Review of Some Finite Difference approximations for Advection R. Stull, Aug 2018

=== Let: Δt = time step (increment) n = time step counter (0, 1, 2, 3, ..., n, ..., N) t = time = 0, 1 Δt , 2 Δt , 3 Δt , ..., n Δt , ...N Δt t = time =(0, t₁, t₂, t₃, ..., t_n, ..., t_N)

 $\begin{array}{l} \Delta x = \text{horizontal grid size} \\ j = \text{spatial step counter } (0, 1, 2, 3, ..., j, ..., J) \\ x = \text{horizontal location} = 0, 1\Delta x, 2\Delta x, 3\Delta x, ..., j\Delta x, ..., J\Delta x \\ x = \text{spatial location} = (0, x_1, x_2, x_3, ..., x_j, ..., x_J) \end{array}$

U = horizontal wind speed U_{j,n} = speed at location = x_j and time = t_n

c = pollutant concentration $c_{j,n}$ = concentration at location = x_j and time = t_n

t = 0 is the initial condition (must be provided)

=== Consider 1D Advection Eq.:

dc/dt = -U dc/dx

=== Desirable traits of finite-difference approximations

1) conserve pollutant mass

2) minimize numerical (non-physical) dispersion

3) have small errors in advection (phase) speed

4) be positive definite (negative concentrations are not allowed)

5) be monotonic (should not introduce additional extrema).

=== Finite difference approximations. Several examples: (Assume constant wind speed $U = U_0$)

A. Forward in time, Centered in space: (in the following, let T = c = concentration)

$$\frac{T_{j,n+1} - T_{j,n}}{\Delta t} = -U_0 \frac{T_{j+1,n} - T_{j-1,n}}{2\Delta x}.$$

Can rearrange to solve for concentration T at future time:

$$T(j, n+1) = T(j,n) - (Uo \Delta t / \Delta x) \cdot [T(j+1,n) - T(j-1,n)] / 2$$

Define $(U_0 \cdot \Delta t / \Delta x) = Cr = Courant number.$

For numerical stability (to prevent model from blowing up), need $Cr \le 1$.

(see Pedro Odon's movies of 1-D advection)

B. Forward in time, Backward in space

$$\frac{T_{j,n+1} - T_{j,n}}{\Delta t} = -U_0 \frac{T_{j,n} - T_{j-1,n}}{\Delta x}.$$

(see Pedro Odon's movies of 1-D advection)

C. Centered in time, Centered in space

$$\frac{T_{j,n+1} - T_{j,n-1}}{2\Delta t} = -U_0 \frac{T_{j+1,n} - T_{j-1,n}}{2\Delta x}.$$

(see Pedro Odon's movies of 1-D advection)

D. Third-order Runge-Kutta in time, Centered in space (used in WRF model)

$$T_{j,n+1} = T_{j,n} - \frac{C_R}{2} \left(T_{j+1,n} - T_{j-1,n} \right) + \frac{C_R^2}{8} \left(T_{j+2,n} - 2T_{j,n} + T_{j-2,n} \right) - \frac{C_R^3}{48} \left(T_{j+3,n} - 3T_{j+1,n} + 3T_{j-1,n} - T_{j-3,n} \right).$$

(see Pedro Odon's movies of 1-D advection)