not specified
	100–126	Reserved
	127	Missing value

LIST OF ALPHANUMERIC CODE TABLES RELATED TO BUFR TABLE B

Related specification/code table/ regulation/code form in alphanumeric codes	BUFR code/flag table	Remarks
A — Code table 0101	0 20 063	_
A _N — Code table 0114	0 02 169	_
A _a — Code table 0131	0 23 001	_
A _c — Code table 0133	0 23 005	_
A _e — Code table 0135	0 23 006	_
A ₁ — Code table 0161	0 01 003	_
A ₃ — Code table 0163	0 20 063	_
AA — Code table 0177	0 23 002	_
a — Code table 0200	0 10 063	_
a ₄ — Code table 0265	0 02 003	_
B _A — Code table 0302	0 11 031	_
B _T — Code table 0324	0 23 003	_
B _t B _t — Code table 0370	0 02 149	_
b _i — Code table 0439	0 20 035	_
C — Code table 0500	0 20 012	_
C _H — Code table 0509	0 20 012	_
C _L — Code table 0513	0 20 012	_
C _M — Code table 0515	0 20 012	_
C _a — Code table 0531	0 20 136	_
C_c — Code table 0533	0 20 063	_
C _t — Code table 0552	0 20 017	_
C_0 — Code table 0561	0 20 136	_
c _i — Code table 0639	0 20 034	_
D _s — Code table 0700	0 25 041	_
E — Code table 0901	0 20 062	_
E _c — Code table 0933	0 23 007	_
E _e — Code table 0935	0 23 018	_
E _s — Code table 0943	[0 23 008]	_
	0 23 009	
E' — Code table 0975	0 20 062	_
F _t — Code table 1152	0 08 011	_
F ₁ F ₂ — Common Code table C–1	0 01 033	_
F ₃ F ₃ F ₃ — Common Code table C–1	0 01 033	_
$F_4F_4F_4$	0 01 034	To be specified
g _r g _r — Code table 1487	0 29 001	_
I _n — Code table 1743	0 23 032	_
I _s — Code table 1751	0 20 033	_
I_3	0 02 021	_
I ₄ — Code table 1765	0 02 022	_
I ₆ I ₆ I ₆ — Common Code table C-5	0 01 007	_
I _X I _X I _X — Code table 1770	0 22 067	Defined in Common Code table C-3
i — Code table 1800	0 11 031	_
i _E — Code table 1806	0 02 004	_

Related specification/code table/ regulation/code form in alphanumeric codes	BUFR code/flag table	Remarks
i _u — Code table 1853	0 02 001	_
i _v — Code table 1857	0 02 051	_
I _X — Code table 1860	0 02 001 [*]	_
k ₁ — Code table 2262	0 02 032	Numerical variation in each table
k ₂ — Code table 2263	0 02 033	_
k ₃ — Code table 2264	0 02 031	_
k ₄ — Code table 2265	0 02 031	_
k₅ — Code table 2266	0 02 030	_
k ₆ — Code table 2267	0 02 040	_
N — Code table 2700	0 20 011	_
N _m — Code table 2745	0 20 136	_
N _t — Code table 2752	0 20 136	_
N _v — Code table 2754	0 20 136	_
n ₃ — Code table 2863	0 20 137	<u> </u>
P _a — Code table 3131	0 23 004	<u>_</u>
Q _A — Code table 3302	0 33 027	_
Q_z — Code table 3318	0 25 086	<u>_</u>
R _c — Code table 3533	0 24 003	_
R _d — Code table 3534	0 13 051	<u>_</u>
R _e — Code table 3535	0 23 016	_
R_p — Code table 3548	0 23 031	
R_s — Code table 3551	0 20 032	
r _a r _a — Code table 3685 (0–89)	0 02 011	Defined in Common Code table C–2
r _a r _a — Code table 3685 (91–95)	0 02 011	Defined in Common Code table C–2
S — Code table 3700	0 22 061	
S_i — Code table 3739	0 20 037	_
S_0 — Code table 3733 S ₀ — Code table 3761	0 20 063	_
	0 20 063	To be developed
$S_P S_P s_p s_p$ — Code table 3778	0 13 041	To be developed
s _p — Code table 3847	0 20 063	_
s _q — Code table 3848		_
s _r — Code table 3849 s _s — Code table 3850	0 02 013	_
· ·	0 02 038	_
s _w — Code table 3855	0 02 039	_
s ₁ — Code table 3866	0 02 061	_
s ₂ — Code table 3867	0 02 062	— Defined in Common Code table C–7
s _a s _a — Code table 3872	0 02 014	Defined in Common Code table C=7
T _w — Code table 3955	0 20 063	_
v _s — Code table 4451	0 25 042	_
W _{a1} — Code table 4531	0 20 004	_
W _{a2} — Code table 4531	0 20 005	_
W ₁ — Code table 4561	0 20 004	_
W ₂ — Code table 4561	0 20 005	_
w _i — Code table 4639	0 02 023	_
ww — Code table 4677	0 20 003	_
w _a w _a — Code table 4680	0 20 003	_
w₁w₁ — Code table 4687	0 20 003	_

See note at end of Attachment II.

Related specification/code table/ regulation/code form in alphanumeric codes	BUFR code/flag table	Remarks
X _R X _R — Code table 4770	0 22 068	Defined in Common Code table C-4
X _t X _t — Code table 4780	0 02 034	_
Z ₀ — Code table 5161	0 20 063	_
z _i — Code table 5239	0 20 036	_
AMDAR — Regulation 42.2	0 08 004	_
SYNOP/SHIP — Regulation 12.4.10.1	0 08 002	_
TEMP/TEMP SHIP — Sections 2 to 6	0 08 001	-

Note: Encoding/decoding of SYNOP/SHIP i_x — Code table 1860

to/from BUFR code tables

Code figure	Type of station operation	0 02 001 Type of station	0 20 003 Present weather
1	Manned station (group 7wwW ₁ W ₂ included) (but actually missing)	1 (1)	00–99 (200–299) (510)
2	Manned station (group 7ww W ₁ W ₂ omitted, no significant phenomenon to report)	1	508
3	Manned station (group 7ww W ₁ W ₂ omitted, no observation, data not available)	1	509
4	Automatic station (group 7ww W ₁ W ₂ included,	0	00–99 (200–299)
	using Code tables 4677 and 4561) (but actually missing)	(0)	(510)
5	Automatic station (group $7w_aw_aW_{a1}W_{a2}$ omitted, no significant phenomenon to report)	0	508
6	Automatic station (group $7w_aw_aW_{a1}W_{a2}$ omitted, no observation, data not available)	0	509
7	Automatic station (group 7w _a w _a W _{a1} W _{a2} included, using Code tables 4680 and 4531)	0	100–199 (200–299)
	(but actually missing)	(0)	(510)

INTERNATIONAL SEISMIC CODE

INTRODUCTION

The 1985 version of the *International Seismic Code* has been developed by an international working group. Although quite a few new features have been added, *upward compatibility* with the previous code has been maintained – the previous code is a subset of this 1985 version. That is to say, the new version does not make any of the features of the old version obsolete but simply increases the scope of data types that can be transmitted. If a data contributor does not wish to include any of the newly reportable items, the old version may be used without having to violate the format of this new version.

This version of the seismic code consists of three parts:

- 1. **Code form**. A precise description of the syntax using a modification of a widely used *metalanguage* a set of symbols and words used to describe another language (in which these symbols do not appear). This metalanguage is fully defined and illustrated in the last section of this introduction.
- 2. **Definitions and usage**. A supplement to the code form in which various codes are defined, expanded explanations are given, and usage and scaling criteria are discussed.
- 3. **Examples**. Sample messages, exercising nearly the full range of parameters defined by the code, are given.

Among the various agencies receiving seismic data in the telegraphic format, few may wish to receive, or be prepared to process, all of the types of data and messages that can be sent with the new seismic code. These agencies should communicate their precise needs to their traditional contributors in order to avoid confusion and processing problems.

Stations contributing data to agencies such as the ISC, the United States Geological Survey's NEIC or other international data centres are advised NOT to send ANY of the types of data newly permitted by the 1985 version NOR to implement ANY of the new formats until they have been notified by the recipient to do so.

The seismic code is intended for transmittal via any telegraphic circuit employing CCITT *International Alphabets Nos. 2 and 5* and it is also the format in which computer-to-computer transfers of such seismic data take place. However, there is one internal heading field that should be used only by those sending via the WMO/GTS circuits. Also, WMO advises that the maximum length of the text of a seismic message is about 2100 characters for transmission on the GTS.

BACKUS-NAUR FORM

In order to precisely describe the syntax of the International Seismic Code a widely used *metalanguage*, known as *Backus-Naur Form* (*Backus Normal Form* or *BNF*), has been employed in a modified form – using BNF, syntactically valid sequences of symbols have been specified.

BNF consists of the four symbols (*metacharacters*) "\('', "\)", " | " and "::=" together with *terminal* and *non-terminal* symbols. Non-terminal symbols, *metalinguistic variables* (or *metanames*) are enclosed in *angle-brackets* "\(\sigma\)" and are used to define the components of the seismic code. The values of these metanames are chosen so as to suggest their semantics. Terminal symbols appear outside the angle-brackets and denote themselves – thus they are characters that actually appear in the seismic code. The vertical stroke " | " has the meaning "or" and the metacharacter "::=" means "is defined as". Juxtaposition of terms implies concatenation – any sequence of terminal symbols and metanames implies linking together in a series.

The seismic code is herein initially defined in terms of four components, two terminal symbols (SEISMO and STOP) and the metanames (standard delimiter) and (text). These metanames and each metaname introduced thereafter are then defined by their components until each is reduced to the terminal symbols found in the seismic code. The components designating the seismic code have been chosen and expanded so as to make the BNF definition *context-free*. In a context-free grammar, any occurrence of a particular metavariable may be replaced by one of its alternative values, irrespective of the other elements in the language.

For an example, here is how the original BNF definition of an integer was developed:

$$\langle \text{integer} \rangle ::= \langle \text{unsigned integer} \rangle | + \langle \text{unsigned integer} \rangle | - \langle \text{unsigned integer} \rangle$$
 (1)

$$\langle unsigned\ integer\rangle ::= \langle digit\rangle | \langle unsigned\ integer\rangle \langle digit\rangle$$
 (2)

$$\langle \text{digit} \rangle ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |$$
 (3)

By introducing braces "{}" with indices into the notation, (1) can be written as:

$$\langle \text{integer} \rangle := \{ + | - \}_0^1 \langle \text{unsigned integer} \rangle$$
 (4)

and the recursive definition (2) can be written as:

$$(unsigned integer):=\{(digit)\}_1^n$$
(5)

where n = number of digits in the integer.

By combining (4) and (5) we can replace (1) and (2) with (6):

$$\langle \text{integer} \rangle ::= \{+ \mid -\}_0^1 \{\langle \text{digit} \rangle\}_1^n \text{ or } \langle \text{integer} \rangle ::= [+ \mid -] \{\langle \text{digit} \rangle\}_1^n$$
 (6)

Here, the braces represent repeated concatenation of the object within the braces with itself and the indices specify the upper and lower bounds of the number of repetitions.

A subscript of zero indicates that the enclosed item is not required (*optional*). The frequently encountered optional case with a superscript of 1 will be written as [...] rather than $\{...\}_0^1$ as shown in (6) above. A superscript without a subscript is used to indicate a *required* number of repetitions.

Terminal and non-terminal symbols are considered *optional*, either if their inclusion is entirely a matter of choice or preference or else if their use is *required* because of circumstances or the inclusion of related optional data. For example, $\langle date \rangle$ is frequently shown as optional [$\langle date \rangle$] simply because it is *required* with the initial occurrence of the group in which it is included and is only *required* thereafter when its value changes. If a required non-terminal group consists only of optional components, then at least one such component must be chosen.

Braces without indices will be used to group terms in a sequence. Parentheses inside angle-brackets " $\langle (...) \rangle$ " will occasionally be used to define a non-terminal symbol in plain language, where continued decomposition will not lead to greater clarity.

CODE FORM

⟨code form⟩::=SEISMO⟨standard delimiter⟩⟨text⟩STOP

```
\langle standard \ delimiter \rangle := \langle b \rangle := \{ (space) \mid (return) \mid (line feed) \}_1^n
```

The \langle standard delimiter \rangle is used to separate groups and subgroups. As it consists of any number or combinations of spaces, carriage-returns and line-feeds, it also serves to indicate where lines of code may be broken. Henceforth this delimiter is indicated by \langle b \rangle and is shown only where required. Only single spaces are permitted in certain other positions which will be illustrated in the examples.

\(\lambda\)::=[\(\mathrew\)::=[\(\mathrew\)]{\(\lambda\)}\(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\) \(\lambda\)

MESSAGE HEADING

```
⟨message heading⟩::=[⟨content designator⟩]⟨message number⟩[⟨originator⟩]
```

```
⟨content designator⟩::=GSE⟨gse code⟩⟨b⟩
```

(gse code)::=CR|DC|FB|NC|PA|PL|RP|RR|ST|XY (Refer to Definitions and usage)

 $\langle message number \rangle ::= N \langle last digit of year \rangle \langle nnn \rangle \langle b \rangle$

 $\langle \text{last digit of year} \rangle ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

 $\langle nnn \rangle ::= 001 \mid 002 \mid 003...999$

(nnn) is the ordinal number from the first seismic message of the calendar year.

⟨originator⟩::=(([⟨gse test⟩]⟨message centre⟩[⟨transmission time⟩]))

(originator) ought to be included only in those messages sent via the Global Telecommunication System (GTS) of the World Meteorological Organization (WMO).

⟨gse test⟩::=GSE⟨(value to be specified by GSE for each ad hoc test)⟩

A-420 Volume I.1

```
\langle message centre\colon:=\langle (WMO GTS group TTAAii)\langle \big \langle \tansmission time\colon:=\langle (19)\langle yymmdd\langle \big \langle hhmm\langle \big \langle (6-digit year-month-day)\rangle \langle hhmm\colon:=\langle (4-digit hour-minute)\rangle
```

ADMINISTRATIVE MESSAGES

 $\langle administrative messages \rangle ::= \{((\langle (free form and contents) \rangle)) \langle b \rangle \}_0^n$ n = number of separate messages

SEISMIC DATA FORMAT OPTIONS

 $\langle \text{seismic data} \rangle ::= \{\langle \text{single-station group form} \rangle\}_1^s | \langle \text{net-event group form} \rangle$ s = number of stations reported

DATA ARRANGED BY STATION

 $\label{eq:condition} $$ \single-station group form:=\langle station\rangle[\langle report times\rangle][\langle status code\rangle][\langle process code\rangle][\langle magnification\rangle] $$ $$ $\{[\langle date\rangle]\{\langle station-event\rangle\}_1^e$ $$ $$ $$ $$ e = number of events reported$

DATA ARRANGED BY SEISMIC EVENT

 $\label{eq:continuous} $$ \operatorname{code} := {\langle \operatorname{station} \rangle := {\langle \operatorname{station} \rangle }_0^e (\operatorname{status} \operatorname{code})][\langle \operatorname{process} \operatorname{code} \rangle][\langle \operatorname{net-event} \rangle | e = \operatorname{number} \operatorname{of} \operatorname{net-events} \operatorname{reported} $$$

 $\langle \text{net-event} \rangle ::= \{ [\langle \text{date} \rangle] \{\langle \text{station} \rangle | \langle \text{station-event} \rangle | \langle \text{delimited station-event} \rangle \} | \\ [\langle \text{net} \rangle] \langle \text{computations} \rangle \} \}_{1}^{n}$

n = number of stations reported (add 1 to n if a (computations) group is included)

⟨delimited net-event⟩::=BEGEV⟨b⟩⟨net-event⟩ENDEV

The content of a (net-event) never requires that the event be delimited. Whether or not an event is given as a (delimited net-event) may depend strictly on the preference of the sender or receiver.

 $\label{eq:condary_phase_group} $$ \left(\operatorname{secondary phase group} \right)_0^n [(LP surface-wave group)] (\end{surface-wave group}) $$ \left(\operatorname{class} \right) [(\operatorname{condary phase group})] (\end{surface-wave group}) $$ \left(\operatorname{class} \right) $$ \left(\operatorname{class}$

n = number of secondary phases reported

 $\langle delimited station-event \rangle := |\langle b \rangle \langle station event \rangle \langle b \rangle |$

A \langle station-event \rangle must be enclosed in *solidi* whenever its \langle first-arrival phase group \rangle is either absent or contains more than one \langle 1st phase code \rangle . A single *solidus* (/) cannot serve as both an ending and beginning delimiter when two delimited station-events are adjacent. Two must separate the two station-events.

 $\langle computations \rangle ::= \{\langle hypocentre \rangle \mid \langle magnitude \rangle \mid \langle moment \rangle \}_1^n$

PARAMETERS

The following parameters, once established, remain in effect until changed. All dates and times are UTC.

 $\langle station \rangle ::= [:] \langle (3-5 \text{ character station abbreviation}) \rangle \langle b \rangle$

 $\langle net \rangle ::= [:] \langle (3-5 \text{ character network abbreviation}) \rangle \langle b \rangle$

A colon (:) must be prefixed to a station or net abbreviation whenever the abbreviation is identical to a phase code or symbolic identifier used in the *International Seismic Code*.

 $\langle \text{report times} \rangle ::= \{\langle \text{begin} \rangle \langle \text{end} \rangle \} \{\langle \text{out} \rangle \langle \text{to} \rangle \}_0^n$ $\langle \text{report times} \rangle$ may not be set within a $\langle \text{net-event} \rangle$.

```
\label{eq:components} $$ \langle beg \rangle ::= BEG \langle b \rangle \langle month \rangle \langle day \rangle \langle b \rangle \langle hhmmss \rangle \langle b \rangle $$ $$ \langle end \rangle ::= END \langle b \rangle \langle month \rangle \langle day \rangle \langle b \rangle \langle hhmmss \rangle \langle b \rangle $$ $$ \langle out \rangle ::= OUT \langle b \rangle \langle channels \rangle \langle b \rangle \langle month \rangle \langle day \rangle \langle b \rangle \langle hhmmss \rangle \langle b \rangle $$ $$ \langle channels \rangle ::= \{ \langle instrument \ class \rangle \langle components \rangle \ | \ ALL \} \langle b \rangle $$ $$ \langle instrument \ class \rangle ::= SP \ | \ LP \ | \ MP \ | \ BP \ | \ UP $$ $$ \langle components \rangle ::= Z \ | \ ZN \ | \ ZNE \ | \ ZE \ | \ N \ | \ NE \ | \ E $$ $$ \langle to \rangle ::= TO \langle b \rangle \langle month \rangle \langle day \rangle \langle b \rangle \langle hhmmss \rangle \langle b \rangle $$ $$ \langle hhmmss \rangle ::= \langle (6-digit \ hour-minute-second) \rangle $$ $$ \langle date \rangle ::= [\langle year \rangle] \langle month \rangle \langle day \rangle \langle b \rangle $$ $$ \langle year \rangle ::= YR19 \langle (2-digit \ year) \rangle \langle b \rangle $$ $$ \langle month \rangle ::= JAN \ | \ FEB \ | \ MAR \ | \ APR \ | \ MAY \ | \ JUN \ | \ JUL \ | \ AUG \ | \ SEP \ | \ OCT \ | \ NOV \ | \ DEC $$ \langle day \rangle ::= 01 \ | \ 02 \ | \ 03 \dots 31 $$$ $$ $$ $$ $$ $$ $$ $$
```

P = message contains preliminary interpretations and/or computations

F = message contains final interpretations and/or computations

The (status code) cannot be changed within a (net-event). It should be used especially by those contributors sending preliminary interpretations and then sending revisions and more complete interpretations later. Any data which are not the first set of interpretations for a reporting period for a given station are considered final.

```
\langle process code \rangle ::= PROC\{A \mid D \mid G\}\langle b \rangle (Refer to Definitions and usage)
```

The following parameter, once established, remains in effect only until a station abbreviation is encountered.

```
\langle magnification \rangle ::= [TRACE \mid GRND] \{\langle SPZ \mid magnification \rangle \mid \langle SPH \mid magnification \rangle \}_0^4
```

If double trace amplitudes are included in the current station's data, inclusion of TRACE is *strongly recommended*, prefixing the *required* relevant channel magnification(s).

If all of the amplitudes reported for the current station are *ground* amplitudes, the sender *may choose* to include the channel magnification(s) *for informational purposes only.* If so, GRND is *required*.

See also under Definitions and usage for detailed discussion.

```
⟨SPZ magnification⟩::=⟨mk⟩K[C]

⟨SPH magnification⟩::=⟨mk⟩H[C]

⟨mk⟩::=⟨(magnification of SPZ or SPH instruments in thousands)⟩

⟨LPZ magnification⟩::=⟨m⟩M[C]

⟨LPH magnification⟩::=⟨m⟩J[C]

⟨m⟩::=⟨(magnification of LPZ or LPH instruments)⟩
```

The horizontal magnifications are required only if they differ from their respective vertical magnifications. The optional C is used to confirm that the indicated magnification represents a change from that previously reported by this station, for this component.

The following parameter ($\langle channel \rangle$) is used to indicate the instrument type (*class*) and component from which a phase and its associated measurements were obtained. $\langle channel \rangle$ may be changed within a $\langle station-event \rangle$ as often as necessary. However, once established (either explicitly or by default) within a $\langle station-event \rangle$, it remains in effect until changed or until the next $\langle station-event \rangle$ is encountered.

Since, within a given message, the overwhelming majority of the first phases reported within a \(\station\)-event\(\righta\) will begin with data from the same \(\chi\)-channel\(\righta\), a method of indicating this \(\chi\)-channel\(\righta\) without repeating the value of \(\chi\)-channel\(\righta\) with each \(\station\)-event\(\righta\) is available. This \(default\) value is established using the optional symbol "DEFAULT" as indicated below, with the first \(\chi\)-channel\(\righta\) appearing in the message. This \(default\) may be reset to a new value if necessary. This default value may be overridden for a given first phase reported

A-422 Volume I.1

within a \(\station\)-event\\ by simply including the correct \(\chi^2\) value; the default value will be resumed with the next \(\station\)-event\\ not beginning with \(\chi^2\)-including the correct \(\chi^2\)-including the default value will be resumed with the next \(\station^2\)-event\\ not beginning with \(\chi^2\)-including the correct \(\chi^2\)-including the correct \(\chi^2\)-including the default value will be resumed with the next \(\station^2\)-event\(\chi^2\)-including the correct \(\chi^2\)-including the cor

If no (channel) is given within the message, its value will be considered "unknown" unless implied by amplitudes available with the previous version of the seismic code.

```
\begin{split} &\langle channel \rangle ::= \langle instrument\ class \rangle \langle component \rangle \langle b \rangle [DEFAULT \langle b \rangle] \\ &\langle instrument\ class \rangle ::= \langle (\textit{See above under } \langle report\ times \rangle) \rangle \\ &\langle component \rangle ::= Z \mid N \mid E \\ &Z = vertical,\ N = north-south,\ E = east-west \end{split}
```

BASIC SEISMIC DATA

The data covered in this section are obtained from both body and surface-wave recordings. In general, only their syntax is given here. For a complete discussion of all the groups relating to periods and amplitudes, refer also to the Definitions and usage section.

As used in this specification of the seismic code, the term long-period (LP) is a generic term applied to data from intermediate-period (MP), broad-band (BP) and ultra long-period (UP) recordings as well as data from long-period recordings *per se*. This terminology is used herein simply to indicate that the forms and groups that accommodate long-period data *per se* are used for MP, BP and UP data as well. However, the appropriate specific (channel) designators must be used in these various LP groups.

SCALING TIMES

```
\langle arrival\ time \rangle ::= [\langle 2\text{-digit hour} \rangle] \langle 2\text{-digit minute} \rangle \langle seconds \rangle
```

⟨2-digit hour⟩::=00 | 01 | 02...23

The hour is required for the first (arrival time) reported within any (station-event) and whenever the hour changes within a (station-event).

```
 \begin{tabular}{ll} $\langle 2$-digit minute \angle ::= 00 & 01 & 02...59 \\ $\langle 2$-digit minute \angle ::= {\digit}^2[.][\langle 2$-digit & | {\digit}^2.{\digit}^2.{\digit}^2.} \end{tabular}
```

(arrival time) must be given to at least the nearest whole second. Usually it is given to the nearest tenth of a second when taken from SPZ. In either case the decimal point "." is optional, but *recommended*. However, if given to hundredths of a second, the decimal point *must* be included.

(seconds) should be quoted only to the precision actually obtained in scaling. However, in dealing with surface waves, the seconds may be filled with one or two zeros, if reasonable. Arrival times scaled from most long-period seismograms will generally not be legible to a precision closer than one second. However, they may be given to a closer precision whenever it is obtainable.

A sixty-first second may be included when the scaling falls within a leap second.

⟨zero-crossing amplitude scaling time⟩::=⟨(Use the same rules that apply to ⟨arrival time⟩)⟩

This time is measured where the trace crosses the equilibrium point between the peak and trough that comprise the cycle whose amplitude was obtained.

PHASE CODES

The (2nd phase code) has been expanded to six characters. The clarity is *not* included in this limit.

Phases pP, pwP, pPcP, pPP, pS, etc. are encoded as AP, AWP, APCP, APP, AS, etc.; and sP, sPcP, sS, sSKS, etc. are encoded as XP, XPCP, XS, XSKS, etc.

The T-phase is encoded as TT to avoid confusion with T used as a symbolic prefix for periods.

Phase PKPPKP (P'P'P') is encoded as RRPKP, likewise PKPPKP (P'P') is encoded as either PKPPKP or RPKP.

P' and P* are alternative phase code designators for PKP and PB respectively. They are acceptable to computers processing seismic data, and may thus be exchanged by computer links or by air mail. However, "'" and "*" are generally not available to teletype circuits, so PKP and PB are the codes for teletype transmission even if the originator's circuit is capable of sending either "'" or "*".

CLARITY OR ONSET QUALITY

⟨clarity⟩::=I | E | Q (See Definitions and usage)

(clarity) is required if phase code is absent from a secondary phase.

PERIODS AND AMPLITUDES

⟨amplitude⟩

The amplitude units are not expressly given in a telegraphic message, but are implied by the channel from which they were scaled and the presence or absence of a corresponding magnification field. A decimal point must be included in every amplitude value.

⟨period⟩

A decimal point must be included in every period value except in the long-period surface-wave groups and the (10–30 second noise) group.

 $\label{eq:localized} $$ \ensuremath{\mathsf{LP}}$ maximum amplitude $::=XM[((zero-crossing amplitude scaling time))]$$ $$ T(period)[G]A(amplitude)$$$ $$ $$$

An LP maximum amplitude can be scaled for any phase. Occasionally, this amplitude may also meet the criteria for the reporting of one of the several GSE amplitude groups. If a contributor is committed to supplying both groups but wishes to avoid duplication in this case, he may do so by using the optional "M" provided in the Rayleigh wave period-range designator of the \(\text{gse Rayleigh amplitudes} \) group and omitting the \(\text{LP maximum amplitude} \) group.

SP maximum amplitude $:=XM[\langle (zero-crossing amplitude scaling time)\rangle]\langle b\rangle T\langle period\rangle[G]A\langle amplitude\rangle\langle b\rangle$

An SP maximum amplitude can be scaled for any body wave and the Lg phase. Occasionally, this amplitude may also meet the criteria for the reporting of one of the several GSE amplitude groups. If a contributor is committed to supplying both groups but wishes to avoid duplication in this case, he may do so by using the optional "M" provided in the P-coda interval-time designator of the gse SPZ first-arrival amplitudes group. Frequently, the SP maximum amplitude, scaled from recordings of intermediate or deep focus events, will be found in the first few cycles. When this situation occurs, report the amplitude in the SP maximum amplitude group, or, if reporting $\langle gse SPZ first-arrival amplitudes \rangle$, report it as an XAM prefixed group.

FIRST MOTIONS

$$\begin{split} &\langle \text{first motion} \rangle ::= \text{FM}[\langle \text{SP 1st-motion(s)} \rangle][,\langle \text{LP 1st-motion(s)} \rangle] \\ &\langle \text{SP 1st-motion(s)} \rangle ::= [C \mid D][N \mid S][E \mid W] \\ &\langle \text{LP 1st-motion(s)} \rangle ::= [C \mid D][N \mid S][E \mid W] \end{split}$$

The short-period first-motion code(s), if any, are appended to the symbolic prefix FM. The long-period first-motion code(s), if any, together with their prefixed comma are appended to the $\langle SP | 1st-motion(s) \rangle$ if it exists, or else directly to the FM. The comma (,) is *required* whenever LP first-motion codes are given.

Long-period, intermediate-period, broad-band or ultra long-period are indicated by the (channel) value. If a first-motion group included in any SP channel contains first-motion codes to the right of the comma, they are simply considered generic LP first motions. Whenever LP, MP, BB or UP first motions are included in a first-motion group, a preceding comma is required.

FIRST-ARRIVAL PHASE GROUP

 $\langle first-arrival\ phase\ group \rangle := [\langle SP\ first-arrival\ phase\ group \rangle] [\langle LP\ first-arrival\ phase\ group \rangle]$

SHORT-PERIOD DATA

 $\langle SP \text{ first-arrival phase group} \rangle := [\langle SPZ \text{ 1st phase group} \rangle] {\langle SPH \text{ 1st phase group} \rangle}_0^2$

A-424 Volume I.1

```
\langle SPZ \ 1st \ phase \ group \rangle ::= [\langle channel \rangle] \langle 1st \ phase \ group \rangle \langle arrival-time \rangle [\langle first \ motion \rangle]
                                   [(SPZ amplitudes)][(gse SPZ first-arrival amplitudes)]
                                   [(SPZ noise)][(slowness)][(complexity)]
                                   [(station scalar moment)]
      ⟨SPZ amplitudes⟩::=[⟨1st few cycles amplitude⟩][⟨SP maximum amplitude⟩]
            ⟨1st few cycles amplitude⟩::=T⟨period⟩[G]A⟨amplitude⟩⟨b⟩
      \langle gse SPZ first-arrival amplitudes \rangle := \{X\langle t \rangle \langle zero-crossing amplitude scaling time \rangle
                                                   T(period)A(amplitude)}<sub>1</sub>
            \langle t \rangle := \{A \mid B \mid C \mid D\}[M] These are the P-coda interval-time designators.
            The optional "M" may be used when the associated amplitude also meets the criteria of the (SP
            maximum amplitude) to avoid reporting under both categories.
      \langle SPZ \text{ noise} \rangle ::= NT\langle period \rangle A\langle amplitude \rangle \langle b \rangle
      ⟨complexity⟩::=CPX⟨(complexity value)⟩⟨b⟩
      ⟨station scalar-moment⟩::=SM⟨mantissa⟩⟨exponent⟩
                                                                               (newton-m.)
            \langle mantissa \rangle :: = . \{\langle digit \rangle\}_{2}^{3} \langle b \rangle
            \langle exponent \rangle : = E\{\langle digit \rangle\}^2 \langle b \rangle
  ⟨SPH 1st phase group⟩::=[⟨channel⟩][⟨1st phase group⟩][⟨arrival time⟩]
                                    [(first motion)][(SP maximum amplitude)]
          where (channel) value is SPN or SPE and will usually be required.
                                                         LONG-PERIOD DATA
\langle LP \text{ first-arrival phase group} \rangle ::= [\langle LPZ \text{ 1st phase group} \rangle] {\langle LPH \text{ 1st phase group} \rangle}_0^2
  ⟨LPZ 1st phase group⟩::=[⟨channel⟩][⟨1st phase group⟩][⟨arrival time⟩][⟨first motion⟩]
                                   [(LPZ noise)][(slowness)]
          where (channel) value is LPZ, MPZ, BPZ or UPZ.
      ⟨LPZ noise⟩::=⟨1 minute before P noise⟩⟨10-30 second noise⟩
```

ELEMENTS COMMON TO SHORT-PERIOD AND LONG-PERIOD GROUPS

[\(\rangle\text{first motion}\)][\(\rangle\text{P maximum amplitude}\)] where \(\rangle\text{channel}\) value is LPN, MPN, BPN, UPN, LPE, MPE, BPE or UPE.

⟨1 minute before P noise⟩::=NAT⟨period⟩A⟨amplitude⟩⟨b⟩
⟨10–30 second noise⟩::=NBT⟨period⟩A⟨amplitude⟩⟨b⟩
⟨LPH 1st phase group⟩::=[⟨channel⟩][⟨1st phase group⟩][⟨arrival time⟩]

```
\label{eq:code} $$ \langle 1st\ phase\ group \rangle ::= [\langle clarity \rangle] \langle 1st\ phase\ code \rangle [\langle appended\ first-motion \rangle] $$ $$ \langle 1st\ phase\ code \rangle ::= P | PN | PB | PG | PLOC | UNK | PKP | PDIF $$ $$ $$ (appended\ first-motion) ::= C | D | U | R | CU | CR | DU | DR $$ Available\ only\ with\ vertical\ channels\ when\ \langle first\ motion \rangle\ is\ not\ used\ anywhere\ in\ \langle first-arrival\ phase\ group \rangle. $$ $$ \langle slowness \rangle ::= SLO(\langle slowness\ value)) \langle b \rangle AZ(\langle azimuth \rangle) \langle b \rangle $$
```

Slowness is given to a precision of 0.1 s deg.⁻¹; decimal point required when given to such precision. Azimuth may be given to a precision of up to 0.1 deg.; decimal point required.

The N and E channel data may appear in either order. The first channel reported for any phase must include the phase code (and/or clarity) and, except for long-period surface-wave groups, the arrival time. Arrival times may be given for each channel reported for a phase and need not be identical, but must be preceded by the phase code. More than one channel cannot be given for a secondary phase identified only by its clarity, otherwise it would be indistinguishable from a succeeding phase so identified.

SECONDARY PHASE GROUP

```
(secondary phase group)::=[(SP secondary phase group)]
                          [(LP secondary phase group)]
```

SHORT-PERIOD DATA

```
\langle SP \text{ secondary phase group} \rangle := [\langle SPZ \text{ 2nd phase group} \rangle] \{\langle SPH \text{ 2nd phase group} \rangle]^2
  ⟨SPZ 2nd phase group⟩::=[⟨channel⟩][⟨2nd phase group⟩][⟨arrival time⟩]
                                      [\langle first motion \rangle ][\langle SP maximum amplitude \rangle]
  ⟨SPH 2nd phase group⟩::=[⟨channel⟩][⟨2nd phase group⟩][⟨arrival time⟩]
                                       [\langle first motion \rangle ][\langle SP maximum amplitude \rangle]
                                       [(gse SPH S-wave amplitude)]
```

⟨gse SPH S-wave amplitude⟩::=XA[M]⟨zero-crossing amplitude scaling time⟩⟨b⟩ T(period)A(amplitude)(b)

available only if phase code is "S". The optional "M" is used to indicate that the amplitude also meets the criteria of the (SP maximum amplitude).

LONG-PERIOD DATA

```
\langle LP \text{ secondary phase group} \rangle := [\langle LPZ \text{ 2nd phase group} \rangle] {\langle LPH \text{ 2nd phase group} \rangle}_0^2
  ⟨LPZ 2nd phase group⟩::=[⟨channel⟩][⟨2nd phase group⟩][⟨arrival time⟩]
                                     [\langle first motion \rangle ][\langle LP maximum amplitude \rangle]
  ⟨LPH 2nd phase group⟩::=[⟨channel⟩][⟨2nd phase group⟩][⟨arrival time⟩]
                                     [(first motion)][(LP maximum amplitude)]
                                     [(gse LPH S-wave amplitude)]
      \(\langle gse LPH S-wave amplitude \rangle :: =XA[M]\(\langle zero-crossing amplitude scaling time \rangle \( b \rangle \)
```

T(period)A(amplitude)(b)

available only if phase code is "S". The optional "M" is used to indicate that the amplitude also meets the criteria of the (LP maximum amplitude).

 $\langle 2nd phase group \rangle ::= {\langle clarity \rangle | \langle 2nd phase code \rangle}_1^2$

LONG-PERIOD SURFACE-WAVE GROUPS

 $\langle \text{surface-wave groups} \rangle := {\langle \text{Love waves} \rangle}_0^2 {\langle \text{Rayleigh waves} \rangle}_0^3$

LOVE WAVES

```
⟨Love waves⟩::=⟨channel⟩[⟨clarity⟩]⟨Love phase code⟩[⟨arrival time⟩]
                 [(Love mantle-wave amplitude)][(Love-wave maximum amplitude)]
        where: (channel) is LPN, LPE, MPN, MPE, BPN, BPE, UPN or UPE.
  \langle Love phase code \rangle := \{G \mid G1 \mid LQ\} \mid G2 \}
  ⟨Love mantle-wave amplitude⟩::=T⟨period⟩A⟨amplitude⟩⟨b⟩
  ⟨Love-wave maximum amplitude⟩::=⟨LP maximum amplitude⟩
```

RAYLEIGH WAVES

```
⟨Rayleigh waves⟩::=⟨channel⟩[⟨clarity⟩]⟨Rayleigh phase code⟩[⟨arrival time⟩]
                          [(Rayleigh mantle-wave amplitude)][(Rayleigh max amplitude)]
                          [(gse Rayleigh amplitudes)]
  ⟨Rayleigh phase code⟩::={R | R1 | LR} | R2
  \langle Rayleigh mantle-wave amplitude \rangle ::= T\langle period \rangle A\langle amplitude \rangle \langle b \rangle
  ⟨Rayleigh max amplitude⟩::=⟨LP maximum amplitude⟩
  \langle gse Rayleigh amplitudes \rangle ::= \{X\langle p \rangle \langle zero-crossing amplitude scaling time \rangle \langle b \rangle
```

A-426 Volume I.1

T(period)A(amplitude)}₁

 $\langle p \rangle ::= \{A \mid B \mid C \mid D\}[M]$ This is the Rayleigh wave period-range designator.

The optional "M" may be used when the associated amplitude also meets the criteria of the (Rayleigh max amplitude) to avoid reporting under both categories. These designators are for data from vertical channels only, with the exception of B, which may also be used with horizontal components to report "20-second" wave data.

OLD SURFACE-WAVE GROUP

 $\langle \text{old surface-wave group} \rangle := \{ \{ \text{LZT} \mid \text{LNT} \mid \text{LET} \} \langle \text{period} \rangle A \langle \text{amplitude} \rangle \langle \text{b} \rangle \}_0^3$

where (amplitude) is applied to the "20-second" Rayleigh-waves from the Z, N or E components. Note that this group has been retained for upward compatibility only and one may continue to send data using this group. For a discussion of how data in this group can be included in the groups new to this code, see this heading under Definitions and usage.

LOCAL MAGNITUDE DATA

 $\langle local magnitude data \rangle ::= \{ [\langle SP duration time \rangle] [\langle maximum local amplitude \rangle] \}_1^n$

 $\langle SP | duration | time \rangle ::= [\langle channel \rangle] \langle b \rangle DUR \langle (total seconds) \rangle \langle b \rangle$

where total seconds is measured between the first-arrival onset and the time the trace never again exceeds twice the noise level encountered immediately prior to the first arrival. Data are taken from an SP channel. Total seconds is used to compute duration magnitude.

⟨maximum local amplitude⟩::=[⟨channel⟩]{T | G}AMAX⟨(maximum amplitude)⟩

Scaled from a local event, when either the period cannot be measured or the amplitude assigned to a particular phase. This amplitude must have been recorded by an SP instrument whose response is nearly constant over the period range within which the signal can be presumed to lie. If preceded by TAMAX the amplitude is a *trace* (*not double-trace*) amplitude in millimetres (mm). If preceded by GAMAX the amplitude is a *ground* amplitude in millimicrons ($m\mu$).

COMMENTS

⟨comments⟩::=((⟨(unformatted plain-language text)⟩))⟨b⟩

These comments contain information concerning the effects of the seismic occurrence to which the preceding station event data pertain. When a hypocentre is included for the event, it is preferable that the comments be given in the hypocentre comments, as a specific time can then be attached when processed. These comments may include:

- 1. Macroseismic information such as: casualty, damage, intensity and other cultural effects and unusual animal behaviour;
- 2. Tsunami wave heights, damage, casualties and run-up data;
- 3. information on artificial or induced events such as explosions, collapses, rockbursts, coal-bumps and meteoritic impacts;
- 4. Geological observations of associated faulting, uplift, eruptions, landslides, liquefaction, sand-boils, earthquake lights, etc.

NETWORK COMPUTATIONS

⟨computations⟩::=[⟨hypocentre⟩][⟨magnitude⟩][⟨moment⟩]

⟨hypocentre⟩::=FOCUS⟨b⟩⟨origin-time⟩LAT⟨b⟩⟨latitude⟩LON⟨b⟩⟨longitude⟩

[DEP(b)(depth)][NS(number of stations)]

[(((hypocentre comments)))(b)]

(hypocentre) may be used to transmit rough hypocentres obtained from slowness and azimuth as well as computations using arrival-times from a net. If a slowness-derived hypocentre has been given, "SLO" should appear in the hypocentre comments. It may also be used to transmit rockburst and explosion coordinates, with appropriate hypocentre comments.

```
\langle origin\ time \rangle ::= \langle hour \rangle \langle minutes \rangle \langle seconds \rangle. [\langle tenths \rangle] [\langle hundredths \rangle] \langle b \rangle
    \langle latitude \rangle : = \{\langle digit \rangle\}_{1}^{2}.\{\langle digit \rangle\}_{0}^{3} \{N \mid S\} \langle b \rangle
    \langle longitude \rangle ::= \{\langle digit \rangle\}_{1}^{3}. \{\langle digit \rangle\}_{0}^{3} \{E \mid W \} \langle b \rangle
    \langle depth \rangle : = \{\langle digit \rangle\}_1^3 . \{\langle digit \rangle\}_0^1 [FIX] \langle b \rangle
         where FIX indicates a fixed-depth solution.
    \langle \text{number of stations} \rangle ::= \{\langle \text{digit} \rangle\}_1^4 \langle \text{b} \rangle
(magnitude)::=MAG(b){[(magnitude type)]}(magnitude value)[(distance estimate)]
                     [T((average period of waves used))][NS(number of stations)]
    (magnitude type)::=ML|MS|MSZ|MSH|MB|MBSH|MW|MBW|MBLG|MSRG|MD|...
        where:
        ML
                       Richter (local) magnitude (M_l)
        MS
                       IASPEI formula Rayleigh wave (Ms)
        MSZ
                       IASPEI formula Z-component Rayleigh wave
        MSH
                       IASPEI formula H-component Rayleigh wave
        MB
                       Gutenburg-Richter body-wave magnitude (m<sub>b</sub>)
        MBSH
                       G-R body wave from horizontal S
        N/N/
                       Moment magnitude (M_{W})
        MBW
                       Moment magnitude (m_w)
        MBLG
                       Nuttli's m_h from Lg
        MSRG
                       Nuttli's Ms from Rg
        MD
                       Duration magnitude
        This magnitude list is not comprehensive. Additional magnitude types and their appropriate symbols
        may be included.
    \langle magnitude \ value \rangle ::= \langle digit \rangle. \{\langle digit \rangle\}_1^2 \langle b \rangle
    ⟨distance estimate⟩::=D⟨(distance estimate in degrees)⟩
⟨moment⟩::=MOM⟨mantissa⟩⟨exponent⟩[NS⟨number of stations⟩]
    \langle mantissa \rangle :: = . \{\langle digit \rangle\}_{2}^{3} \langle b \rangle
    \langle exponent \rangle ::= E\{\langle digit \rangle\}^2 \langle b \rangle
                                                  (newton-m.)
```

DEFINITIONS AND USAGE

The sequence in which subjects are introduced in this section corresponds to the order in which they are found in the code form. Those subjects treated adequately in the code form will not be dealt with further in this section.

MESSAGE HEADING

(gse code)

The gse code used in the message heading is primarily intended for transmissions to and from data centres via the Global Telecommunication System of the World Meteorological Organization. Use of this code early in the message permits the receiving computer to determine the contents of the message without decoding past the heading.

The gse codes and their definitions follow:

CR Coordinator message
DC Data centre message

FB Final event bulletin from IDC

NC Request by a national centre (or station)

A-428 Volume I.1

PA	Parameter message to IDC (includes measurements of seismic signals)
PL	Preliminary event list from IDC
RP	Retransmission of PA message
RR	Request retransmission of PA message
ST	Status or other administrative message
XY	Reserved for other messages to be defined by GSE as needed

⟨originator⟩

This group ought to be included only in messages sent via WMO/GTS circuits. The \langle message centre \rangle code is the GTS data/geographical designator. The \langle transmission time \rangle should indicate the time the message was originally transmitted. This field could be completed by the teletypist. If this is a problem, the time that the message is to be given to the sender's message centre could be used.

SEISMIC DATA FORMAT OPTIONS

(single-station group form)

With data arranged by station, all of the data for one station for its reporting period are given and they are then followed by data from the next station, etc.

Data arranged by station are further ordered by increasing first *reported* arrival time (which is usually the first-arrival time) for each seismic event reported.

(net-event group form)

When data are arranged by event, all of the data from several stations pertaining to one seismic event are given, followed by such data from the next event, etc. A net event may include net computations such as hypocentres and magnitudes. On the other hand each event may consist of only hypocentre computations, in which case the report is reduced to an event list.

Data arranged by event is the usual method of sending data from local networks reporting mostly data pertaining to local events and their computational results. Reporting trace amplitudes with data arranged by event is awkward, as the station's magnification must be given each time the station appears with an amplitude. The net computations may appear anywhere within an event.

A contributor sending data arranged by event may wish, occasionally, within a message, to include data arranged by station. It may be that these data belong to two or more teleseisms mixed together on the records, or he may wish to treat local and teleseismic data differently.

(delimited net-event) is strictly optional.

(delimited station-event)

A (station-event) must be enclosed with solidi when the following conditions are met:

- 1. A legitimate first-arrival is not available for the (station-event). It could be missing because of a recording interruption or it may happen when a weak local event yields only a legible Sg or Lg. Also a high-gain long-period station may be able to send only surface-wave data for smaller events.
- 2. A first-arrival time from more than one channel has been included.
- 3. Whenever there is likely to be some question as to whether two sequentially reported phases belong to the same seismic event.
 - This ambiguity is seen when two different phase codes, both of which may be reported as first-arrivals, follow each other closely enough in time. For example, a station could record a Pn from a distant regional event, and then, before recording its associated secondary phases, a Pg and Sg from a nearby local could be recorded. Currently, computer programs decoding the resultant seismic message must resort to assumptions based on generalized travel-time tables to attempt to discern the proper relation. Note also that a P preceding a Pn by a few seconds could belong either to the same event as the Pn or to a teleseism. Therefore, as a general rule,

station-events which include P-type crustal phases should be delimited.

4. Whenever a secondary arrival-time or amplitude scaling time follow the first-arrival time by more than 66 minutes.

This precautionary requirement is necessary for the receiver to distinguish such data from cases where data have been lost or delimiters forgotten.

PARAMETERS

⟨report times⟩

(beg) and (end) are used to indicate the beginning and ending times of the recording period covered by the message for each station. If the data comprise strictly an event list, these times will indicate the range in time represented by the event list.

 $\langle \text{out} \rangle$ and $\langle \text{to} \rangle$ are used to delimit periods of interruption in the recording period covered by $\langle \text{beg} \rangle$ and $\langle \text{end} \rangle$. $\langle \text{out} \rangle$ and $\langle \text{to} \rangle$ groups may be repeated as often as needed. The $\langle \text{instrument class} \rangle$ and $\langle \text{components} \rangle$ groups indicate which instruments were not recording. If all instruments were out, "ALL" is used.

(process code)

The process code indicates the combination of recording and scaling techniques employed to obtain the arrival times (and perhaps amplitudes) reported for the associated station.

The three process codes are:

- A The measurements were primarily obtained from *analog* recordings on *paper* or *film*, by an interpreter using *visual* and perhaps mechanical techniques. This is the default case if no process code is given, "A" will be assumed
- D The data were recorded *digitally* or were originally analog recordings that have been digitized by computer. In addition, the arrival times (and perhaps amplitudes) were obtained solely by *automatic parameter extraction*.
- G The data were recorded *digitally* or were originally analog recordings that have been digitized by computer. In addition, *man-machine interactive* methods utilizing a *graphics screen* showing wave-forms were used. The techniques used for process code D could have been employed in an early phase of this procedure.

(magnification)

See below under Periods, amplitudes and magnifications.

BASIC SEISMIC DATA

PHASE CODES

A phase code and/or a clarity code must accompany each arrival time reported. The first reported arrival time within each station event must be identified by a phase code.

RELATIVE IMPORTANCE OF SECONDARY PHASES

The most important secondary phases for hypocentre estimation are those which give an indication of the depth of focus. These include pP encoded as AP, pwP encoded as AWP, sP encoded as XP, pPKP encoded as APKP, Pg encoded as PG and Lg encoded as LG. Also of great value are S phases for local and regional shocks when their onset can be read accurately enough to yield a check on the computed origin time. They are especially valuable for analysing local and regional shocks with deeper than normal foci. When a large-magnitude shock is too deep to propagate significant surface waves, the amplitude of long-period S assumes greater importance.

Any strong phase following teleseismic P by less than 2 min 30 s, which might be a pP but which the interpreter does not wish to identify definitely as pP, should be encoded with a clarity of "e" or "i" (followed by the arrival time). A pPcP and/or sPcP together with PcP will yield depth information at epicentral distances too small to record pP or sP. The same considerations apply to ScP, PcS and ScS.

Phases which are generally prominent on short-period vertical instruments which are of some value in hypocentre estimation include PcP, ScP, PKKP and SKP. Identification of these phases by some stations may aid in the identification of these same phases from other stations which have reported them as P. Such phases as PP, PPP, SS, SSS, SP, PgPg, etc. are generally of lesser value in routine hypocentre work.

Phases closely following P, which have much larger amplitudes than P, may indicate a multiple or complex event. If their arrival times can be scaled accurately, they should be reported preceded by a clarity code (these may also include breakout or stopping phases), or they may be encoded as separate shocks if the interpreter suspects this is the case. In any case all significant increases in the SPZ amplitudes of complex-multiple events should be reported either as individual SP maximum amplitudes or as one or more of the gse SPZ first-arrival amplitudes.

A-430 Volume I.1

CLARITY OR ONSET QUALITY

Clarity is the observer's estimation of the accuracy to which the associated arrival time has been measured.

The clarity codes are:

- I indicates an accuracy to within \pm 0.2 second.
- E indicates an accuracy to within ± 1.0 second.
- Q indicates a less accurate measurement.

These limits are, in general, most appropriately applied to the first-arrival, and must be relaxed somewhat for many secondary phases.

As the "shape" of the wave at the onset is a function of the transport speed of the drum or film and trace widths, the "character" of the onset is not as useful as the observer's indication of the timing accuracy, which also may reflect the accuracy of the chronometer.

it is difficult to establish firm clarity limits for secondary phases. For example, an accuracy of 1.0 second may rate an I for a teleseismic S, but only an E or a Q for an S recorded locally by a modern network.

PERIODS, AMPLITUDES AND MAGNIFICATIONS

A number of additional amplitude measurements may now be reported. Before discussing each individually, the general rules for reporting amplitudes, especially their units, will follow. In the past, reporting of amplitude measurements has caused considerable confusion and undoubtedly resulted in the entry of erroneous data into the databases of several seismic centres.

The period is the apparent or dominant period of the wave whose amplitude is given.

Amplitude measurements are given either in *double* trace amplitudes in *millimetres* (mm) or as *ground* amplitudes whose units depend on the channel from which they were scaled (see definition of \langle channel \rangle under Parameters, in the Code form).

Amplitude data from a given station must be either double trace (with rare exceptions because of recording off-scale) or all ground amplitudes.

Double trace-amplitude measurements can be defined as either:

peak-to-trough deflection for symmetrical waves, or,

twice centre-to-peak for symmetrical or asymmetrical waves, where centre means base-line, zero-line or equilibrium.

Double trace amplitudes in millimetres (mm) may be given for any reportable amplitude group. When double trace amplitudes are given, the channel magnification *should* be given and it is *strongly re commended* that the magnification include the TRACE symbol.

Ground amplitudes scaled from an SP channel must be given in nanometres (nm).

Ground amplitudes scaled from an LP channel must be given in micrometres (μ m).

Thus effectively, all reportable *surface-wave* amplitudes, except Lg scaled from SPZ, and all *long-period* body-wave amplitudes will be given in *micrometres* (μm) as well as the two *LP noise* amplitudes when ground amplitudes are given.

(magnification)

The standard magnification is that magnification, at the nominal period, to which the instrument magnification factor is normalized to 1. The period to which magnifications are normalized varies with the instrument type, but is generally one second for short-period instruments and that period at which the instrument magnification peaks for long-period instruments.

It is *strongly recommended* that *ground* amplitudes be furnished by all. However, contributors sending *double* trace amplitudes must obtain them from standardized instruments for which the response characteristics are known to the receiver, and they must have informed the receiver of their intention prior to transmission of such data.

Although the (magnification) is optional when the recipient is known to have a record of the *current* operating magnification(s) of the instruments from which *double* trace amplitudes have been supplied, it is *strongly recommended* that they be included. If a magnification has been changed since the last report, the new magnification is *required* and should have a C appended to the K or M identifier to confirm this fact. A station

should not commence sending amplitudes until it has first informed the recipient(s) of the type of amplitudes (double trace or ground) that it intends to send. If double trace amplitudes are to be sent, the type of standard-ized instrument(s) and their magnifications must be supplied.

[G]

A station which routinely reports *double* trace amplitudes (from the channels for which they furnish magnifications) may wish to substitute *ground* amplitudes from recordings which did not go off-scale (clip) while recording a large earthquake – data from a low magnification SPZ when a 200K WWNSS SPZ clipped, for example.

To substitute a *ground* amplitude where a *double* trace amplitude would ordinarily be expected, prefix the ground amplitude with GA rather than A. This substitution is available for the 1st few cycles amplitude, the SP maximum amplitude, the LP maximum amplitude, and the Rayleigh and Love-wave maximum-amplitude groups.

(zero-crossing amplitude scaling times)

This field is available for all groups containing amplitudes except the 1st few cycles amplitude, the three noise groups, and the (maximum local amplitude) defined under local magnitude data.

This time is measured where the trace crosses the equilibrium point between the peak and trough that comprise the cycle whose amplitude was reported.

P-WAVE AMPLITUDES

(1st few cycles amplitude)

(SP maximum amplitude)

This amplitude is scaled from the first "few" cycles following the onset of the first-arrival, recorded on SPZ channels only. The associated period must lie between 0.1 and 3.0 seconds and the decimal point is *required*.

This amplitude is taken from the largest amplitude in the P-wave coda recorded on SPZ channels. However, it must be obtained before the arrival of another clear phase such as pP, sP, PcP or PP. This is generally the most important SPZ scaling of the P-wave amplitude. This group, as all maximum-amplitude groups, is designated by the prefix XM. No precise period range has been defined for SP maximum amplitudes. However, the period must include a decimal point.

(gse SPZ first-arrival amplitudes)

These amplitudes are each obtained from the maximum SPZ P-wave amplitude found within specified time-intervals of the P-wave coda. They must be reported only before the arrival of the next clear phase. However, they are reported even if the coda amplitude is, in general, decaying. No precise period range has been defined for these amplitudes. However, the periods must include a decimal point.

The P-coda interval-time designators prefixing these fields are:

XA[M] 0-6 seconds after P-wave onset

XB[M] 6-12 seconds after P-wave onset

XC[M] 12-18 seconds after P-wave onset

XD[M] 18–300 seconds after P-wave onset

where the optional M is used to indicate that the amplitude also meets the criteria of the SP maximum amplitude.

(LP maximum amplitude)

This amplitude is taken from the largest amplitude in the P-wave coda recorded on an LPZ channel. It must be obtained before the arrival of another clear phase. This amplitude is generally the most important P-wave amplitude recorded from large intermediate or deep focus events. No precise period range has been defined for LP maximum amplitudes; however, the period must include a decimal point even though periods greater than 9.9 seconds must be reported to the nearest second (e.g. 10.).

AMPLITUDES FROM THE HORIZONTAL COMPONENTS OF P

SP and LP maximum amplitudes for P may be reported from SPH and LPH channels respectively. However, to be most useful they must be obtained from matched horizontal channels and be measurements of the same cycle. Horizontal P-wave amplitudes are chiefly of interest when the vertical channels are unavailable or off-scale.

A-432 Volume I.1

SECONDARY PHASE AMPLITUDES

Although the code allows for maximum trace amplitudes from any channel of any secondary phase, there are only a few from which data are sought. Chief among these are S, Lg and Rg. Although Lg and Rg are surface waves, they require the same format as the secondary body waves.

(SP maximum amplitude)

This amplitude is taken from the largest amplitude in the coda of the phase being measured. For regional earthquakes with foci in the upper crust and a continental propagation path, the amplitude of the Lg from the SPZ is important.

(gse SPH S-wave amplitude)

This amplitude is the largest SPN/SPE amplitude found within the first ten seconds of the S-wave and should be reported from both horizontal components. The respective zero-crossing amplitude scaling times should not differ by more than one-half the signal period. For large, shallow-focus earthquakes this amplitude will generally not correspond to the maximum for S.

(LP maximum amplitude)

This amplitude is taken from the largest amplitude in the coda of the phase. For regional earthquakes with foci in the upper crust and a continental path, the amplitude of the Rg from the SPZ is important in some localities.

(gse LPH S-wave amplitude)

This amplitude is the largest LPN/LPE amplitude found within the first 40–60 seconds of the S-wave. The respective zero-crossing amplitude scaling times should not differ by more than one-half the signal period.

LONG-PERIOD SURFACE-WAVE AMPLITUDES

Please note that for all long-period surface-wave groups (other than the old surface-wave group) the (channel) and *phase codes* are *required*. The (channel) must be given even if it is the same as that of the preceding phase.

LOVE WAVES

(mantle-wave amplitude)

This group is measured for large earthquakes, will have a period in the neighbourhood of 200 seconds and should be reported from both components. This group is not prefixed.

(Love maximum amplitude)

This group is obtained from the maximum *trace* amplitude observed in the Love-wave train, regardless of period, and should be reported from both components. This group is prefixed by XM.

RAYLEIGH WAVES

Data from the vertical components in these groups are emphasized.

(Rayleigh mantle-wave amplitude)

This group is measured for large earthquakes and will have a period near 200 seconds.

(Rayleigh max amplitude)

This group is obtained from the maximum *trace* amplitude observed in the Rayleigh-wave train regardless of period. For continental paths, this period might well be near 15 seconds. This group is prefixed with XM.

(gse Rayleigh amplitudes)

The four amplitudes are each obtained from the maximum trace amplitude associated with waves of their respective period range. They need not all be present to report one or more.

The Rayleigh-wave period-range designators are:

XA[M] 36-44-second waves

XB[M] 27-33-second waves

XC[M] 18-22-second waves

XD[M] 09-11-second waves

where the optional M is used to indicate that the amplitude also meets the criteria of the $\langle Rayleigh \ max \ amplitude \rangle$. These intervals are available for vertical channels only, with the exception of XC[M], which may be used for the horizontal "20-second" waves as well.

OLD SURFACE-WAVE GROUP

As this group has been retained in the seismic code to maintain upward compatibility, it is hoped that such data will be sent using the new forms available. Here is how the "20-second" Rayleigh waves may be sent using (Rayleigh wave):

- 1. If the period is between 17 and 23 seconds inclusive, and the amplitude is the maximum LPZ trace amplitude in the Rayleigh-wave train, use (Rayleigh max amplitude), employing the appropriate channel codes. The period and amplitude for each component will thus be prefixed with XM.
- 2. If the period lies between 18 and 22 seconds inclusive, but the amplitude is not the maximum LPZ trace amplitude in the Rayleigh-wave train, use (gse Rayleigh amplitudes) for each component, employing the appropriate channel codes. The period and amplitude for each group will thus be prefixed with XC.
- 3. If the period is either 17 or 23 seconds but not as in 1, above, do not report it.

NOISE AMPLITUDES

⟨SPZ noise⟩

The short-period noise amplitude is taken from the SPZ channel and is the maximum amplitude with a period either between 0.2 and 1.0 second or close to that of the signal, found within 30 seconds *before* the onset of the first arrival.

(1 minute before P noise)

This noise amplitude is taken from the LPZ channel and is the maximum amplitude with a period between 2.0 and 8.0 seconds found within one minute *before* the onset of the first arrival. The period should include a decimal point even if reported to the nearest second.

(1-30 second noise)

This noise amplitude is taken from the LPZ channel and is the maximum amplitude with a period between 10–30 seconds found within five minutes *before* the onset of the first arrival. The period should be reported to the nearest second.

FIRST MOTIONS

Generally, first motions will be reported only for the first arrival and then only when clear. However, if a Pg following a Pn is clear, its first motion may be reported with that phase – likewise that of pP when clear.

(appended first motion)

This field has been retained only for the sake of *upward compatibility* (see Introduction). It contains the short-period and/or long-period *vertical* first motions only. This field is found appended to the first-arrival phase code. Long-period compressions must be reported in this group as U and dilatations as R. *It is strongly recommended that the* (first motion) *field be used instead of the* (appended first motion).

⟨first motion⟩

This group has been introduced to facilitate the reporting of first motions from any channel, to make the reporting of compressions (C) and dilatations (D) uniform and to allow reporting of first motions from secondary P-type phases when desirable.

The \(\text{first motion}\) field consists of the symbolic prefix "FM" followed by the optional short-period first motions which is followed by the optional long-period first motions. The first character of the LP first-motion group is always a *comma*. Within each short- and long-period group the vertical component is given first, followed by the north-south and then east-west components. Any component may be absent, and corresponding long- and short-period components need not have the same directions.

The reported \langle first motion \rangle field may be associated with any channel and generally it will be included with the SPZ channel data. However, when SPZ channel data are not reported, it may be associated with another channel. Also, since "long-period" is used as a generic term to indicate not only long-period but

A-434 Volume I.1

also intermediate-period (MP), broad-band (BP) and ultralong-period (UP) instruments, the contributor who wishes to make these long-period distinctions or to report first motions from several of these may do so by including this field with any channel of the appropriate class.

LOCAL MAGNITUDE DATA

When a local earthquake has been recorded, if individual phases are recognizable, their maxima may be reported using (SP maximum amplitude). Amplitudes from P and S from subcrustal events, and such crustal phases as Pn, Pq, Sq from crustal foci, may be reported in this manner.

However, when individual phases cannot be discerned or the period of the signal accurately measured, the (maximum ground amplitude) can be given for one or more components. This value will necessarily be a rough estimate if an associated period must be adopted.

(SP duration time) may also be used in this case. However, it may also be used not only when the recording has clipped, but also for any local event where a suitably calibrated formula exists.

SECONDARY PHASE GROUP

A (secondary phase group) is specified for each secondary phase reported that is a body wave or Lg or Rg. All of the data for each secondary phase reported are thus given before data for the next secondary phase within a station-event appear.

EXAMPLES OF TELEGRAMS

SINGLE-STATION GROUP FORM

The first example shows a message in which the data are arranged by station. The first station, ALQ, supplied data using nearly all the new forms made available by this edition of the code form. The second station, TUC, employed many of the new forms, but in general did not supply gse first-arrival or gse Rayleigh amplitudes.

SEISMO GSEPA N5119 ((GSEXY SEXX1 850502 1445)) ALQ BEG APR30 141512 END MAY02 141522 OUT ALL MAY01 140816 TO MAY01 141522 OUT MAY02 140322 TO MAY02 141116 STATP PROCA TRACE 200K 3000M APR30 SPZ DEFAULT IPKP1606350 FMD T1.0A7.9 NT1.0A1.0 LPZ NAT7.7A2.0 SPZ 106440 LPZ EPP0840 EPPP1056 LPE ESKS1337 LPZ ESKKP2001 LPE ESS2528 ESSS2940 LPE LQ XM4112 T44A77 LPN XM T44A37 LPZ LR XAM4728 T41A112 XB4848 T30A70 XC5710 T20A56 LPE XC T20A52 LPN XC T20A47 EP225837.5 T1.5A8.0 IP225845.8 FMC T1.8A39.5 XA5851.0 T1.5A24.5 XB5858.0 T1.5A45.0 XC5901.9 T0.9A50.0 XDM5939.4 T1.1A302 NT1.0A0.3 LPZ NAT7.3A3.5 SPE ES230819.0 XM0903 T6.5A63.0 XA0827 T6.0A9.0 SPN XM0902 T6.5A38.5 XA T6.1A5.0 BPZ LR XM2740 T28GA54 MAY01 IP105316.8 FMCW,CNW XA5327.8 T1.1A31.0 XB53336.0 T1.1A31.0 XCM5333.3 T1.2A37.8 XD5344.0 T1.4A37.0 LPZ XM T15A38.0 NAT8.0A2.0 SPZ I5409.3 IPP5610.2 EPPP5803.5 SPN ES110253.0 XM T6.0A11.0 SPE ES0254.0 XM T6.0A8.0 LPN ES0256.0 XM T20A65.0 LPE ES0256.0 XM T20A64 ESS0742 ESSS1121 SPZ EPKPPKP2040.8 ESKPPKP2417 LPE LQ XM1408 T31A73 LPN XM T32A40 LPZ LR XB1942 T32A103 XCM2124 T20A286 LPN XC T20A218 LPE XCM T20A139 IPG 1459084 FMC ((ROCKBURST 31 DEG 14.6 MIN N, 111 DEG 2.42 MIN W 3 INJURED)) / ELG 150116.3 / IPLOC DUR126

TUC BEG APR30 151000 END MAY01 151000 OUT MPZNE APR30 151000 TO MAY01 151000 PROCG GRND IP1752303 FMC,C XM T0.8 A30.0 SLO6.84 AZ357 LPZ SLO7.0 AZ355 SPZ I52530 LPZ LR XM T31A100 LPN XM T32A99 LPE XM T32A00 / LPZ PDIF2355110 SPZ PKP2358101 I58452 ISKP00011401 / MAY01 QP003742 IUNK0123456 IP0200373 XM T2.9 A43.6 IAP00552 EAWP00581 EXP01042 / IPN041922.66 FMC,D IPB19252 FMD SPE IPG1930.1 FMCNE SPN ISN19558 ISB20024 SPZ ELG2006 XM2021 T1.2 A14.6 MAG ML5.8 D2.1 DR5.6 ((DAMAGE VII YUMA)) / IP0606150 FMC,C XM0606155 T1.0 A22.6 SPN ES09060 SPZ IPCP10521 IAPCP11280 EXPCP11520 ESCP14080 STOP

COMMENTS ON EXAMPLE

Following the message identifier, SEISMO, is the three-part message heading. GSEPA indicates that this message transmits primarily measurements from seismographic recordings. N5119 indicates this is the 119th message sent by ALQ to this receiver for 1985, and is used by the receiver to detect the loss of a message in transmission. The items enclosed in double parenthesis can be sent only via GTS. The first such item is the GSE test code, the second is the GTS data/geographical designator group and the last two fields are the date and time of transmission.

Following the station abbreviation, ALQ, is the report times group which indicates that the message covers the period from 30 April at 14:15:12 UTC to 2 May at 14:15:22 and includes two outage periods for all instruments, apparently the times during which the records were being changed. Note that the time spanned by the beginning and ending times will always be somewhat greater than the time spanned by the times of the first and last measurements reported in the seismic data.

STATP, the status code indicates that these data constitute a preliminary report for this period. Any report which represents reinterpreted data and/or additional data for a period is considered final.

PROCA, the process code indicates that the data were scaled from an analog recording (e.g. photographic paper or film, etc.). This is the default (i.e., had this field not been included, these recording and measuring conditions would have been assumed).

TRACE confirms that the amplitude data are double trace amplitudes. This is followed by the standard SPZ magnification in thousands and the standard LPZ magnification. Since no horizontal magnifications are given, the vertical values are understood to apply to their respective horizontal channels.

APR30 is the date of all the data which follow until a new date group is encountered. This field must be included even if this date can be inferred from that of the BEG indicator.

SPZ DEFAULT indicates that the data include channel codes and thus is establishing SPZ, as the channel that will be ascribed to the initial data of each first arrival, unless otherwise indicated, eliminating the need to include the channel code with each first arrival.

The data from the first seismic event reported pertain to an event about 13 900 km distant with a magnitude of about $6.6\,M_{\rm S}$. The first arrival, PKP, has a clarity of I and an arrival time of $16:06:35.0\,{\rm UTC}$. The time was scaled to the nearest tenth of a second. Had it been scaled to the nearest second, it would have been reported as 160635. The SPZ first motion is reported as D, for a dilatation, and is prefixed with FM, the first-motion field indicator. It is followed by a first few cycles amplitude group which reports a period of $1.0\,{\rm s}$ and an amplitude of $1.0\,{\rm mm}$. The SPZ noise group is indicated by N. The noise period is $1.0\,{\rm s}$ with a double trace amplitude of $1.0\,{\rm mm}$. The channel code, LPZ, indicates the data following it are from that component. NA indicates the one minute before P noise.

The next SPZ indicates that the group I06440 was scaled from the SPZ. The phase is unidentified, has a clarity code of I and an arrival time of 16:06:44.0. The hour was not included as it is the same as that of the preceding phase in this station-event. Next are found PP and PPP data obtained from the LPZ. Then SKS data from the LPE, followed by SKKP data taken from LPZ. The SS and SSS were scaled from the LPE.

The channel code LPE is repeated as the Love-wave group is introduced by the phase code LQ. The XM indicates that a Love-wave maximum trace-amplitude group will follow. The 4112 appended to XM is the zero-crossing amplitude scaling time, for the double trace amplitude of 77 mm with a period of 44 s. Data from the corresponding LPN channel follow, but the XM does not have a zero-crossing amplitude scaling time included as it is nearly identical to that of the east-west component.

The LPZ channel code precedes the phase code LR which indicates data from the Rayleigh-wave train follows. The XAM indicates the 36–44 s amplitude group, and that it is the maximum not only within that period range but also for the entire LPZ Rayleigh-wave train. XB and XC indicate the maximum within the 27–33 and 18–22 s groups respectively. The 18–22 s data taken from the LPE and LPN follow.

The P-phase at 22:58:37.5 signals the beginning of a new station-event. The decimal in the seconds was optional in this case. Notice that this event precedes a much larger event by only a few seconds.

The P-phase at 22:58:45.8 begins a station-event recorded at a distance of 8 400 km with a magnitude of 7.8 M_S . The first few cycles amplitude of 39.5 mm was scaled from the fifth cycle (a scaling time cannot be specified for this kind of amplitude). The XB and XC indicate the gse SPZ first-arrival amplitude for the time increments of 0–6, 6–12 and 12–18 s after the P onset. The XDM indicates the 18–300 s after the onset group and that it was also the largest amplitude in the P-coda. The SPZ noise and LPZ's one minute before P noise groups complete the P-phase data.

A–436 Volume I.1

SPE then precedes the S-phase data. Note the inclusion of an hour in the S arrival time as the hour changed to 23 within the station-event. XM indicates the maximum S-coda SPE amplitude. XA indicates the maximum SPE amplitude within the first 10 s of the S arrival time. SPN precedes the same data groups from the north-south component.

BPZ indicates that data taken from a broad-band vertical component follow. The LR phase identifier means that Rayleigh-wave data are next. The XM indicates the maximum in the Rayleigh-wave train. The period is 28 s and the *ground amplitude* (*centre-to-peak*) is 54 μ m. Evidently the quake was so large that the surface waves were off scale on the LP instruments, but a lower magnification broad-band instrument recorded the Z amplitude which was reduced to a ground amplitude by the observer. The amplitude in this case was preceded by GA rather than A to indicate ground amplitude as a trace amplitude was expected.

The next event is a $6.6\,M_{\rm S}$ aftershock of the previous event. C and W for the SP first motions and C, N and W for the LP first motions have been included. Note the *required comma* (,) preceding the LP first-motion group. PP and PPP data from the SPZ are the next phases reported. An arrival time of $110253.0\,$ was reported for S from the SPN together with its maximum amplitude. A slightly later arrival time was reported from the SPE channel. This second arrival time for the same phase was strictly optional. The SP data for S are then followed by the corresponding LP data for S. SS and SSS from the LPE are given, followed by P'P' and SKPP' from the SPZ. Maximum Love-wave data and the gse Rayleigh-wave amplitudes follow, with the 20 s horizontal Rayleigh-wave data concluding this event.

The next event is represented by Pg from a rockburst. Note that the data inside double parenthesis may span several lines, which may be broken anywhere a space would normally occur.

The next station-event is delimited with *solidi* it contains no legitimate first arrival, but only an Lg from a weak local.

The last event from ALQ has a PLOC as a first-arrival phase code. This dummy phase code is used for reporting locals for which secondary phases cannot be read and for which first-arrival codes such as Pn, Pb or Pg cannot be interpreted. Use of PLOC in such cases enables analysts and computer association programs to distinguish a teleseismic P from a local P where no other clues are found by examining the phase codes within the station-event and their time differences – use of PLOC in cases of such isolated local station-events will prevent misassociation of such data with teleseisms. A duration of 126 s was furnished.

Data from TUC begin with a report period in which a three-component set of intermediate-period instruments were reported as inoperative for the entire reporting period.

The process code, G, indicates that sophisticated, computerized equipment was used in the recording and interpretation of the data.

GRND indicates that all of the amplitudes are ground amplitudes. Since no status code was given, the status code P for ALQ applies also to the TUC data. Also, since no default channel was given, the SPZ DEFAULT given by ALQ applies to TUC data.

Note the SPZ and LPZ slowness groups indicated by SLO and the related azimuths prefixed with AZ. The observer furnished maximum Rayleigh-wave amplitudes from three LP channels. The LPE amplitude has a value of 00, because the waves arrived from nearly due north. Furnishing an amplitude of 00 rather than omitting this channel served to distinguish it from the case where the LPE channel data were simply missing.

The station-event containing two legitimate first arrivals, PDIF and PKP, has been delimited so that the PDIF will not be separated from the rest of that event's data.

The clarity code Q was used for the P phase arriving on 1 May at 00:37:42 to indicate that the observer felt the timing was uncertain (questionable) by more than a second. This clarity code has been introduced to avoid some of the ambiguities surrounding the use of (P) or E(P). In no case should a time such as 0037(42) be sent.

UNK, as shown in the next group, has been introduced as a first-arrival code to indicate that the observer did not wish to identify the phase more specifically than as a first arrival. UNK must not be used for unidentified secondary phases.

Data from the next event illustrate encoding of pP, pwP and sP, very important secondary phases.

The data from a strong local were given as a delimited station-event to indicate that the phases Pn, Pb and Pg all pertained to the same event. Note that the SPZ and LPZ first motions of the Pn are of opposite sign. Do not "force" such observed first motions to be alike. Since the arrival time of Pn was reported to a precision of hundredths of a second, the decimal point was required. Pb was also scaled from the SPZ with an SPZ first-motion code of D. The Pg arrival time was scaled from the SPE, but SP first motions were given for three channels. Sn and Sb were read from the SPN and Lg was read from the SPZ.

The Lg period, amplitude and its scaling time were given and could be applied to an appropriate magnitude formula. An M_L magnitude estimate of 5.8 based on a distance of 2.1 deg. was also supplied as well as a duration magnitude of 5.6. The comment gives the maximum intensity (VII) at Yuma. The intensity scale is generally understood as being based on the geographical region to which it has been applied.

In the last station-event, "depth" phases associated with PcP were reported. These phases will yield depth information at distances which may be too small to record pP or sP.

STOP is absolutely necessary to end the message.

NET-EVENT GROUP FORM

The following example shows a message in which the data are arranged by event. Data from five seismic events are shown. Note that, within each event, the station-events have been arranged in any order convenient for the sender, probably reflecting the order of telemetered traces recorded on film strips. The blank lines between net-events are optional as is the placement of station-events on separate lines.

SEISMO N5041 STATP PROCA SPZ DEFAULT

```
MAR23
GIL
      IP1919534 FMC XMT1.4 A463
ANV
      IP1918485 FMC
SIT
      EP1920528
KDC
      FP1920528
PMR
      EP1919478 FM,C XMT1.0 A65 LPZ LR XCT20A90 LPN XT21 A31 LPE XCT19 A65
      EP1919058
NRA
      EP1919063
GMA
ANV
      EPLOC1927248
GIL
      EP1953558 XMT1.5 A107
ANV
      EP1952488
KDC
      EP1953356
NRA
      EP1953059
MAR24
GIL
      IP0052368 FMD XMT1.0 A65 I53255
NKI
      IP0054070
      IP0053149
GMA
NRA
      IP0053162
KDC
      IP0053018
ADK
      IP0054325
PMR
      IP0052459 FMC.C XMT1.0 A102 E53305 E54582 LPZ LR XBT28 A14 LPN XBT29 A6 LPE XBT27
AVE
      IP0053275 FMD
PMR
      FOCUS 0532491 LAT 55.43N LON 157.84W DEP 33 NS 8 ((FELT III AT PERRYVILLE)) MAG ML6.1
SDN
      IPLOC 0533159
KDC
      IPN0533447
SVW
      IPN0534155
PMR
      IPN0534391
TTA
      IPN0534391
TOA
      IPN0534581
STOP
```

COMMENTS ON EXAMPLE

As this example has been designed primarily to illustrate the structure of the net-event group form, it does not exhaust the parameters available to the code. Those using this form will benefit from an examination of the previous example.

A-438 Volume I.1

In this message ground amplitudes were used throughout. If double trace amplitudes had been reported, the appropriate magnifications would have been required nearly each time an amplitude group appeared. Note also that the sender elected to insert a space between the period and amplitude groups. No other \langle standard delimiter \rangle would be acceptable in this position and none is required.

The second event consists of just one station.

The fifth event includes a computations group with a hypocentre based on eight station-events and an M_L magnitude average from two stations. Local magnitudes shown in the examples are for illustrative purposes only and do not represent a comment on the use of local magnitude schemata developed for a particular area and depth range, but applied to a different region or depth range.

