GAUSSIAN DISPERSION MODELS

AERMOD: THEORY AND PRACTICE

Tutor: M.Eng Davi de Ferreyro Monticelli e-mail: davimonticelli@gmail.com

Professor: Dra. Jane Meri Santos

AERMOD MODEL

- AMS/EPA Regulatory Model (A.E.R.M.O.D)
- "A steady-state plume model that incorporates air dispersion based on planetary boundary layer turbulence structure and scaling concepts, including treatment of both surface and elevated sources, and both simple and complex terrain" (USEPA)

What does this mean?

AERMOD MODEL

 "A steady-state <u>plume</u> model that incorporates air dispersion based on planetary boundary layer turbulence structure and scaling concepts, including treatment of both surface and elevated sources, and both simple and complex terrain" (USEPA)

Source: (DOURADO, 2013).

AERMOD MODEL

 "A <u>steady-state</u> plume <u>model</u> that incorporates air dispersion based on planetary boundary layer turbulence structure and scaling concepts, including treatment of both surface and elevated sources, and both simple and complex terrain" (USEPA)

Source: ResearchGate

MODELO AERMOD

 "A steady-state plume model that incorporates air dispersion based on planetary boundary layer turbulence structure and scaling concepts, including treatment of both surface and elevated sources, and both simple and complex terrain" (USEPA)

Source: (BOUBEL et. al, 1994).

PROCESSOR

GAUSSIAN PLUME DISPERSION MODEL

SOURCES TREATMENT

- Estimate the ambient concentrations and/or deposition fluxes using information of emission sources, meteorology and terrain.
- Possible sources to be modeled:
 - POINT

VOLUMETRIC

POLIGONS

What about traffic lanes?

SOURCES TREATMENT

 AERMOD is *not* a dispersion model specifically develop for modeling traffic emissions (like RLINE or CALINE4). However, with some adaptation it could do the job:

I) Treat the emissions as discrete packages of volume sources in sequence and equally spaced

2) Treat as emissions from area sources (thus must be divided by the road area).

ROAD SOURCES

Different roads have different emission distribution of _____ particulate matter!

(IEMA, 2010)

(Yang et al. 1999)

ROAD SOURCES

"Volume Package" approach

Recommendation: (Haul Road Workgroup Project)

- I. Used when the receptor is outside the exclusion zone;
 - i. $Zone = (2.15 \times Sigma-Y) + 1;$
 - ii. Plume height (H) = $1.7 \times \text{Vehicle height}$;
 - iii. Emission height (h) = $0.5 \times H$;
 - iv. Plume lateral size (L) =
 - a. Vehicles width + 6 meters (single lane)
 - b. Lane width + 6 meters (double lane)
 - v. Sigma-Z = H / 2.15;
 - vi. Sigma-Y = H / 2.15;
 - vii. Emission in g/s

ROAD SOURCES

Area source approach

Reccomendation:

(Haul Road Workgroup Project)

II. Used when the receptor is inside the exclusion zone;

- i. $Zone = (2.15 \times Sigma-Y) + 1;$
- ii. Plume height (H) = $1.7 \times \text{Vehicle height}$;
- iii. Emission height (h) = $0.5 \times H$;
- iv. Plume lateral size (L) =
 - a. Vehicles width + 6 meters (single lane)
 - b. Lane width + 6 meters (double lane)
- v. Sigma-Z = H / 2.15;
- vi. Size (length) = road size (length);
- vii. Emission in g/s/m²

SOURCES CHARACTERIZATION

INPUTS

AERMOD			
Point sources	 Emission rate (g/s); Emission height (m); Emission temperature (K); Emission velocity (m/s); Stack diameter (m) Coordinates (UTM) 		
Area sources	 Emission rate (g/s.m²); Emission height (m); Length (m); Width (m); Rotation angle to prevalent wind (optional); Initial vertical dimension of plume (optional) Coordinates (UTM) 		

SOURCES CHARACTERIZATION

INPUTS

AERMOD			
Volume sources	 Emission rate (g/s); Heigh of the center of the plume (m) Plume initial lateral dimension (m); Plume initial vertical dimension (m); Coordinates 		
Poligon sources	 Emission rate (g/s.m²); Emission height (m); Number of corners; Plume initial lateral dimension (m) (optional) 		

EMISSIONS TREATMENT

AERMOD			
	• $C_d(x, y, z) = \frac{Qf_p}{\sqrt{2\pi u}} F_y \sum_{f=1}^2 \sum_{m=0}^\infty \frac{\lambda_f}{\sigma_{zj}} \left[\exp\left(-\frac{(z - \psi_{dj} - 2mz_i)^2}{2\sigma_{zj}^2}\right) + \right]$		
Direct sources	$\exp\left(-\frac{(z+\psi_{dj}+2_{mz_i})^2}{2\sigma_{z_j}^2}\right)$		
	• $C_d(x, y, z) = \frac{Q(1-f_p)}{\sqrt{2\pi u}} F_y \sum_{f=1}^2 \sum_{m=0}^\infty \frac{\lambda_f}{\sigma_{zj}} \left[\exp\left(-\frac{(z-\psi_{dj}-2_{mz_i})^2}{2\sigma_{zj}^2}\right) + \right]$		
Penetrated sources	$\exp\left(-\frac{(z+\psi_{dj}+2_{mz_i})^2}{2\sigma_{z_j}^2}\right)$		
	• $C_d(x, y, z) = \frac{Qf_p}{\sqrt{2\pi u \sigma_{zp}}} F_y \sum_{f=1}^2 \sum_{m=-\infty}^\infty \frac{\lambda_f}{\sigma_{zj}} \left[\exp\left(-\frac{(z - \psi_{dj} - 2mz_i)^2}{2\sigma_{zj}^2}\right) + \right]$		
Indirect sources	$\exp\left(-\frac{(z+\psi_{dj}+2_{mz_{ieff}})^2}{2\sigma_{zp}^2}\right)$		

*Cd(x, y, z) is the concentration due to a direct source at distance (x,y,z); Q = stack emission strength; u = wind velocity; $\lambda f =$ distribution coefficient; $\psi dj =$ difference height between source base and plume centreline; fp = fraction of emitted contaminant (by the source) that stays in the CBL (0 < fp < 1); zi = height above the reflected surface in a stable layer; $\sigma zp =$ total vertical dispersion of penetrated force; hep = plume height that penetrate beyond the CBL.

EMISSIONS TREATMENT

EMISSIONS TREATMENT

AERMOD			
Complex terrain and atmospheric stability	• $C_T\{x_r, y_r, z_r\} = f. C_{c,s}\{x_r, y_r, z_r\} + (1 - f)C_{c,s}\{x_r, y_r, z_p\}$		
	where $C_T\{x_r, y_r, z_r\}$ is the total concentration $C_{c,s}\{x_r, y_r, z_r\}$ is the contribution from the horizontal plume state (subscripts c and s refer to convective and stable conditions, respectively), $C_{c,s}\{x_r, y_r, z_p\}$ is the contribution from terrain-following state, f is the plume state weighting function, $\{x_r, y_r, z_r\}$ is the coordinate representation of a receptor (with zr defined relative to stack base elevation) $z_p = z_r - z_t$ is the height of a receptor above local ground, and zt is the terrain height at a receptor.		

EMISSIONS TREATMENT

EMISSIONS TREATMENT

EMISSIONS TREATMENT

CHALLENGES TO THE GAUSSIAN MODEL

Source: SEINFELD and PANDIS (2006).

Source: (BOUBEL et. al, 1994).

Obstacles:

Source: (EPA, 1985).

Topography:

Sea Breeze (daytime)

(a) Land Sea Breeze

Valley Breeze (daytime) Mountain Breeze (nighttime)

(b) Mountain Valley Breeze

Unstable (daytime)

Stable (nighttime)

(c) Topographical

Source: (ARYA, 1999).

AERMOD.INP: PART I

AERMOD.INP: PART I	Fund	asic
CO STARTING CO TITLEONE Dry Deposition Title CO MODELOPT BETA CONC DDEP ELEV NODRYDPLT NOWETD CO AVERTIME MONTH Averaging period CO POLLUTID TPM Pollutant to be modeled CO RUNORNOT RUN CO EVENTFIL CONTRIB SOCONT CO SAVEFILE SAVED I Salve the run as backup in case of being CO DEBUGOPT DEPOS CO ERRORFIL ERROS.OUT File that may describe modeling err CO FINISHED	PLT Modeling options	Command lines
SO STARTING ** Point Source NAME Type X(m) Y(m) Elev (m) ** SO LOCATION S01 POINT 366147.00 7760400.00 10.00 () ** AreaPoly Source NAME Type X(m) Y(m) Elev (m) ** AreaVert Source Xv(1) Y(1) ** SO LOCATION S02 AREAPOLY 365325.53 7759545.85 2.00 () ** Volume Source NAME Type X(m) Y(m) Elev (m) ** SO LOCATION S08 VOLUME 357987.00 7749107.00 3.00 ()	Input of sources location (Area source is the center of it or the first corner)	Sources attribution

AERMOD Dispersion

Model

AERMOD.INP: PART II

TROCESSON. ALNIO		
AERMOD.INP: PART II		ncric Z
<pre>** Point Sources ** ID ES(g/s) HS(m) TS(K) VS(m/s) DS(m) ** Parameters: SO SRCPARAM S01 0.53 3.00 298.15 2.00 1.00 () ** AreaPoly Sources ** ID ES(g/s.m2) HS(m) Nv) ** Parameters:</pre>	Sources input (vary by type of source)	Sources attribution
** Parameters:	2559.71 365375.25 7759648.57 365354.14 65182.71 7759476.57 365209.96 7759472.22 For posterior analysis	

AERMOD Dispersion

Model

AERMOD.INP: PART III

	AERMOD.INP: PART III	asic
	RE STARTING AERMAP output for receptors RE INCLUDED AERMAP.ROU AERMAP output for receptors RE DISCCART 369917.00 7766305.00 26 RE DISCCART 369917.00 7762315.00 35 RE DISCCART 367429.00 7760371.00 05 RE DISCCART 365266.00 7753279.00 03 Discrete receptors coordinates RE DISCCART 360857.00 7752450.00 08 RE DISCCART 362532.00 7749346.00 04 RE DISCCART 365354.00 7750721.00 05 RE DISCCART 366357.00 7753649.00 36 RE DISCCART 366640.00 7753590.00 05 RE DISCCART 366640.00 7753590.00 05 RE FINISHED FINISHED 7753590.00	Receptors attribution
	ME STARTING ME SURFFILE EAS_2009.SFC ME PROFFILE EAS_2009.PFL ME SURFDATA 00013 2009 ME UAIRDATA 00083649 2009 ME PROFBASE 4 METERS ME FINISHED	Meteorological variables attribution
-	OU STARTING OU RECTABLE ALLAVE FIRST SECOND Complete description of options in the User Guide OU MAXTABLE ALLAVE 50 OU POSTFILE MONTH ALL PLOT MONTHAVERG.PLT ← Good for plotting concentration fields OU FINISHED ** Concentration is in micrograms/m ³ e deposition flux in g/m ²	Output options

AERMOD Dispersion

Model

EXAMPLE SO₂

CO SAVEFILE SAVED 1 CO ERRORFIL ERROS.OUT

CO FINISHED

What should I consider?

In a modeling domain of 50km x 50km only a small fraction (~2%) of SO2 is converted in sulfates. (Gibson et al., 2013)		For the coastal region of lokyo – Japan, the conversion of SO2 into SO42- was 0.18 during summer time and 0.03 during winter (Miyakawa et al., 2013)	
	CO STARTING CO TITLEONE "SO2_IN_RMGV" CO MODELOPT DFAULT CO AVERTIME 1 24 ANNUAL Average time CO POLLUTID SO2 for SO2 CO RUNORNOT RUN	e for the majority of air quality guidelines	

The "DFAULT" option in AERMOD assumes a Half-life of 4 hours for SO2 modeled in na urban environment;

"POLLUTID SO2" activates a special treatemtn based on the maximum hourly mean concentrations of the stuy period;

Mandatory reading: Section 3.2.15 - AERMOD User's Guide

What about the terrain preprocessor?

AERGRID AERMAP

PRE-PROCESSOR: AERMAP

AERMAP			
Input	Output		
 Terrain file (.DEM); Receptors location (discrete or grid) (UTM X and UTMY); Sources location (UTM X and UTMY). 	 Height (topographic) of receptors; Height (topographic) of sources; Modeling GRID 		

It can be ignored if a "flat" terrain condition is desired

AERGRID AERMAP

PRE-PROCESSORS: AERMAP

AERMAP.INP:

	CO STARTING TITLEONE Dry Deposition TERRHGTS EXTRACT DATATYPE DEM DATAFILE S21W41.DEM DOMAINXY 342781.00 7735094.00 -24 392781.00 7785094.00 -24 ANCHORXY 0.0 0.0 0.0 0.0 -24 3 UTM Greenwich, UTM zond DEBUGOPT RECEPTOR RUNORNOT RUN CO FINISHED	Domain size and UTM zone e, Hour shift from UTC	Command lines
'	SO STARTING LOCATION S01 POINT 366147.00 7760400.00 LOCATION S03 POINT 357974.00 7750147.00 () SO FINISHED	location	Sources attribution
·	RE STARTING GRIDCART TESTEI STA XYINC 342781.00 100 500.00 7735112.00 100 500.00 TESTEI END RE FINISHED	Grid initial point (lower-left corner), spacing and number of points in each Direction (square)	Receptors attribution
	OU STARTING RECEPTOR AERMAP.ROU SOURCLOC AERMAP.SOU DEBUGREC RECELV OU FINISHED	nation tion	Output options

THANK YOU!

Next:

Feedback

• Any relevant feedback for my next presentations

Questions

• Was something unclear?

References

- AERMOD Model Formulation and Evaluation (US EPA)
- AERMET User's Guide (US EPA)

In case a question comes up later: <u>davimonticelli@gmail.com</u> or <u>daviubcl@student.ubc.ca</u>

OBRIGADO!

