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=== Let: 
∆t = time step (increment)
n = time step counter  (0, 1, 2, 3, …, n, …, N)
t = time = 0, 1∆t, 2∆t, 3∆t, …, n∆t, …N∆t
t = time =(0,  t1, t2, t3, …, tn ,…, tN)

∆x = horizontal grid size
j = spatial step counter  (0, 1, 2, 3, …, j, …, J)
x = horizontal location = 0, 1∆x, 2∆x, 3∆x, …, j∆x, …J∆x
x = spatial location  = (0,  x1, x2, x3, …, xj ,…, xJ)

U = horizontal wind speed
Uj,n   = speed at location = xj and time = tn  

c = pollutant concentration
cj,n   = concentration at location = xj and time = tn  

t = 0 is the initial condition (must be provided)

=== Consider 1D Advection Eq.:

dc/dt = -U dc/dx

=== Desirable traits of finite-difference approximations
1) conserve pollutant mass
2) minimize numerical (non-physical) dispersion
3) have small errors in advection (phase) speed
4) be positive definite (negative concentrations are not allowed)
5) be monotonic (should not introduce additional extrema).

=== Finite difference approximations.  Several examples:
(Assume constant wind speed U = U0)

A. Forward in time, Centered in space:
(in the following, let T = c = concentration)



   Can rearrange to solve for concentration T at future time:

         T(j, n+1) = T(j,n) - (Uo·∆t / ∆x)·[ T(j+1,n) - T(j-1,n) ] / 2

   Define (U0·∆t / ∆x) = Cr = Courant number.  
   For numerical stability (to prevent model from blowing up), need Cr ≤ 1.  

   (see Pedro Odon’s movies of 1-D advection)

B. Forward in time, Backward in space

  (see Pedro Odon’s movies of 1-D advection)

C. Centered in time, Centered in space

  (see Pedro Odon’s movies of 1-D advection)

D. Third-order Runge-Kutta in time, Centered in space (used in WRF model)

  (see Pedro Odon’s movies of 1-D advection)

 


