
The heterogeneous reactions in the polar stratosphere (Molina et al., 1987; Isaksen, 1994) involving HCl, ClONO2,
HOCl, N2O5 and H2O are responsible for the conversation of reservoir species into reactive forms of chlorine, and
also for removal of reactive nitrogen species into more stable forms (such as HNO3):

(R8.26)ClONO2 + HCl → Cl2 + HNO3

(R8.27)ClONO2 + H2O → HOCl + HNO3

(R8.28)N2O5 + HCl → ClNO2 + HNO3

(R8.29)N2O5 + H2O → HNO3 + HNO3

(R8.30)HOCl + HCl → Cl2 + H2O

Due to the heterogeneous chemistry, active species of chlorine (and also bromine) accumulated in the polar vortex.
Then, after polar sunrise, the re-appearing solar radiation starts the photochemical activity, which leads to intensive
ozone depletion in polar stratosphere during the polar spring. Chlorine reservoirs (such as molecular chlorine -
Cl2) photodissociated rapidly by ultraviolet and visible radiation into chlorine atoms:

(R8.31)Cl2 + hν (visible light) → Cl + Cl

which initiates catalytic reaction chains, as chlorine atoms react with ozone to produce ClO. Due to the low solar
elevation angles, atomic oxygen is not present in the polar stratosphere, therefore the ozone destruction occurs
through the following catalytic chain:

(R8.32)Cl + O3 → ClO + O2 (2x)

(R8.33)ClO + CLO +M→ Cl2O2 + M

(R8.34)Cl2O2 + hν (visible) → 2Cl + O2

Net:

(R8.35)2O3 → 3O2

Similar catalytic bromine cycles can occur involving Bromine compound:

(R8.36)ClO + BrO → Cl + Br + O2

(R8.37)Cl + O3 → ClO + O2

(R8.38)Br + O3 → BrO + O2

Net:

(R8.35)2O3 → 3O2

8.2 Tropospheric ozone
Tropospheric ozone is only about 10% of the total amount of ozone contained in a vertical column in the atmosphere.
However, this relatively small amount of tropospheric ozone has a great importance because it’s important role in
the formation of photochemical air pollution and its oxidizing impact in the near surface layer (e.g. Krupa and
Manning, 1988).
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Tropospheric ozone is a direct greenhouse gas. Ozone abundances in the troposphere typically vary from less than
10 ppb over remote tropical oceans up to about 100 ppb in the upper troposphere, and often exceed 100 ppb
downwind of polluted metropolitan regions (IPCC, 2001).

The absorption of solar ultraviolet radiation of wavelength shorter than 320 nm by ozone occurs in the troposphere
similarly as in the stratosphere (see above). This photochemical reaction leads to the production of excited O(1D)
atoms:

(R8.3)O3 + hν (λ < 320 nm) → O2 + O(
1D)

This excited O(1D) atoms have higher energy than ground state oxygen atoms, thus it has enough energy to react
with water vapour to produce hydroxyl radicals (OH):

(R8.39)O(1D) + H2O → 2OH+ O2

In this way, ozone is the precursor of OH, which is responsible for the oxidation of several species, such as carbon
monoxide (CO) or alkanes (denoted as RH):

(R8.40)OH+ CO→ H+ CO2

(R8.41)OH+ RH→ R+ H2O

8.2.1. Global tropospheric ozone budget
Ozone is a secondary air pollutant that is not emitted directly to the atmosphere. Ozone can enter the troposphere
from the stratosphere, where it forms by reactions (R8.1–R8.2). The most active regions of stratosphere-troposphere
exchange of ozone are in cyclonic regions of the upper troposphere, near the disturbed tropopause. The major
sources of tropospheric ozone, however, are chemical reactions, when it forms from its precursor compounds, such
as reactive hydrocarbons and nitrogen oxides. Globally annual average of photochemical destruction of tropospheric
ozone is comparable with the production. Another sink process of tropospheric ozone is dry deposition, when
ozone is settling from the atmosphere to different surfaces (see Chapter 12). Globally averaged annual tropospheric
ozone budget and major processes related to the life of tropospheric ozone can be seen id Figure 8.8.
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Figure 8.8: Annual tropospheric budget of the ozone. Source of data: Guicherit and Roemer, 2000.

8.2.2. Ozone production in the troposphere
Ozone can form by the recombination of an oxygen molecule and an oxygen atom, similarly as in the stratosphere
(reaction R8.1). Nevertheless, O atom cannot form in the troposphere by the photodissociation of molecular oxygen
(reaction R8.2), because this reaction requires short wavelength (λ < 242 nm)which is not available in the troposphere
(due to the absorption by stratospheric ozone). In the troposphere, nitrogen dioxide is the only known compound
that can produce O atom during it’s photodissociation at available radiation:

(R8.42)NO2 + hν (λ < 420 nm) → O+ NO

(R8.43)O + O2 + M→ O3 + M

In the presence of NO, O3 reacts with it, which reaction destroys the ozone and reproduces the NO2:

(R8.44)O3 + NO→ O2 + NO2

This means that reaction (R8.42)–(R8.44) themselves do not result net ozone production, because these reactions
only recycle O3 and NOx. Net ozone production occurs, when other precursors, such as carbon monoxide (CO),
methane (CH4), non-methane hydrocarbons (NMHC) or certain other organic compounds (volatile organic com-
pounds – VOC) are present in the atmosphere. Ozone production can be simulated by a simple reaction scheme,
through the oxidation of carbon monoxide, when nitric oxide is available. In this reaction chain OH, HO2, NO and
NO2 participate as catalysts:

(R8.40)CO + OH→ H+ CO2

(R8.45)H + O2 + M→ HO2 + M

(R8.46)HO2 + NO→ OH+ NO2

(R8.42)NO2 + hν (λ < 420 nm) → O+ NO

(R8.43)O + O2 + M→ O3 + M

net:

(R8.47)CO + 2O2 → CO2 + O3

Similar reactions chain occurs with the oxidation of methane in NO rich environment, when ozone and formaldehyde
(CH2O) are formed rapidly:

(R8.48)CH4 + OH→ CH3 + H2O

(R8.49)CH3 + O2 + M→ CH3O2 + M

(R8.50)CH3O2 + NO→ CH3O+ NO2

(R8.51)CH3O + O2 → CH2O+ HO2

(R8.46)HO2 + NO→ OH+ NO2

(R8.42)NO2 + hν (λ < 420 nm) → O+ NO (2x)

(R8.43)O + O2 + M→ O3 + M (2x)
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net:

(R8.52)CH4 + 4O2 + 2hν → CH2O + H2O + 2O3

Formaldehyde fotodissociates to generate other radicals, which can participate further ozone productions.

Instead of methane, other organic compounds (NMHC, VOC) can also be participated in this reaction chain, where
carbonyl species or a ketone formed next to the ozone. A schematic pattern of tropospheric ozone production can
be seen if Figure 8.9.

Figure 8.9: Schematic picture of photochemical ozone formation in the troposphere

8.2.3. Sinks of the tropospheric ozone
Primary loss processes of tropospheric ozone are the photochemical reaction (R8.3), when O3 molecules dissociate
by solar radiation. In NO rich environment, the reaction (R8.44) governs the ozone destruction. On the other hand,
in NO-poor environment, the oxidation if carbon dioxide can lead to ozone loss. In that case, after the reactions
(R8.40) and (R8.45) the generated HO2 can react with ozone (instead of reaction R8.46):

(R8.53)HO2 + O3 → OH+ 2O2

Further ozone can be destroyed by the direct reaction with OH radical:

(R8.54)OH + O3 → HO2 + 2O2

Next to chemical destructions ozone can removed from the atmosphere by dry deposition. This process is more
intense during unstable atmospheric stratification. After movement from near surface layer by turbulent diffusion,
ozone can react with the receiving surface. Many plants are extremely sensitive to ozone and can be damaged (see
details in Chapter 13).

8.2.4. Spatial and temporal variability of ozone in the
near surface layer
The background surface ozone concentration increased steadily worldwide in the last decades of 20th century
(Vingarzan, 2004). Spatial and temporal distributions of ozone concentrations, however, show large variability.
Background ozone concentration at a given place and time results from a combination of formation, transport,
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destruction and dry deposition and affected by elevation, too. Higher concentrations typically occur at sites located
in the free troposphere (Figure 8.10).

Figure 8.10: Average monthly ozone concentrations in 2010 at two EMEP (European Monitoring and Evaluation
Programme) measuring station: K-puszta (Hungary, φ = 46°58’, λ = 19° 35’, h = 125 m) and Chopok (Slovakia,

φ = 48°56’, λ = 19° 35’, h = 2008 m). Source of data: http://www.nilu.no/projects/ccc/onlinedata/

Seasonal cycle of tropospheric ozone is also well-defined in Figure 8.10. Higher values can be observable in
summer period due to the more intense photochemical reactions.

Figure 8.11: Modelled ozone concentration with different ratio of NOx and VOC concentration

Near surface ozone is produced mainly in the urban environment due to the high emission of ozone precursor
compounds. The ozone production depends on the rate of the precursors concentrations. Figure 8.11 shows a result
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of a model simulation. The ozone concentrations were simulated by a simple box model in the function of NOx
and VOC concentrations. It seems that ozone concentration increasing with increase VOC concentration. Concen-
tration of nitrogen compounds, however can affect both the ozone production and destruction. High NO emission
in the city causes ozone destruction.

When the air mass from the city is transported to far away by the wind, higher ozone concentrations can be formed
in rural NO-poor environment. Additionally biogenic emission of ozone precursors (e.g. isoprene emitted by trees)
can cause further increase in ozone concentration. Hence, higher ozone concentrations most frequently occur in
rural environment (Figure 8.12).

Surface ozone concentration has also a typical diurnal cycle. Highest values occur in the afternoon, when photo-
chemical activity is more intense. The production during the day is also related to the daily course of precursor
emissions. Typical diurnal cycle of the ozone concentration measured in an urban site is presented in Figure 8.13.
This figure also shows a significant difference between a summer and a winter month. However, the daily variation
of ozone concentration is similar in each period.

Figure 8.12: Average monthly ozone concentrations in 2010 in urban and rural environment. Data obtained from
an urban measuring site of Hungarian Air Quality Monitoring System (Budapest centrum - Kosztolányi Dezső tér)
and from a background measuring site of European Monitoring and Evaluation Programme (K-puszta) operated

by Hungarian Meteorological Service. Sources of data: http://www.nilu.no/projects/ccc/onlinedata/ and
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Figure 8.13: Average diurnal variation of ozone concentration in July and January, 2010. Data obtained from an
urban measuring site of Hungarian Air Quality Monitoring System (Budapest centrum – Kosztolányi Dezső tér).

Source of data:

Similar temporal variation can be found in background ozone concentration. The highest concentration values
occur in spring and summer in the early afternoon hours, while the lowest ones in winter in the case of stable
stratification (Figure 8.14).

Figure 8.14: Temporal variability of background ozone concentration at Nyírjes station (Mátra Mountain) from
1996 to 1998.
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