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OVERVIEW
UBC Wildfire and Smoke Research

Part I: Using a Large-Eddy Simulation Model to Understand Wildfire Plume
Dynamics

* Model evaluation
* Flow dynamics
* Smoke injection height parameterization

Part Il: Investigating Wildfire Smoke Behavior using Simplified Large-Eddy
Simulations

* |dealized studies
e Convergence zone and lateral flow
* Fireline dimensions

Part lll: Use of Field Observations for Model Validation of Wildland Fires: A
Focus on Smoke Plume Rise

e Big picture: smoke modelling frameworks
* Prescribed burns and experimental design
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BACKGROUND
Understanding smoke plume rise

plume rise: one of the largest sources of uncertainty in wildfire smoke
emissions modelling

traditional models (e.g. Gaussian/Briggs): suitable for smoke stacks,
small point and area sources
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APPROACH
Using large-eddy simulations

e approach: use large eddy simulation (LES) model
- WRF-SFIRE: atmosphere coupled to a semi-empirical fire model

3000
Mirocha et al (2018)

e end goal:

_ 2000
to develop a new simple
parameterization of plume rise
suitable for operational smoke 1000 % ;

forecasts
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MODEL EVALUATION
RxCADRE 2012 campaign: burn design

Elgin Air Force Base (Florida, US) — November 10, 2012
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MODEL EVALUATION
RxCADRE 2012 campaign: flight path concentrations
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MODEL EVALUATION
RxCADRE 2012 campaign: concentration profiles

(a) CO; PROFILE FROM GARAGE PROFILE (b) CO, PROFILE FROM CORKSCREW PROFILE
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MODEL EVALUATION

RxCADRE 2012 campaign: findings

e evaluation results:

* WRF-SFIRE reasonably

captures smokes
dispersion given

— steady mesoscale
conditions

— accurate

representation of fire

behavior
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FLOW DYNAMICS
|dealized studies: creating a synthetic dataset

INITAL ATMOSPHERIC PROFILES

e (Capture a wide range of

atmospheric and fuel =
conditions: 2000 -
— winds3-12 m/s -
é 1500 A
— all 13 fuel categories g

— 5 different atmospheric profiles ~ 10004
— 1-4 km fireline lengths
— 115 runs total

500 -
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potential temperature [K]
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FLOW DYNAMICS
|dealized studies: fire behavior

* Accounting for diverse fire behavior through fuel categories
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* burnintensity

 fireline depth

 fireline shape

* rate of spread

* rate of fuel consumption
e fuel loading
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FLOW DYNAMICS
|dealized studies: creating a synthetic dataset

SMOKE

FIRE-INDUCED HORIZONTAL VELOCITY

 “reverse flow”
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FLOW DYNAMICS
|dealized studies: fire-induced 3D flow and vorticity

Date/Time: 0000-08-01_12:50:00




FLOW DYNAMICS
|dealized studies: fire-induced 3D flow and vorticity

e fire-atmosphere coupling:
near-surface 3D winds are generated in response to the fire
* |ow pressure at the center of the fire updraft results in a pressure gradient force

e 3D winds induce vortices that bring clean air into the plume and reduce the strength
of the “reverse flow”

e this cross-wind flow produces a curved fireline

 NOT Gaussian plume behavior




FLOW DYNAMICS
|dealized studies: 3D flow and vorticity

I |
ck@owledgement: Alberta Fire, I'T‘S, FP Inhovations 1
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FLOW DYNAMICS
|dealized studies: fireline length

* what happens with longer firelines?
» effect on the magnitude of the “reverse flow”
* effect on vertical smoke distribution
 |ocation of the convergence zone

e case study runs to compare 1 km, 2 km and 4 km firelines
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HEIGHT =

FLOW DYNAMICS
|dealized studies: along-wind flow
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FLOW DYNAMICS
|dealized studies: along-wind flow

FIRE-INDUCED WIND DYNAMICS at 400m AGL
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height [m]

FLOW DYNAMICS
Idealized studies: vertical smoke distribution

CROSSWIND INTEGRATED TIME-AVERAGED CONCENTRATIONS
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FLOW DYNAMICS
|dealized studies: longer fireline = multi-vortex structure

4 km fireline

o

concentration

Date/Time: 0000-08-01_12:49:45




SMOKE INJECTION HEIGHT
Defining downwind distribution

 when can we say the plume has reached equilibrium level?

e stable centerline height
e stable concentration along the centerline

e varies for each combination of ambient atmospheric profile and
fire behavior!
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SMOKE INJECTION HEIGHT
Defining downwind smoke distribution
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SMOKE INJECTION HEIGHT
Characteristic vertical velocity

* analytical theories characterizing vertical updraft

e cloud theory: based on CAPE (Convective Available Potential Energy)
* boundary layer turbulence theory: Deardorff’s velocity

* can we define our own velocity scale wg 2500 -
such that: UL
£
= |
Q
<
5
Zel = Zcl ('wf*) 2
where z, = smoke injection height

vertical velocity [ms™!]
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SMOKE INJECTION HEIGHT
Characteristic vertical velocity

o ziog- [y Idr\’®
a ! dfdz
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SMOKE INJECTION HEIGHT
Characteristic vertical velocity

boundary layer height gravity  fireline intensity

(zi-g-forfdfr)3
W =

Ozd dOdz

atmospheric profile effects
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SMOKE INJECTION HEIGHT

Characteristic vertical velocity
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SUMMARY
Understanding smoke plume dynamics

We use WRF-SFIRE model to show that...

* acoupled fire-atmosphere LES model can reasonably capture plume rise
and dispersion of a real fire, given

— detailed atmospheric and fire inputs
— stable ambient conditions
— accurate representation of fire behavior

» wildfire plumes do not behave like Briggs/Gaussian plumes
— modify local winds
— generate vorticity

* injection height can be parameterized using a new vertical velocity scale w;.

— current research: extension of parameterization to a vertical distribution
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OVERVIEW
UBC Wildfire and Smoke Research

e Partll: Investigating Wildfire Smoke Behavior using Simplified Large-Eddy
Simulations

* |dealized studies
e Convergence zone and lateral flow
* Fireline dimensions
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DALES: what does it contribute?

e Dutch Atmospheric Large-Eddy Simulation (DALES) model:
— More simplistic
— Removes complexity
— lIsolate parameters
— Focus on atmosphere

 To support and supplement Nadya’s work

* To understand how wildfires and smoke interact with the atmosphere
— Near-fire circulation
— Downwind effects

To inform smoke behaviour for public health
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Model differences: physics

Model Dutch Atmospheric LES Weather Research and

(DALES) Forecasting LES coupled with
SFIRE (WRF-SFIRE)

Non-hydrostatic Yes Yes

Compressibility Boussinesq approximation Fully compressible

Turbulence closure K theory based on TKE 3D 1.5-order TKE

Terrain Flat/sloped Complex

Smoke Passive tracer emitted at Passive tracer emitted
constant rate proportional to fuel consumption
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Model differences: fire behaviour

Model Dutch Atmospheric Weather Research and
LES (DALES) Forecasting LES coupled with

SFIRE (WRF-SFIRE)

Fire spread Stationary Spread model (SFIRE)

Fire heat Constant flux Variable based on fuel

Fire size Constant Variable based on spread

Fire line length Finite or Infinite Finite

Fire-atmosphere N/A Two-way coupling

coupling
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Model comparison: qualitative

WRF-SFIRE

Model DALES WRF-SFIRE

Domain size 20 km x 6 km 20 km x 10 km

Grid spacing 10 m 40 m (atmosphere), 4 m (fire)
Horizontal boundary ; ;

conditions vl Sl

Fire line 1 km long; 100 m wide 1 km long initially; variable width

Ambient wind

Fire heat flux

4 m/s
50 kW/m?

4 m/s
Peak 61 kW/m?2, mean 35 kW/m?




Model comparison: quantitative

Crosswind-integrated time-averaged smoke concentration

Height (km)

1-km downwind 2-km downwind 3-km downwind
—— WRF
—— DALES
27 2 - 2
14 1 - 11
01 | | 01 | | 01 | |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
normalized concentration normalized concentration normalized concentration
zL
smoke
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DALES: initial experiments

A. 2-hour spin-up creates background convective boundary layer
e dx=dy=10m
e Surface heat flux: ~120 W m-2
* Ambient wind speed (U,): 1-12 m s! (variable)
B. 30-min smoke simulation
* Fireline width = 100 m (constant)

* Fire line length: “infinite” (constant) g
* Fire heat flux: 25,000-100,000 W m= (variable) "
BENENE -}

v, 1 e _i___TE___Er___é_Ej_yz 10 m

3km!l 4 i . :"‘
| yL.
< =' ’
(not to scale) 20 km
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Motivation: convergence zone

z
Fire-generated horizontal winds relative to ambient wind (U’) I—;(
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Current research direction

* Infinite fire line:
— Inhibits lateral flow
— Essentially 2-D in x-z plane

— Lateral flow develops ~

W i | y e
~ Observed in prescribed burn at i s o ORI

Pelican Mountain
— Modelled by WRF-SFIRE

* Finite fire lines: M L ST P—

* Research question:

How does fire line length interact with
local and downwind dynamics?

WREF-SFIRE
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DALES: new model set-up and experiments

e 2-hour spin-up creates background convective boundary layer
e Surface heat flux: ~ 300 W m-2

* Ambient wind speed (U,): 4 m s (constant)
e dx=dy=20m

A. 30-min smoke run

* Fire heat flux: ~¥50,000 W m2 (constant) g
*  Fire line width and shape: variable h
x
., 1O
v, Ly
wokm| T e
(not to scale!) ) 20 km '

Interagency Meeting | February 12,2020 | Part Il: Simplified LES and Fire Line Geometry 37



Crosswind-integrated
After t = 30 minutes

smoke concentrations
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Height (km)

Vertical smoke distributions (normalized)
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1km downwind
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— Infinite

1 I |
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Cross-wind flow

15-minute averaged v-wind

Surface (~5 m)
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Along-wind turbulence

15-minute averaged fire-generated u-wind

Surface (~5 m)
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Fire line geometry
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Straight vs. curved fire line

15-minute averaged v-wind at surface
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Fire line geometry: what’s next?

* More fire line shapes (inspired by Nadya’s runs)
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Fire line geometry: goal

e Define convergence zone (and updraft) size, position,
and intensity, in terms of:
— Fire line geometry
— BL height...

e Test this with different ambient winds and fire heat
fluxes
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Investigating wildfire smoke behavior
using simplified large-eddy simulations

Summary:
- Preliminary results promising, and indicate:
- Near-surface smoke recirculation weaker for shorter fire lines
- Smoke does not reach as far downwind for shorter fire lines
- Curved fire line appears to allow “correct” dynamics near the fire

- Future work includes more model runs:

- Varying fire line shapes

- Finding systematic way of defining convergence zone/updraft
- Eventually test for different wind speeds and fire heat fluxes
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OVERVIEW
UBC Wildfire and Smoke Research

e Part lll: Use of Field Observations for Model Validation of Wildland Fires: A Focus on
Smoke Plume Rise

e Big picture: smoke modelling frameworks
* Prescribed burns and experimental design
* Fire Behavior
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BACKGROUND
Smoke Forecast Framework

s ™
Meteorology Wildfire
locations
Example: BlueSky Canada r ! S
> IR RN | - , | Fire behavior |
2 VR I : 3 =, | I
Plume rise

A4 y

Horizontal dispersion of
smoke particles

Output: PM 2.5

ey
) o AT
% = A A 7
« > B 2019-0531T19:00:00000Z ; Iy
N | N
N b

Nationsl Geographic, Esr, DeLorme, NAVTEQ, UNEP-WGMG, USGS, NASA, ESA, METI, NACAN, GEBCO, NOAA, PG S

concentrations.
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BACKGROUND
Smoke Forecast Framework

Meteorology Wildfire
locations

Example: BlueSky Canada
. W B . Fire behavior

Plume rise

Horizontal dispersion of
smoke particles
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FIELD OBSERVATIONS
Site Locations

Fort Providence

Pelican Mountain

Alberta

B Vancouver

Pelican Mountain May

2019 4 Alberta
Wildfire

Fort Providence July

2019 @

FPInnovations
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FIELF) OBSERVATIQNS *AI_ -
Pelican Mountain Wildfire
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FIEL!D OBSERVATIO.NS Albert
Pelican Mountain Wildfire

Unit 1 May 2020

(fingers crossed)
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FIELD OBSERVATIONS

Instruments Category Instruments / Variables
Atmospheric HOBOS, ATMOS 41, Radiosonde
and Micro Air Monitoring Station
Data

Temperature, Relative Humidity
Wind Speed and Direction, Solar
Irradiance, Total VOC, HCHO, CO2,
PM2.5, PM1 and O3

Forestry Heat Flux Sensor, Range Pole
@ Depth of burn, Fireline Intensity
FPInnovations Cameras DSLR, FLIR

High resolution visible footage,
Infrared Imagery
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FIELD OBSERVATIONS Alberd

Instruments Wildfire
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FIELD OBSERVATIONS *A“_ _
Cameras Wildfire

Cameras at Observation Zone
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FIELD OBSERVATIONS

&) Alberta
Weather Instruments Wildfire
HOBO Temp/RH Met-Tower ~ Air Quality Sensor
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FIELD OBSERVATIONS
Atmospheric Profile

Boundary Layer Schematic Windsonde System
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FIELD OBSERVATIONS
Windsonde Sounding System

Windsonde

11 km  Ridge: Subsidence due to High Pressure NW: ~75 km/h

oo oo

2.5 km : —
Inversion: Convective Inhibition Shear: 9 km/h

2 km

/‘ f /‘ f SW: 18 km/h

Turbulence: Convective Turbulence
Ground SSE: 9 km/h
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FIELD OBSERVATIONS Alberta Canad'éi

Observation Zone Wildfire

Canadian Forest Service

i &'ﬂ 'FT‘?K I.T ﬁ
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FIELD OBSERVATIONS Alberta Canadﬁ

Observation Zone Wildfire Tl

Canadian Forest Service
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FIELD OBSERVATIONS
Camera

In-Fire




In-Fire Camera S

FIELD OBSERVATIONS *Alberta | @
Wildfire FPInnovation
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FIELD OBSEI?VATlONS Alberta
Pre/Post Fire Wildfire
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FIELD OBSEI?VATlONS Alberta
Pre/Post Fire Wildfire
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FIELD OBSERVATIONS
Pelican Mountain Science Team

N
W 3
Nl A
@ : :

FPInnovations

Natural Resources Canada
Canadian Forest Service
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FIELD OBSERVATIONS
Pelican Mountain Science Team

Alberta
Wildfire

FPInnovations

Canada

Natural Resources Canada
Canadian Forest Service
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FIELD OBSERVATIONS
Pelican Mountain Science Team

Y4,
W 3
Napld A i
.
@ ! :

FPInnovations

Natural Resources Canada
Canadian Forest Service
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FIELD OBSERVATIONS
Insights

We see the same dynamic features
that our models produce.

How can we measure these
features?

Luckily we have more chances!

With better understating of logistics
- Operations

- Travel

- Gear (zip ties!)

Instruments
Types
Placement
Response Times
What's allowed

Smoke Plume Dynamics
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FIRE BEHAVIOR
Fire Weather Index System

Numerical

Weather Model

. Temp & RH Wind Speed Temp Temp
Flrl(: W_eather Wind Speed RH Precipitation
Behavior Precipitation Precipitation

Van Wagner, C.E.; Pickett, T.L. 1985

e s 2

\ 4 v
Fuel Moisture LG L Duff Moisture Drought Code
Moisture Code
Codes (FFMC) Code (DMC) (DC)

A4 \ 4

Initial Spread Buildup Index
Index (BUI)
(IS

Fire Weather

Fire

Behavior
Indices

Index
(FWI)
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FIRE BEHAVIOR
Current Fire Weather Index Systems
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FIRE BEHAVIOR
NWP Derived Fire Weather Index Systems

Van Wagner, C.E.; Pickett, T.L. 1985

Fine Fuel Moisture Code

Fine Fuel Moisture Code
Init: 2019-08-19 _( OOOOZ ---> Valid: 2019-08-19_00: OOZ

Baldy Lookout Tower

g

rrsec
8

80 5 ¥ =8

H e H
FFMC
. Teme (O

5

8o

¥

o o

QWJI_) WEP (km/h)  RM (%)
o -

Pink Dot Indicates Baldy Fire
Lookout Tower
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FIRE BEHAVIOR
NWP Future Research: NWP-Derived fire behavior prediction

system
Van Wagner, C.E.; Pickett, T.L. 1985
NWP - Derived

( FBP Svstem Fuel h FF_M C, ISI, BUI, [ Percentage of [ Elevation h ( Elapsed Time, h

Ty esy Wind Speed & Slope, Upslope Lat/Lon Point or Line
L P y Direction | Direction ) | Datetime ) __ Ignition

A 4 \ 4 A 4 ¢

( R ( R ( Foliar ) ( Type and )

Fuels Weather Topography Moisture Direction of

- \ N I J /Acontent/JL Prediction )

Canadian Forest Fire
Behavior Prediction
(FBP) System

Initial Spread
Index
(IS1)

Buildup Index
(BUI)

Rate of Spread
Fire Intensity

Rate of Spread

Fuel Consumption
Fire Area and Perimeter

Rate of Growth

Head Fire Intensity
Fire Description

Interagency Meeting | February 12,2020 | PartIll: Field Observations 73



OVERVIEW
UBC Wildfire and Smoke Research

Pll{l_lme Air Quality and
15€ Health Agencies
Field I
Observations HEIREES,
Model
Wildland Fire
Fire Incident

Behavior Management
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UBC Wildfire and Smoke Research

Department of Earth, Ocean and Atmospheric Sciences | University of British Columbia
Nadya Moisseeva (WRF-SFIRE): nmoisseeva@eoas.ubc.ca

Dr. Rosie Howard (DALES): rhoward@eoas.ubc.ca

Christopher Rodell (Field Experiments): crodell@eoas.ubc.ca

Prof. Roland Stull: rstull@eoas.ubc.ca

Funding: NSERC, NRCan, BC Clear Air Fund, BlueSky Canada
Field experiment videos: Alberta Fire, CFS and FP Innovations
Support: Weather Research and Forecasting Team UBC

ACKNOWLEDGMENTS

Visualizations: VAPOR, ParaView




OVERVIEW
UBC Wildfire and Smoke Research

« Part l: Using a Large-Eddy Simulation Model to Understand Wildfire
Plume Dynamics
* Model evaluation

* Flow dynamics
* Smoke injection height parameterization

* Part ll: Investigating wildfire smoke behavior using simplified large-
eddy simulations

* |dealized studies
* Convergence zone and lateral flow

* Fireline dimensions

* Part lll: The use of field observations for model validation of
wildland fires: A focus on smoke plume rise.
e Big picture: smoke modelling frameworks
e Prescribed burns and experimental design
* Fire Behavior
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APPENDIX
DALES: vertical levels

e 55 vertical levels

* Hyperbolically stretched

— 31 within the boundary |
layer for my test cases
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APPENDIX
WRF-SFIRE: Model Evaluation

. atmosphere ﬂw\nfy

Article

Capturing Plume Rise and Dispersion with
a Coupled Large-Eddy Simulation:

Case Study of a Prescribed Burn

Nadya Moisseeva *'*' and Roland Stull

Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia,
Vancouver, BC V6T 174, Canada; rstull@eoas.ubc.ca
* Correspondence: nmoisseeva@eoas.ubc.ca

check for
Received: 16 August 2019; Accepted: 23 September 2019; Published: 25 September 2019 updates

Abstract: Current understanding of the buoyant rise and subsequent dispersion of smoke due to
wildfires has been limited by the complexity of interactions between fire behavior and atmospheric
conditions, as well as the uncertainty in model evaluation data. To assess the feasibility of using
numerical models to address this knowledge gap, we designed a large-eddy simulation of a real-life
prescribed burn using a coupled semi-emperical fire-atmosphere model. We used observational data
to evaluate the simulated smoke plume, as well as to identify sources of model biases. The results
suggest that the rise and dispersion of fire emissions are reasonably captured by the model, subject to
accurate surface thermal forcing and relatively steady atmospheric conditions. Overall, encouraging
model performance and the high level of detail offered by simulated data may help inform future
smoke plume modeling work, plume-rise parameterizations and field experiment designs.
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