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A.4. ERRORS

 Error is the difference between a measured (or 
estimated) value and the true (or reference) value.  
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 If part of the error is systematic or repeatable 
(namely, you get the same error each time you make 
a measurement), then the difference between the av-
erage measurement and the true value is called the 
bias.  Smaller bias magnitude (i.e., lower systematic 
errors) corresponds to greater accuracy.  Namely, 
accuracy indicates how close your average observa-
tions are to truth (Fig. A4).  
 Systematic errors can be due to errors in in-
strument calibration, personal errors (such as 
parallax error in reading a dial), erroneous experi-
mental conditions (such as not shielding a ther-
mometer from sunlight), and imperfect technique 
(such as breathing on a thermometer before you read 
it).  
 If you can calculate or otherwise know the bias, 
then you can remove this bias from your observa-
tions to correct for systematic error.  Namely, you 
can easily make your corrected observations more 
accurate.  
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 After removing systematic errors, you might find 
that your observations still have some unexplained 
variability from measurement to measurement.   
These are called random errors (Fig. A.4).   Exper-
iments with smaller random errors are said to have 
higher precision; namely, they are more precise.  
The standard deviation (or spread) of your obser-
vations is a measure of the random error — greater 
standard deviation indicates greater random error 
and lower precision.  
 Random errors can be due to errors in judg-
ment (such as by manually reading a dial with poor 
resolution), fluctuating conditions (such as try-
ing to determine sea level on a wavy ocean), small 
disturbances (such mechanical vibrations of an 
instrumented tower in high winds), and errors in 
definition (such as measuring the dimension of a 
fractal-shaped cloud, which depends on the size of 
the measuring stick).  
 Unfortunately, the probabilistic nature of ran-
dom errors makes them difficult to remove after 
the fact.  Often, the only recourse is to repeat the 
experiment under better controlled conditions and 
with higher quality instruments, and be sure to take 
a large number of observations to improve the sta-
tistical robustness of your results.  
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 For any variable A that you have measured N 
times to yield a data set (A1 , A2 , A3 , ..., AN), let A  
be the mean value, and σA be the standard devi-
ation.  These are defined as:
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where i is a dummy index that points to a single 
data element Ai in your data set.  
 After removing any known biases, the resulting 
observation is usually reported or written as a mean 
(average) value plus or minus (±) the standard devia-
tion:
    A = A  ±  σA�� r	"���


where the precision or standard uncertainty is 
given by the standard deviation σA.    

Sample Application
 Given these T observations: (15, 13, 20, 12, 10, 17, 
18)°C.  Ttrue = 8°C.  Find the mean, bias & std dev.  

Find the Answer
Given:  Ttrue = 8°C, and the data set above.
Find:   T  = ? °C,   σT = ? °C,   bias = ? °C.

Use eq. (A.8): T  = (1/7)(15+13+20+12+10+17+18) = 15°C 
Define the deviation from mean as:  T’ = T – T  
Thus, our observation have T’ = (0, –2, 5, –3, –5, 2, 3)°C
Use eq. (A.9), rewritten as σT = [(N–1)–1 Σ(A’2)]1/2  
Thus: σT = [(1/6) · (0+4+25+9+25+4+9)(°C)2]1/2 = 3.56°C
From the raw observations:   T = 15 ± 3.56 °C  .
Bias = T  – Ttrue =  15 – 8 °C  =  7°C  .

Check:  Units OK.  We seem to have a warm bias. 
Exposition:  Our observations are not accurate (large 
bias) and are not precise (large σT). 

Figure A.4
The dark curve is the frequency that different A values are ob-
served.  Accuracy is related to bias. Precision is related to spread 
of curve (described by standard deviation σA).  A  is the mean.
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Similarly, the mean and standard deviation of some 
other variable B would be B  and σB. 
 For example, Newton’s constant of gravitation G 
is reported (CODATA 2006) as:

     G = 6.67428x10–11  ±  0.00067x10–11  m3 kg–1 s–2 .  
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 Error propagation tells us how the errors in A 
and B affect the error of D, where D depends on A 
and B according to some equation.  Namely, how can 
we estimate σD knowing σA and σB ?  Assume the 
errors in A and B are independent of each other.
 For a simple sum or difference (e.g., D = A + B, or 
D = A – B), then 

    σD  =  [σA
2 + σB

2]1/2  (A.11)

 For  D = c·A  where c is a constant, then

    σD  =  c · σA    (A.12)

Similarly, if  D = cA·A  ±  cB·B  where cA and cB are 
different constants, then

   σD  =  [cA
2·σA

2 + cB
2·σB

2]1/2  (A.13)

 For a simple product  D = c·A·B  or quotient  
D = c·A/B, then

 σD  = D · [ (σA/ A )2  +  (σB/ B )2  ]1/2  (A.14)

where A  is the average of A,  B  is the average of B,  
and D  is the average of D (i.e., D  = c A B  , or D  = 
c A / B ).  
 For a simple power relationship  D = c·Am where 
m is a fixed constant, then

    σD  = D · m · (σA/ A )  (A.15)

For the general case of a product of factors raised to 
various fixed (errorless) powers   D = c·Am·Bq , then

   σD  = D · [ m2·(σA/ A )2  +  q2·(σB/ B )2  ]1/2  (A.16)

 For a logarithm such as  D = ln(c·A), where c is a 
constant, then
         σD  =  (σA/ A )  (A.17)

For an exponential such as D = ec·A where c is a con-
stant, then
         σD  =  c · D · σA  (A.18)

For more complicated relationships, the rules above 
can be combined or used sequentially (or see the 
HIGHER MATH box).  
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 Suppose D is a function of A , B and C, where C is 
not a constant.    Namely, D(A, B, C).  
 If the error standard deviations σA, σB, and σC for 
A, B & C are known, then the propagation of errors 
into the standard deviation σD of variable D is:
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 The correlation coefficients r are defined as
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and correlations rBC and rAC are defined similarly.  If 
A and B are independent, then rAB = 0.  Correlations 
between the other variables could also be zero.  

 For example, suppose you measure air density 
(ρ ρ σρ= ± ) and temperature ( T T T= ± σ ), and cal-
culate pressure (P) using the ideal gas law P = ρ·ℜ·T, 
where ℜ is a constant.  Thus, from calculus: ∂P/∂ρ = 
ℜ·T, and ∂P/∂T = ρ·ℜ.   Assume ρ and T are indepen-
dent, thus the correlation coefficient    rρT = 0.  

 Our best estimate of pressure is

      P T= ℜρ· · .  

 To estimate the pressure error σP, use eq. (A.a) to 
propagate the other errors into the pressure error:
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where we use the averages as our best estimates of P, 
ρ, and T.  This last result looks like eq. (A.14).  In fact, 
we could have used eq. (A.14) directly and avoided all 
the calculus.

 Thus, we would report our calculated pressure 
as:
    P P P= ± σ
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A.5.  A SCIENTIFIC PERSPECTIVE

 Science is a philosophy.  It is faith in a set of prin-
ciples that guide the actions of scientists.  It is a faith 
based on observation.  Scientists try to explain what 
they observe.  Theories not verified by observations 
are discarded.  This philosophy applies to atmo-
spheric science, also known as meteorology.
 A good theory is one that works anywhere, any-
time.  Such a theory is said to be universal.  Engi-
neers utilize universal theories with the expectation 
they will continue working in the future.  The struc-
tures, machines, circuits, and chemicals designed by 
engineers that we use in every-day life are evidence 
of the success of this philosophy.
 But we scientists and engineers are people, and 
share the same virtues and foibles as others.  Those 
of you planning to become scientists or engineers 
might appreciate learning some of the pitfalls so 
that you can avoid them, and learning some of the 
tools so that you can use them to good advantage.
 For this reason, scattered throughout the book 
are boxes called “A SCIENTIFIC PERSPECTIVE”, 
summarized in Table A–5.  These go beyond the 
mathematical preciseness and objective coldness 
that is the stereotype of scientists.  These boxes cover 
issues and ideas that form the fabric of the philoso-
phy of science.  As such, many are subjective.  While 
they give you one scientist’s (my) perspectives, I en-
courage you to discuss and debate these issues with 
other scientists, colleagues, and teachers.   
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 The best scientists and engineers need more than 
the good habits of diligence and meticulousness.  
They need passion for their field, and they need cre-
ativity.  In this regard, they are kindred spirits to art-
ists, composers, musicians, authors, and poets.  
 While an observation is something that can usu-
ally be quantified, the explanation or theory for it 
comes from the minds of people.  For example, does 
light consist of particles (photons) or waves?  Probably 
it consists of neither, but those are two theories from 
the creative imagination of scientists that have proved 
useful in explaining the observations.
 The joy that a scientist feels after successfully ex-
plaining an observation, and pride that an engineer 
feels for making something work within the con-
straints of physics and economics, are no less intense 
than the joy and pride felt by an artist who has just 
completed his or her masterpiece.  
 Approach your work with passion, evaluate your 
result objectively, and enjoy your travel through life 
as you help society.  

Table A-5.  Guidelines & issues for scientists.  Chapters 
& topics of the “A SCIENTIFIC PERSPECTIVE” boxes.

Chapter    Issues  Page
1 Descartes and the Scientific Method 2
1 Check for Errors  16
1 Be Meticulous  20
1 Give Credit  24
2 Scientific Laws — The Myth 38
2 Seek Solutions  46
3 Expert vs. Novice  72
4 Look for Patterns  107
6 Cargo Cult Science  167
7 Consequences  218
9 Creativity in Engineering 288
10 Be Creative  293
11 Toy Models  330
11 Residuals  340
11 The Scientific Method Revisited 343
11 Model Sensitivity  350
12 Math Clarity  393
13 Truth vs. Uncertainty 470
14 Be Safe (many parts)   485, 517
15 Be Safe (continuation)    567, 583, 584
17 Simple is Best  680
18 Parameterization Rules 715
19 Data Misinterpretation 729
19 The Citizen Scientist  738
20 Mathematics  762
20 Scientific Revolutions 773
21 Ethics and Data Abuse 826
22 Great Scientists Make Big Mistakes Too 863
A Problem Solving  869
A Have Passion  877

Sample Application
    Observations give P1  = 100 ± 0.1 kPa,   P2  = 50 ± 0.5 kPa, 
and Tv  = 260 ± 5 K.  Use hypsometric eq. to find ∆z.

Find the Answer
Given:  P 1  = 100 kPa,  σP1  = 0.1 kPa,  P 2  = 50 kPa, 
 σP2  = 0.5 kPa,  Tv  = 260 K,  σT = 5 K.
 Hyp. eq.(1.26a): ∆z = a· Tv ·ln(P1/P2), a=29.3m K–1.
Find:   ∆z = ? ± ? m.  Namely, find ∆ z  = ?m,  σ∆Z = ? m

Method:  Use error propagation rules sequentially.
For (P1/P2):  Average(P/P) = (100kPa)/(50kPa) = 2 
Use eq. (A.14): σP/P = 2·[(0.1/100)2 + (0.5/50)2]1/2 = 0.02

For a·ln(P1/P2): Average =(29.3m K–1)·ln(2) = 20.31 m K–1

Use eq. (A.17): σa·ln =(29.3m K–1)·(0.02/2) = 0.293 m K–1

For Tv ·a·ln(P1/P2):Average=(20.31m K–1)·(260K)= 5281m
Use eq. (A.14): σ∆Z=(5281m)·[(5/260)2+(0.293/20.31)2]1/2
                   = 127 m  
Thus:    ∆z  =  5281 ± 127 m  

Exposition:  Notice that error-propagation eqs. (A.11 
- A.18) are dimensionally consistent.  A good check.


