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OVERVIEW
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BACKGROUND

Understanding smoke plume rise

• plume rise: one of the largest sources of uncertainty in wildfire smoke 
emissions modelling

• traditional models (e.g. Gaussian/Briggs): suitable for smoke stacks, 
small point and area sources
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• large fires modify the 
ambient environment

HOW?
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APPROACH

Using large-eddy simulations

• approach: use large eddy simulation (LES) model
  - WRF-SFIRE: atmosphere coupled to a semi-empirical fire model
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• end goal: 
to develop a new simple 
parameterization of plume rise  
suitable for operational smoke 
forecasts

Mirocha et al (2018)



MODEL EVALUATION

RxCADRE 2012 campaign: burn design

• Elgin Air Force Base (Florida, US) – November 10, 2012
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WRF-SFIRELWIR



MODEL EVALUATION

RxCADRE 2012 campaign: flight path concentrations
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WRF-SFIRE



MODEL EVALUATION

RxCADRE 2012 campaign: concentration profiles
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WRF-SFIRE



MODEL EVALUATION

RxCADRE 2012 campaign: findings
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WRF-SFIRE

• evaluation results:
• WRF-SFIRE reasonably 

captures smokes 
dispersion given
– steady mesoscale 

conditions

– accurate 
representation of fire 
behavior
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FLOW DYNAMICS

Idealized studies: creating a synthetic dataset
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• Capture a wide range of 
atmospheric and fuel 
conditions:
– winds 3 – 12 m/s

– all 13 fuel categories

– 5 different atmospheric profiles

– 1 – 4 km fireline lengths

– 115 runs total



FLOW DYNAMICS

Idealized studies: fire behavior
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• Accounting for diverse fire behavior through fuel categories
• burn intensity
• fireline depth
• fireline shape
• rate of spread
• rate of fuel consumption
• fuel loading
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FLOW DYNAMICS

Idealized studies: creating a synthetic dataset
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FIRE-INDUCED HORIZONTAL VELOCITY
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FIRE-INDUCED VERTICAL VELOCITY
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FLOW DYNAMICS

Idealized studies: fire-induced 3D flow and vorticity
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• fire-atmosphere coupling: 
near-surface 3D winds are generated in response to the fire

• low pressure at the center of the fire updraft results in a pressure gradient force

• 3D winds induce vortices that bring clean air into the plume and reduce the strength 
of the “reverse flow”

• this  cross-wind flow produces a curved fireline
  

• NOT Gaussian plume behavior
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FLOW DYNAMICS

Idealized studies: fire-induced 3D flow and vorticity
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Acknowledgement: Alberta Fire, CFS, FP Innovations
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FLOW DYNAMICS

Idealized studies: 3D flow and vorticity
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• what happens with longer firelines?

• effect on the magnitude of the “reverse flow”

• effect on vertical smoke distribution

• location of the convergence zone

• case study runs to compare 1 km, 2 km and 4 km firelines
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FLOW DYNAMICS

Idealized studies: fireline length



4 km fireline

2 km fireline

1 km fireline
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FLOW DYNAMICS

Idealized studies: along-wind flow
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FLOW DYNAMICS

Idealized studies: along-wind flow

FIRE-INDUCED WIND DYNAMICS at 400m AGL
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CROSSWIND INTEGRATED TIME-AVERAGED CONCENTRATIONS

Interagency Meeting | February 12, 2020 | Part I: LES and Plume Rise

FLOW DYNAMICS

Idealized studies: vertical smoke distribution
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4 km fireline
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FLOW DYNAMICS

Idealized studies: longer fireline = multi-vortex structure
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4 km fireline
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SMOKE INJECTION HEIGHT

Defining downwind distribution

• when can we say the plume has reached equilibrium level?
• stable centerline height

• stable concentration along the centerline

• varies for each combination of ambient atmospheric profile and 
fire behavior!
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4 km fireline
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SMOKE INJECTION HEIGHT

Defining downwind smoke distribution

SMOKE

CENTERLINE
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4 km fireline
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SMOKE INJECTION HEIGHT

Characteristic vertical velocity

• analytical theories characterizing vertical updraft
• cloud theory: based on CAPE (Convective Available Potential Energy)

• boundary layer turbulence theory: Deardorff’s velocity

• can we define our own velocity scale wf*

 such that: 

where zcl = smoke injection height
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4 km fireline
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SMOKE INJECTION HEIGHT

Characteristic vertical velocity
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4 km fireline
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SMOKE INJECTION HEIGHT

Characteristic vertical velocity

atmospheric profile effects

fireline intensityboundary layer height gravity
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4 km fireline
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SMOKE INJECTION HEIGHT

Characteristic vertical velocity

zCL(wf*): R=0.87

Wf* [m/s] Wf* [m/s]



• a coupled fire-atmosphere LES model can reasonably capture plume rise 
and dispersion of a real fire, given

– detailed atmospheric and fire inputs

– stable ambient conditions

– accurate representation of fire behavior

• wildfire plumes do not behave like Briggs/Gaussian plumes
– modify local winds

– generate vorticity

• injection height can be parameterized using a new vertical velocity scale wf*

– current research: extension of parameterization to a vertical distribution

SUMMARY 

Understanding smoke plume dynamics
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We use WRF-SFIRE model to show that…
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DALES: what does it contribute?
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• Dutch Atmospheric Large-Eddy Simulation (DALES) model:
– More simplistic
– Removes complexity
– Isolate parameters
– Focus on atmosphere

• To support and supplement Nadya’s work

• To understand how wildfires and smoke interact with the atmosphere
–   Near-fire circulation
–   Downwind effects

• To inform smoke behaviour for public health
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Model differences: physics
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Model Dutch Atmospheric LES 
(DALES)

Weather Research and 
Forecasting LES coupled with 
SFIRE (WRF-SFIRE)

Non-hydrostatic Yes Yes

Compressibility Boussinesq approximation Fully compressible

Turbulence closure K theory based on TKE 3D 1.5-order TKE

Terrain Flat/sloped Complex

Smoke Passive tracer emitted at 
constant rate

Passive tracer emitted 
proportional to fuel consumption
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Model Dutch Atmospheric 
LES (DALES)

Weather Research and 
Forecasting LES coupled with 
SFIRE (WRF-SFIRE)

Fire spread Stationary Spread model (SFIRE)

Fire heat Constant flux Variable based on fuel

Fire size Constant Variable based on spread

Fire line length Finite or Infinite Finite

Fire-atmosphere 
coupling

N/A Two-way coupling

Model differences: fire behaviour
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Model DALES WRF-SFIRE

Domain size 20 km x 6 km 20 km x 10 km

Grid spacing 10 m 40 m (atmosphere), 4 m (fire)

Horizontal boundary 
conditions

Cyclic Cyclic

Fire line 1 km long; 100 m wide 1 km long initially; variable width

Ambient wind 4 m/s 4 m/s

Fire heat flux 50 kW/m2 Peak 61 kW/m2, mean 35 kW/m2

WRF-SFIREDALES

Model comparison: qualitative

Interagency Meeting | February 12, 2020 | Part II: Simplified LES and Fire Line Geometry



33

Model comparison: quantitative

Crosswind-integrated time-averaged smoke concentration
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DALES: initial experiments

A. 2-hour spin-up creates background convective boundary layer
• dx = dy = 10 m
• Surface heat flux: ~120 W m-2

• Ambient wind speed (Ua): 1–12 m s-1 (variable) 
B. 30-min smoke simulation

• Fire line width = 100 m (constant)
• Fire line length: “infinite” (constant)
• Fire heat flux: 25,000–100,000 W m-2 (variable) 

(not to scale)
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High wind speed, low heat flux

“Infinite” fire line, cross-wind, and 15-min averages

Motivation: convergence zone

x

z

Medium wind speed, medium heat flux

Low wind speed, high heat flux

Fire-generated horizontal winds relative to ambient wind (U’)
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• Infinite fire line:
– Inhibits lateral flow
– Essentially 2-D in x-z plane

• Finite fire lines:
– Lateral flow develops
– Observed in prescribed burn at 

Pelican Mountain
– Modelled by WRF-SFIRE

• Research question:
 How does fire line length interact with 

local and downwind dynamics?

36

Current research direction

Alberta Fire, CFS, FP Innovations

WRF-SFIRE
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DALES: new model set-up and experiments

• 2-hour spin-up creates background convective boundary layer
• Surface heat flux: ~ 300 W m-2

• Ambient wind speed (Ua): 4 m s-1 (constant)
• dx = dy = 20 m

A. 30-min smoke run
• Fire heat flux: ~50,000 W m-2 (constant)
• Fire line width and shape: variable

(not to scale!)
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Crosswind-integrated smoke concentrations

5-km fire line

“infinite” fire line

x

z

3-km fire line

1-km fire line

After t = 30 minutes
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Vertical smoke distributions (normalized)

Smoke concentration Smoke concentration Smoke concentration Smoke concentration

15-minute averages Interagency Meeting | February 12, 2020 | Part II: Simplified LES and Fire Line Geometry
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15-minute averaged v-wind

Cross-wind flow

x

y

Surface (~5 m)

1 km 3 km 5 km

Boundary layer top (~980 m)
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15-minute averaged fire-generated u-wind

Along-wind turbulence 

1 km 3 km 5 km

Surface (~5 m)

Boundary layer top (~980 m)x

y
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Fire line geometry

Ua

3 km ~1 km

~1 km
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Straight vs. curved fire line

15-minute averaged v-wind at surface

15-minute averaged fire-generated u-wind at surface
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• More fire line shapes (inspired by Nadya’s runs)
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Fire line geometry: what’s next?

𝑙1 𝑙2
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• Define convergence zone (and updraft) size, position, 
and intensity, in terms of:

– Fire line geometry 

– BL height…

• Test this with different ambient winds and fire heat 
fluxes

45

Fire line geometry: goal

Interagency Meeting | February 12, 2020 | Part II: Simplified LES and Fire Line Geometry



Investigating wildfire smoke behavior 
using simplified large-eddy simulations
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Summary:
- Preliminary results promising, and indicate:

- Near-surface smoke recirculation weaker for shorter fire lines
- Smoke does not reach as far downwind for shorter fire lines
- Curved fire line appears to allow “correct” dynamics near the fire

- Future work includes more model runs:
- Varying fire line shapes
- Finding systematic way of defining convergence zone/updraft

- Eventually test for different wind speeds and fire heat fluxes 
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Fire behavior

Wildfire 
locations

Output: PM 2.5 
concentrations.

Horizontal dispersion of 
smoke particles

Plume rise 

Example: BlueSky Canada

BACKGROUND

Smoke Forecast Framework
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Meteorology
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Fire behavior

Plume rise 

Example: BlueSky Canada

BACKGROUND

Smoke Forecast Framework
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Pelican Mountain May 
2019

Fort Providence July 
2019
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FIELD OBSERVATIONS

Site Locations

Fort Providence 

Pelican Mountain

Vancouver
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FIELD OBSERVATIONS

Pelican Mountain

WIND

WIND
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Unit 5 May 2019Unit 5

Unit 1 May 2020 
(fingers crossed)

Unit 1

Unit 5
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FIELD OBSERVATIONS

Pelican Mountain

North
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FIELD OBSERVATIONS

Instruments Category Instruments / Variables

Atmospheric HOBOS, ATMOS 41, Radiosonde 
and Micro Air Monitoring Station 
Data

Temperature, Relative Humidity 
Wind Speed and Direction, Solar 
Irradiance, Total VOC, HCHO, CO2, 
PM2.5, PM1 and O3

Forestry Heat Flux Sensor, Range Pole

Depth of burn, Fireline Intensity

Cameras DSLR, FLIR

High resolution visible footage, 
Infrared Imagery
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Key

Air Quality

Radiosonde

Met Tower

Range Pole

In Fire-
Camera

Depth of burn pin

DSLR Camera
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FIELD OBSERVATIONS

Instruments
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WIND



Cameras at Observation ZoneIn-Fire Cameras
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FIELD OBSERVATIONS

Cameras
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Air Quality SensorMet-TowerHOBO Temp/RH
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FIELD OBSERVATIONS

Weather Instruments
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FIELD OBSERVATIONS

Atmospheric Profile

Boundary Layer Schematic Windsonde System
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Windsonde
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FIELD OBSERVATIONS

Windsonde Sounding System
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FIELD OBSERVATIONS

Observation Zone
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FIELD OBSERVATIONS

Observation Zone
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FIELD OBSERVATIONS

In-Fire Camera
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FIELD OBSERVATIONS

In-Fire Camera
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FIELD OBSERVATIONS

Pre/Post Fire
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FIELD OBSERVATIONS

Pre/Post Fire
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FIELD OBSERVATIONS

Pelican Mountain Science Team
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FIELD OBSERVATIONS

Pelican Mountain Science Team

Interagency Meeting | February 12, 2020 | Part III: Field Observations



67

FIELD OBSERVATIONS

Pelican Mountain Science Team
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FIELD OBSERVATIONS

Insights

We see the same dynamic features 
that our models produce.

How can we measure these 
features?

Luckily we have more chances!

With better understating of logistics
- Operations
- Travel
- Gear (zip ties!)

Instruments
- Types
- Placement
- Response Times
- What's allowed

Smoke Plume Dynamics
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X

Y

Z

Key

Air Quality

Radiosonde

Met Tower

Dropsonde

2D Sonic

Helicopter 
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Temp & RH
Wind Speed
Precipitation 

Fire Weather 
Behavior

Fuel Moisture 
Codes

Fire 
Behavior 
Indices

Wind Speed

Duff Moisture 
Code (DMC)

Temp
RH
Precipitation

Temp
Precipitation

Fine Fuel 
Moisture Code 
(FFMC)

Drought Code 
(DC)

Initial Spread 
Index
(ISI)

Buildup Index
(BUI)

Fire Weather 
Index 
(FWI)

Van Wagner, C.E.; Pickett, T.L. 1985

Numerical 
Weather Model
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FIRE BEHAVIOR 

Fire Weather Index System
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Mark A Newman (FBAN)
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FIRE BEHAVIOR

Current Fire Weather Index Systems

Interagency Meeting | February 12, 2020 | Part III: Field Observations



Van Wagner, C.E.; Pickett, T.L. 1985
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FIRE BEHAVIOR

NWP Derived Fire Weather Index Systems

Fine Fuel Moisture Code

Pink Dot Indicates Baldy Fire 
Lookout Tower
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Canadian Forest Fire 
Behavior Prediction 

(FBP) System

FBP System Fuel 
Types

Fuels

Percentage of 
Slope, Upslope 
Direction 

Foliar 
Moisture 
Content

Elevation
Lat/Lon
Datetime

Elapsed Time, 
Point or Line 
Ignition

Weather
Type and 
Direction of 
Prediction 

Initial Spread 
Index
(ISI)

Buildup Index
(BUI)

Topography

- Rate of Spread
- Fuel Consumption
- Head Fire Intensity
- Fire Description

- Rate of Spread 
- Fire Intensity
- Fire Area and Perimeter
- Rate of Growth

Van Wagner, C.E.; Pickett, T.L. 1985
NWP - Derived
FFMC, ISI, BUI, 
Wind Speed & 
Direction
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FIRE BEHAVIOR

NWP Future Research: NWP-Derived fire behavior prediction 
system
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OVERVIEW

UBC Wildfire and Smoke Research 

NWP

Plume 
Rise 

Fire 
Behavior

Field 
Observations

Smoke 
Forecast 

Model

Air Quality and 
Health Agencies

Wildland Fire 
Incident 

Management
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APPENDIX

DALES: vertical levels

• 55 vertical levels

• Hyperbolically stretched

– 31 within the boundary 
layer for my test cases

BC Environmental Interagency Meeting | 12 
February 2020
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APPENDIX

WRF-SFIRE: Model Evaluation
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