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‘Abstract

This thesis investigates the hypothesis that ensemble methods and Kalman-filter (KF)
post-processing can be utilized to improve near-surface real-time ozone forecasts.

The ensemble approach combines multiple forecasts to yield ensemble-averaged and prob-
abilistic predictions. In non-linear systems such as the atmosphere, it is well established that
the ensemble approach provides a better estimate of future evolution than a determlmstlc
forecast. This approach is extended here for ozone forecasts.

KF post-processing is applied to remove ozone-forecast bias; i.e., systematic errors. In
this dissertation, the filter is applied in a predictor mode to the raw ozone forecasts from the
Community Multiscale Air Quality (CMAQ) 3-D numerical model.

An ozone ensemble-forecast system based on a multi-model approach has been analyzed.
Moreover, a new ensemble design for air-quality forecasts has been proposed, based on both
- meteorology and emission perturbations. Ozone ensemble-averaged and probabilistic forecasts
resulting from these ensemble methods have been realized and tested (introducing a new
reliability index).

The following are the main findings of this thesis. An ozone ensemble-forecast system
based on a multi-model approach produces an ensemble-averaged prediction more skillful than
a single-model approach. Ensemble-averaging is able to compensate for some of the predictive-
skill deficiencies in deterministic ozone forecasts, and for part of the initial-condition inaccu-
racy. In the new ensemble air-quality forecast system proposed, the meteorology perturbation
is important to capture ozone temporal and spatial distributions. The emission perturbation is
needed to accurately predict the ozone concentration magnitude. The emission perturbations
are more important than the meteorology ones to capture high (and rarely measured) ozone
concentrations.

The KF successfully removes part of the ozone-forecast bias caused by errors in the model.
The combination of ensemble averaging (unsystematic-error removal) and Kalman filtering
(systematic-error removal) results in the best ozone forecast.

Ensemble and KF methods can indeed significantly improve near-surface ozone forecasts,
even in the complex coastal mountain setting of the Lower Fraser Valley. There are no in-
trinsic limitations to these methods that would prevent their application in real time to other
pollutants in other geographic settings.
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line), and KEK (thick continuous line). If the line passing through the arrow-
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Preface

The goal of this dissertation is to improve our ability to predict the spatial and temporal
distribution of ozone concentration. This goal has been achieved by applying ensemble and
Kalman-filter methods to air-quality (AQ) forecasting.

Some dynamical systems are called chaotic if they show divergent behavior, meaning that
two different solutions starting from similar but not identical initial states would eventually
diverge nonlinearly in solution space. The atmosphere exhibits this behavior, and is thus
a chaotic system. As a consequence there is an upper limit in time on the predictive skill
of weather forecasts. The ensemble approach is one method to represent the time evolution
of the probability density function (PDF) describing the atmosphere’s initial state and its
uncertainty. This PDF can be represented by a limited set of points. The evolution of each
of those points would be a member of the ensemble. Each of those members should ideally
represent an equally likely evolution of the dynamical system. :

It has been found for numerical weather prediction (NWP) that the ensemble-mean is more
accurate that an individual model realization, when verified for many cases. The ensemble
technique yields similar benefits to AQ prediction, because there are similar model complexi-
ties and constraints. Different AQ models can be better for different air-pollution episodes, in
ways that cannot always be anticipated. Similar to NWP ensembles, AQ ensemble members
can be created with different meteorological and/or emission inputs, parameterizations within
a single model, numerics within a single model, and multiple models. Moreover, NWP ensem-
bles have been very useful by providing information about the likelihood of possible future
evolutions of the atmosphere. Similarly, AQ ensembles may be able to provide reliable proba-
bilistic information about possible AQ scenarios. Given the nonlinear nature of photochemical
reactions, an Ozone Ensemble Forecast System (OEFS), and the differences among the en-
semble members, may rapidly account for the uncertainties associated with each component
of the modeling process.

The first chapter introduces chaos theory and reviews the state of research relevant to this
dissertation. The remaining chapters except the last chapter consist of journal papers resulting
from this dissertation research. Thus, these chapters have their own introduction, conclusions
and references. These journal papers are cited on the first page of each chapter. Chapter 2
investigates a multi-model approach to realize an OEFS. Chapter 3 introduces a new AQ
ensemble design, combining meteorology and emission (NO,) perturbations. These successful
experiments prompted the work described in Chapter 4, where also a VOC perturbation is
tested. Also the effects of different horizontal spatial resolutions, emission perturbations, and
driving NWP models on the ensemble performance are investigated. Chapter 5 explores the
application of Kalman-filter postprocessing to AQ forecasts to remove their systematic ozone




errors. Finally, conclusions and recommendations for future work are the subject of Chapter 6.
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Chapter 1

BaCkground |

To understand the potential for ensemble air-quality (AQ) forecasts, one must first understand
the factors that limit atmospheric predictability. Those factors are introduced and discussed
in the next three sections, along with a description of the ensemble approach and its imple-
mentation in weather and AQ forecasts. The fourth section describes the Kalman filter (KF)

algorithm and discusses how it can be used to remove systematic errors in AQ forecasts.

1.1 Chaos; Atmospheric Predictability

1.1.1 Dynamical Systems

A dynamical system is a system evolving from an initial to a future state following physical laws
that can be expressed with mathematical equations. To predict the evolution of such system,
one can integrate the equations, starting from an observed initial state. Unfortunately, often
this initial state cannot be determined precisely, as for the atmosphere.

In some cases, the evolution of a system can be anticipated without describing its initial




state. This is the case of a dynamical system whose evolution is known to havé a periodic
behavior. For example ocean tides can accurately be predicted using the motions of sun,
earth, and moon, and without knowing the initia] spatial distributions of tide height. In other
cases the evolution of a dynamical system cannot be predicted because there is an inexact or
incomplete knowledge of its present state.

Some systems show divergent behavior, meaning that two different solutions starting from
close (but different) initial states would eventually diverge in the solution space. In those cases
we don’t know a priori which of the two solutions is closest to the true evolution of the system.

Poincaré (1897, as described in (Alligood et al., 1997)) first discovered that the motion of a
three-body system is “sensitively dependent on the initial conditions”, introducing for the first
time a so-called chaotic systems. Lorenz (1963) studied the behavior of such systems. The
numerical solution of a sysfem of eql;;i,tions coupled with each other, and/or involving non-
linear terms, can be very sensitive to the initial values of the independent variables describing
the present state of the system.

Regardless of how small is the distance in solution space between the initial states of two
solutions of the same system, these solutions would eventually differ from each other as if they
were randomly chosen. This implies that, for such a system of equations, there is an upper
limit to their predictability; i.e., a limit in time after which one solution (the forecast) does not
possess any useful information about the evolution of the other solution (the real weather).

The phase-space of a dynamical system is the multi-dimensional space of independent
variables. The number of those variables is the dimension of the phase-space. A point in the
phase space is called state. The evolution of the system in time is a set of states that is called

the trajectory, or orbit. A dynamical system shows a chaotic behavior if most trajectories in




the phase-space exhibit sensitive dgpendence to initial conditions (Lorenz, 1993). A trajectory
is characterized by sensitive dependence if most other trajectories that pass close to it at some
point do not remain close to it later. |
The atmosphere shows this behavior, and is thus a chaotic system. We are not able to
accurately measure the initial state of the atmosphere, due to instrumental errors and large
gaps between observations sites. Moreover, we are able to solve only a simplified version of
the equations describing the atmosphere, and those solutions are usually numerical approx-
imations; i.e., they are sources of error as well. As a consequence there is an upper limit
in time to the predictability of the weather. As Lorenz (1963) concluded in his milestone
paper, “When our results concerning the instability of non-periodic flow are applied to the
atmosphere, which is ostensibly non-periodic, they indicate that predigtion of the sufﬁciently.
distant future is impossible by any method, unless the present conditions are known exactly.
" In view of the inevitable inaccuracy and incompleteness of weather observations, pfecise very-

long-range forecasting would seem to be non-existent”.

1.1.2 The Lorenz Model

Lorenz (1963) introduced a three-variable simple model representing finite amplitude convec-
tion, analogous to a tank of water with a heated bottom. Here a brief description of the model

is given, and more details can be found in Lorenz (1993). The following equations represent



this chaotic system:

dx

7 U(y—_m)

d

—d—? = re—y—2xz ‘ (1.1)
d

d_j = xzy—bz

Where o, 7 and b are parameters, and where z is proportional to the intensity of the convection
motion, y is proportional to the temperature difference between the updraft and downdraft,
and z is proportional to the distortion of the vertical temperature profile from linearity (positive
if the s;nrongest gradient occurs nearby the boundaries). The parameter values (chosen from
Lorenz, 1963) were o = 10, r = 28, and b = 8/3.

A family of solutions can be defined by varying those parameter values. Here only one set
of valueé are considered to give a classical example of a chaotic system.

The system (1.1) is dissipative; i.e., the phase space volume contracts along a trajectory.
This can be seen from the divergence of fhe flow:

o 0Oy 0z

i = = = 1 .
3m+3y+82 ,<U+b+) (1.2)

An original volume V contracts with time to the value Ve (et For example the atmo-
sphere (with friction) is a dissipative system. The fact that the system is dissipative as shown
by‘(1:2) implies the existence of a bounded globally attracting set of zero volume, or more
generally, an attractor of dimension smallér than the dimension of the phase-space.

An attractor is a set of states (points in the phase-space), invariant under the dynamics.




A basin of attraction is a set of points in the phase-space such that initial conditions chosen in
this set dynamically evolve to the attractor. Neighboring states in a given basin of attraction
asymptotically approach the attractor in the course of the system evolution. The first portion
- of the trajectory (away from the attractor set) is called the transient.

Lorenz (1965) extended his work by considering a 28 variable model. For the following
discussion, Szunyogh et al. (1997) and Pu et al. (1997) are also valuable references. Lorenz
noticed that the errors tend to grow along selected directions in the phase-space. He observed
how a hyper-sphere around a state, representing a small perturbation of the state in the
phase-space, evolves in time following the system evolution. If the system is chaotic (two
close trajectories-will eveﬁtually diverge completely) the hyper-sphere will initially evolve in a
hyper-ellipsoid, because at the beginning linear effects dominate the system evolution.‘ On(;e
non-linear effects start to become important, the hyper-ellipsoid becomes a “banana” shaped
surface, and a few axes of the hyper-ellipsoid will start to grow more rapidly than others. While
‘those axes will keep growing, the banana shaped surfa/c;e will keep elongating and stretching
along those axes directions. If the system is bounded, this surface will fold on itself several
times, and evenfually will converge into the zero volume attractor with an infinitely foliated
structure (Kalnay, 2003).

More precisely, along each axis the lohg—term average of stretching or contraction of the
solution space is given by e** where \; are called the Lyapunov exponents of the i axis. The
volume of the hyper-ellipsoid is proportional to Vye~(1H+22++3n)t \where V; is the volume of
the initia,l hyper-sphere and n is the dimension of the phase-space. Tf the sum of the Lyapunov
exponents is zero the system is Hamiltonian and it conserves its volume. For a dissipative

gystem, the sum is positive.




In a chaotic system, one or more exponents are positive. The axis associated with them
will grow indefinitely, and will allow the separation of two trajectories initially close to each
other. Moreover, if the system is bounded at least one of the Lyapunov exponents must be
equal to zero.

Lyapunov exponents give us information about global properties of flow evolution, and
for the atmosphere its attractor is climatology. However for weather predictability, the main _
focus is on loéal space and short time stability properties of the_ﬂow. Thereby, local leading
Lyapunov vectors (LLLV) or finite Lyapunov vectors can be defined (Trevisan and Legnani,
1995), to indicate the direction in which the ﬁaﬂmm error growth occurs, locally.' LLLV
can be viewed as the results of defining the Lyapunov exponents for a particular limited space
region, and for a finite period of time.

The concepts introduced by Lorenz (1965) lead to the development of the singular-vectors
(SV) approlach (Molteni and Palmer, 1993). An error term is added to the linearized version
of the system equations, and the solution of the resulting system can be seen as an error-
propagator matriz. The eigenvectors of this matrix multiplied by its transpose are called the
singular-vectors, and their eigenvalues equal the square of the singular values of the matrix.
Those vectors point to the directions of greater error growth, and the adjoint of the linear
model will project the errors back onto the initial state. The singular vectors are extremely
sensitive to the choice of norm and the time period over which they aré applied (Errico and
Vukicevic, 1992).

An advantage of LLLV over SV is the fact that they do not depend on the norm used to
define them. Moreover SVs initially do not point to the attractor, but point to subspaces of

the phase-space where solutions do not usually occur. A disadvantage is that LLLVs grow




much slower than the SV, and initially they do not closely resemble the true error growth.
The Lorenz’s work had important implications for predictability of chaotic systems and
ensemble forecasts as will be illustrated in the next seétion. The error growth of weather
forecasts are highly dependent on the flow of the day, and is bigger along d few directions
in phase space, while along others errors diminish. After a short time, there are only few
dominant directions important to describe the error growth of a dynamical system. Since
the error growth can be characterized with few Lyapunov exponents, only a few ensemble
members with 'appropriate perturbatibns are needed to potentially estimate the dynamical

system evolution better than a single deterministic prediction.

1.2 Numerical Weather Prediction (NWP) Ensembles

The first part of this section is a brief history of the evolution of NWP ensembles; namely,
the use 6f mﬁltiple NWP forecasts to better estimate the future weather and the confidence of
the prediction. This is followed by a description of the ensemble approaches used in the main
operational forecast centers aroﬁnd the world. Last, a closer look at the more recent ensemble

research efforts is given.

1.2.1 NWP Ensemble History

After Lorenz (1963, 1965), the scientific community started to consider the issue of limited
predictability of any non-linear dynamical system with instabilities, such as the atmosphere.
The smallest approximation in the forecast model or the tiniest error in initial conditions will

lead to a total loss of skill in the weather forecast aftér a finite time. He estimated the weather




predictability limit is two weeks, on average, and that the limit for any given day strongl‘y‘
depends on the instabilities associated with the flow of the day.

The Lorenz work inevitably lead researchers to consider the stochastic nature of the atmo-
sphere. Namely, one could follow the evolution in phase-space of a probability density function
(PDF) describing the atmosphere’s initial state and its uncertainty. Althqugh a mathematical
formulation of such system of equations can be formulated thr(;ugh the continuity equation
f;)r probability (Liouville equation, Ehrendorfer (1994)), a solution of it. would imply an over
simplification of the equations themselves, or would require an impossible computational effort.

The ensemble approach comes from the necessity of representing the time evolution of the
PDF describing atmospheric state. The PDF can reasonably be represented by a limited set
of points. The evolution of each of those points would be a member of the ensemble. Each of
those members should ideally represent an equally likely evolution: of the dynamical system.

Gleeson (1966, 1967) and Epstein (1969a) first clearly stated the necessity of a probabilis-
tic prediction, as opposé to a deterministic one, in simulating atmospheric evolution. Their
statement is based on the unquestionable fact that we can estimate the true value of the
atmosphere in only a probabilistic fashion.

In stochastic-dynamic forecastmg, Epstein (1969b) derived a continuity equation for a PDF
representing the model solution. He explicitly forecasted the first and sécond moments of a
PDF related to a simplified version of the Navier-Stokes equations. He concluded that a
stochastic prediction provides better forecasts than a deterministic one, and also gives useful
information about the uncertainty. Unfortunately his approach is completely unfeasible for a
model with millions of degree;s of freedom.

Leith (1974) proposed Monte Carlo forecasting, where a limited number of ensemble mem-




bers was.required to create the ensemble. He randomly created the perturbation of the starting
analysis from which each ensemble member was initialized. He assumed a perfect model; i.e.,
assumed that the model can closely follow the evolution of the atmosphere if initialized cor-
rectly. This is a deficiency of any ensemble that takes into account only the errors associated
with the initial conditions. Nevertheless, he suggested that a Monte Carlo ensemble behaves
similarly to a stochastic ensemble, but is computationally much cheaper. He also noticed that
the ensemble average filters out the unpredictable small scales, and improves the forecast skill
by leaving the bigger scales virtually unaltered. The loss of small-scale features related to av-
eraging is still an open issue in the weather forecasting community (Kalnay, 2003). He finally
suggested that a set of ensemble members as small as eight would lead to adequate accuracy
in the forecast.

After Leith (1974), and after the error estimates in Daley and Mayer (1986), many appli-
cations of the Monte Carlo ensemble forecasts can be found in the literature (Errico and
Baumbhefner, 1987; Tribbia and Baumhefner, 1988; Mullen and Baumhefner, 1989, 1994).
Those works show that the assumption of initial-state errors are limitations of the Monte
Carlo approach, and that the magnitude of ensemble spread is not representative of the error
growth, especially for short-range forecasts.

Hoffman and Kalnay (1983) introduced the lagged-average forecast. The forecast ini-
tialized at the current initial time, ¢ = 0, as well as forecasts from the previous times,
t = —7,—-27,...,(N — 1)7 are combined at a common valid time to form an ensemble. They
weighted each member with its expected error, based on its “age”. They estimated this error
by parameterizing the observed error covariance growth. They found the lagged-average fore-

cast to be slightly better than the Monte Carlo forecast, and they found higher correlation




between error growth and ensemble spread (i.e., differences between the ensemble members) in
their approach. These improvements were achieved because the lagged-average forecast per-
turbations are not randomly chosen, but better capture the error of the day. In the literature

a few other applications of this ensemble approach can be found, as for example in Dalcher

et al. (1988).

1.2.2 Operational Ensemble Forecasting and Recent Advances

In the early 90’s the US National Centers for Environmental Prediction (NCEP) and the
European Center for Medium-Range Weather Forecasts (ECMWF), implemented two new
approaches. The common idea is that the perturbations to create the ensemble members should
be focused mainly on the fastest-growing modes. of the atmosphere. NCEP and ECMWF
obtained similar perturbations, even though there are important differences. Similarities and
differences of these two approaches are illustrated next.

Toth and Kalnay (1993, 1997) introduced the breeding method. The idea is to build a
cycle to “breed” the fast growihg “errors of the day”. A breeding cycle is introduced by
random perturbétions with a given size, measured with any norm. This random approach
must be followed only in the first cycle. The model then is run from the original analysis
(control run) and from the perturbed analysis for a fixed cycle length. At the end of each
cycle, the control run is subtracted from the perturbed forecasts, and the resulting differences
are scaled down to the same amplitude as the initial perturbation. Then they are added to
the new analysi'sl, and another forecast cycle is perforrﬁed. The authors argued that those
differences resemble the fastest growing errors, a desirable feature. They also.suggest that this

method creates perturbations only along those modes that dominate the forecast errors, as
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opposed to a random perturbation that will span mainly onto non-growing modes. Toth and

‘Kalnay (1993) and Kalnay (2003) moreover argue that the breeding method is a nonlinear
generalization of the process used to obtain the Lyapunov vectors. The nonlinear aspect of
the‘breeding method filters out the Lyapunox./ vectors associated with energetically negligible
and fast-growing instabilities as for example convection: A drawback is that the bred vectors
depend on the initial random seed.

Molteni and Palmer (1993) and Buizza (1997) describe a different approach used at ECMWF,
where the perturl')a’tions rely on the SV properties. Th(e SVs depend on the parﬁcu]ar norm
that is utilized, and also on the time over which the operator is applied. The errors can be
projected back onto the initial state by applying the adjoint of the linear model. Since the
SVs represent the axes of the ellipsoid picturing the initial error evolution in the phase-space,
to create the perturbations their values are added and subtracted to the iﬁitia.l conditioris;
Those perturbations are finally scaled down to the magnitude of the analysis error estimate.

Rabier et al. (1996) showed that the day-2 forecast error growth préjects well iﬁto the space
of dominant SVs. Using the information given by the SVs on the directions of t.he most rapid
error growth in NWP models, localized SVs have been used to construct initial perturbations
for the ensemble prediction system of ECMWF (Palmer, 1993; Molteni and Palmer, 1993;
Ehrendorfer and Errico, 1995). |

Ensemble forecasts also provide infqrmation on the reliability of the forecast: if the ensem-
ble members have large spread, this indicates that at least some of them do not represent the
true evolution. The standard deviation of the ensemble members about the ensemble mean is
called ensemble spread. The relationship between the 'ensemblg spread and the forecast error

is not yet well defined (Kalnay, 2003). Nevertheless, it often provides very useful informatioﬁ
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about ensemble skills. Greater spread suggests less confidence in the ensemble mean forecast.

The most promising approach for limited-area (mesoscale) short-range forecasts is the
multi-model ensemble approach (K]qishnamurti et al., 1999; Hou et al., 2001; Toth, 2001; Wan-
dishin et al., 2001), where forecasts from different models form the ensemble members. The
idea is not only to capture the uncertainties in the initial and boundary conditions, but to
also acknowledge that the models contain many uncertainties in their formulation, numerics,
parameterizations, and time and space discretization.

Currently the Canadian ensemble system at the Recherche en Prévision Numérique (RPN)
center is based on a system simulation experiment (SSE) (Houtekamer et al., 1996). In an
SSE, it is considered that all elements of the forecast system, observations, analysis, and
model are subject to uncertainty. The elements of the system are perturbed in different ways
for different members of the ensemble. By considering uncertainty in both the analysis and
the modél, the RPN approach, in its current 16 member configuration, is a true multi-model
ensemble: two completely different models, the older global spectral model (SEF) and the

newer global version of the generalized environmental multiscale (GEM) model are used.

1.3 Ozone

1.3.1 Introduction

Ozone (Og) is a reactive oxidant gas naturally produced in the atmosphere. Figure 1.1 shows
a typical vertical Og profile. Stratospheric levels can reach 10,000 parts per billion (ppb),
whereas background levels near the surface are oﬁly few tens of ppb.

Stratospheric Og absorbs ultraviolet radiation emitted by the sun. In the last 30 years this
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Figure 1.1: Ozone typical vertical profile (source: http://www.al.noaa.gov/WWWHD /pubdocs/
Assessment98).
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layer has partially depleted, partly caused by anthropogenically produced chlorine compounds
(Molina and Roland, 1974; WMO, 1998).

However, this thesis focuses on tropospheric Og, which is increasing primarily because
of increased fossil-fuel combustion by people (WMO, 1986, 1990). Ozone-rich photochemical
smog is the result of chemjcal interactions of nitric oxide (NO), nitrogen dioxide (NO3), and
reactive organic gases (ROGs) - also called volatile organic compounds (VOCs), and sunlight.
Often NO and NO; are classified together as NO,.

Typically, NO, and ROGs are emitted from \‘/ehicular and stationary combustion sources.
ROGs become free radicals via chemical reactions. The radicals or Og (via NO, titration) can
transform NO into NOs. Finaﬂly molecular oxygen (Og) reacts with atonﬁc oxygen (O) to
form ozone. Pollutants can be divided into primary and secondary: the former are gases and
particles that are directly emitfed into the atmosphere from surface or elevated sources (é’.g.,
NO), and the latter are created chemically (e.g., O3) or physically within the atmosphere.
A detailed description of the chemical transformations involved in tropospheric O3 formation
can be found in Jacobson (1999) and Seinfeld and Pandis (1998).

The chemical pathway summarized above can be described with a set of nonlinear equations
representing the chemical reactions. The Oz production depends on the concentration of
primary pollutants that lead to its formation. Those pollutants have lifetimes that may differ
significantly from one another. Ozoné, once formed, can reside in thé atmosphere a month
or longer, but is often titrated by contact with the earth’s surface. This leads to seasonal,
synoptic, diurnal, and subdiurnal variations of ozone concentration at the surface and aloft

(Hogrefe et al., 2001).

Meteorology is an important factor affecting photochemical pollution creation, transport,
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and deposition. Sunlight allows photochemical reactions, and its intensity directly governs
photolysis rates. Local and mesoscale flows mainly determine the distribution of pollutants:
sea and land breezes, katabatic and anabatic winds, and valley flows. They all can play an
important role in the development of air quality. Moreover specific synoptic conditions usually
are necessary for photochemical pollution episodes to happen in diffefent locations. High-
pressure systems at the surface and aloft, surface thermal lows, subsidence and entrainment
in the Atmospheric Boundary Layer (ABL), and stagnation conditions all may affect the
composition of the air we breathe.

Tropospheric Og has been recognized as an harmful gaéeous pollutant for many years.
Oxidant pollutants can affect negatively the human respiratory system (for example, Horvath
and McKee, 1994; Brauer and Brook, 1995). Og exposure reduces lung funétion, and aggra-
vates existing respiratory diseases, such as asthma. The degree of adverse respiratory effects
produced by O3 depends on several factors, including concentration and duration of exposure,
climate characteristics, individual sensitivity, and preexisting respiratory diseases.

Og3 is one of the most damaging air pollutants to plants. Og can be advected by the wind
acrosé‘ great distances to cause damage to plants far from its origin. The extent of plant damage -
depends on the concentration of Og, the duration of exposure, and plant sensitivity. Acute
damage has been observed to both deciduous trees and conifers (Runeckles, 2002). Finally,
ozone can also damage materials. For example rubber and plastic products deteriorate quicker

if exposed to high ozone concentrations (Brown et al., 2001).
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1.3.2 QOzone Forecasts

Tropospheric O3 has been designated a “criteria pollutant” since 1970, and hoalth standards
have been set since then in many countries. Those standards try to account for the natural
variability of Og, and for raré events. For example in Canada, the National Ambient Air
Quality Objectives (NAAQOs) set the maximum 1-hour average concentrations to 82 ppb.
From 2010, a new Canada Wide Standard (CWS) will be set to 65 ppb for the 4** highest
8-hour averaged concentration during a span of three consecutive years (CCME, 2000). In the
US, the 1997 Clear Air Act Revision (EPA, 1997) set the O3 8-hour averaged standards to 85
ppb for the 37 highest reading over four years:

The discovery of ozone’s harmful effects on humans and vegetation led to two outcomes:
thc necessity of iséuing AQ forecasts; and the need to limit and control adverse anthropogenic
ennssioné. Although O3 forrnation is extremely complex, its maximum concentration is well
correlated to weather parameters, and its variations can be described with fewer meteorological
predictors. For these reasons, different attempts have been made to design simple ways to
pfedict O3 maxifna at a specific location or over a prescribed épatial domain. Statistical
approachés include multiple-regression analysis (Ryan, 1994), nonlinear regression (Hubbard
and Cobourn, 1997), neural networks (Ruiz-Suarez and Mayora-Ibarra, 1995), classification
and regreséion tree schemes (CART) (Burrows et al., 199'5), and hybrid approaches (Liu and
Johnson, 2002). A comprehensive discussion of these techniques and their forecasf skills can
| be found in EPA (2003). The statistical approaches have limited, if any, description of physical
and chemical processes; they usually predict only the maximum concentration, and they have

difficulties in anticipating rare events. Moreover they can be applied only over areas with large

16




data availability, and this limits théii‘ aﬁplicability mainly over metropolitan areas (EPA, 2003).

Ainslie (2004) proposed a scaling-levél model for ozone photochemistry, where a dimgn—
sional analysis was used to categorize the relevant variables in different dimensionless groups.
The relationship between the groups can be parameterized with a simple expression. The
model appeared to capture the ozone dependency on meteorological conditions and precursor
concentrations, resulting in a useful screening tool.

To better account for all the processes and variables involved in Og formation, a complex
3-D modeling system is needed. For regional AQ forecasts, such a system should include a
mescl-)scale model to produce the meteorological fields, an emission iﬁventory processor, and
a chemistry and transport model. With such a system the population can be alerted about
impending air-quality degradatioﬁ in urban, rural, and remote areas. Such forecasts provide
much more detailed spatial and temporal information, allowing better decisions regarding
daily activities. Daily AQ forecasts can give insights into peculiarities of pollutant behavior in
specific regions, such as winter valley particulate matter down-transport, tropopause folding,
and gravity-wave breaking over the Fraser Valley and South West British Columbia (Hacker
et alj, 2001). AQ forecasts can be useful for prescribed forest fires and agricultural field burning
to minimize smoke impact on the local population and on regional haze (e.g., Achtemeier et al.,
2005). Moreover, 3-D AQ models can be used to plan long-term emission controls to reduce
the impact of pollution on population (e.g., Jonson et al., 2001).

" Dabberdt and Miller (2000) confirm the need for an operational AQ forecast system, and
recommend the use of probabilistic approaches as is already used in weather forecasts. The
first experiences in this direction are described in Delle Monache et al. (2004), McHenry et al.

(2004) and Vaughan et al. (2004). Finally the need for AQ probabilistic forecasts, which are
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the subject of this thesis, have been promoted also by the U.S. Weather and Research Program

and its Prospectus Development Team on Air Quality Forecasting (Dabberdt et al., 2003).

1.3.3 Ensemble Trajectory Modeling

This section reviews ensemble dispersion studies, where air parcel paths, also called trajectory
(not to be confused with the deﬁnition given in Section 1.1), are modeled. Most studies
estimate trajectory errors by simulations that verify for the same period. They share the basic
premise that deterministic model prediction cannot reliably represent pollutant trajectories.

In early work, Merrill et al. (1985) computed isentropic trajectories using data from the
1979 Pacific Sea-Air Exchange (SEAREX) experiments. They computed trajectories kine-
matically using grid-point values of geopotential height and wind provided by ECMWF. The
authors assert that single trajectories are of limited usefulness, because of the uncertainties
in their calculationé and in the data. Therefore, they computed an ensemble of trajectories
with nine to 19 ensemble members by perturbing the initial conditions. They recognized that
trajectory-calculation precision was affected by: the assumption of adiabatic flow, the exclu-
sion of precipitation and particle gravitational setting, and the data void in remote areas of
the Pacific Ocean. Those factors forced them to consider a probabilistic approach.

They also tested the trajectory sensitivity to the meteorological analysis. For a few cases,
they used bOti’l ECMWF and National Meteorological Center (NMC) global analyses, where
the latter had coarser resolution. They realized that trajectories can be sensitive to differénces
in meteorological inputs. Moreover, for different trajectories that verify for the same period
and domain, they associated the ensemble spread to information on the intrinsic predictability

of the flow.
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Stohl et al. (1995) identified interpoiation errors as a major problem in trajectory compu-
tation. To estimate those errors, they .suggested creating an ensemblé of trajectories by adding
random errors at each time step to a reference trajectory.

Similarly Kahl (1996) studied the relationship between errors in predicted trajectories
and the instability associated with the meteorology. He defined a meteof‘ological complexity
factor (MCF) to forecast médel—trajectory errors. MCF is the average distance between the
trajectories and a reference trajectory. He assumed that trajectory uncertainty could be
predicted as a function of the MCF. The weakness of this approach is that the magnitude
of the MCF depends critically on the integration time step.‘

He computed MCF using results from 22 published studies. He also used a Monte Carlo
simulation to compute 144,000 different trajectories by superimposing random perturbations
upon the wind field used to compute the reference trajectory. The author found that the error
growth may be unstable with respect to small perturbations in the wind field. This behavior
closely resembles the description of a chaotic system. The author concluded by encouraging

[43

as future development “...a methodology for predicting the confidence which one may place

”

in individual trajectory calculations...”. One methodology could certainly be the ensémble
approach.

Baumann and Stohl (1997) analyzed a 4-day record of gas balloon tracks during an inter-
national long-distance ballooning competition. They compared the balloon trajectories using
ECMWF meteorological analyses, and they ran a modified version of the model FLEXTRA
(Stohl et al., 1995), taking into account balloon ascent and descent. In addition to a reference

trajectory they calculated 100 ensemble trajectories. They started the ensemble trajectories

from a 100 km radius circle around the reference starting position, which was the grid reso-
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lution of their meteorological data. To consider interpolation errors they also perturbed the
horizontal wind field, by adding normally distributed random errors to the reference field. The
authors recognized that those ensembles did not account for the errors embedded in the wind
analysis. Moreover, they did not account for uncertainties in the vertical wind. Nevertheless,
they concluded that their ensemble usually enveloped the balloon tracks, iﬁdicating that the
errors neglected from their ensemble approach were small. The ensemble provided useful infor-
mation about the computed trajectory uncertainties. The au“uhors noticed a good qualitative
correlation between the uncertainties and the ensemble-member spread.

Stull et al. (1997) considered the potential benefit of ensemble AQ dispersion modeling,
analogous to the benefit for weather eﬁsemb]es. They perturbated the weather analysis for the
Global Spectral Model of NCEP to generate a set of equally-likely initial conditions to initial-
ize two weather mesoscale models, the Canadian Mesoscale Compressible Model (MC2) and
University of Wisconsin Nonhydrostatic Modeling system (UW-NMS). The authors speculated
about trajectory behavior, fofecast confidence and predictability.

- Straume et al. (1998) used a Lagrangian dispersion model, the Severe Nuclear Accident
Program (SNAP). Ensemble meteorological forecasts produced by ECMWF (where the ensem-
ble perturbations are calcu]afed using singular vectors) were used as input to study starting-
analysis error growth associated with atmospheric instabilities (Section (1.2.1)).

The 32 ensemble members plus the control forecast were processed with the High Resolution
Limited Area Model (HIRLAM). The 33 ECMWF forecasts output data every 12 hours for
five vertical layers. HIRLAM transformed this data into a data set with values every six hours
onto 32 vertical layérs.

Straume et al. (1998) compared their simulation results with the European Tracer Exper-
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iment (ETEX), which includes measurements of two tracers released in France during south-
westerly flow in October and November 1994 (Nodop et al., 1998). The traéers weré measured
over a period of 72 hours for both reieases.

The ensemble members and the control forecast were used as inputs to the SNAP model,
to realize 33 dispersion simulations for the. same doﬁain and time period. To estimate the
weather predictability, Straume et al. (1998) computed the root-mean-square deviation (rmd)
of the computed concentrations from the control forecast. Because of the strong dependence of
this value. upon the geographical area (due to some grid points containing zero tracer concen-
trations) the authors érgue that those deviations are qualitative measurements of uncertainties
of the meteorological input. The rmsd grows from 0 to 4 % or less for the first three days, and
reaches an average value of 7 % after 72 hours from the release. The authors also computed
the centroid position for both the modeled and measured dispersion, and found an uncertainty
of the model between 10 and 20 %, with a distance between the two centroids between 20
and 90 km for the first 21 hours, and a maximum of 300 km after 48 hours. Even though the
modeled and measured puff arrivals were significantly correlated, the authors found an average
of 6 hours delay of the model puff afrival at the stations compared to what was measured.
The puff durations were not correlated.

Dabberdt and Miller (2000) simulated .an actual three hour accidental release of oleum in
the city of Richmond, in the San Francisco Bay Area. They ran a non-steady-state puff-type
dispersion model driven by a diagnostic mass-consistent wind field model. They argue about
the utility of a probabilistic approach, particularly in cases of accidental releases, when there
are scarce meteorological measurements, and scarce background concentration data.

The authors generated 162 ensemble members by perturbating the stability classes, the

21




wind speed and diréction, the source strength, and the plume rise. They clearly showed how
the iniormation that can be extracted from the ensemble could help the decision makers in
taking the most appropriate and feasible actions.

Galmarini et al. (2001) developed a Real Time Model Evaluation (RTMOD) procedure,
whose aim is to improve the ability to simulate long-range dispersion processes for nuclear
emergency applications (Bellasio et al., 1999). Their ensemble is formed by more than 20
models run by different organizations around the world to predict the transport and deposition
of radioactive releases in the atmosphere. They tested ensemble performance by comparing
the model prediction against each other and against observations during the ETEX experi-
ment (Nodop et al., 1998). The ensemble is created by perturbating the initial conditions,
and by using multiple models, where the uncertainties of all the dispersion mode]ing process
are somewhat taken into account. With the ensemble, the authors could estimate forecast
uncertainty, and coﬁld indicate which parts of the domain are more likely to be exposed to
fhe dispersed contaminanf. Moreover, the ensem’ble gives clues on the reliability of this infor-
mation. The authors argued that such a multi-model system could be useful for operationéul
decision-makers, and for modelers to check systematic model errors and general tendencies in
their prediction.

S%raume (2001) extended the earlier work of Straume et al.. (1998), by further evaluating
the HIRLAM model. The author found that the ensemble mémbers close to the .control
forecast, as measured with one s‘;atistical par'ameter, were not necessarily close if a different
parameter was used. She computed the bias, the Pearson correlation coefficient, thé figure of
merit in space, the absolute horizontal transport dem’atio.n, and the relative horizontal transport

deviation. She also compared the SNAP results with 34 dispersion models that participated
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in the ETEX experiment, arguing that the errors in the meteorological input fields and in
the model formulation are important throughout the simulatic').n period, whereas the analysis
error starts to be important only after the first day of simulation. The ensemble mean was
more reliable than the control forecast in predicting 'phe arrival of the contaminant at a given
location, but was less reliable in predicting non-arrival e\'/ents. Moreover, the ensemble mean
predicted the puff trajectory better than the control forecast. Finally, the author noted that
the selection of ensembles that are based upon singular vectors, which show the greatest growth
at longer times, might not be the most appropriate for shorter-range-dispersion forecasts.

Scheele and Siegmund (2001) used the ECMWF wind data for the period 4 to 28 April 1998
to estimate the uncertainty in the trajectory of a transported air parcel, using the ensemble
approach. They investigated how the accuracy of the forecasted trajectory is related to the
énsemble spread and to other ensemble properties. Théy defined the middle member of the
ensemble trajectories (MMT), the operational forecast data (FCT), the control forecast member
(CRT), and the bias of FCT (BIA), as the root-mean-square distance of the FCT from the
members of the ensemble.

Their results show a “modest but signiﬁcantly positive” correlation between MMT and
BIA, particularly at the beginning of the run. Also the difference between FCT and CRT is
large, because of the different resolutions at which they are pomputed. The authors argue
that for this reason the FCT uncertainty can be computed, but its actual position cannot.
Nevertheless, the possible positions can be computed by adding the uncertainty, estimated
with the ensemble, to the FCT, bécause a higher spatial and temporal resolution FCT is more
accurate than MMT, especially when BIA is large. However, after two days of simulations

they found that the contrary is true.
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Warner et al. (2002) simulated an hypothetical dispersion of a toxic gas near Al Muthanna, -
Iraq, during the 1991 Gulf War. They tested an ensemble created by coupling the Penn State-
NCAR Mesoscale Model (MMS5) with the Second Order Closure integrated Puff (SCIPUFF)
Lagrangian dispersion model. The authors created 12 ensemble members by running MM5
with different boundary-layer parameterizations, different surface physics, and different.la‘rge-
scale analyses used as a first guess and for the lateral boundary conditions. They found that the
uncertainties in the dynamic meteorological model can be quantified, using the ensemble dosage
prbbabilities,.in a much more efficient way than with a single deterministic forecast. Moreover
Warner et al. (2002) used the ensemble fields to genera;te the wind-field variances, which
were then used directly in the dispersion model to compute the air concentration probability
function.

Draxler (2003) used the same approach as Baumann and Stohl (1997), to study the sen-
sitivity olf dispersion to trajectory errors. The dispersion model was a modified version of
the Hybrid Single-Particle Lagrangian Integrated Trajéctory model (HYSPLIT). The mete-
orologicél input field was provided by the NCEP Natiqnal Center for Atmospheric Research
reanalysis project. The ensemble results were compared to measurements done over a period
of three months, during the Across North América Tracer Experiment (ANATEX; Draxler
et al. (1991)). In building their ensemble system the author assumed that the errors in the
plume position are mainly dependent on the error in the particle trajectories. The 27 ensem-
ble members were célculated by offsetting the meteorological fields by £1 grid point in the
horizontal and +250 m in the vertical direction. The rationale behind this approach is that
the meteorological field depends strongly on the limited spatial and temporal resolution used -

in the analysis, and that only prbcesses larger than the actual grid size can be described and
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resolved.

Draxler found that the cumulative distribution of the ensemble probabilities was similar
to one of the concentration measurements, but he also found that the distributionvof those
probabilities was not uniform. This is not a desirable feature of an eIisemble, where, ideally,
each member should be equally likely. The author argued that this could be attributed to the
sensitivity of the release height. He also found that the ensemble accounts for approximately
41 % to 47 % of the variability of the measurement data, and this can be attributed to the

fact that not all the errors embedded in this dispersion modeling processes and in the data

are accounted for with this specific ensemble design.

Delle Monache and Stull (2003) analyzed for the first time the benefit of the ensemble

approach in studies involving not only the pollutant transport, but also the associated pho-

tochemical reactions. Their ensemble was composed of four Chemistry Transport Models

(CTM). Details on this study are given in Chapter 2.

In Galmarini et {;iil. (2004a) the ensemble approach and its application to long-range trans-
port and dispersion studies is rigorously presented. The authors introduce ad-hoc statistical
treatmenﬁs and parameters that nicely summarize the extensive information provided by an
ensemble system. They also prove the superior forecést'skills of the ensemble when com-
pared to any single deterministic forecast representing an ensemble member. The parameters
they introduce are space overlap (SO), agreement in threshold level (ATL) and agreement in
percentile level (APL).

Following this study, Galmarini et al. (2004b) used the data collected during the ETEX
experiment (Nodop et al., 1998) to quantitatively estimate the concepts and parameters in-

troduced in Part I of their coupled papers. They tested a multi-model ensemble dispersion

25




system, by considering several operational long-range transport and dispersion models (run in
various European centers, in the US, and Canada) used to support decision making in case of
accidental releases. The parameters they proposed were shown to be well suited for long-range
transport ‘and dispersion models. The m member of the forecast ensemble exhibited the
best forecast skill. This differs from most ensemble weather forecasts, where the ensemble
average is usually used. Finally the authors speculated that those parameters could also be

applied to short-range dispersion and weather fields.

1.4 Systematic-Error Removal

Three-dimensional, coupled, NWP and AQ models do not usually make perfect forecasts in
spite of their high level of physical detail and spatial resolution. For NWP models, statistical
postprocessing known generally as model output statistics (MOS) had been used for many
decades by the large government forecast centers to improve the raw NWP output. One such
MOS method is called Kalman filtering (KF), which is a recursive algorithm to estimate a
signal from noisy measurements (Homleid, 1995; Roeger et al., 2003).

Detaiis of the KF method are given in Chapter 5. In summary, it uses a predictor-corrector
approach to estimate future forecasts biases from past biases. When this future bias is com-
bined with a NWP forecast of future' weather, the result removes a large portion of the sys-
tematic error of the forecast, and can also remove a small portion of random error. In short,
it yields a much more accurate forecast.

It will be shown in this dissertation that the KF is also very effective at improving the

accuracy of AQ forecasts.
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1.5 Research Goals and Activities

The ultimate goal of this research is to improve real-time short-term forecasts of tropospheric
pollutants such as ozone measured at near-surface receptor sites.

This research is based on the hypothesis that the ensemble techqlique and Kalman-filter
postprocessing can be transferred to AQ modeling, and can potentially yield similar benefits as
for NWP. The method is 3-D mesoscale NWP modeling coupled with 3-D chemical numerical
modeling. The procedure is to run these models using real emission inventories for real ozone
episodes, and to calibrate and verify the results against actual near-surface ozone observations.

To accomplish these goals, the following research work is conducted:

¢ The realization and test of an AQ ensemble built on a previous photochemical model
intercomparison study (see Chapter 2). This preliminary work demonstrated the value of
ensemble AQ forecasts, and opened the door for the subsequent, more-detailed research

that followed.

e The realization and test of a new AQ ensemble design, created by perturbating the
input fields that most affect the uncertainty of the AQ photochemical models; i.e., the

meteorological and the emissions fields (see Chapters 3 and 4).

e The realization and test of probabilistic forecasts resulting from ensemble methods (see

Chapter 4).

e The realization and test of a new way to remove AQ forecasts systematic errors, based

on the KF-predictor algorithm (see Chapter 5).

¢ Investigation of possible generalizations deduced from the results of the AQ-ensembles
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and KF corrections implemented and tested during this research (see Chapter 6).
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Chapter 2

An Ensemble Air-quality Forecast
Over Western Europe‘During an

Ozone Episode

2.1 Introduction

! Ensemble forecasting of the weather has been increasingly evaluated over the past decade,
and found to provide better accuracy than any single Numerical Weather Prediction (NWP)
model (quus and Kalnay, 1995; Molteni et al., 1996; Du et al., 1997; Hamill and Colucci,
1997; Toth and Kalnay, 1997; Stensrud et al., 1998; Krishnamurti et al., 1999; Evans et al.,

2000; Kalnay, 2003). Transfer of this technique to air-quality (AQ) modeling can potentially

1A version of this chapter has been published. Delle Monache, L., and R. Stull, 2003: An ensemble air-
quality forecast over western Europe during an ozone episode, Atmospheric Environment, 37, 3469-3474.
Published as “Fast Track”, i.e., “..for papers that contain important and topical results whose significance
merits fast publication.”.
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' yield similar benefits. This note briefly reviews ensemble methods for NWP, and evaluates
Vone method applied to AQ modeling.

NWP models are extremely complex computer codes that approximate with finite differ-
ences the nonlinear interaction among dynamic, therr‘nodynamic7 radiative, cloud microphys-
ical, turbulent, and many ‘other processes. Different models verify best on different days,
usually in ways that cannot be anticipated. Sometimes one model is better because of its
physical parameterizations, other times because of the underlying discretization methods, and
other times because of different initial conditions.

. But when output from different NWP models, or from different realizations of the same
model, are considered toéether as an ensemble, it is found that their ensemble average is
usually more accurate that any individual model realization. More specifically, the ensemble
average is not the most accurate every day. But when verified for many cases, the ensemble
average is the most accurate for more of the days thén any ‘other single ensemble member
(Kalnay, 2003).

Modern photocherhical AQ models are equally large and complex séts of computer code
that describe hundreds to thousands of chemical reactions, plume rise from myriads of sources,
dispersion induced by different turbulence mechanisms, and transport in boundary layers of
varying stratification and in complex terrain. To make matters worse, the AQ models are often
driven by NWP models, which introduce their own signature and imperfections. Different AQ
models are better for different air-pollution episodes, also in ways that cannot always be
anticipated. Sometimes one model might be better because of its choice of chemical reactions

"or rate constants, other times »because of the turbulence and boundary-layer description, and

other times because of more representative emission or meteorological inputs (Hass et al., 1997;
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Russell and Dennis, 2000).

For NWP, ensembles have been created with different inputs (Toth and Kalnay, 1993;
Molteni et al.; 1996; Wandishin et al., 2001) (initial conditions, boundary conditions), differ-
ent parameterizations within a single model (Stensrud et al., 1998) (physics packages, param-
eter values), different numerics within a single model (Thomas et al., 2002) (finite difference
approximations and solvers, grid resolutiong, compiler optimizations), and different models
(Hou et al., 2001; Wandishin et al., 2001). This has been done in order to allow the ensem-
ble to take into account different sources of uncertainties. For AQ, the ensemble-mean can
be created similarly with different inputs (background concentrations, emissions inventories,
metéorology), different parameterizations within a single model (chemistry mechanisms, rate
constants, advection and dispersion packages), different pumerics within a single model (finite
difference approximations and solvers, grid resolutions, compiler optimizations), and different
models.

For both NWP and AQ, the different models usually include differences in numerics and
* parameterizations. In this Chapter the multi-model (each model having different .initial and
boundary conditions) approach is tested, based on a rea.nal-ysis‘ of the intercomparison study
done by Hass et al. (1997). Using predicted ozone time series of concentrations from four mod-
elé, an ensemble—meén is computed and tested against the obser\lfations, and its performance

is compared with the performance of each single model.

2.2 Data

Hass et al. (1997) intercompared four photochemical dispersion models: the European Monitof-
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ing and Evaluation Programme (EMEP) model (Simpson, 1993), the European Air Pollution
Dispersion (EURAD) model (Hass et al., 1993), the Long-Term Ozone Simulation (LOTOS)
rﬁodel (Builtjes, 1991) and the Regional Eulerian Model with three different chemistry schemes
(REM3) (Stern, 1994). EMEP is a one-layer Lagrangian photochemical model. EURAD is
a comprehensive, multi-layer Eulerian model. LOTOS and REM3 are three-layer Eulerian
~ models, but REM3 also includes three different chemistry schemes.

These models have different computational domains (with different horizontal and vertical
resolution), different initial and boundary conditions (for both emissions and meteorological
fields), and different model formulations (different advection schemes and chemical mecha-
nisms).

Each model also uses different emission data. The differences can be of the order of two
(EURAD-LOTOS for the biogenic VOCs) or three (REM3-LOTOS for terpene). Moreover,
the way the models split the VQC amouﬁt into anthropogenic and biogenic categories are
significantly different. Also there are large differences in the importance terpene assumed in
the four models.

The meteorological fields driving the four models are different. EMEP and LOTOS are
driven by the Numerical Weather Prediction model of Gronas and Hellevik (1982), and both
take the mixing heights from observation. EURAD is driven by the MM5 model (Grell et al.,
1994), nudged by large-scale analysis from the European Center for Medium Weather Fore-
casts. The REM3 meteorological field is derived entirely from observations. Thus, the differ-
ences between the resulting meteorological fields are quite large. There are also differences
in how the models consider the interactions between the meteorology and the chemistry. For

example, to compute chemical-reaction rates, EMEP uses an average boundary-layer temper-
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ature, whereas the other models use the layer-average temperature for each layer within the
boundary layer.

Hass et al. (1997) selected a case-study episode that covered the six-day time period of 31
July through 5 August, 1990. This was a hot summer period with high ozone concentrations
(up to 140 pbbv) in northwestern and central Europe. A high-pressure ridge formed on 31

‘July over the North Sea, resulting in dry warm continental air over western Europe. This
synoptic system moved toward Denmark on 2 August, and then to Poland on 4 August. The
ozone episéde ended after a frontal passage between 4-5 August. Further details about the
models and the ozone episode, as well as about the emission data, can be found in Hass et al.
(1997). |

We verify the four model predictions, and the ensemble—me@n against the observed ozone
concentrations at five different sites. The sites are Sibton (United Kingdom), Kollumerwaard
(The Netherlands), Waldhof (Germany), Lindenberg (Germany) and Réervick (Sweden). The

ensemble is computed as a simple, unweighted average over outputs from the four models.

2.3 Results

Figure 2.1 shows the ozoﬁe time series as predicted by the models aﬁd as observed at Sibton
(U.K.), from 31 July to 5 August 1990. This is an example where the ensemble-mean concen-
tration benefits from the spread of the predicted concentrations with respect to the observed
values. The ensemble average is overall the best forecast, except the fourth day of the episode,
when all the models considerably under-predict the observed ozone concentration. Table 2.1

shows, for each station, the following statistics:
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Figure 2.1: Observed, modeled, and ensemble-mean ozone concentration (ppbv) for the episode
at the site Sibton (U.K.).
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normalized gross error (GE) (heréin “gross error”, for hourly observed values of O3 > 60 ppbv)

_ l ICP($7ti) — Cﬂ(x’ti)l
GE =+ Zl oot | (2.1)

and

unpaired peak prediction accuracy (UPPA)

Co(z,t — Cy(z,t
vppa— So® s~ Co(3,t)
Co(x)t)ma:c

maz | (2.2)

where N is the number of hourly concentrations over the episode, C,(z,t;) is the observed
value at the monitoring station located at z for hour ¢; , Cp(x,t;) is the predicted value at

the monitoring station located at z for hour t;, Co(m,t')

mag 18 the maximum 1-h observed

concentration at a specific monitoring station over one day, and Cy(zx, t') mag 18 the maximum
1-h predicted concentration at a specific monitloring station over one day.
These two statistical parameters are included in the US Environment Protection Agency
gui(_ielines (EPA, 1997) to anaiyze historical ozone episodes using photochemical grid models. v
"The EPA acceptable performance upper limit values are + 35 % for gross-error, and + 20 %
for unpaired peak prediction accuracy. In Table 2.1 the bold values are the ones that satisfy
those criteria.
The gross-error values satisfy the EPA criteria in every case. The ensemble gives consis-
fently the best or the second;best forecasts over the six monitoring stations. The second-best
overall performance in terms of gross-error are given by both REM3 and LOTOS, while EU- °

RAD and EMEP have somewhat poorer performance. Performances from all the models are

quite erratic compared to the smoother behavior of the ensemble, suggesting that the ensemble
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Table 2.1: Model ozone-performance statistics [gross error (GE) and unpaired peak prediction
accuracy (UPPA)| for 31 July to 5 August episode, at the sites Sibton (UK), Kollumerwaard
(the Netherlands), Waldhof (Germany), Lindenberg(Germany) and Réervik (Sweden). Values
in bold are within the EPA acceptable performance criteria.

Station Model GE (%) UPPA (%)
: 31 July 1Aug. 2Aug. 3 Aug. 4 Aug. 5 Aug.
Sibton EURAD 17 -13 10 -28 -6 -1 -19
REM3 15 8 11 12 -21 -25 -7
EMEP 29 -6 28 23 -23 . 11 -9
LOTOS 22 -6 7 11 -26 -19 0
Ensemble 16 -9 6 3 -22 -9 . -2
Kollumerw. EURAD 24 -12 -19 -29 3 25 -10
REM3 20 24 28 12 10 5 -41
EMEP 22 18 20 -24 -12 -8 123
LOTOS 21 18 22 23 -24 -24 22
Ensemble’ 13 11 9  -19 -6 -7 42
Waldhof EURAD 17 -9 1 0 -10 -31 -9
REM3 10 2 41 35 22 -3 -39
EMEP 20 3 11 1 -10 -25 6
LOTOS 22 -7 16 7 -7 -35 3
Ensemble 13 -5 15 8 -3 -29 -11
Lindenberg EURAD 17 -6 36 40 25 6 18
: REM3 28 28 97 97 67 45 -5
EMEP 19 -10 13 43 42 15 15
LOTOS 11 -19 31 51 33 4 5
Ensemble 13 -6 39 54 39 12 7
Réervik EURAD 22 8 12 14 10 33 13
REM3 24 23 10 2 -5 -43 26
EMEP 15 35 -2 4 -1 -5 13
LOTOS 19 19 13 25 -9 -35 39
Ensemble .16 19 5 8 -5 -35 25
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might be able to take into account most of the uncertainties by filtering out the unpredictable
components.

The unpaired peak accuraéy for the six-day episode and over the five stations shows good
performance of both EURAD and the ensemble, both having 73 % of the unpaired peak
accuracy values within the EPA acceptance criteria. They are followed by EMEP with 66 %,
LOTOS with 53 %, and REM3 with 43 %. A similar ranking is obtained when only observed

peak ozone values above 60 ppbv are considered (not shown here).

2.4 Discussion

The case study investigated here suggests that a photochemical-model ensemble average can
give a better result than a single model deterministic forecast. Because the limited size of
the data set available, dnd most importantly because of the limited spatial separation among
the stations relative to the coarse grid spacing of the models domains, these results are not
spatially independent and cannot be generalized until further investigations are made.
Ideaﬂ)ll the ensemble should be composed of state-of-the-art photochemical models that are
run starting from the best poséible emissions séenario, as well as with the best possible mete-
orological fields. The meteorological fields can be indeed different for different photochemical
models, since each of them is oBtained differently (ﬁofn different mesoscale models, and then
different starting analyses, map projections, domain grids, etc.). Moreover, the different model
formulations, i.e., the different advection and turbulence transport scheimes and the different
chemical mechanisms implemented in each model, should assure a good ensemble spread, which

is desirable to define likely bounds of possible pollutant-concentration fields. The uncertainty
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in each of those components is partially averaged out by the ensemble approach.

The ensemble testedbin this study has many of those desirable features. For example, the
differences between the emission data of each model (sometimes of the order of two or three), in
both the initial and boundary conditions, can take in account the uncertainty in the emissions
estimates (a factor of three or more), and is the dominant limitation in photochemical model
performance (Russell and Dennis, 2000). As shown clearly by Hass et al. (1997) with backward
trajectories, the difference in the modeled meteorologi@l fields will strongly influence the final
concentrations, and the ensemble might account for those uncertainties as well.

For NWP ensembles, errors typically grow linearly at first, and nonlinearly later (Kalnay,
2003). However, the linear period might me reduced in AQ ensembles because of the strongly
nonlinear nature of many chemical reactions. For this reason, the differences among AQ
ensemble members may account for .the uncertaintiés associated with each component of the
AQ process more rapidly than what is observed for NWP ensembles.

Because not all of the photochemical models used NWP meteorological fields as input for
this study, it is not clear if the benefit of the ensemble accrued because of the ensemble of
photochemical air-pollution forecasts, or because of the ensemble of input meteorological fields.
The benefit of using a NWP ensemble for the meteorological input has been proven in other
ensemble applications for air-quality forecasts, namely for transport and dispersion without
the chemical processes (Stull et al., 1997; Stréume et al., 1998; Dabberdt and Miller, 2000;
Galmarini et al., 2001; Straume, 2001; Warner et al., 2002).

Another aspect that emphasizes the utility of the ensemble approach, is the fact that the
model grids used in this study are completely different in both resolution and location. Again,

these differences lead to different parcel trajectories, and this would allow the enserﬁble to take
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into account the uncertainties related to the different but plausible choiqes of the grid location
and resolution adopted from each of the models that form the ensemble.

Once an ensemble forecasting system is implemented sufficiently long at a specific site, the
ensemble-mean capabilities might be improved by taking into account the past pérformances of
each single model in conditions similar to present conditions. Namely, one can by performing
a weighted ensemble-mean, give more importance to the forecasts that historicélly perform
better than the others. This approach has not been tested here due to the small size of the ‘
data set available.

Ensemble forecasting can also provide probabilistic forecasts based on the spread of the
ensenble me}nbers. For instance, the probability that ozone concentration can be greater
than a specific threshold on a specific site, can be easily computed as the ratio of the ensemble

members that satisfy this condition, over the others that do not.
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Chapter 3

Ozone Ensemble Forecasts. A New

Ensemble Design

3.1 Introduction

! The harmful effects of tropospheric ozone on humans (Horvath and McKee,. 1994; Brauer and
Brook, 1995), vegetation (Runeckles, 2002) and materials (Bréwn et al., 2001) motivate the is-
suance of air-quality (AQ) forecasts, and the need to limit and control anthropogenic emissions
of ozone precursors. To alert the population about impending AQ degradation, Dabberdt and
Miller (2000) discussed the need for an operational AQ forecast system. The first experiences
with this kind of system are described in Delle Monache et al. (2004), McHenry et al. (2004)
and Vaughan et al. (2004). A probabilistic approach to AQ forecasting is recommended by

the U.S. Weather Research Program and its Prospectus Development Team on Air-Quality

LA version of this chapter has been accepted for publication. Delle Monache, L., X. Deng, Y. Zhou, and
R. B. Stull, 2005: Ozone ensemble forecasts. Part I: a new ensemble design, manuscript accepted in November
2005 to be published in the Journal of Geophysical Research.
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Forecasting (Dabberdt et al., 2003) due to the chaotic nature of the atmosphere.

Some dynamical systems are called chaotic if they show divergent behavior, meaning that
two different solutions starting from similar but not identical initial states would eventually
divgrge nonlinearly in solution space (Lorenz, 1963). In such cases we don’t know a priori
which of the two solutions is closest to the true evolution of the system.

The atmosphere exhibits this behavior, and is thus a chaotic system. We are not able to
accurately measure the initial state of the atmosphere, due to instrumentation errors and large
gaps between observation sites. Moreover, we are able to solve only a simplified version of the
equations describing the atmosphere, and those solutions are usually numerical approxima-
tions; i.e., they are sources of error as well. As a consequence, there is an upper limit in time
on the predictive skill of weather forecasts. The ensemble approach is one method to repre-
sent the time evolution of the probability density fuﬁction (PDF) describing the atmosphere’s
initial state and its uncertainty. Practically, the PDF can be represented by a limited set of
points (e.g., Leith, 1974). The evolution of each of those points would be a member of the
ensemble. Each of those members should ideally represent an equally likely evolution of the
dynamical system.

It has been found for numerical weather prediction (NWP) that the ensemble-mean is more
accurate that an individual model realization, when verified for many cases. NWP ensembles
“ have been created using different model input values (Toth and Kalnay, 1993; Molteni et al.,
1996; Wandishin et al., 2001), different parameterizations within a singlé model (Stensrud
et al., 1998), different numerical schemes (Thomas et al., 2002), and different models (Hou
et al., 2001; Wandishin et al., 2001). This allows the ensemble to take into account different

sources of uncertainty.
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The ensemble technique can yield similar benefits to AQ prediction, -becau_se there are
similar model complexities and constraints. Different AQ models can be better for different
air-pollution episodes, in ways that cannot always be anticipated. Similar to NWP ensembles,
AQ ensemble members can be created withAdifferent meteorological and /or emission inputs,
different parameterizations within a single model, different numerics within a single model,
and different models. '

For NWP ensembles, errors typically grow linearly at first, and nonlinearly later. However,
the linear period might be reduced in AQ ensembles because of the strongly nonlinear nature
ofvmany chemical reactions. For this reason, the differences among AQ ensemble members
may account for the uncertainties assoéiated with each component of the AQ process more
rapidly than what is observed for NWP ensembles.

In Chapter 2 it has been discussed the benefit of the ensemble approach in studies in-
volving not only pollutant transport, but also the associated photochemical reactions. Their
ensemble was composed of four Chemistry Transport Models (CTMS), and was tested for a
6-day summer period over five monitoring stations in northwestern and central Europe. The
ensemble approach presented in that study showed promising results, performing better than
the models individually, including good performance for ozone peak-value prediction.

Another successful implementation of the ensemble approach can be found in Galmarini
et al. (2004b), where the authors describe an application to long-range transport and dispersion
studies. They used the data collected during the ETEX experiment (Nodop et al., 1998) to
quantitatively estimate the concepts and parameters introduced in Part I of their coupled
papers (Galmarini et al., 2004a). They tested a multi-model ensemble dispersion system by

considering several operational long-range transport and dispersion models used to support
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decision making in case of accidgntal releases. The median member of the forecast ensemble
exhibited the best forecast skill.

McKeen et al. (2005) present results for a multi-model (i.e., seven CTMs) Ozone Ensem-
* ble Forecast System (OEFS), statistically evaluated for 53 days (summer 2004), against 340
monitoring stations over eastern U.S. and southern Canada. The high correlation coefficients
and Jow root—mean—square;error (RMSE) points to the ensemble mean as the preferred forecast
when cbmpared to any individual model.

Recently O’Neill and Lamb (2005) presented an interesting intercomparison of the Com-
munity Multiscale Air Quality Model (CMAQ) (Byun and Ching, 1991) with the California
Photochemical Grid Model (CALGRID) (Carmichael et al., 1992). They fested an ensemble
averaged predicti(;n based on the two CTM models run with different meteorology and chem-
ical mechanisms. They found the ensemble skillful for the 8-hour averaged forecasts, while
with the 1-hour predictions the ensemble mean did not necessarily showed more skill than the
single deterministic runs. However, the standard deviation about the 1-hour mean forecast
provides a useful measure of overall model uncertainty.

A new OEFS is presented here .using predicted ozone concentrations from 12 different
ensemble members. An ensemble-mean is computed (as a linear average of the ensemble-
member predicted hourly concenfrations) and tested against observations from five different
stations over the Lower Fraser Valley (LF'V), British Columbia (BC), Canada (see Figure 3.1).
This is a region where ozone modeling is particulaﬂy challenging, because of the complex
coastal mountain setting (McKendry and Ludgren, 2000). OEFS performance is compared
with the performance of each single forecast for a 5-day period (11-15 August 2004).

Galmarini et al. (2004b) showed that the ensemble-median (the median of the ensemble-
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Figure 3.1: The Lower Fraser Valley is a floodplain spanning the ozone stations of Vancouver
[nternational Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope. The triangular
valley is widest near CYVR along the coast of the Georgia Strait, and tapers to a narrow
gorge between steep mountain walls near Hope. Shading (vertical bar at right) indicates
terrain elevation above sea level.

member predicted hourly concentrations) has better forecast skill than the ensemble-mean.
For ensembles with many members that all capture likely forecast outcomes, one would expect
statistically that the ensemble mean and median member should be nearly identical. However,
if some ensemble members are distant outliers because of any number of model or initial-
condition errors, then they would not contribute to a realistic estimate of the probability
distribution of realistic forecast outcomes. This is a particular problem if there is a cluster of

outliers. For such cases the ensemble average is unduly biased by the outliers, allowing the one



median ensemble merrgber to give the best forecast. In this study tfxe ensemble mean resultedv
in a more skillful forecast than the ensemble median, implying that we did not have a problem
with unphysical or unrepresentative outliers.

For situations where ensemble outliers might be problem, there are some solutions. One is
to build a record of error variances for each member based on past forecasts, and then weight
each member inversely with its ‘error to cémpute a weighted ensemble mean. Another is to
reduce their systematic errors (Chapter 5), and then combine these corrected forecasts into an
uniformly-weighted average.

Section 3.2 describes the case study and the data, while a dgtajled description of the OEFS
is given in Section 3.3. Section 3.4 presents the results and their analysis, and a discussion

followed by the conclusions can be found in the last section.

3.2 Case Study and Data

The LFV lies across the western edge of the Canada/US border (Figure 3.1). The main
metropolitan area is located at the northwest end of the valley, where the Greater Vancouver
region has a populétion slightly g‘reatef than two million people. The valley is triangular-
shaped, oriented approximately west-to-east, with the Strait of Georgia on the west side,
the Coast Mountains to the north, and the Cascade Mountains range limiting the valley’s
southeastern side.

The synoptic conditions observed during the period 11-15 August 2004 were typical of
conditions that lead to high ground-level. ozone concentrations in the LEFV, as described by

M(:‘Kendry (1994). Those conditions are associated with a northward progressing.low-level
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thermal trough, extending from California northward through Oregon and Washington State
reaching the southern part of BC. An associated stationary upper-level ridge was situated
across southern BC. The upper-level ridge started to weaken on 14 August_, allowing clouds
to spread over the LFV on 15 August, leading to lower observed ozone concentrations at four
stations out of five. Over the LFV, sea-breeze circulations combine with valley and slope
flows to make ozone modeling (that includes photochemistry) quite challenging (McKendry
and Ludgren, 2000).

This study uses h;)urly observed ozone concentrations from five stations across the LFV:
Vancouver International Airport (CYVR) (urban), Langley (suburban), Abbotsford (urban),
Chilliwack (suburban), and Hope (rural) (Figure 3.1). These stations span the LFV from west
to east, and being apart one from each other more than 12 km, they fall in different grid cells
for all the forecasts. The observed ozone hourly concentrations for the period 11-15 August
2004 vary considerably from west to east. This reflects the easterly advection of ozone and
its precursors by the sea-breeze circulation, leading to higher concentrations further inland.
Thus, at CYVR the values are low (peak value always below 50 ppbv) and close to typical
background summer values, due to its proximity to the coast. At Langley (further inland),
the observed maxima for the 5-day period are between 60 and 70 ppbv, with the lower peak
value observed on 15 August. Ozone maximum values between 60 and 80 ppbv are observed
at Abbotsford, while at Chilliwack the observed peak is above 70 ppbv except on 15 August.
The ozone concentrations at Hope (furthest inland) éxceed 82 ppbv (the Canadian National
Ambient Air Quality Objective for maximum 1-h average concentration) during the first four
days (with values between 85 and 90 ppbv). At all five stations, the nighttime values are

very low (< 15 ppbv). Secondary nocturnal maxima ozone concentrations are observed at all
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stations as discussed by Salmond and McKendry (2002).

Studies of ozone photochemistry in the LFV (Ainslie, 2004, with a scaling-level model as
described in Section 1.3.2) show that the present and projected AQ is in a regime affected
roughly equally by NO.z and VOC emissions (Figﬁre 3.2). Namely, in a maximum-ozone-
concentration isopleth plot as a fun'ction of NO, and VOC emissions, the state of the LFV
is above the ridgeline of ozone relative maxima. Those results (specific to the LFV), are

considered in building the ensemble design presented in the next session.

3.3 Ensemble Design

At the University of British Columbia (UBC), the Mesoscale Compressible Community (MC2)
NWP model (Benoit et al., 1997) and the Penn State/NCAR mesoscale (MMS5) model (Grell
et al., 1994) have been running daily for several years (http://weather.eos.ubc.ca/wxfcst/).
MC2 is a fully compressible, non-hydrostatic model using semi-implicit sémi-Lagra.ngian tech- .
niques. The model is initialized using the National Centers for Environmental Prediction
(NCEP) North American Mesoscale (NAM) model at 108km grid spacing. One-way nesting
is applied to produce model output at horizontal grid spacing of 108, 36, 12, 4, and 2 km.
MMS5 is a fully compressible, non-hydrostatic, primitive-equation meteorological model that
uses a terrain-following sigma (non-dimensiona]ized pressure) vertical coordinate. The MM5
model is ‘initialized from the same analysis and for the same five nested grids as MC2, but
with 2-way nesting.

Both MC2 and MMS5 produce meteorological fields that are used in this study to drive the

U.S. Environmental Protection Agency (EPA) Models-3/CMAQ Chemistry Transport Model
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Figure 3.2: Isopleths of maximum ozone concentration (ppbv) are given as a function of year
2000 VOC and NO, emissions over the Lower Fraser Valley (adapted from Ainslie (2004)).
The total annual VOC and NO, emissions are 111,196 and 99,897 tonnes, respectively (GVRD,
2002). The vertical bar shows the + 50% NO, used for the ensemble perturbations.
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(CTM) (Byun and Ching, 1991). CMAQ hés beén run at UBC daily real-time for two and a
half years (Delle Monache et al., 20ﬁ4). The CBM-1IV chemical mechanism (Gery et al., 1989),
and the Modified Euler Backward Iterative (MEBI) chemistry solver (Huang and Chang,
2001) are used. The emissions used as input to CMAQ are prepared using the Sparse Matrix
Operator Kernel Emission (SMOKE) system (Coats, 1996). The boundary conditions are a
time-invariant vertical concentration profile for the coarser domain (based‘on typical summer-
time background ozone concentrations in the LF'V), while the ﬁner grids are initiaiized each
day with the previous day’s.prediction.

Ideally, for the ensemble to be a skillful forecast, the ensemble members should span all
the uncertainties associated with different phases of the modeling process: initial conditions
and boundary conditions, meteorological and emission fields, numerics, chemical mechanisms,
etc. Unfortunately, to consider all those rﬁodeling aspects would require an ensemble with
an unfeasibly large number of ensemble members. For this reason, we present an OEFS that
considers only the uncertainties associated with the meteorological and emission fields. These
fields are considered to cause the main uncertainties in photochemical modeling (Russell and
Dennis, 2000). For example, NO, emission estimates can be in error by a factor of two or
more (Hanna et al., 2001).

A related question is what ensemble size and perturbed attributes are necessary for captur-
ing most of the forecast uncertainty, based on ensemble-mean metrics. We demonstrate here
that a limited-size ensemble with only meteorology and emission perturbations can indeed
yield an ensemb.le average thalt is better than individual members, on average.

A flowchart of the OEFS tested in this ChapterAis shown in Figure 3.3. CMAQ is run

with a 12-km horizontal resolution domain covering southern BC, Washington State, and the
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Figure 3.3: The 12-member (01, 02, ---, 12) Ozone Ensemble Forecast System is sketched. It
is formed with four different meteorological fields (MC2 at 4 and 12 km, and MM5 at 4 and
12 km), and three different emission scenarios: a control run (CTRL), a run with plus 50 %
NO; (NOXP), and a run with minus 50 % NO, (NOXN).
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northern poftibn of Oregon, with a nested 4-km resolution domain cerring southwestern BC
and northwestern Washington State. Both domains are centered over the LFV. MC2 and
MMS5 provide the meteorological inputs for CMAQ, for thé 12 and 4-km domains. Moreover,
for each of the four possible meteorological input combinations, CMAQ is run with three
emission scenarios: a control run (CTRL), a run with 50 % more NO, (NOXP), and a run
with 50 % less NO, (NOXN) (also see Figure 3.2). These scenarios were chosen because
NO, emissions are mainly anthropogenic (Jacobson, 1999) and strongly influence ground-level
ozone concentrations (Steyn et al., 1997). This leads to a system with 12 ensemble members
(01, 02, ---, 12), as shown in Figure 3.3. An example (Abbotsford? 11-15 August) of the
ensemble members (black lines) and their ensemble-mean (t‘hick black line) temporal evolution,
compared with the observed ozone concentrations (circles), can be found in Figure 3.4.

Since the six 12-km resolution ensemble memb‘ers are run for 48 hours, the second half of
the (N — 1)t ‘forecast day can be added to the N** forecast day ensemble forecast. Figure 3.5
depicts the resulting 18-member OEFS tested in this study, built as a lagged-averaged ozone
ensemble (see Section 3.4.4).

- 3.4 Results and Analysis

3.4.1 Verification Statistics

The forecast skill of each ensemble member and the ensemble-mean has been evaluated using

the following statistical parameters:

65




Abbotsford, 11-15 August
110 T

T

100 |-

0, (ppbv)

Time (hours)

Figure 3.4: The 12 ensemble members (black lines) and the ensemble-mean (thick black line)
predictions, along with the observations (circles), at Abbotsford, 11-15 August 2004.
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¢ Pearson product-moment coefficient of linear correlation (herein “correlation”):

Nhou‘r [C’ (t, station) — Co(station)|[Cp(t, station) — Cp(station)]

corr(station) =

\/ ZN howr [Cy(t, station) — C, (statzon)] ZN’"’"T [Cp(t, station) — Cép(.ﬂ;ation)]2
3.1

e normalized gross error (herein “gross error”, for hourly observed values of Og > 30 ppbv):

1 N |Cp(t, station) — Cy(t, station)|

gross error(station) = N 2 Co(t, station) (3.2)
e root mean square error (RMSE):
Nhour
RM SE(station) = Z [Cy(t, station) — C,(t, station)]? (3.3)
Nhour —1
e unpaired peak prediction accuracy (UPPA):
S | Naey |Cp(day, station), . — Co(day, station),, .| (3.4)

day St Co(day, station),, .

where Npour is the number of 1-h avérage concentrations over the 5-day period, Ny, is the
number of days, C,(t, staﬁon) is the 1-h average observed concentration at a monitoring sta-
tion for hour ¢, Cy(t, station) is the 1-h average predicted concentration at a monitoring station
for hour ¢, m_) is the average of 1-h average observed concentrations at a monitoring
station over the 5-day period, W is the average of 1-h a\-Ierage predicted concentra-
tions at a monitoring station over the 5-day period, C,(day, station),, . is the maximum 1-h

average observed concentration at a monitoring station over one day, and Cy(day, station)mm
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is the maximum 1-h average predicted concentration at a monitoring station over one day.

The gross error and UPPA are included in the U.S. EPA guidelines (EPA, 1991) to analyze
historical ozone episodes using photochemical grid. models. The EPA acceptable performance
upper-limit values are + 35 % for gross error, and + 20 % for unpaired peak prediction
accuracy. UPPA is computed here as an average (over the five days available) of the absolute
value of the normalized difference between the predicted and observed maxjmﬁm at each
station (Equation 3.4). Thus, UPPA is non-negative; hence, only the + 20 % acceptance
performance upper limit is used in the next sections.

‘We selected this set of statistics for the following reasons. We choose correlation to get an
indirect indication of the differences between the predicted and measured ozone time series at
a specific location. The closer the correlation is to one, the better is the correspondence of
timing of ozone maxima and minima between the two signals. RMSE (measured in ppbv) gives
important information about the skill in predicting the magnitude of ozone concentration, even
though alone it does not draw a complete picture of a forecast value. It is very useful also for
understanding ensemble averaging effects, because it can be decomposed into systematic and
unsystematic components as discussed in detail in Section 3.4.2.

The gross-error statistic has been considered in this analysis because it is included in the
U.S. EPA guidelines (EPA, 1991). Also, being computed for hourly observed values of O3z >
30 ppbv, it gives useful information about the forecast skill for higher concentration values,
which are important for health-related issues. It gives information about the error magnitude
(as RMSE), but as a portion of the observed ozone céncentration (i-e., is measured in %).

UPPA (%) is also used because it measures the ability of the forecasts to prediét the ozone

peak maximum on a given day. Peak concentrations have been in the past the main concern
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for public health. However, in recent years over midlatitudes of the Northern Hemisphere,
a rising trend of background ozone concentrations has been observed, while peak values are

steadily decreasing (Vingarzan, 2004).

3.4.2 12-member OEFS Results

The performance of the OEFS presented in Section 3.3 has been tested by computing the

statistical parameters introduced in Section 3.4.1, using the data described in Section 3.2.

" Correlation

Figure 3.6 shows the results for the correlation between the observed hourly ozone concentra-
tion and the predicted concentrations from the 12 ensemble members aﬁd the ensemble-mean.
Those values are_computed'for the 5-day period from 11 to 15 August 2004, and at five different
stations: CYVR, Langley, Abbotsford, Chilliwack and Hope.

Generally, correlation values tend to be lower moving towards the east side of the LI'V,
with all the forecasts having their poorest performance at Hope. Indeed Hope is located in a
very steep narrow valley (less than 4 km wide), which none of the models are able to resolve.
Because the 12 km runs do not see this valley, in the afternoon the ozone plume is advected
paét Hope (instead of being trapped there), resulting in decreasing values (after the plume
passage) Whﬂe in reality the concentration is increasing. Also, during the nighttime return
flow (a land breeze, going back westward) is established, causing the 12 km ruﬁ to bring back
the plume, and resulting in increasing predicted concentrations when the observed ozone is
decreasing. This causes negative correlation values for the 12 km runs, as shown in Figure 3.6.

Thus, the ensembles using finer resolution runs have better correlation values at Hope and
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Figure 3.6: Correlation values between observed and predicted ozone 1-h average concentra-
tions are plotted at five stations [Vancouver International Airport (CYVR), Langley, Abbots-
ford, Chilliwack, and Hope], for the 12-member Ozone Ensemble Forecast System (01, 02,

12) and the ensemble-mean (E-mean), for the 5-day period 11-15 August 2004. Values are
within the interval [—1, 1], with correlation = 1 being the best possible value.
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Table 3.1: Ranking for correlation of the 12 ensemble members (01, 02, ---, 12) and the

ensemble-mean (E-mean) at the Vancouver International Airport (CYVR), Langley, Abbots-

ford, Chilliwack and Hope stations. The lowest sum of rankings indicates the best overall
~ performance.

01 02 03 04 05 06 07 08 09 10 11 12 Ensemble-mean

CYVR 5 10 6 12 11 13 3 1 2 8 7 9 4
Langley 4 12 11 6 8 13 5 9 2 7 3 10 1
Abbotsford 0 1 12 2 6 13 3 5 7 8 4 9 1
Chilliwack 11 13 10 8 6 12 3 1 4 7 5 9 2
Hope 13 12 11 10 8 9 2 1 3 6 5 7 4

Ranking Sum 33 58 50 38 39 60 16 17 18 36 24 44

—_
)

Chilliwack (f)articularly with MC2; i.e., forecasts 07, 08 and 09)., where the topography is
most complex. Spatial resolutions éven finer than 4 km would be needed to better capture
these topographic effects.

CWR is located adja,centv to the water in the Georgia Strait, and the meteorological
models have difficulty capturing accurately the thermally driven sea-breeze flows generated by
the water/land discontinuity. At this location the finer resolution runs tends to have better
correlation with the observation (again, particularly with MC2), probably because they better
represent the complex coastline and the associated land-use data. The ensemble-mean has the
best performance at Langley and Abbotsford, and is second best at Chilliwack.

Table 3.1 shows for each station the ranking (from 1 to 13) of each ensemble member and
the ensemble-mean, where the best (highest) correlation value has a ranking of 1, and the
worst (lowest) has 13. Overall the ensemble-mean has the best ranking as measured by the
lowest sum of rankings. The only ensemble members with similar (but worse) skill are 07, 08,
and 09, with members 08 having a number of first rankings.

The ensemble-mean has mediocre skill at CYVR and Hope because both stations are

located in areas where all the individual ensemble members have difficulties, as explained
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Table 3.2: Rankings similar to Table 3.1, but for gross error.

01 02 03 04 05 06 07 08 09 10 11 12 FEnsemble-mean

CYVR 1 5 4 6 9 2 13 11 12 7 10 3 8
Langley . 2 7 12 5 4 8 13 11 10 6 9 3 1
Abbotsford 2 5 11 3 4 10 13 12 9 6 8 7 1
Chilliwack 9 8 1 5 7 11 12 13 10 4 6 3 2
Hope -1 12 10 6 v 13 1 2 9 5 3 8 4
Ranking Sum 25 37 38 25 31 44 52 49 50 28 36 24 16

above. The correlation values are significantly improved (closer to one) with Kalman-filter

(KF) post-processing, as shown in Chapter 5.

Gross error

The gross-error results are shown in Figure 3.7, and the rankings are summarized in Table 3.2.
Overall the ensemb]_e—mea,n is the best for these cases when compared to each ensemble member,
as indicated by the ranking suﬁ.'Forecast 08 for the correlation has similar performances to
the ensemble-mean, but has large gross error (very poor skill), except at Hope where it- ranks
second. Note that the 4-km MC2-driven ensemble members (07, 08 and 09) at CYVR, Langley
. and Abbotsford haye relatively poor skill using the gross-error metric, but have much better
performance using the correlation metric.

The ensemble-mean is well within the 35 % EPA acceptance value at Langley, Abbotsford
and Chilliwack. At CYVR and Hope the ensemble-mean has the highest gross-error values,
confirming the difficulties for all the ensemble members at those two locations. In Chapter 5
it is shown that application of the KF post-processing improves (brings closer to zero) the

gross-error performance of most forecasts, with an improvement up to 20 %.
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Gross Error (%)
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Ensemble Members

Figure 3.7: Similar to Figure 3.6, but for gross-error values (%). The continuous line is the

EPA acceptance value (+ 35 %). Values are within the interval [0, 4+ oo|, with a perfect
forecast having gross error = 0.
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Figure 3.8: Similar to Figure 3.6, but for root mean square error (RMSE) values (ppbv).
Values are within the interval [0, + oo|, with a perfect forecast when RMSE = 0.

RMSE

The RMSE results are shown in Figure 3.8 and summarized in Table 3.3. In general, the
values of this statistical parameter are between 20 and 30 ppbv. However, the KF correction
présented in Chapter 5 shows substantial improvements up to 20-25 %, with values often
between 10 and 20 ppbv. Nevertheless, the ensemble mean is the best. Forecast 03 ranks
first at CYVR and Abbotsford, but still is worse than the ensemble-mean at three stations

(Langley, Chilliwack and Hope). Forecast 03 is one of the worst for the correlation metric, and
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Table 3.3: Rankings similar to Table 3.1, but for root mean square error.

01 02 03 04 05 06 07 08 09 10 11 12 Ensemble-mean

CYVR 2 5 19 1 3 13 8 12 7 10 6 4
Langley 1 10 4 6 7 -3 13 11 12 8 9 5 2
Abbotsford 4 11 1 7 6 3 13 12 10 8 9 5 2
Chilliwack 13 10 6 9 2 7 5 8 1 11 12 4 3
Hope 12 8 1 13 9 7 2 3 1 6 10 4 5
Ranking Sum 32 44 23 44 35 23 46 42 36 40 50 24 16

worse than average for gross error. Again, the ranking sum shows that the ensemble mean is

the best.
RMSE can be separated in different components. One decomposition was proposed by

Willmott (1981). First, an estimate of concentration C*(t, station) is defined as follows:
C*(t, station) = a + bC,(t, station) (3.5)

where a and b are the least-square regression coefficients of Cp(t, station) and C,(t, station)
(the predicted and observed ozone concentrations, respectively, as defined in Section 3.4.1).

Then the following two quantities can be defined:

Nhou'r
'RM SE(station) = \ Nl Z [C*(t, station) — C,(t, station)]* (3.6)
_ hour 7
Nhour
RMSE,(station) = \ Nl Z [C*(t, station) — Cp(t, station))? (3.7)
hour |

where RM SE;(station) is the RMSE systematic component, while RM SE, (station) is the
unsystematic one. RMSE; indicates the portion of error that depends on errors in the model,

while RMSE,, depends on random errors; on errors resulting by a model skill deficiency in
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predicting a specific situation, and on initial-condition errors. The following relates RMSE to
its components:

RMSE? = RMSE,? + RMSE,? (3.8)

Ensemble averaging is expected to reduce some of the unsystematic component of the error
(i.e., RMSE,), while the systematic component (RMSE;s) should be little affected by the
averaging process. In fact, since RM SE; reflects errors in the model affecting each individual
forecast simjlarly, it should not be redﬁced (when compared with the ensemble members) for
the ensemble mean.

Figure 3.9 shows the RMSE systematic (bottom bar) and unsystematic components (top
bar). CYVR (and to a lesser extent Langley) shows among the highest RM SFE,, values, indi-
cating an intrinsic lack of predictive skill at this location, as already discussed in Section 3.4.2.
Martilli and Steyn (2004) discuss the effects of the superimposed valley, slope, and thermal
flows over the LFV. Often the pollution plume is transported during night over the Georgia
Strait waters as a result of the combination of several transport processes. This makes it very
challenging for the models to accurately predict the spatial and temporal evolution of ozone
concentration in near-water locations, such as CYVR, where the over-strait pool of pollutants
can be re-advected over land by the daytime sea breeze. The 12-km runs (forecasts 01-06)
have their highest systematic error at Hope. All these forecasts poorly reproduce the real
topography at this location, and this leads to systematic misrepresentations of ozone temporal
and spatial distributions. Conversely, the 4-km runs have their highest systematic error at
CYVR (in particular for MC2 driven runs; ensemble members 07-09), where their ability to

capture complex terrain more accurately than the 12-km runs is not an advantage, since at
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Figure 3.9: Similar to Figure 3.8, but segregating the root-mean-square-error into its system-
atic (bottom bar) and unsystematic components (top bar). The sum of these components
squared equals the square the root-mean-square-error (Equation 3.8).

CYVR the terrain is flat.

Overall, the ensemble. mean has among the lowest RM SF,, when compared with the other
forecasts, being the seC(;nd best after forecast 12 (MMS5, at 4 km, with NOXN) and before
forecast 04 (MM5, at 12 km, NOXP). The eﬁsemb]e mean has the lowest RMSE, at Hope,
the second best at Abbotsford, the third at Chilliwack, the fourth at Langley and the sixth at
CYVR. Conversely, the ensemble mean RM SE; is never the lowest and is always close to the

average RM SFE of the individual forecasts. This confirms the usefulness of ensemble averag-
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Figure 3.10: Similar to Figure 3.6, but for unpaired peak prediction accuracy (UPPA) values
(%). The continuous lines are the EPA acceptance values (4+ 20 %). Values are within the
interval [0, + oo], with a perfect peak forecast when UPPA = 0.

ing: it is able to remove part of the unpredictable components of the physical and chemical
processes involved in the ozone fate, resulting in a more skillful forecast when compared to

any deterministic ensemble member.

UPPA

Figure 3.10 shows the UPPA results. At CYVR, forecasts 07,.08 and 09 largely overestimate

the observed ozone peak concentration, even though théy have at this station a high correlation
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Table 3.4: Rankings similar to Table 3.1, but for unpaired peak prediction accuracy.

01 02 03 04 05 06 07 08 09 10 11 12 Ensemble-mean

CYVR 3 9 2 5 7 1 13 12 11 -8 10 4 6
Langley 7 3 12 5 4 10 13 9 11 1 2 8 6
Abbotsford 6 9 10 3 2 11 12 13 8 4 5 7 1
Chilliwack 9 11 12 2 8 13 6 4 10 3 1 7 5
Hope 6 10 8 5 7 13 4 1 12 3 2 9 11

Ranking Sum 31 42 44 20 28 48 48 39 52 19 20 35 29

value (close to 0.8). The UPPA rankings in Table 3.4 are computed using absolute values,
so that under and over-prediction of the observed peak concentrations have the same weight
when the ranking is computed. For this parameter the ensemble-mean is the best only ‘at
Abbotsford when compared with the 12 individual ensemble members. It has a slightly better
than average performance at CYVR, Langley at Chilliwack, and it has poor performance at
Hope. A possible reason for the poor average performance (i.e., high ranking sum) of the
ensemble mean with UPPA (observed in this study), is that ensemble averaging might lead to
excessive smoothing of the peak values.

Except at CYVR, forecasts-10 and 11 (MMS5, at 4 km, with CTRL and NOXP) have good
forecast skill for UPPA, while for all other statistical parameters they are averagé or worse
than average. In Chapter 5 is shown that application of the KF post-processing modestly

improves (brings closer to zero) the UPPA performance.

3.4.3 1l-member OEFS Results

Since the previous analysis shows that different ensemble members contribute differently to
the ensemble-mean performahce, we eliminate each individual member in turn from the 12- -

member ensemble, and re-compute the four statistical parameters for the 5-day period and
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five stations, for the resulting 11-member ensemble. This way, one can gauge the effect of each
single ensemble member on the ensemble-rﬁean.»

Figure 3.11 shbws the median (over thé five stations) of the correlation of the 11-member
ensemble-mean, where each bar represents the correlation value for the ensemble-mean without
the one corresponding ensemble member indicated in the label below the bar. Superimposed
as a dashed line is the correlation value for the full 12-member ensemble. If the value shown
is below the dashed line, it implies that the ensemble-mean without that specific member has
worse performance, and vice versa.

First, all the correlation values are between 0.7 and 0.8, regardless of which forecast is
removed from the ensemble. The forecasts with MC2 at 4 km (07, 08 and 09) removed give
generally worse correlation values, and the contrary is true for the runs with MM5 at 4 km
(10, 11, and 12). In other words, the ensemble average is better if MC2 at 4 km is included.
Also, all the runs without MMS5 at 12 km give better correlation, while the runs with MC2 at
12 km improve the correlation two times out of three.

Figure 3.12 shows a similar analysis, but for the gross error. All the values are close to 19
ppbv without any evident trend, except that for all the runs at 12 km, NOXN is better than
NOXP, which are both better than the CTRL run.

Sh‘rnilar results for RMSE are shown in Figure 3.13. If the value is below the dashed
line, it implies that the ensemble-mean without that specific member has better performance.
Here the differences are more pronounced, with maximum difference (of about 10 %) between
the value of the ensemble-mean without forecast 03 and the one without forecast 05. The
only ensemble members that positively contribute to the RMSE ensemble-mean value (i.e.,

increasing RMSE when removed, which is equivalent to reducing errors when included in the
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'Figure 3.11: Median (over the five stations) of the correlation of the 11-member ensemble-
mean, given for the 5-day period 11-15 August 2004. Each bar represents the correlation value
for the ensemble-mean without the corresponding ensemble member (the label below the bar).
The dashed line is the correlation value for the full 12-member ensemble and the better-worse
designation at right is relative to this full ensemble. Values are within the interval [—1, 1],
with correlation = 1 being the best possible value. '
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Figure 3.12: Similar to Figure 3.11, but for the gross error. Values are within the interval [0,
-+ oo], with perfect forecast when gross error = 0.
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Figure 3.13: Similar to Figure 3.11, but for the root mean square error (RMSE). Values are
within the interval [0, + co], with a perfect forecast when RMSE = 0.

ensemble) are forecasts 01, 03, 06, and barely 08, while removing the others from the ensemble
results in a better RMSE ensemble-mean.

UPPA results are shown in Figure 3.14. The values are between 19.5 and 22.5 %, meaning
that none of the models change dramatically this statistical parameter when excluded from
the ensemble. Notably, when the 4-km runs (for both MM5 and MC2) with the CTRL and
NOXP emission run (forecasts 07, 08, 10, and 11) are removed separately from the ensemble,
the UPPA gets worse. The only other forecast that makes UPPA better (i.e., UPPA is worse if

removed) is forecast 04 (MM5, 12-km, CTRL run). All the other forecasts make this statistical
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Figure 3.14: Similar to Figure 3.11, but for the unpaired peak prediction accuracy (UPPA).
Values are within the interval [0, + oo], with a perfect peak forecast when UPPA = 0.

parameter worse when they are retained, when they contribute to the ensemble.

3.4.4 18-member OEFS Results

Hoffman and Kalnay (1983) introduced the lagged-average weather forecast. The forecasts
initialized at the current initial time, t = 0, as well as forecast from the previous times,
t=—7,—-27,-++,(N — 1)1 are combined aﬁ a common valid time to form an ensemble. They
tested this approach using a primitive-equation NWP model to represent the true atmospheric

evolution, and a quasi-geostrophic NWP model as the forecast. They found the lagged-average
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Table 3.5: Correlation, gross error (%), root mean square error (RMSE) (ppbv), and unpaired
peak prediction accuracy (UPPA) (%) for a 12-member (12-ens) and an 18-member (18-ens)
Ozone Ensemble Forecast System, are listed at five stations [Vancouver International Airport
(CYVR), Langley, Abbotsford, Chilliwack, and Hope], for the 5-day period 11-15 August 2004.

Correlation = Gross Error (%) RMSE (ppbv) UPPA (%)

12-ens 18-ens 12-ens 18-ens 12-ens 18-ens 12-ens 18-ens

CYVR 0.74 0.72 44 37 24 23 39 35
Langley 0.84 0.85 15 15 17 17 13 13
Abbotsford 0.91 0.90 12 11 19 19 11 ‘13
chilliwack 0.71 0.72 18 19 25 26 20 21
Hope 0.23 0.06 24 25 28 29 29 31

forecast to be slightly better than a Monte Carlo forecast (introduced assuming a perfect model
by Leith (1974)), and they found higher correlation between error growth and ensemble spread
in their approach. These improvements were because the lagged-average forecast perturbations
are not randomly chosen, but better capture the error of the day. In the literature some other
applications of this ensemble approach can be found, as for example in Daléher et al. (1988).
In our study, we tested a lagged-averaged ozone ensemble. Each of the six 12-km resolution
ensemble members is run for more than 48 hours. This allows the expansion of the 12-member
OEFS to an 18- member OEFS, by adding the second half of the six 12-km “yesterday” forecasts
to the “today” ensemble forecast, as shown in Figure 3.5. |
Table 3.5 shows the results of the 12-member and 18-member OEFS, for the same statistical
parameters as in the previous subsections, and for the same 5-day period and the same stations.
Only in few occasions is the 18-member OEF'S slightly better than the 12-member one, as for
example for the gross error and UPPA at CYVR. In general the two ensemble systems have very
similar forecast skill, meaning that the computation effort of adding the six lagged members

to the original system does not provide valuable results.
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Ideally, each ensemble member should give an equally likely time evolution and space
distribution of ozone concentration, and they should all give equally good estimates of truth.
The ensemble members should thus be “independent”, in thg sense that none of them should
rely on other members for their realizations. This is not the case when nested grids are used,
as for 12-member OEFS presented in this study. Namely, CMAQ domains are linked using
a l-way‘ nesting approach (similarly for MC2, but MM5 runs are implemented with 2-way
nesting), all the 4 km runs cannot be considered independent of the runs where the driving
meteorology is their 12 km coarser dbrﬁajn. Moreover, the fact that the addition of six lagged
members leave the QEFS performances substantially unvaried, suggests that no independent

information on errors is added with those members.

3.5 Discussion

3.5.1 Taylor Diagrams

A concise way to display and study the results is to use a Taylor diagram (Taylor, 2001). It
can be used to create a multi-statistic plot of correlation, centered RMSE (CRMSE: RMSE
computed after the average is removed from the time series), and standard 'deviatipn. This
is done for each forecast, for the ensemble-mean, and for the observations. CRMSE is the
distance on the diégram between the point representing the forecast a.nd the one representing
the observations.

At the Vancouver. International Airport (Figure 3.15), the ensemble has the best perfor-
mance, as indicated by being closest to the observations. Forecasts 07, 08, and 09 (MC2, 4-km)

are the worst, being the farthest. At Langley (Figure 3.16) the ensemble-mean is the closest,
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Figure 3.15: Taylors diagram is plotted for Vancouver International Airport (CYVR). The az-
imuthal position gives the correlation, while the radial distance from the origin is proportional
to the standard deviation (ppbv). The circle represents the observations, and the square is
the ensemble-mean. The numbers correspond to the ensemble-member indices. The distance
.between the observation and a given point is proportional to the centered root mean square
error (CRMSE) between the observations and the forecast having the correlation and standard
deviation of the given point. The dashed line indicates the ensemble-mean CRMSE centered
over the point representing the observation.
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Figure 3.16: Taylor diagram for Langley (similar to Figure 3.15).

while forecasts 07 and 08 are the Worst, and 09 has an average performance. At Abbotsford
(Figure 3.17) 07 is the best, with 09 and the ensemble-mean having similar distance frorﬁ the
observations and being the second closest. At Chilliwack (Figure 3.18) the ensemble-mean
and 09 have again the same distance from the observations, and 08 and 07 are closest and
the second closest, respectively. Finally at Hope (Figure 3.19) forecasts 07, 08, and 09 are all
closer to the observations than the ensemble-mean.

The ensemble-mean forecast is not the best at every location and for any given observed

ozone concentration. However, overall it is indeed the most skillful forecast when tested against
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Figure 3.17: Taylor diagram for Abbotsford (similar to Figure 3.15).
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Figure 3.18: Taylor diagram for Chilliwack (similar to Figure 3.15).
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Figure 3.19: Taylor diagram for Hope (similar to Figure 3.15).
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observations, and compared to any other individual ensemble member. The key point in favor
of the ensemble-mean is that it is not possible to establish a priori which specific ensemble

member will outperform the ensemble-mean in any specific situation.

3.5.2 Meteorology versus Emission Perturbations

Ensemble members 01, 04, 07 and 10 (MC2 and MM5 control runs afg 12 km, and MC2 and
MMS5 control runs at 4 km) are the control runs, where the non-perturbed emission déta
are used. Narﬁely, only the meteorology is perturbed. Any one of those control runs can be
compared with rﬁns driven by the same meteoroiogical field but with an emission perturbation
(plus or minus 50 % NO,). This means comparing ensemble member 01 with 02 and 03, 04
with 05 and 06, 07 with 08 and 09, and 10 with 11 and 12. This methodology allows one to
infer information about the contribution to the ensemble performance of meteorology versus
emission perturbations.

Thé control runs have good correlation statistics relative to the runs driven by the same
meteorology but with emission perturbations. This could reflect the importance of meteordlogy
perturbations in capturing the ozone temporal and spatial distributions. However, by looking
at RMSE, the emission-perturbation runs seem to produce better (i.e., ‘lower) RMSE values
overall when compared with the control runs. Thus, emission perturbations are needed to
better predict ozone-concentration magnitude.

The analysis above suggests that both perturbations are needed to have a skillful forecast.
This is another reason why the ensemble average is the best. However, further investigations

using other case studies could help to test this hypothesis.
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3.5.3 Spread versus Skill

N

The standard deviation of the ensemble members about the ensemble mean is called spread.
The relationéhip between ensemble spread and forecast error is not yet well defined (Kalnay,
2003). Nevertheless, it often provides very useful information about ensemble skill. Ensemble
weather forecasts often provide information on the ieliability of the forecast: if the ensemble
members have large spread, this impiies less conﬁdence in the forecast.

In this study no correlation or relationship- between ozone ensemble spread and forecast
error has been found. This is caused by a lack of accuracy of one or more aspects of the
modeling process, which creates similar errors in the forecasts for specific circumstances. For
instance overnight most of the forecasts are close to each other resulting in a small spread,
as shown in Figure 3.20 at Langley, for the 5-day period 11-15 August 2004 (shaded areas
represent nighttime periods). At the same time those forecasts are far from the observations,
and this resuits in an ensemble where there is small spread with large errors. In this case, the
correlatién that the ensemble skill and spread may ha.ve in other parts of the day is partially

mitigated by what occurs in those specific circumstances.

3.6 Summary and Conclusions

A new Ozone Ensemble Forecast System (OEFS) has been tested. Twelve ensemble members
are obtained by driving U.S. Environrﬁenta] Protgction Agency (EPA) quels-3/ Community
Multiscale Air Quality Model (CMAQ) with two mesoscale models, the Mesoscale Compress-
ible Community (MC2) model and the Penn State/NCAR mesoscale (MM5) model, each run

at two resolutions, 12 and 4-km. CMAQ is run for three emission scenarios for each of the
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Figure 3.20: Spread (standard deviation of the ensemble members about the ensemble mean
(E-mean)) and E-mean absolute error (absolute values of the difference between E-mean and
observations (Obs)) at Langley, for the 5-day period 11-15 August 2004. Shaded areas repre-

sent nighttime periods. Local Pacific Daylight Time (PDT) is UTC - 7 h. ¢
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four available meteorological fields: a control run, 50 % more NO,, and 50 % less NO,.

The performance of the ensemble-mean and 12 different forecasts is compared with the
individual forecz;sts and tested against observations for a 5-day period (11-15 August, 2004),
0\}er five monitoring stations in the Lowér Fraser Valley (LFV), British Columbia (BC). In
summary, for the locations and days used to test this new OEFS, one finds strong evidence

for the following:

e The ensemble-mean is usually the best AQ forecast if ranked using correlation, gross

error, or RMSE.

e The ensemble-mean has an average performance with UPPA. One possible reason could

be that ensemble averaging could cause excessive smoothing of the peak values.

e The ensemble-mean forecast is not the best at every location and for any given observed
ozone concentration. However, it is indeed the most skillful forecast when tested against
observations, and compared to any other ensemble member,i since it is able to remove

part of the unpredictable components of the individual deterministic forecasts.
e The ranking sum is useful for comparing overall performance.

e Sporadically (in space and time) there are few ensemble members that have better perfor-
mance than the ensemble-mean when the forecasts are ranked based on a particular sta-
tistical parameter. The key point in favor of the ensemble-mean is that it is not possible
to establish a priori which specific ensemble member will outperform the ensemble-mean

in any specific situation.

e Meteorology perturbations could be important to better capture the ozone temporal and
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spatial distributions, while emission perturbations could be necessary to better predict
the ozone-concentration magnitude. If this is the case, then both pertui‘bations are
useful for maximizing the skill of ozone forecasts, but further investigations are needed

to validate this hypothesis.

e The 11-member ensembles, given by removing each of the 12-members in turn ﬁom
the original 'ensemble, show results close to the 12-member system for correlation, gross
error, RMSE and UPPA. In general, no particular 11-member ensemble coﬁsistently
outperforms the othér possible 11-member combinations. This reflects the fact that’
there is not one of the 12 forecasts that clearly outperform the others, based on the four

statistical parameters considered here.

e The 18 member ensemble did not improve the ensemble-mean forecast skill. This is
probably because the added six lagged forecasts did not span more uncertainty than the
original 12-member ensemble, and that no independent information on errors is added

with those members.

These results indicate that ensemble averaging improves the forecast timing of maximum
and minimum concentrations with respect to the observations, because the correlation is closer
to one. From the improved (decrez{sed) RMSE and gross-error values, we infer that ensemble
averaging does improve the forecast accuracy by reproducing the magnitude of ozone concen-
trations. The ensemble-mean averagé performance with UPPA could be caused by excessive
smoothing of the peak values.

The results presented in this.study suggest that an air-quality (AQ) ensemble design built

on meteorological and emission-field perturbations is a promising approach. For NWP en-
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sembles, the multi-model approach is the more promising approach, especially for short-range
forecasts (Hou et al., 2001; Wandishin et al., 2001). So, even if only two different NWP models
are used (each with two different resolutions)‘, the results found here indicate that the multi-
model approach is an efficient way to perturb the meteorological input in an AQ ensemble
design as well.

Furthermore, the emission errors are expected to behave in a more systematié fashion than
the errors in the initial conditions. They should depend much less on temporal variations of
the atmosphere. So the issue of capturing the “error of the day”, which each NWP ensem-
ble system strives for (Kalnay, 2003, and references therein), should be less pronounced for
emission perturbations within an AQ ensemble desigﬁ. This could be a reason why the simple
e;rnission perturbation tested here (combined with the multi-NWP model perturbation) gives
good résults. Further investigation is néeded to clarify this point.

A reﬁnementb of the system could focus on the emission perturbations. Ideally, a multi-
model approach, using the Sparse Matrix Operator Kernel Emission (SMOKE) model and
other state-of-the-art emission pre-processors, would take into account many of the uncertain-
" ties generated by the several approximations embedded in the emission-data gathering and
computation processes. An alternative way could be to run the same emission pre-processor
(e.g., SMOKE) ‘with different configurations, and starting from different emission inventories
to generate different (but equally likely) emission fields.

Future work could focus also on a VOC-based perturbation OEFS, and the comparison
with this study should help to understand the effects of different emission perturbations (NO,
or VOC) when combined with meteorology perturbations. Moreover, interesting experiments

could result from generating ensemble members by also perturbing other phases of the AQ
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modeling process, such as the chemistry. For instance, Hanna et al. (2001) found the NO,
photolysis rate to be “the variable whose uncertainties are most strongly correlated to the
uncertainties in predictions of maximum hourly averaged ozone concentrations”. This would
make it a strong candidate as a parameter to be perturbed. Perturbing the chemistry likely
would be more important in predicting particulate matter rather than ozone, because of the
higher uncertainties on how the models represent hetereogeneous chemistry when compared
to gas-phase chemistry.

Also, the perturbations of the meteorological field presented here are not spatially inde-
peﬁdent, because two NWP models are used to produce forecasts over four domains. A likely
improvément couid be obtained by using different NWP models for each domain.

Finally, ensemble averaging is able to remove part of the unpredictable components of
the physical and chemical processes involved in the ozone fate, resulting in a more skillful
forecast when compared to any deterministic ensemble member. In Chapter 5, it is shown
how a Kalman filter can be used to reduce systernatic errors. Thus, using both ensemble
averaging and Kalman filtering, significantly improved real-time AQ forecasfs are possible
even in complex coastal mountain setting as in the LE'V. There are no intrinsic limitations to
these methods that would prévént their application in real time to other pollutants in other

geographic settings.
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Chapter 4

Probabilistic and
Ensemble-averaged Regidnal Ozone

‘Forecasts

4.1 Introduction

1 Exposure to ozone in the tro‘pospherev may have adverse effects on humans (Horvath and
» McKee, 1994; Brauer and Brook, 1995), vegetation (Runeckles,’» 2002) aﬁd materials (Brown
et al., 2001). To alert the population about impending aif—quality (AQ) degradation, Dab-
berdt and Miller (2000) discussed the need for an operational AQ forecast system. Experiences
with such numerical forecast systems are déscribed in Delle Monache et al. (2004), McHenry

et al. (2004) and Vaughan et al. (2004). The U.S. Weather Research Program and its Prospec-

1A version of this chapter will be submitted for publication‘- Delle Monache, L., J. P. Hacker, Y. Zhou, X.
Deng, and R. B. Stull, 2005: Probabilistic and ensemble-averaged regional ozone forecasts, manuscript to be
submitted in October 2005 to the Journal of Geophysical Research.
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tus Development Team on Air-Quality Forecasting (Dabberdt et al., 2003) recommended a
probabilistic approach to AQ forecasting due to the chaotic nature of the atmosphere.

It has been found for numerical weather prediction (NWP) than the ensemble-mean is
more accurate that an individual model realization (e.g., Toth and Kalnay, 1993; Molteni
et al., 1996). Chapters 2 and 3 and recent studies (e.g., McKeen et al., 2005) have shown that
the ensemble average yields similar benefits for AQ prediction, because there are similar model
complexities and constraints. Moreover, NWP ensembles have been very useful by providing
information about the likelihood of possible future evolution of the atmosphere. Similarly, AQ
ensembles may be able to provide reliable probabilistic information about possible AQ scenar-
ios. Given the nonlinear nature of photochemical reactions, the differences among ensemble
members of an Ozone Ensemble Forecast System (OEFS) may be able to account for some of
the uncertainties associated with each component of the modeling proces%.

Chapter 2 discussed the benefit of the AQ ensemble approach in studies involving not only
pollutant transport, but also the associated photochemical reactions. An ensemble composed
of four Chemistry Transport Models (CTMs) was tested for a 6—day summer period over five
monitoring stations in northwestern and central Europe. The ensemble mean presented in that
study showed promising results, performing better than the models individually, and giving
good performance for ozone peak-value prediction.

Another successful implementation of the ensemble approach for ozone forecasts can be
found in McKeen et al. (2005), where the authors present results for a multi-model (i.e., seven
CTMs) OEFS, étatistically evaluated for 53 days (summer 2004), against 340 monitoring
stations over eastern U.S. and southern Canada. The high correlation coefficients and low

root-mean-square-error (RMSE) points to the ensemble mean as the preferred forecast when
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compared to any individual model.

Chapter 3 introduced a new OEFS design (12 ensemble members), generated by including
both meteorology and emission (NO;) perturbations. They tested the ensemble mean for a
5-day episode (August 2004) over the Lower Fraser Valley (LFV), British Columbia, Canada,
and found that the ensemble average is the best forecast, having the best timing of maxima and
minima values; and predicting the ozone magnitude more accurately than any other individual
forecast.

These successful experiments prompted the work presented here. Studies of ozone photo-
chemist‘ry. in the LFV (Ainslie, 2604) show that the present and projected AQ is in a regime
affected roughly equally by NO, and VOC emissions (Figure 4.1). Nafnely, in a maximum
ozone concentration plot as a function of NO, and VOC emissions, the state of the LFV is
above the ridgeline of ozone relative maxima. In Chapter 3 the emission perturbations are
generated with 50 % more NO, emissions (point A in Figure 4.1), and 50 % less (point B
in Figure 4.1). In this‘ Chapter, VOC perturbations are also considered, and the 12-member
ensemble has been expanded to 28 members. Hanna et al. (2001) feported that both NO, and
VOC estimates can be in error by a factor of two or more.

The different forecasts are grouped in 13 different OEFS protbcols. One includes all the
forecasts, one includes only the meteorology perturbations, four have only emission pertur-
bations, three have both meteorology and eﬁxissions perturbations, one contains .only fine-
resolution runs, one has only coarse-resolution forecasts, and two drive the AQ forecast with
two different Numerical Weather Prediction (NWP) models.

The performance of these OEFS groups are investige_zted here by comparing their forecast .

skill as both probabilistic and ensemble-averaged forecasts. The effects of different perturba-
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Figure 4.1: Isopleths of maximum ozone concentration (ppbv) are given as a function of year
2000 VOC and NO; emissions over the Lower Fraser Valley (adapted from Ainslie (2004)).
The total annual VOC and NO,, emissions are 111,196 and 99, 897 metric tonnes, respectively
(GVRD, 2002). The vertical bar is along the plus (point A) and minus (point B) 50% NO,
perturbations. The horizontal bar shows the plus (point D) and minus (point C) 50% VOC
perturbations. The diagonal bar (approximately perpendicular to the isopleths) follows the
plus 50% NO, and minus 50% VOC perturbation (point E) and the minus 50% NO,, and plus
50% VOC perturbation (point F). Point G is the control run with no perturbations.

110




tions, resolutions; and driving models on the ensemble skill are analyzed.

Section 4.2 describes in detail the OEFS groups generated in this study. Section 4.3 and
4.4 present the probabilistic forecast skill metrics and results, respectively. “This is followed
by an analysis of the results of the ensemble-averaged forecasts (Section 4.5). In Section 4.6

conclusions are drawn.

4.2 Ozone-Ensemble Methodology

Following the work in Chapter 3, both the meteorology and emissions are perturbed in this
new study. Two NWP mesoscale models are each run with two horizontal grid spacings:
12 and 4 km, yielding four meteorological fields. The mesoscale models are the Mesoscale
Compressible Community (MC2) NWP model (Benoit et al., 1997) and the Penn State/NCAR
mesoscale (MM5) model (Grell et al., 1994), vs;'hich have been running daily for a decade at the
University of British Columbia (UBC), [http://weather.eos.ubc.ca/ wxfest /]. The AQ forecasts
were produced vﬁth the U.S. Environmental Protection Agency (EPA) Models-3/Community
Multisca]e Air Quality Model (CMAQ) Chemistry Transport Model (CTM) (Byun and Ching,
1991). |

'In this new study, both VOC and NO; perturbations are considered. For each one of the
four available meteorological input fields, runs are made with plus and minus 50 % VOCs
(point'D and C in Figure 4.1, respectively). Also, the NO, and VOC perturbations have been
combined, to make perturbations that are perpendicular to the ozone maximum isopleths.
This better captures more of the ozone uncertainty than when perturbing only NQI or VOC.

Hence, perturbations combining plus 50 % NO; and minus 50 % VOC (point E, Figure 4.1),
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and minus 50 % NO, and plus 50 % VOC (point F, Figure 4.1) were generated as well.
Ensemble members with the original points A and B from Chapter 3 are also included to
allow comparison with NO_-only perturbations. Including the control run with no emissions
pert’urbations, there are a tptal of seven emission ﬁelds, corresponding to the seven points in
Figure 4.1.

The 28 AQ forecasts resulting from the above pertu.rbe'xtion combinations (four me_teorology
times seven emission) are tested here using the same episode analyzed in Chapter 3, with hourly
observed ézone concentrations from five stations across the Lower Fraser valley (LFV), British
Columbia (BC), Canada: Vancouver International Airport (CYVR), Langley, Abbotsford, |
Chilliwack, and Hope (Figure 4.2). The study periqd is 11-15 August 2004, and further details
about the data and episode can be found in Section 3.2. -

The 28 ensemble members are grouped into the following subsets, to form 13 different
ensemble groups, as also summarized in Table 4.1. These are idenfciﬁed with abbreviation as

follows:

e All the forecasts available (ALL, 28 members).

Meteorology and NO, perturbations combined together, as presented in Chapter 3

(MET-+NOg, 12 members).

Meteorology and VOC perturbations (MET+VOC, 12 members).

Meteorology and NO, combined with VOC perturbations (MET-+NO,VOC, 12 mem-

bers).

All the ensemble members driven by MC2 at 12 km (MC2-12, seven members).
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Figure 4.2: The Lower Fraser Valley is a floodplain spanning the ozone stations of Vancouver
International Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope. The triangular
valley is widest near CYVR along the coast of the Georgia Strait, and tapers to a narrow
gorge between steep mountain walls near Hope. Shading (vertical bar at right) indicates
terrain elevation above sea level.
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Table 4.1: Ensemble members included in each of the 13 ensemble groups. “Base” is the forecast obtained by running CMAQ
with the base emissions at one of the two possible resolutions (12 or 4 km) driven by NWP models (MC2 or MM5). NO,; indicates
runs with perturbations of = 50% NO,., VOC includes the + 50% VOC runs, and NO,VOC represents the run with plus 50%
NO, combined with minus 50% VOC, and the run with minus 50% NO. combined with plus 50% VOC. Last column indicates
the size (number of forecasts included in the ensemble) of each of the 13 ensemble groups.

MC2-CMAQ MMS-CMAQ

4 km

Ensemble

12 km

4 km

12 km

Base

NO,

vVOoC

NO,VOC Base

NO,

VvVOC

NO.VOC

Base

NO,

voC

NO;VOC

Base

NO.

vOocC

NO,VOC

Size

ALL

28

MET+NO,

12

MET+VOC

12

MET+4NO,VOC

12

MC2-12

MC2-04

MM5-12

MM5-04

MET

12-km

14

04-km

14

MC2-ALL

14

MM5-ALL

14




e All the ensemble mémbers driven by MC2 at 4 km (MC2-04, seven members).

e All the ensemble members driven by MM5 at 12 km (MM5-12, seven members).
e All the énsemble membe;rs driven by MM5 at 4 km (MM5-04, seven members).
e All the control runs (MET, four members).

o All the ensemble members with 12 km resolutions (12-km, 14 members).

o All the ensemble members with 4 km resolution (04-km, 14 members).

e All the ensemble members driven by MC2 (MC2—ALL? 14 members).

e All the ensemble members driven by MM5 (MM5-ALL, 14 members).

MET+NO,, MET+VOC, and MET+NO_,VOC are ensembles generated with both mete-
drology and emission perturbations, while MC2-12, MC2-04, MM5-12, and MM5-04 are en-
sembleé Whefe only emissions perturbations are considered (i.e., the members in each of them
are driven by the same meteorological input field). MET, beiné formed by the four control
runs, takes into account meteorology perturbations from NWP model differences alone.

Ensembles 12-km and 04-km will help to understand the effects of different horizontal grid
spacing. Finally, MC2-ALL and MM5-ALL give insights about the different contributions

from different NWP models (MC2 and MM5) while including different spatial resolutions.

4.3 Probabilistic-Forecast ,Veriﬁcation Statistics

A probabilistic forecast system (PFS) can be built from a given set of ensemble members by

computing the probability- of an event occurrence. This prbbabili_ty can be computed as the
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Figure 4.3: Probabilities of ozone concentrations above 50 ppbv, as predicted by MET-NO,
at Abbotsford, 11-14 August 2004. Asterisks indicates hours when the forecasted probability
is 58 % (seven out of 12 ensemble members are predicting the event), crosses when it is 75 %

(nine out of 12), and squares when it is 91 % (11 out of 12). The continuous line represents
to ozone 50 ppbv concentration threshold. Circles indicate observations.

ratio of the number of the ensemble members that predict the event over the total number of
members. For an ozone PFS, the event can be the probability of ozone concentration above a
cértain threshold. Figure 4.3 is an example of the probabilities forecasted by the MET+NO,
ensemble, at Abbotsford, 11-14 August 2004.

Probabilistic forecast skill can be evaluated by determining the predictive accuracy of a
forecast distribution, and also the ability to distinguish the relative frequency of different
events. With this in mind two important forecast attributes can be deﬁned£ resolution and

reliability. Both are concerned with the conditional probability p(o|f) of observation (o) given
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Table 4.2: Out of the 549 valid observation points available, this table shows the percent of
observations with ozone concentration greater than the given threshold.

Threshold (ppbv) 10 20 30 40 50 60 70 80
Occurrence (%) 79 63 46 34 25 15 7 3

forecast (f). An in-depth discussion of those and other attributes of probabilistic forecasts

can be found in Joliffe and Stephenson (2003).

4.3.1 Resolution

Resolution measures the ability of the forecast to sort, a priori, the observed events into
separate groups, when the events considered have a frequency different from the climatolog-
ical frequency. For an ozone PFS, two different events could be the probabilities of ozone
concentrations above two different thresholds. A PFS with good resolution should Be able
to separate the observed concentrations when the two different probabilities are forecasted.
Table 4.2 shows the concentration threshold values used in this study. As the threshold
concentration increases, the _percentage of the available event occurrences greater than this
threshold decreases. For threshold values above the 60 ppbv limit (an event occurring 15 % of
the time) the low number of observation points available yields a large sampling uncertainty.
Nevertheless, these threshold values are included in this analysis, since it is interésting to see
how the ensembles behave for high (important for health—relé.ted issues) but rarely observed
ozone-concentration values.

Resolution can be measured with Relative Operating Characteristics (ROC), developed
in the field of signal-detection theory for discrimination of two alternative outcomes (Mason,

1982). A contingency table of observed versus forecasted event occurrences is built separately
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for individual forécast probability values (a probability value can be defined as the percentage
of ensemble members forecasting a given event). The hit rate is computed as the ratio of
the number of correct forecasts of the event to the totdl number of occurrences of the event,
while 'the false-alarm rate is computed as ratio of the number of non-correct forecasts of the
event to the total number of non-occurrences of ﬁhe event. Then, hit rates are plotted on
the ordinate against the corresponding false-alarm rates on the abscissa to generate the ROC
curve. For a PFS with good resolution, the ROC curve is close to the upper left hand corner
of the graph. The area under the ROC quantifies the ability of an ensemble to discriminate
between events, which can be equated to forecast uséfu]ness, and is known also as the ROC
score F(Mason and Graham, 1999). The closer the area is to one, the more useful the forecast
is. A value of 0.5 indicates that the forecast system has no skill, as when the predicted events
have a climatoligical frequency. The ROC curve does not depend on the forecast bias, hence
is independent of reliability (defined below). It represents the PFS intrinsic value.

Figure 4.4 shows an example of a ROC curve for the “ALL” ensemble (28 members), for
observed ozone concentration above 50 ppbv. The shaded portion of the plot represents the
ROC area, and the dashed line is the ROC curve for a charice forecast. A contingency table
is constructed for each pfobability threshold (the labels adjacent to the asterisks), where the
probability threshold in this example assumes the Valués from 0 /28 to 28/28, with increments
of 1/28. Hit and false-alarm rates are computed for each contingency table (i.e., for each
-probability threshold). In this example, a correct forecast of the event occurs if the forecast
probability (ratio of the number of the ensemble members that predict the event over the
total number of members) is above the given probability threshold when the observed ozone

concentration is above 50 ppbv. Similar curves'can be produced for the other concentration
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thresholds.

4.3.2 Reliability

Reliability measures the capability of the PFS to predict unbiased estimates of the observed
frequency éssociated with different forecast probabilities. In a perfectly reliable forecast, the
forecasted probability of the event should be equal to thg observed frequency .of the event
for all the cases when that specific probability value is fbrecasted. It can be improved with
a forecast calibration such as bias correction; e.g., by re-assigning the forecast probability
values based on a long series of pést forecasts, or by Kalman filtering each individual forecast
based on recent past bias values, as discussed in Chapter 5. Reﬁability alone is not sufficient
to establish if a PF'S produces valuable forecasts or not. For instance, a system that always
forecasts the glimato]ogical probability of an event is reliable, but not useful.

_ Reliability can be measured with a Talagrand diagram (Talagrand and Vautard, 1997),
also known as a rank histogram (Hamill and Colucci, 1997). First, the ensemble members are
ranked for each prediction. Then, the frequency of an event occurrence in each bin of the rank
hiétogram is computéd and plotted against the bins. The -number of bins equals the number
of members plus one. A perféctly reliable PFS shows a flat Talagrand diagram, where all the
bins have the same height (“ideal bin height”). In fact, if each ensemble member represents
an equally likely time evolution and space distribution of the ozone concentration, then the
ensemble exhibits a perfect spread, and the observations are equally likely to fal] between any
two members.

In this study a new summary index, called a “reliability index” (RI), is introduced as the
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Figure 4.4: ROC curve for the “ALL” ensemble (28 members), for observed ozone concen-
tration above 50 ppbv. The better the probabilistic forecast, the closer the ROC curve is to
the upper left corner. The shaded portion of the plot represents the ROC area (large areas
are better), and the dashed line is the ROC curve for a chance forecast. Hit rates are plotted
on the ordinate against the corresponding false-alarm rates on the abscissa, to generate the
ROC curve for each probability threshold (the labels adjacent to the asterisks), where the
probability threshold assumes values from 0/28 to 28/28, with increments of 1/28.
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reliability attribute. It is computed as follows:

mean bin distance fromideal bin height

x 100 4.1
ideal bin height (4.1)
1 Nyin | count; 1
Ny in Z |N oin Nzn, X
==t T % 100 (4.2)
Nbin
Nln-n.
t;
- Z |c"“” | x 100 (4.3)

pmnt me

where Np;y, is the Talagrand diagram number of bins (corresponding to the number of ensemble
members plus one), count; is the number of times the observed event falls into the i*? bin, and
Npoint is the sum of count;, for i = 1,--- , Ny, (i.e., the sample size).

Lower RI (i.e., closer to zero) means that the bins are closer to the ideal bin height. The
Talagrand diagram of the 13 PFSs all have similar shapes, as shown in the next Section, so
"this index can be useful to better discriminate between their reliabilities. The RI does not
;provide any information about the Talagrand diagram shape.

The RI index, as define in Equation 4.3 tends to increase with increasing ensemble'size, if
‘the ensembles aré samples drawn from thé same distribution. This would prevent its applica-

tion in cases as here, where ensembles with different sizes are compared with each other. For

this reason, Equation 4.3 is normalized as follows:

ZNbin l count; __
RI — =1 Npmi'n.l:

bin
esize
esizemin

where esize is the size of the ensemble for which RI is computed, and esizemin is the size

(4.4)

of the smallest ensemble considered. Hereafter, this normalized expression is used because it

makes RI independent of ensemble size. Again, lower RI is better.
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Tests of this normalization are performed by computing RI (using Equation 4.4) with

ensembles predicting the same distribution but having different size. Results gave the same

RI value, as desired, plus noise. The variance of the noise can be interpreted as an estimate
of the sampling uncertainty, where a sample is an individual ensemble.

The RI (%) measures the degree of closeness of a Talagrand diagram to its ideal flat
shape. Recently, a similar index (§) measuring the “deviation of the histogram from flatness”
has been introduced by Candille and Talagrand (2005). This index takes into account the
deviation from the ideal bin height by considering a sum over the squares of the differences of
count; minus Npoint/Npin for i= 1, - | Ny, and by normalizing this quantity. When used to
compare the reliability of different ensemble systems, it gives the same relative rankings as RI,
blit its values interpretation differs from RI. In fact, § = 1 means a perfecfly reliable system,
0 >> 1 suggests unreliability, and 6 < 1 indicates that “successive realization of the prediction

process are not independent”.

4.4 Probabilistic Forecast Results

In this section the resolution and reliability of the 13 PFSs are evaluated and discussed. The
PF'Ss are divided into three groups: ensembles considering perturbations of both meteorology
and emissions, ensembles based on only -emission perturbations or only meteorology perturba-
tions, and ensembles formed using the same model resolution or the same model. A summary

of these analyses concludes this section.
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4.4.1 Ensembles with both Meteorology and Emission Perturbations

The following are the ensembles generated by including both meteorology and emission per-
turbations: MET+NO,, MET+VOC, MET+NO,VOC (all three with 12 members), and ALL
(28 members). These ensembles will be referred generally as PERT.

Figure 4.5 shows the area under the ROC curve and its variation using eight different
concentration thresholds for each ensemble. The event being forecast is ozone concentration
above the threshold. The higher the threshold, the less often the event occurs. Table 4.2 shows
the percentage of occurrence of each event associated with the eight thresholds.

The probabilistic forecasts are best (ROC area larger than 0.8) for those threshold values
between 40 and 70 ppbv (except MET+NO;VOC with 70 ppbv). For low concentration values
(10 and 30 ppbv) almost all the ROC-area values are below 0.7. For the highest threshold
(80 ppbv) only ALL is above 0.7, and ensembles MET+VOC and MET+NO,VOC have;, poor
skill, with the latter below the 0.5 line. ALL and MET+NO, most often outperform the other
ensembles.

Figure 4.6 shows the Talagrand diagram for the PERT ensembles. The solid lines iﬁdicate
the ideal shape (for a perfectly reliable .diagram). All the panels show, to different degrees,
a combination of a “U-shape” and a “L-shape”. The U—shape indicates that spread of the
ensemble is too small, because the observed event often falls outside the range of values sampled
by the ensemble. In fact, the left-most bin contains an absolute frequency maximum (compared
with the frequency of the other bins), while the right-most bin contains a relative frequency
maximum. Furthermore, the asymmetric L-shape (maximum on the first bin) indicates that

the ensembles are biased towards higher values compared to the observed ozone concentrations.
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Figure 4.5: ROC-area values for 10 different concentration thresholds (from 10 to 80 ppbv,
with increments of 10) and for the ensembles generated by including both meteorology and
emission perturbations: ALL (28 members), MET+NO,, MET4+VOC, and MET+NO,VOC
(all three with 12 members). Values are within the interval [0, 1], with the perfect ROC-area
= 1, and a no-skill ROC-area of 0.5 (dashed line).
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Tablé 4.3 shows the RI values and the relative ranking based on these values. Among
the PERT ensembles, ALL visually shows the least deficiencies (associated with the different
shapes), followed by similar reliability for MET+NO,VOC and MET+VOC (with the former
slightly better, having a lower left-most maximum). MET+4NO,, is the ensemble showihg the
greatest positive bias among the four analyzed in this section, having the highest maximum
in the first bin. This is confirmed by looking at RIA, where ALL is most reliable within PERT
(overall ranking 2) followed by MET+VOC (4), MET+NO,VOC (7), and MET+NOx (9).

The MET+NO, tendency of overestimating more than the other ensembles in this group
suggests that the + 50 % NO, perturbation is not centered over an optimal estimate, and
‘shifting the perturbations toward lower values could improve i‘ts forecast skill by reducing
the positive bias. MET+VOC and MET+NO,VOC also overestimate the measured ozone
concentrations, suggesting that the same kind of perturbation shifting towards lower values
could improve their forecast skill as well. This is confirmed by noticing in Figure 4.6 that all
ensembles have a bump (around the fifth bin for ALL and arouﬁd the third or fourth bin for
the others) meaning that the observations fall more often in those bins than the neighboring
bins. Ideally this bump should appear at the middle bin, so a perturbation shift towards lower
values may move the bump more centrally.

Based on the above conéiderations, ALL is the best forecast by looking at both thé prob-
abilistic forecast resolution and reliability. ALL is formed by the largest number of members
(28), and the observations fall more often within the maximum and minimum concentration
predicted by its members at any given hour, compared witﬂ the other ensembles having only

12 members each (a subset of the ALL 28 members). This is certainly a desirable feature of
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Figure 4.6: Talagrand diagram (rank histogram) for the ensembles generated by including both
meteorology and emission perturbations (from top to the bottom panel): ALL (28 members),
MET+NO,, MET+VOC, and MET+NO,VOC (all three with 12 members). The number of
bins equals the number of ensemble members plus one. The solid horizontal line represents
the perfect Talagrand diagram shape (flat). The closer the diagram to this horizontal line, the
better.
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Table 4.3: Normalized Reliability Index (RI) computed as in Equation 4.4, and the relative ranking based on RI values for each
of the 13 ensemble groups. Smaller RI is better.

ALL MET-+NO; MET+4VOC MET4NO,VOC MC2-12 MC2-04 MMS5-12 MM5-04 MET 12-km 04-km MC2-ALL MMS5-ALL

RI (%) -~ 24 46 32 35 29 43 68 88 82 34 33 20 62

Ranking 2 9 4 7 3 8 11 13 12 6 5 1 10




'/

an ensemble system in general. Moreover, with the NO,, VOC and NO,, combined with VOC
perturbations ALL is able to span more emission uncertainty than ‘the other three forgcasts.

Even though MET+NO, is the most biased ensemble in this group, it shows very good
probabilistic predictive skills, having ROC values similar to ALL, a}ld better than any other
PERT ensemble with a threshold value of 10, 50, and 60 ppbv. Over thé five stations this
means that the NO, perturbation is more efficient than the VOC (or VOC combined with
NO,) perturbations in spanning the emission-uncertainty subspace. |

The NO,, perturbation has much better predictive skill than th¢ VOC perturbation for
ozone above 80 ppbv. These high concentrations were observed in the afternoon mainly af
Hope, except on 11 August at Chilliwack when a peak of 89 ppbv exceeded for thrée hou%s the
82 ppbv Canadian maximum 1-hour average acceptable ozone level. The fact that the NO;
perturbations outperform the VOC perturbations for ozone values above 80 ppbv suggests
that when (afternoon) and where (eastern side of the LFV) these values are observed, the
predominant chemical regime is NO_-sensitive. NOx—senéitive meéns that a percent change
in NO; results in a significantly greater change in ozone concentrafion relative to the same
percent change in V.OC (Sillman, 1999). It is beyond the goal of ﬂliS study to analyze in-
depth the predominant chemical regimes iﬁ the region, which would require several runs of a
phovtochemical model with different VOC/ NO, ratios (here only seven values of this ratio are
utilized). Other studies usin.g different approaches, i.e., without rﬁnning complex 3-D CTM
models, (e.g.,lvPryor, 1998; Ainslie, 2004) have instead suggested that the LFV is c]iinatologi—
cally VOC-sensitive for the daily maximum.

Nevertheless, the results of this study suggest a NO_-sensitive regime at Hope for this

particular 11-15 August 2004 event, which can be explained as follows. The aged air mass
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from the urban core (the main NO, source, located in the west and central parts of the
LFV) is transported eastward by sea breezes. In‘ the aged air mass, NO, concentrations are
reduced by the chemistry that produces ozone. In a NO_-sensitive regime, a NO, perturbation
is more likely than a VOC one to capture ozone-concentration variability, and that is why
MET+NO, has much higher ROC-area values with the threshold of 80 ppbv than MET+VOC
or MET+NO,VOC. Also, thé good probabilistic skill of MET+NO, suggests that the & 50
% limit for NO_ is appropriate, even though the perturbations themselves could be shifted

towards lower values as discussed above.

4.4.2 Ensembles with only Meteorology or Emissions Perturbations

In this subsection the following ensembles are considered: MC2-12, MC2-04, MM5-12, and
MMS5-04 (all formed by seven members), and MET (four members). Since each of the first
four PFSs is driven with the same meteorological input, they can be viewed as ensembles
where only the emissions are perturbed. These ensembles are compared here with MET, that
is an ensemble where only meteorology is perturbed. MET has only four members (while the
others in this group have seven members), soAthé comparison with larger ensembles is a more
stringent test for the meteorology perturbation than for the emissions perturbations.
Nevertheless, MET has the best ROC area for concentration thresholds of 40, 60 and
70 ppbv, and is very close to the best (MC2-04) for 50 ppbv (Figure 4.7). However, it has
the worst performance for 80 ppbv (where the best is again MC2-04) because only one of
its four ensemble members is predicting concentrations above this value. As will be shown in
Section 4.5, the ensemble-averaged MET forecast is skillful in predicting the ozone peak. Even

though three out of four of its members are always below 80 ppbv, they balance the highest

129




Only Emissions vs Only Met. Perturbations

0.9. l T ) T T ! v T
—& MC2-04
0:85 —= MMB-12H
: . » —S- MMB5-04
v P — MET
OB
0.7:
o
g .
<
S 085
c ,
il ,
061
055
05
[0 I 1Y) EORRRTRERS fenri P PP F TS0 ST T IR i

10 20 30 40 50 60 70 80
Goncentration Threshold (ppbv)

Figure 4.7: Similar to Figure 4.5, but with ROC-area values for the ensembles generated with
only emission perturbations, i.e., the ensembles formed by forecasts driven with the same
meteorological input' (MC2-12, MC2-04, MM5-12, and MM5-04, all with seven members),‘or
with only the meteorology perturbations (MET, four members).

peak prediction, resulting in a skillful ensemble mean for the ozone peak.

N 'Among the ensembles with only the emission perturbations, the one showing the highest
ROC-area values is MC2-04, and it is the best of this group for ozone thresholds from 30 to
| 80 ppbv. The MMS5 ensembles including only emission pgrturbations (MM5-12 and MM5-04).
have low ROC area values until 40 ppbv, and improve their performance relative to the other
ensembles for threshold values above 40 ppbv. MC2-12 is the best for 10 and 20 ppbv, and

the worst with 60 and 70 ppbv. At 80 ppbv it has a ROC area value of exactly 0.5, because it
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never predicts concentrations above this threshold. The 12 km runs are worse than the 4 km
runs for high ozone values (with the thresholds of 70 and 80 ppbv), because the high values
are mostly observed at Chilliwack and Hope, where the valley is much narrower than at the
other locations, resulting in an advantage for the finer horizontal resolution runs.

Figure 4.8 shows the Talagrand diagram for these PFSs, where the solid lines have the
same meaning as in Figure 4.6. Similar to Figure 4.6, U- and L-shaped diagrams are observed
here. At the same time a maximum frequency is observed for MC2-04 at the central fifth
bin, and to a lesser extent (relative maximum at fourth bin) for MC2-12. The central peak
indicates less bias in fhe ensembie f(;recasts. These ensembles also have a larger spread than
the ones with only the U- and L-shapes, as for the PERT ensemble set, but the spread is still
" too small.

Overall MC2-12 has the third best RI value (29 %), followed by MC2-04 (43 %). The two
MM5 and the MET PFSs all have very high RI values (between 68 and 88), resulting in a worse
overall ranking (11-13) as shown in Table 4.3. The reason is that they are highly positively
biased, and this also results in the first bin being considerably higher than the others in the
Talagrand diagram.

By comparing Figures 4.5 and 4.7, the utility of the meteorology and emission pertur-
bations and their combination can be inferred. The predictive skill of the PERT ensembles
(generated with both meteorology and emission perturbations) is superior to the ensembles
with-only the meteorology or only the emission perturbations for threshold values from 10 to
70 ppbv. For 80 ppbv, the best among those ensembles is MET-+NO_, while MC2-04, MM5-04,
and MM5-12 are better than MET+VOC and MET+NO_,VOC.

Therefore the following can be deduced: both meteorology and emission perturbations are
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Figure 4.8: Similar to Figure 4.6, but for the ensembles generated with only emission per-
turbation, i.e., the ensembles formed by forecasts driven with the same meteorological input
(MC2-12, MC2-04, MM5-12, and MM5-04, all with seven members), or with only the meteo-
rology perturbation (MET, four members). '
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needed to have a skillful PFS, and neither one is sufficient to form a reliable PF'S with a good
resolution for all the threshold values. Moreover, the emission perturbations (particularly with

NO;) appear most important to capturing ozone concentrations above 80 ppbv.

4.4.3 Ensembles Generated with the Same Model or the Same Resolution

Here the PFS resolution and reliability for 12-km, 04-km, MC2-ALL and MM5-ALL are an-
alyzed (they are all formed by 14 members). The intent is to observe the effect on the PFS
skill of different horizontal grid resolutions, and different driving meteorological models.

Figure 4.9 shows the ROC area for these ensembles. MMS5-ALL has the lowest values
from 10 to 60 ppbv, and is slightly better than MC2-ALL with the concentration thresholds
of 70 and 80 ppbv. 12-km is better :.than 04-km with thresholds of 10 or 20 ppbv and worse
with the others, and 04-km is the best at 60, 70, and 80 ppbv. This may reflect the fact
that higher concentra;cions were observed often in the eastern end of the LFV, where the
topography progressively becomes more and more complex, giving a clear advantage to the
finer resolution runs (as also discussed in Section 4.4.2). 04-km and MC2-ALL have very good
ROC-area values (above 0.8)» between 40 and 70 ppbv, while 12-km is above 0.8 only with 40
ppbv. MMS—ALL always has a ROC-area below ;cmpproximateiy 0.78.

Figure 4.10 shows the Talagrand diagram for these PFSs. MC2-ALL has the smallest bias
and MM5-ALL the lar.gest. This corresponds to the overall best (20 %) and among the worst
(62 %) RI values, respectively, as shown in Table 4.3. MM5-ALL has the smallest spre#d and
MC2-ALL the largest (but still too small), by comparing the first and last bin heights. This
suggests that the MC2 model has more of the needed variability than MMS5 in the 5-day period

analyzed in this study. Moreover, 04-km has a bigger spread and slightly less bias than 12-km
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Figure 4.9: Similar to Figure 4.5, but for the ensembles formed with the same resolution runs
(12-km and 04-km) or driven by the same Numerical Weather Prediction model (MC2-ALL

or MM5-ALL).
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Figure 4.10: Similar to Figure 4.6, but for the ensembles formed with the same resolution runs
(12-km and 04-km) or driven by the same Numerical Weather Prediction model (MC2-ALL
or MM5-ALL).

(resulting in the fifth and sixth overall RlIs, respectively).

Overall, by looking at the resolution and reliability of these ensembles built with different
reso]utioﬂs and models, MC2-ALL is the best for observed ozone concentrations below ‘60
ppbv, and 04-km has similar or better skills when higher ozone concenfrations are measured,

because it has better ROC-area values but is less reliable.
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4.4.4 Summary

Figure 4;11 shows the ROC area for all the 13 PF'Ss, allowing an overall comparison of the
PFES resolutions. ALL demén_strates the highest resolution, being the best at 30, 70 and 80
pi)bv, and close to the best with the other threéholds. Figure 4.11 shows also that MET (with |
only four ensemble members) has iﬁproved resolution relative to the cher PFSs at 40, 50
and 60 ppbv, while at 80 ppbv is among the worst along with MET4+NO_VOC. The subset
of ensembles that includes only emission perturbations usually have low ROC area values,
with the exception of MC2-12 which has flle highest value (but still well below 0.7) for 10
ppbv. Perturbing only the meteorology, or only the emissions, results in a PFS with lower
verification resolution than when both perturbations are considered. However, the emission
perturbations are more important than the meteorology perturbations in capturing the highest
ozone concentrations (above 80 ppbv).

.va ALL is excluded from the PFS set, then MET+NO, and 04-km have the highest ROC
area at 60, 70 and 80 ppbv. MET-NO, stays among the best even for lower.concentrat.ion
thresholds, while 04-km tends to lower verification resolution skill with lower ozone concen-
trations. instead, by looking at the Talagrand diagram, 04—krln (Figure 4.10) is certainly more
reliable than MET+NO, (Figure 4.6), which is one of the m.ost' positively biased PFSs. How-
ever, the MET+NO, bias could be efficiently removed by Kalman filtering its forecasts (as
discussed in Chapter 5), resulting in a reliable prediction. |

The most reliable PFS is MC2-ALL, followed closely by ALL and then MC2-12. ALL cer-
tainly benefits from the highgst number of ensemble members, making the extra computational

effort worthwhile.
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Figure 4.11: Similar to Figure 4.5, but for all the 13 ensemble groups considered in this study:
all the forecasts available (ALL, 28 members), meteorology and NO, perturbations combined
together (MET+NO;, 12 members), meteorology and VOC perturbations (MET+VOC, 12
members), meteorology and NO, combined with VOC perturbations (MET+NO,VOC, 12
members), all members driven by MC2 at 12 km (MC2-12, seven members), all members
driven by MC2 at 4 km (MC2-04, seven members), all members driven by MM5 at 12 km
(MMS5-12, seven members), all members driven by MM5 at 4 km (MMS5-04, seven members),
and all the control runs (MET, four members), all the 12-km runs (12-km, 14 members), all the
4 km forecasts (04-km, 14 members), all members driven by MC2 (MC2-ALL, 14 members),
and all members driven by MM5 (MM5-ALL, 14 members).
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ALL appears to be the most useful probabilistic forecast, particularly because of its good
resolution for high ozone concentrations, and because of its good reliability. Ensembles 04-km
and MET+NO, closely follow. The choice of a particular PF'S may be dictated by user needs,
depending on which events are interesting (rare versus typical), the available computer power,

and the importance of reliability versus resolution for a given situation.

4.5 Ensemble-mean Verification Statistics and Results

The ensemble mean of OEFSS is computed here as a linear average of the ensemble-member-
prédicted hourly concentrations. In this section the forecast skill of the ensemble means of
the 13 OEFS groups are investigated. The ensemble means are analyzed because it has been
found that they are the most skillful forecast when compared with the individual ensemble
members against the observations, as shown in Chapter 2 and 3 and in McKeen et al. (2005).

The following subsections present and discuss the results by looking at correlation, RMSE,
and unpaired peak prediction accuracy (UPPA). These discussions are then followed by a brief

summary.

4.5.1 Correlation

Pearson product-moment coefficient of linear correlation (herein “correlation”) can be com-

puted as follows:

Noowr (G, (£, 5) — Co(N[Colt, 8) — Cols)]
\/z”hw Colty5) = Col3)] SN [yt 8) — Cplo)]

corr(s) = (4.5)
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where Npoyr is the number of 1-h average concentrations over the 5-day period, C,(t, s) is the
1-h average observed conce.ntration at a monitoring station s for hour t, Cy(t,s) is thg 1-h
averége predicted conéentration at a monitoring station s for hour ¢ , m is .the average of
1-h average observed concentrations at a monitoring station s over the 5-day period, m
is the average of 1-h average predicted concentrations at a monitoring station over the 5-day
period.

We evaluate correlation to quantify timing errors of maximum and minimum concentrations
at a specific location. The higher the correlation, the better is the.match between the two
signals; for example, the maximum ozone is predicted close to the right time of the day.

Figure 4.12 depicts correlé,tion bar plots via five panels for.each of ‘the 13 OEFS groups
presented in this study. Each pa.nel shows the result for a différent. station, going from the west
side of the LFV (CYVR), to the easternmost location (Hope). For comparison purposes, the
ensemble means are listed on the abscissa following the same order they have been presented
and grouped in Section 4.4. Moreover, the number at the bottom of each bar represents
the raﬁking (1 being the best, 13 being the worst), computed for each station based on the
individual correlation values. |

Generally, correlation values tend to be lower movingv towards the east side of the LF'V,
with all the ensembles hé,ving their poorest performance at Hope. Indeed Hope is located in a
very steep narrow valley (less than 4 km wide), which none of the models are able to resolve.
Since the 12 km runs do not; see this valley, in the afternoon the ozone plume is advected
past Hope (instead of being trapped there), resulting in decreasing values (after the plume
passage) while in reality the concentration is increasing. Instead, when during the night a

return flow (going westward) is established, the 12 km run tends to bring back the plume,
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Figure 4.12: Correlation values between observed and predicted ozone 1-h average concen-
trations are plotted at five stations [Vancouver International Airport (CYVR), Langley, Ab-
botsford, Chilliwack, and Hope], for the 13 ensemble groups (as listed in Figure 4.11), for the
5-day period 11-15 August 2004. Values are within the interval [-1, 1], with correlation = 1
being the best possible value. The number at the bottom of each bar represents the ensemble
ranking relative to the correlation values at each station.
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resulting in iﬁcreasing predicted concentrations when the observed ozone is decreasing. This
results in negative correlation values for the 12 km runs, as shown in Figure 4.12. Because
of that, the ensembles using finer resolution runs have bétter correlation values at Hope and
Chilliwack, where the topography is more complex than at CYVR, Langley, and Abbotsford.
Spatial resolutions even finer than 4 km would be needed to better capture these topographic
effects.

Overall, MC2-04 shows the best correlation values, even though at Langley and Abbotsford
it is the worst and second worst, but it still has a correlation of 0.61 and 0.71, respectively.
The MC2-04 shows some utility at the challenging location of Hépe, where its correldtion is
considerably higher than all the other ensembles. Conversely, MET+NO, and 12-km shows
the best values at the central wider valley locdtioﬁs of Langley and Abbotsford. Also,. 04-km
is clearly better than 12-km at locations where the topography is complex (Chilliwack and‘
Hope), or vélhere the coastal settings (and the associated fhermally driven circulations) are
complicated, as at CYVR, which is located near the Georgia Strait waters.

MET, with only four ensemble members, has good correlation with the observations at
Langley and Abbptsford, having a median (7“‘ rank) performance at the other locations.
This means that meteorology plays an important role (as expected) in accurately predicting
the location and timing of the ozone concentration. ‘M]\/I5—ALL is better at Langley and
Abbotsford than MC2-ALL, but considerably worse elsewhere, underlyiné differences between
the meteorological fields the two mesoscale models provide.

MET+NO, hés the better correlation values among the PERT ensembles (the first four
on the abscissa). ALL, despite the considerably higher number of ensemble members, is nevér

the best among these four OEFSs, showing correlation values slightly better than the overall
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median values. In fact, more averaging in the larger ensemble smooths out the peaks and will,

on average, lower the correlations.

4.5.2 RMSE

Root mean square error (RMSE) is expressed by:

Nhofu.r .
RMSE(s) = hl S Gyt s) = Colt, )2 (4.6)
T —

RMSE gives important information about forecast skill in predicting the magnitude of ozone
concentration, even though alone it does not draw a complete picture of a forecast value.
Figure 4.13 shows the 13 OEFS RMSE values, analogous to Figure 4.12. This metric

clearly shows the difficulties of all the ensembles at Hope, and to a lesser degree at Chilliwack.

MC2-ALL shows the best performance with this metric, being among the first three ensem-
bles everywhere. MM5-ALL has among the worst RMSE values. MC2-12 shows low RMSE
Vg]'lies at CYVR, Langley and Abbotsford, while MC2-04 has low RMSE at Abbotsford, Chill-
iwack and Hopé.

Again, mostly because the topographic complexity, 04-km is better than 12-km at Abbots-
ford, Chilliwack, and Hope, while the contrary is true at CYVR and Langley. Instead, all the
PERT ensembles have similar RMSE at the five stations.

MET has very poor performance with RMSE. While the meteorology perturbation helps
the ensemble mean to capture space and time vaf%ability of the ozone concentration field (as

discussed with the correlation values), the same is not true for the magnitude of ozone concen-

142




40 ey
0|
20 ...
10
0 7| 9
40 R B T ! E— '
< 301 R P Langley
_‘E- 20 ... :. ..... ......................................
s tgk l wl ] sl 7 l_zl 2]
5
5 40 1 N a— T T 1
8 30 R S ot PO F PO SOUTT U PPOPR SUPPPPRRPIIR e AbetSford ...........
4l 9| si| 2] 8| 2l 2l 3| el 6|l 1] 1
c 0
(]
S 40 T 1 S L
il ] SRR Ny e T FEroIT NS . »_GhilliWacK@ ..........
8 20F e [ e e R S
0 s 10| 61| 4 | s| |l 9|2l 3| 2|l sl 2] n
40 T T ! T T
30+ s i : : Hope :
20| -
18 s| 7] &]| 4 10 1. 13 o || 2|l 3| 22|
> N «a°° “Q é I g
\‘g} ‘2‘(}" \gg’l« \?‘& \?’\lg ‘ﬁb& ¥ '3 q, ‘3\\@’

Figure 4.13: Root mean square error (RMSE) values (ppbv) at five stations [Vancouver In-
ternational Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope| are plotted, for the
13 ensemble groups (as listed in Figure 4.11), for the 5-day period 11-15 August 2004. Values
are within the interval [0, +oc], with a perfect forecast when RMSE = 0. The number at
‘the bottom of each bar represents the ensemble ranking relative to the RMSE values at each

station.
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tration. This confirms the importance of emission perturbations in AQ ensemble forecasting,
as already shown in Section 4.4.2, where it was needed to capture ozone éoncentrations above
80 ppbv.

RMSE can be separated into different components. One decomposition was proposed by

Willmott (1981). First, an estimate of concentration C*(t, s) is defined as follows:
C*(t,s) = a+ bCy(t,s) (4.7)

where a and b are the least-square regression coefficients, and s is the observation station
index. Cp(t, s) and C,(t, s), are the predicted and observed ozone concentrations, respectively.

. Then the folldwing two quantities can be defined:

Nhour
RMSE(s)= | —— 3 [C*{t,5) = Colt, )] (4.8)
\ W
our =1
1 Nhou.'r
RMSE,(s) = \ A [C*(t,8) — Cplt, s))? (4.9)
our t=1

where RM SFE;(s) is the RMSE systematic component, while RMSE,(s) is the random one.
RMSE, indicates the portion of error that depends on errors in the model, while RMSE,,
depends on random errors, on errors resulting from a model-skill deficiency in predicting a
specific situation, and on initial-condition errors. The following relates RMSE to its compo-

nents:

RMSE? = RMSE,* + RMSE,? (4.10)
In Chapter 5 is discussed how RM SFE; can be reduced with post-processing approaches such as
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the Kalman Filter bias-correction technique. Unfortunately, RM SEul reflects errors introduced
by both model imperfections and initial-condition errors, and thus cannot be removed except
by fundamental model improvements or better initial conditions.

Figure 4.14 shows RM SE; (bars bottom) and RMSE,, (bars top) for the 13 OEF'S groups
at the five stations over the LFV. At Hope, there are the highest RM SE, values, meaning
that all the ensembles can be improved with post-processing bias correction. QYVR shows
instead among the highest RM SFE,, values, indicating an intfinsic lack of predictive skill at this
location. Martilli and Stéyn (2004) discuss the effects of the superimposed valley, slope, and
thermal flows over the LFV. Oftén the pollution plume is transported during night over the
Georgia Strait waters as a result of the combination of several transport processes. This makes
i't very chéllenging for the models to accurately predict the spatial and temporal evolution of
ozone concentration in near water locations, such as CYVR, where the over-strait pool of
pollutants can be re-advected over land by the daytime sea breeze.

Figure 4.14 also shows that the PERT ensemble means have a similar RMSE decomposition.
RMSFE, for 04-km is higher than for 12-km, and since these errors tend to grow more rapidly at
smaller scales (i.e., high wavenumbers), the finer resolution could lose predictability faster than
the coarser resolutibn due to rapid growth of the random errors. Also, MM5-ALL RMSE,
is smaller than for MC2-ALL at CYVR, Abbotsford and Chilliwack. Finally, MC2-ALL,
which has overall the best RMSE values, still can be considerably improved (via bias-removal

techniques) at Chilliwack and Hope.
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Figure 4.14: Similar to Figure 4.13, but for root mean square error systematic component
(bottom bar) and unsystematic component (top bar).
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4.5.3 UPPA

Unpaired peak prediction accuracy (UPPA) is computed as follows:

1 R !Op(da‘yr‘s)mm - Co(day> S)
Nday da.y:l ) Co(da’y? S)maz

UPPA = maz| (4.11)

Ngqy is the number of days, C,(day, s),,,,, is the maximum 1-h average observed concentration
at a monitoring station s observed during a one-day period, and Cp(day, s), . is the maximum
1-h average predicted concentration at a monitoring station s during the same day.

UPPA is included in the U.S. EPA guidelines EPA (1991) to analyze historical ozone
episodes using photochemical grid models. The EPA acceptable performance upper-limit val-

ues are + 20 %. UPPA is computed here as an average (over the five days available) of the
absolute value of the normalized difference between the predicted and observgd maximum at
each station (Equation 4.11). UPPA is non-negative in our formulation, and only the 4+ 20 %
acceptance performance upper limit is used here.

UPPA has been choseﬁ because it measures the ability of the forecasts to predict thé ozone
peak on a given dlay. In tile past, peak concentrations have been the main concern for the
public health, even though in recent years (over midlatitudes of the Northern Hemisphere)
a rising trend has been observed in background ozone concentrations, while peak values are
steadily decreasing (Vingarzan, 2004).

In Chapter 3 it has been discussed the possibility that ensemble averaging could cause
excessive smoothing of the peak values. This has been improved in this Chapter by computing
the ensemble-mean peak prediction as the average of the member predicted-ozone peaks. By

doing an unpaired in time averaging for the peak values, the smoothing effect is avoided, and
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the ensemble-mean UPPA performance is improved.

Figure 4.15 shows the UPPA results. The solid line represents the EPA acceptan(;e values
for -this parameter; forecasts below this line are desired. Only at Hope do all the ensembles
have UPPA \}alues above this limit (i.e., 20 ppbv), so this statistic confirms the difficulties
that all the OEFSs have there.

MET-+NO, has the best UPPA performance, confirming its good probabilistic predictive
skill for high ozone concentration values, as shown in Section 4.4. METH+NO, is followed by
MM5-04 and MET in the ranking based on UPPA. MET good performance is somewhat sur-
prising because of its poor performance with RMSE. A comparisoﬁ of the MET ensemble mean
and the measured time series (not shown) confirms indeed that MET is accurate in replicating
the maximum ozone (giving good UPPA, even if often the maximum is underestimated), it has
reasonable timing of maxima and minima values with the observations (sufficiently good cor-
relation), but it underestimates the other daylight observéd values and largely overestimates
the nighttime measured ozone (poor RMSE).

MC2-ALL has among the worse (higher) UPPA values, except at CYVR, and in fact MM5-
ALL is clearly better with this pardmeter. MET+NO, is the best of the PERT ensembles,
with good UPPA values at Langley, Abbotsford, and Chilliwack. Finally 04-km does a better

job than 12-km (except at CYVR) in predicting the ozone peak magnitude.

4.5.4 Summary

In summary, the best’performing ensemble-mean is MC2-04 for correlation, MC2-ALL with
RMSE, and MET+NO, with UPPA. The ensemble mean computed with MC2-ALL also has

a good performance with correlation, but performs poorly with UPPA. MC2-04 has good
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Figure 4.15: Unpaired peak prediction accuracy (UPPA) values (%) at five stations [Vancouver
International Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope] are shown, for the
13 ensemble groups (as listed in Figure 4.11), for the 5-day period 11-15 August 2004. The
ensemble peak prediction is computed as the average of the ensemble-member peak prediction.
The continuous lines are the EPA acceptance values (+20 %). Values are within the interval
[0, +oo], with a perfect peak forecast when UPPA = 0. The number at the bottom of each
bar represents the ensemble ranking relative to the UPPA values at each station.
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skill also with RMSE, but not with the remaining parameters. MET+NO, has also a good
performance with correlation, and is worse than average with RMSE.

Overall the MC2-ALL ensemble mean shows the best forecast skill by looking at the statis-
tics presented here except for UPPA. This result would prevent its effectiveness for users most
concerned with this metric. Different user needs can result in different relative importance
among the statistical metrics. For example, if the main interest is in forecasting the ozone
peak magnitude and timing, then MET+NO, should be considered as the best ensemble-mean
for this case study. If the computat;ional resources are limited, then also MET (with only four
ensemble members) has good skills at predicting the magnitude of the ozone peak.

Among MET+NO,, MET+VOC, and MET+NO_,VOC, the MET+NO_ ensemble has the
best resolution (Section 4.4.1). This agrees with the results presented in this Section, where
MET+NO, outperforms the others for unpaired peak prediction accuracy (i.e., for the highest
values, which corresponds to its good ROC-area value at 80 ppbv) as shown in Figure 4.15.
Moreover, its low reliability is confirmed by MET+NO,, having the highest bias, as shown in

Figure 4.14 (systematic error).

4.6 Conclusions

This study is an analysis of the performance of 13 air-quality (AQ) ensemble groups, consid-
ering both probabilistic and ensemble-averaged ozone forecasts. Twenty-eight forecasts were
generated over the Lower Fraser Valley (LFV), British Columbia (BC), Canada, for the 5-day
period 11-15 August 2004, and compared with 1-h averaged measurements of ozone concen-

trations over five stations. The different forecasts are obtained by combining four driving
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meteorological input fields with seven emission scenarios: a control run, = 50 % NO,, + 50 %

VOC, and =% 50 % NO, combined with VOC.

The driving meteorological fields are the output of two mesoscale models (run with 12 and

4 km horizontal spatial resolution): the Mesoscale Compressible Community (MC2) numerical

weather prediction (NWP) model (Benoit et al., 1997) and the Penn State/NCAR mesoscale

(MMS5) model (Grell et al., 1994). The AQ forecasts are produced with the U.S. Environmen-

tal Protection Agency (EPA) Models-3/Community Multiscale Air Quality Model (CMAQ)

Chemistry Transport Model '(CTM) (Byun and Ching, 1991).

The following are the main findings of this study:

Both meteoro]ogy'a,nd emission perturbations are needed to have a skillful probabilistic
forecast system (PF'S), and neither is sufficient alone to form a reliable PFS with a good

resolution for the wholé range of ozone concentrations.

The meteorology pefturbation is most important to capture the ozone temporal ‘and

spatial distribution.

The emission perturbation is needed to accurately predict the ozone concentration mag-

nitude.

The emission perturbations are more important than the meteorology perturbations
to capture high (and rarely measured) ozone concentrations, typically observed in the
afternoon in areas such as the LFV where ozone production may be mainly attributed

to local sources.

Among the emission perturbations, NO, perturbations resulted in more skillful proba-
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bilistic forecasts for the episode analyzed in this study.

For all the emission perturbations, biases suggest the = 50 % is not centered over an
optimal estimate, and shifting the perturbations toward lower values could improve the

forecasts by reducing the positive bias.

Since NO,, has good (but positively biased) predictive skill, the = 50 % limit appears to

efficiently span the emission uncertainties space for this case.

The ALL ensemble (formed by all the 28 ozone forecasts available) is the best proba-

bilistic forecast, when considering both reliability and resolution.

Ensemble averaging tends to smooth out the peak values (Chapter 3). However, this
smoothing can be.avoided if the ensemble-mean ozone peak is computed as the average

of the ensemble-member peak predictions.

The MC2 model has more variability than MMJ5 in the 5-day period analyzed in this
study, and this resulted in MC2-ALL (formed by all the runs driven by MC2) being
the most skillful ensemble-averaged ozone forecast. However, if the main interest is in
forecasting the ozone peak magnitude and timing, then MET+NO,, should be considered

as the best ensemble-averaged prediction.

The root—fnean—square—error random component for 04-km (formed by all the runs with 4
km horizontal spatial resolution) is higher than for 12-km (formed by all the 12 km runs).
Since these errors tend to grow more rapidly at smaller Séales (i.e., high wavenumbers),
the finer resolution could lose predictability faster than the coarser resolution due to-

rapid random-error growth.
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e With a hard limit on computational resources, the MET ensemble mean (with only four
ensemble menibers; i.e., the control runs, where only meteorology is perturbed) is a

viable option for predicting the magnitude of the ozone peak.

The results of this study suggest that future work should focus on OEFSs involving both
meteorology and emissions perturbations. More specifically, the above findings suggest that
the emission perturbations could be based on the time and spatial variability of different
regimes. If (in a particular time of the day and on a subset of the spatial domain) a NO,-

sensitive regime is dominant, then a NO, perturbation would be more useful than a VOC one

* to capture the ozone variability. Conversely, in VOC-sensitive regimes the VOC perturbations

couid be more efficient. In situations where neither of these tv;fo regimes is well defined,
probably a combination of NO, and VOC perturbations couldv be the best choice. These
regimes couid be identified in forecast mode by looking at .the control-model forecasts, for
example by evaluating the O3/NO, or HyO2/HNO3 ratios (Sillman and He, 2002).

Ideally, each ensemble member should be an equally likely time evolution and space distri-
bution of the ozone coﬁcentration, and they should all be equally good éstimates of truth. With
this in mind, the ensemble members should be “independent”, in the sense that none of them
should rely on other members for their realizations. This is not the case when nested grids are
used, as for some of the PFSs used here (ALL, MET+NO,, MET+VOC, MET+NO,VOC,
MC2-ALL, MM5-ALL, and MET). Namely, since CMAQ domains are linked using a 1-way
nesting approach (similarly for MC2, but MM5 runs are implemented with 2-way nesting), all
the 4 km runs cannot be considered independent of the ru;ls where the driving Ameteorology

or chemistry is their 12 km coarser domain.
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The dependency among members of the same ensemble (no attempt has been done in
this study to measure it) would result in an “effective” ensemble size smaller than the actual
ensemble size. Moreover, a subset of the dependent members will span approximately the
same subspace of the AQ modeling uncertainty space (or at least they should be closer to ea.ch
other than to other members), resulting in both probabilistic and ensemble-averaged forecasts
relying too heavily on the performances of these members than on others.

Finally, ensemble weather forecasts often provide information on the reliability of the
forecasts; if the ensemble members have a large spread (defined as the standard deviation of
the ensemble members about the ensemble mean), this implies less confidence in the forecast.
However, similarly to Chapter 3 and 5, in this Chapter no correlation or relationship between

ensemble spread and forecast error has been found.
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Chapter 5

Ozone Forecasts Kalman—ﬁlter

Predictor Bias Correction

5.1 Introduction

1 Chapter 3 presented a new Ozone Ensemble Forecast System (OEFS), composed of 12 fore-
casts created using four different meteorological inputs and three different emission scenarios.
The meteorological fields were obtained by running two mesoscale numerical weather predic-
tion (NWP) models over two nested domains with 12 and 4 km horizontal grid spacing. The
emission scenarios were a control run, a run with 50 % more NO, emissions, and a run with 50
% less. The 12 combinations of the meteorological and emission fields were used to drive the
U.S. Environmental Protection Agency (EPA) Models-3/Community Multiscale Air Quality

Model (CMAQ) Chemistry Transport Model (CTM) (Byun and Ching, 1991).

1A version of this chapter has been accepted for publication. Delle Monache, L., T. Nipen, X. Deng, Y.
Zhou, and R. B. Stull, 2005: Ozone ensemble forecasts. Part II: a Kalman-filter predictor bias correction,
accepted in August 2005 to be published in the Journal of Geophysical Research.
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This OEFS has been tested for the period 11-15 August 2004 using data from five stations
across the Lower Fraser Valley (LFV), British Columbia (BC), Canada, a region where the
ozone modeling is particular challenging because of the complex coastal mountain setting.
The main finding in Chapter 3 is tﬁat, for the locations and days used to test this new OEFS,
the ensemble-mean is the most skillful forecast when tested against the observations, and
compared to any other ensemble member.

The results in Chapter 3 show that all the forecasts héve systematic errors (e.g., nighttime
over prediction). This is a problem common to all CTMs (Russell and Dennis, 2000), caused
by a poor representation of the nightime ABL (e.g., vertical eddy diffusivity) and errors in the
emissions. In this Chapter the Kalman filter predictor (KFP) post-processing bias-correction
method (Bozic, 1994) has been applied to each ozone forecast (the 12 ensemble members
and the ensemble-mean) to improve the individual forecast skill for all sites where ozone
observations are available. The KFP correction is an automatic post-processing method that
uses the recent past observations and forecasts to estimate the m}odel bias in the forecast,
where bias here is defined as the “difference of the central location of the forecasts and the
observations” (Joliffe and Stephenson, 2003). This estimate can then be used to correct the raw
model prediction. It is a recursive, adaptive method that takes into account the time-variation
of forecast error at a specific location.

Details of the Kalman algorithm are given in Section 5.2. Section 5.3 des_cribles the exper-
iment and methodology. In Section 5.4, the performance of the raw (i.e._, not corrected), the
KFP bias-corrected forecasts, the ensemble-mean of the KFP bias-corrected forecasts (EK,isa
linear average of the KFP bias-corrected ensemble-member predicted hourly concentrations),

and the KFP bias-corrected EK (KEK) are compared using the same data set and statistical
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parameters as in Chapter 3. Moreover, EK and KEK performances are compared with two
other bias-correction methods; namely, the additive and multiplicative methods (Section 5.5).

In Section 5.6 those results are discussed and conclusions are drawn.

5.2 The Kalman-filter-predictor Bias Correction

The Kalman filter (KF) is a recursive algorithm to estimate a signal from noisy measurements.
For NWP model forecasts, it has been mainly used in data-assimilation schemes to improve
the accuracy of the initial conditions for both NWP (e.g., Burgers et al., 1998; Hamill and
Snyder, 2000; Houtekamer and Mitchell, 2001; Houtekamer et al., 2005) and air quality (AQ)
forecasts (e.g., van Loon et al., 2000; Segers et al., 2005). The KF has also been used for NWP
model forecasts as a predictor bias-correction method during post-processing of short-term
weather forecasts (Homleid, 1995; Roeger et al., 2003), an approach that is extended here for
AQ forecasts (i.e., ozone).

In a post-processing predictor bias-correction method, the information (i.e., recent past
forecasts and observations) is used to revise the estimate of the current raw forecast. Previous
bias values are used as input to KF. The filter estimates the systematic component of the
forecast errors, or bias, which is often present in AQ forecasts as shown in Chapter 3 and
as reported in the literature (e.g., Russell and Dennis, 2000). Once the future bias has beén
estimated, it can be removed from the forecast to produce an ifnproved forecast. Such a
corrected forecast should be statistically more accurate in a least-squares sense.

The KF models the true (unknown) forecast bias Z; at time t, by the previous true bias
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plus a white noise 7 term (Bozic, 1994):

Tijt—-At = Te_Atjt—24t T Th—At (6.1)

where 7:_a; is assumed uncorrelated in fime, and is normally distributed with zero-mean and
variance o7, At is a time lag (see Figure 5.1), and t|t — At means that the value of the variable
at time ¢ depends on values at time t — At. Because of unresolved terrain features, numer-
ical noise, lack of accuracy in the physical parameterizations, and errors in the observations
themselvés, the KF approach further assumes that the the forecast error y¢ (forecast minus

observation at time t) differs from truth by a random error term ¢;:

Y=g+ €6 =Tp_ar+ At € (5.2)

where ¢, is assumed uncorrelated in time and norrﬁally distributed with zero-mean and variance
o2,
Kalman (1960) showed that the optimal recursive predictor of z; (derived by minimizing

the expected mean-square error) can be written as a combination of the previous predicted

bias and the previous measurement of the bias:

Tyyasle = Typ—ar + Brje—ne (Y — Tye—at) (5.3)

where a hat () indicates the estimate. The weighting factor 3, called Kalman gain, can be

ézﬂculated from:

Pi—Atft—2At + O
(Pt—atji—2a¢ + 02 + 02)

 Buros = (5.4)
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where p is the expected mean square error, which can be computed as follows:

Pijt—ar = (Pr—ati—2at + 02) (1 = Byr—ar) _ (5.5)

It can be shown (Dempster et al., 1977) that the time series

2t = YAt — Yt =M+ €At — € (5.6)

has variance

o = 02 + 207 (5.7)

Assuming r = o, /0%, Equation (5.7) become:

o =ro? +20% = (24 r)0? ' (5.8)
o? (Which is a time-varying quantity) can be estimated with the Kalman algorithm itself (i.e.,
by substituting & with o? in Equation (5.3) in combination with Equation( 5.8). Further
details on the filter implementation are given in Appendix A.

Since here a time lag of Af = 24 hours is used, today’s forecast bias is estimated using
yestefday’s bias, which in turn was estimated using the day-before-yesterday’s bias, and so on.
Figure 5.1 shows the flow diagram of the Kalman filter algorithm. The difference between to-
day’s forecast error (y;) and the portion of today’s bias that was estimated yesterday (Zy)—a¢),
is weighted by the Kalman gain to give the correction that was “learned” from previous errors.

This correction is applied to yesterday’s estimate of today’s bias (ist,t_ At) to produce today’s
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estimate of the bias for tomorrow (iH-Atli)' Thus, real-time AQ forecasts are possible by
taking the raw forecast from a model such as CMAQ, and correcting it with the bias forecast
from KF.

The KF algorithm will quickly and optimally converge (after few time-step (At) iterations)
for any reasonable initial estimate of pg and By. However, the filter performance is sensitive.
to the ratio o, /0.. If the ratio is too high, the filter will plape excessive confidence on the pést
forecasts, and will therefore fail to remove any error. On the other hand, if the ratio is too
low, the filter will be unable to respond to changes in bias. Thus, there exists an optimal valué
for the ratio that is given by the climatology of the forecast reéion, which can be estimated by

_ évaluating the filter performance in different situations with differeﬁt meteorology and different
AQ scenarios (not only for AQ episodes).

The data set presented in this study is not extended enough to compute an optimal ratio
value that can also be used for different AQ scenarios (i.e., non episodic). A ratio value of
0.01 is used in this study. This is the value from previous studies where the KF was used to
bias-correct weather forecasts in the steep mountaﬁns of BC, Canada (Roeger et al., 2003),
and close to the optimal value found in Homleid (1995); i.e., 0.06. With the availability of a
longer data set (a full month or season), including both ozone forecasts and observations with
a broader variability than just the AQ episode presénted here, a different optimal value may
result.

A period of two days (9-10 Auguét 2004) is used to train the Kalman-gain coefficients.
Kalman corrections are then applied to data for the subsequent five days (11-15 August 2004)..
Also, the filter algorithm is run on data for each hour of the day, using only values from previous -

days at the same hour of the day (corresponding to a At = 24 hours time delay in Figure 5.1).
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Input: - Yi-Xuea |Kalman gain factor:

|y, observation| ¥- | B
Xiiiat - Correction:
| ﬁtit—At[yt:_xlltrAt]
Prediction: Xijr. b
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Time Delay: Xioatit
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Xieatit
s

Figure 5.1: Flow diagram of the Kalman-filter bias estimator. It uses a predictor-corrector
approach, starting with the previous estimate of the bias (§3t|t—At) and correcting it by a
fraction (B) of difference between the previous bias estimate and previous observed forecast
error (y;) to estimate the future bias (Z;4a¢)-
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In this way, a given hpur is corrected using only the past forecasts and observations at that
sa.rﬁe hour. This is to take into account the diurnally-varying behavior the bias may have at
different times of the day (e.g., different ozone reactions during daytime versus nighttime).
Thus, we compute and save different Kalman coefficients and variances for each hour of the
day.

When observations are missing for‘ an hour, the filter uses the last known bias fér that
same hour from an earlier day. In some cases, however, the true bias changes considerably in
such a time period, causing the algorithm to use incorrect, old values. This creates spikes in
the Kalman coefficients that can be smoothed by applying the following low-pass filter twice:

1, 1. . :
Ty = EIL“t -+ Z[mt_l + xt+1] . (59)

Since the bias correction is additive, the Kalman-filtered ozone concentrations were forced to
a lower bound of 0 ppbv, in order to avoid negative forecast values.

The Kalman-filter predictor-corrector approach is:

linear

adaptive

e recursive

optimal

Namely, it predicts the future bias as equal to the old bias, but corrected by a linear
function of the difference between the previous prediction and the verifying bias. Contrast this

to a neural-network approéch, which is non-linear (e.g., Cannon and Lord, 2000). Contrary
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to a neural-network approach that requires a long training period and then behaves in a
static manner, the KF approz;ch adapts its coefficients during each time step. Advantages
are a much shorter training 'period, and an ability to adapt to changing synoptic conditions,
changing seasoné, and even changing weather-forecast models or AQ models. A disadvantage
is that it is less likely to predict extreme bias events; namely, it is unable to anticipate a large
bias when all biases for the past few days have been smaller.

It is recursive because values of the KF coefficients at any one time step depend oﬁ the
values at the previous time step. It is optimal in a least-square sense, since it minimizes the
expected mean-square error. Finally it is easy to implement and fast running on the computer,

requiring storage of a handful of the KF coefficients for each AQ site for each forecast hour.

5.3 Method

5.3.1 Experiments

Because each AQ ensemble member is a forecast based on a different meteorological model,
diﬁ‘erént grid resolution, different emissions, or different initial specie concentrations, it is
anticipated that each forecast will have a different bias. Some of these biases could be quite
large. Also, this bias could vary depending on the hour of the day. To correct the individual
AQ forecasts, we apply a separate Kalman filter for each ensemble member, for each hour.
Individual Kalman-corrected AQ forecasts are denoted by K.

Next, if we ensemble (E) average all of the Kalman;corrected (K) forecasts for any hour,
then the result is denoted by EK. This ensemble average could have a small residual bias,

because the bias corrections that were applied to the individual members were only estimates
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of future biases (as is the case for true AQ forecasts, not for ex-post-facto calculations of actual
biases). Hence, as a final fine-tuning, one can Kalman filter (K) the ensemble average (EK),
with the result denoted by KEK.

Experimeﬁts are performed here for the same suite of case-study days, NWP models, and
initial concentrations, as are described in Chaptef 3, but this study tests and compares the
performance of the.ra,w, K, EK, and KEK forecasts. During the 5-day period of 11-15 August
2004 used in this caée study, there were typical conditions that lead to high ground-level ozone
concentfations in the LVF. Those conditions are associated with a northward progressing low-
level thermal trough from Washington State, associated with a stationary upper-level ridge
situated across southern British Columbia, as described by McKendry (1994).

The five AQ measurements sites for this study are in the complex terrain of the LE'V, which
is widest at its west terminus at the Georgia Strait. In the LFV sea-breeze circulations, valley
and slope flows exist, and with the addition of the photochemistry, ozone modeling becomes
quite challenging in this area (McKendry and Ludgren, 2000).

Roughly two million people in greater Vancouver live in this valley, causing significant
anthropogenic emissions of NO, that can mix with the volatile organic emissions from both
anthropogenic sources and the surroundings evergreen forest. The Vancouver International
Airpprt (CYVR) ozone monitoring site is at this western edge. The north and south walls
of the valley are the steep Coast Range and Cascade Mountains. The valley width decreases
considerably toward east, Where the ozone site at the town of Hope is located in a very narrow,
deep valley. See Chapter 3 for a map and site cietails. .KF post-processing is particularly
valuable at complex locétions such as these, where both the NWP model and the AQ mo;iel

can have difficulty.
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5.3.2 Verification Statistics

The skill of the 14 forecasts (12 ensemble members plus EK and KEK) have been measured

using the same statistical parameters as defined in Chapter 3:

e Pearson product-moment coefficient of linear correlation (herein “correlation”):

N’W"T [Co(t, station) — Cy(t, station)][Cp(t, station) — Cp(t, station)]

corr(station) = -
\/ S Nhour (0, (1 statzon) C,(t, station)] ZN’“”” [Cp(t, station) — Cp(t, station))
, . (5.10)
e gross error (for hourly observed values of O3 > 30 ppbv):
Nhoﬂ'r . -
t, station) — C,(t, stat
gross error(station) = ! [Cp (¢, station) : (t, station) (5.11)
Nyour poc Co(t, station)
e root mean square error (RMSE):
l Nhowr
RMSE(station) = Z [Cy(t, station) — Co(t, station)]? (5.12)
hour ;=7
e unpaired peak prediction accuracy (UPPA):
1 e |Cyp(day, station)  — Co(day, station),, .|
UPPA= — P mag__ may (5.13)
Nagy dom Co(duay, station),, .

where Npoyr is the number of 1-h average concentrations over the 5-day period, Ny, is the
number of days, C,(t, station) is the 1-h average observed concentration at a monitoring sta-
tion for hour t, Cp(t, station) is the 1-h average predicted concentration at a monitoring station

for hour t, C,(t, station) is the average of 1-h average observed concentrations at a monitoring
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station over the 5-day period, Cy(t, station) is the average of 1-h average predicted concentra-
tions at a monitoring station over the 5-day period, C,(day, station),,,. is the maximum 1-h
average observed concentration at a monitoring station over one day, and Cy(day, station)

max ’

is the maximum 1-h average predicted concentration at a monitoring station over one day.
Predicted values also include EK and KEK.

The gross error and UPPA are included in the U.S. EPA guidelines (EPA, 1991) to analyze
historical ozone episodes using photochemical grid models. The EPA acceptable performance
upper-limit values are + 35 % for gross error, and + 20 % for unpaired peak prediction
accuracy. UPPA is computed here as an average (over the five days avéilable) of the absolute
value of the normalized difference between the predicted and observed maximum at each
station (Equation (5.13)). Thus, UPPA is non-negative; hence, only the + 20 % a'cceptance‘
performance upper limit is used in the next sections.

‘The reasons for utilizing this set of statistics are as follows. We choose correlation to get
an indirect indication of the phase differences befwe;en the predicted and measured ozone time
series at a specific location. The closer the correlation is to one, the better is the correspondence
of timing of ozone maxima and minima betweeﬁ the two signals.

RMSE (measured in ppbv) gives important information about the skill in predicting the
magﬁitude of ozone concentraﬁon, even though a.lohe it does not draw a complete picture
of a forecast value. It is very useful also for understanding the filter behavior, because it
can be decomposed into systematic and unsystematic components as discussed in detail in
Section 5.4.3.

The gross-error statistic has been considered in this analysis because it is included in the

U.S. EPA guidelinés (EPA, 1991). Also, being computed for hourly observed values of O3 >
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30 ppbv, it gives useful information about the forecast skill for higher concentration values,
which are important for health-related issues. It gives information about the error magnitude
(as RMSE), but as a portion of the observed ozone concentration (i.e., is measured in %).
UPPA (%) is also used because it measures the ability of the forecasts to predict the ozone
peak maximum on a given day. In the past, peak concentrations have been the main concern
for the public health. However, in recent years over midlatitudes of the Northern Hemisphere,
a rising trend for background ozone concentrations has been observed, while peak values are

steadily decreasing (Vingarzan, 2004).

5.4 Results

Figure 5.2 shows a typical example of the KFP bias-correction behavior. In the top panél,
the time series include the observations (circles), the ensemble-mean of the raw forecasts
(continuous black line), EK (blaék dashed line), and. KEK (black dotted line), for the 7-day
period of 09-15 August 2004, at Abbotsford. The first two days on the left side of the vertical
dashed line represent the training period, when the coeflicients start to be computed, but no
correction is applied to the forecast.

Even though the CMAQ model has been spun-up the four days before the start of training
(i.e., in the period 05-08 August 2004), the poor first day (August 09) prediction suggests
that the forecast did not yet recovered from the cold start initialization. Therefore, a longer
CMAQ spin-up period would improve the filter performance as well.

Nevertheless, KFP preserves the good performance of the raw ensemble-mean for the peak

concentration, except for the first day. The underestimated peak the first day is not adequately
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corrected by the KFP because the bias was much smaller for the previous training day. The
overnight over prediction (that is indeed common to all the forecasts and the raw ensemble-

mean) is improved, with KEK closer to the observations than EK.

The bottom panel of Figure 5.2 shows the behavior of the Fractional Relative Improvement

(FRI), defined as follows:

|RawFests — KEK|

FRI =
|RawFcsts — Obs|

(5.14)

where RawF csts is the ensemble-mean of the raw forecasts, and Obs is the observation. FRI
is computed in Figure 5.2 at 4:00 am (PDT), each day, when the nighttime over prediction is
more evident. The fact that FRI, after the training period, almost steadily increases towards
its oﬁtimal value (FRI = 1; i.e., when KEK = Obs) it means that the filter, day after day, keeps
1earning about the over prediction at that hour, and progressively improves its performance.
This also Conﬁr'ms what was said in Section 5.2, that the filter quickly and optimally converges
after few time-step iterations. It also means that, with a slightly longer training period, the
results presented here could be improved, particularly for statistical parameters such as gross
error and RMSE.

FRI is not shown here for daytime because the forecasts are already good then. The
following subsections present and discuss the results by looking at corfelation, gross error,

RMSE, and UPPA.

5.4.1 Correlation

Figure 5.3 shows the correlation results for the KFP bias-corrected 12 ensemble members and

the ensemble-mean for the 5-day period of 11-15 August 2004, at the five stations (CYVR,
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Figure 5.2: Ozone ensemble-mean forecasts and observations at Abbotsford, for the 7-day
period 09-15 August 2004 are shown. Top panel: the continuous line is the raw ensemble-
mean, the dashed line represents the ensemble-mean of the KFP bias-corrected forecasts (EK),
and the dashed-dotted line represents the KFP bias-corrected EK (KEK). The circles are the
observations. The vertical dashed lined separates the training period (two days, left) from the
filter application (five days, right). Bottom panel: Fractional Relative Improvement (FRI) at
4:00 am for each day. Vertical dashed line as in the top panel, and the dashed-dotted line
represents the optimal FRI value (one). Local Pacific Daylight Time (PDT) is UTC - 7 h.
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Langley, Abbotsford, Chilliwack and Hope). The black bars are the values for the raw fore-
casts and raw ensemble-mean (as in Figure 3.6), the grey bars are the values for the KFP
bias-corrected forecasts and EK, while the white bars in the last column represent the KEK
correlation values. There are improvements (higher correlation between forecast and observa-
tions) in most of the cases, except at CYVR where forecasts 10, 11 and 12 (MM35, 4 km) have
slightly lower correlation after the KF. The EK improvements are up to a factor of six and
they are larger for correlation values below 0.5. At Hope, six ensemble members have negative
correlation before the KF bias-correction, but have positive correlation (with values between
0.3 and 0.5) after the correction.

The EK correlation is slightly lower than the raw ensemble-mean at CY VR, slightly higher
at Abbotsford and Langley, better at Chilliwack, and significantly improved at Hope. The
KEK correlation values are slightly lower than the EK values at CYVR and Abbotsford (but
still ver); high correlation there), while they are higher at the other stations. Notably, after the
KFP bias-correction, the differences between the correlation values of the forecasts are lower,
meaning that the filter brings all of them closer to the same point — the observations.

Table 5.1 shows for each station the ranking (from 1 to 14) of each ensemble member,
EK, and KEK, where the highest correlation value has a ranking of 1, and the lowest has 14.
Forecast 08 has similar rankings when compared to EK, while forecasts 08 and 09 (MC2, 4
km) have a slightly worse performance. KEK rankings are the best when compared to any

other forecast.
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Figure 5.3: Correlation values between observed and predicted ozone 1-h average concen-
trations are plotted for the 12-member Ozone Ensemble Forecast System (01, 02, ---, 12)
and the ensemble-mean (E-mean). The black bars are the values for the raw forecasts and
raw ensemble-mean, the grey bars are the values for the Kalman filter predictor (KFP) bias-
corrected forecasts and their ensemble-mean (EK), and the white bar represents the KFP
bias-corrected ensemble of the KFP members (KEK). Results are plotted at five stations
[Vancouver International Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope|, for
the 5-day period 11-15 August 2004. Values are within the interval [—1, 1], with correlation
= 1 being the best possible value.
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Table.5.1: Ranking for correlation of KFP bias-corrected 12 ensemble members (01, 02, -- -,
12), the ensemble-mean of the KFP bias-corrected forecasts (EK), and the KFP bias-corrected

EK (KEK) at the Vancouver International Airport (CYVR), Lémngley,_Abbotsford, Chilliwack
and Hope stations.

01 02 03 04 05 06 07 08 09 10 11 12 EK KEK

CYVR 6 11 7 12 13 14 3 1 2 9 8 10 4 5
Langley 4 12 13 6 10 14 9 11 3 .7 8 5 2 1
Abbotsford 9 12 13 4 6 14 3 5 7 10 8 11 1 2
Chilliwack 6 9 10 8 5 14 4 2 7 13 12 11 3 1
Hope 13 10 14 11 & 12 2 1 4 7 9 6 5 3

Table 5.2: Ranking for gross error of the KFP bias-corrected 12 ensemble members (01, 02,
.-+, 12), the ensemble-mean of the KFP bias-corrected forecasts (EK), and the KFP bias-
corrected EK (KEK) at the Vancouver International Airport (CYVR), Langley, Abbotsford,
Chilliwack and Hope stations.

01 02 03 04 05 06 07 08 09 10 11 12 EK KEK

CYVR 19 2 6 10 4 14 13 12 8 11 3 7 5
Langley 4 10 11 6 5 8 14 13 12 7 9 3 1 "2
Abbotsford 4 6 12 3 5 1 13 14 10 7 9 8 2 1
Chilliwack 10 7 2 5 8 13 12 14 11 6 9 4 3 1
Hope 12 13 10 5 &8 14 3 7 1 6 4 9 2 1

5.4.2 Gross Error

The KFP bias-corrected forecasts have better (lower) gross-error values than the raw forecasts,
except at CYVR for forecasts 01 and 06 (Figure 5.4), with improvements roughly between 10
and 20 %. KEK is always better than EK, which in turn is always better than the raw ensemble-
mean. The gross-error computation (Equation (5.11)) has a lower ozone concentration limit
(observed 30 ppbv). Those improved gross-error values after the KF correction means that
the KFP bias-correction is improving not only the forecast nighttime over-prediction, but also
efficiently remove bias throughout the time series, regardless of the time of the day.

Table 5.2 summarizes the rankings computed by looking at the gross error. KEK is clearly

the best, while EK is the best when compared to the single deterministic forecasts. Here, as
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Figure 5.4: Similar to Figure 5.3, but for gross-error values (%). The continuous line is the

EPA acceptance value (+ 35 %). Values are within the interval [0, + 0], with a perfect
forecast having gross error = 0.
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Table 5.3: Ranking for root mean square error of the KFP bias-corrected 12 ensemble mem-
bers (01, 02, ---, 12), the ensemble-mean of the KFP bias-corrected forecasts (EK), and the
KFP bias-corrected EK (KEK) at the Vancouver International Airport (CYVR), Langley,
Abbotsford, Chilliwack and Hope stations.

01 02 03 04 05 06 07 08 09 10 11 12 EK KEK

CYVR 2 7 1 9 11 4 14 12 13 8 10 6 5 3
Langley 2 11 6 8 9 4 14 12 13 7T 10 &5 3 1
Abbotsford 4 11 7 6 5 8 13 14 12 9 10 3 2 1
Chilliwack 14 6 9 7 2 10 8 13 4 11 12 5 3 1
6 5 1

Hope 12 7 13 14 9 10 3 4 2 8 11

well as for the correlation (Table 5.1), the KFP forecast shows the same problem as the raw
ones at CYVR, but not at Hope. The overall poor skill of the raw forecasts at CYVR and Hope
are due to the fact that both stations are located in areas where all the individual ensemble
members have difficulties, as explained in Section 3.4.2. The KFP is able to considerably
improve the raw ensemble-mean at Hope (where it was 47, with EK being 2" and KEK 1°,

Moreover, both EK and KEK gross error are always well within the EPA acceptance limit (4

35 %).

5.4.3 RMSE

The RMSE results are shown in Figure 5.5. With this parameter there is an improvement after
the KFP bias-correction for all the forecasts, with values improved (decreased) up to 20-25
%. The raw ensemble-mean RMSE is considerably improved at each location, with further
improveménts (decreases) between 17 and 21 % with EK, and between 29‘a,nd 36 % with KEK.
Table 5.3 shows the RMSE rankings. KEK is always the best except at CYVR where it is 372
EK is 3" at Langley and Chilliwack, and second at. Abbotsford, therefore it is the second best

forecast when compared with,the other 13.
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Figure 5.5: Similar to Figure 5.3, but for root mean square error (RMSE) values (ppbv).
Values are within the interval [0, + oo], with a perfect forecast when RMSE = 0.
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RMSE can be separated into different components. One decomposition was proposed by

Willmott (1981). First, an estimate of concentration C*(t, station) is defined as follows:
C*(t, station) = a + bC,(t, station) (5.15)

where a and b are the least-square regression coefficients of Cp(t, station) and C,(t, station)
(the predicted and observed ozone concentrations, respectively, as defined in Section 5.3.2).

Then fhe following two quantities can be defined:

thu'r
RM SE;(station L C*(t, station) — C,(t, station)] 5.16
\ Nhour —1
Nhour X
RMSE,(station 1 C*(t, station) — C,(t, station 2 5.17
S\ p
our =1

where RM SE(station) is the RMSE systematic component, while RM SE,, (station) is the
unsystematic one. RM SE; indicates the portion of error that depends on errors in the model,
while RMSE,, depends on random errors, on errors resulting by a model skill deficiency in
predicting a specific sit‘uation, and on initial-condition errors. The following is an interesting

relationship between RMSE and its components:
RMSE?* = RMSE,* + RMSE,* (5.18)

The KF is expected to correct some of the systematic components of the errors (i.e.,
RMSE;), while the unsystematic component (RMSE,) on average (over the different fore-

casts) should be affected little by the filter correction. In fact, if RMSE, reflects errors
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introduced by model imperfections and initial—qondition errors, then it cannot be removed
except by fundamental model improvements or improvements in initial conditions.

Figure 5.6 shows the results for RMSFE,. The filter is correcting some of the forecast
systematic errors, as expected, meaning that the algorithm is properly designed. There is an
improvement even when the filter is applied twice (Wlth KEK), meaning that successive appli-
cations of the filter correction will decrease further the systematic errors of all the forecasts.
The 12-km runs (forecasts 01-06) have their highes‘t systematic error at Hope. All these model
runs poorly reproduce the real topography eﬁécts at this location, and this lead to systematic
misrepresentations of ozone temporal and spatial distribution. Conversely, the 4-km runs have
their highest systematic error at CYVR (in particular for MC2 driven rumns, forecasts 07-09),
where their ability to capture complex terrain more accurately than the 12-km runs is not an
advantage, since at CYVR the terrain is flat.

The results for RM SE, are shown in Figure 5.7. The filter does not decrease the unsys-
tematic errbrs, and often increases them for this AQ episode. CYVR shows among the higheét
RM SE,, values (particularly for MC2 driven runs, forecasts 01—03 and 07-09), indicating an
intrinsic lack of predictive skill at this location. Martilli and Steyn (2004) discuss the effects
of the superimposed valley, slope, and thermal flows over the LFV. Often the pollution plume
is transported during night over the Georgia Strait waters, as a result of the combination of
several transport processes. This makes it very challenging for the modéls to accurately pre-
dict the spatial and temporal evolution of ozone concentration near water locations, such as
CYVR, where the over-strait pool of pollutants can be re-advected o‘verv land during daytime
sea breeze.

"For the ensemble mean, RMSE, keeps growing after successive filter applications, the
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Figure 5.6: Similar to Figure 5.5, but for root mean square error (RMSE) systematic com-

- ponent values (ppbv).- Values are within the interval [0, - 00|, with a perfect forecast when
RMSE = 0.
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Figure 5.7: Similar to Figure 5.5, but for root mean square error (RMSE) unsystematic com-
ponent values (ppbv). Values are within the interval [0, + oo, with a perfect forecast when
RMSE = 0.
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opposite of what is observed for RM SFE,. This means that there is a finite upper limit on the
number of useful corrections that can be obtained by successive KF applications. Here, for the
ensemble mean, RMSE decreased until the fourth iteration, and grew considerably afterward

(not shown).

5.4.4 UPPA

Figure 5.8 shows the results for UPPA. There are improvements (values closer to zero) in the
ma'j'ority of cases; howe\}er, in one, three, six, five and three cases out of 14 at CYVR, Langley,
Abbotsford, Chilliwack and Hope, respectively, theré is no improvement or the KF forecasts
are slightl& higher. The improvements of the UPPA KFP forecasts with respect to the raw
forecasts are modest if compared with the improvements shown with the previous statistical
parameters. EK is always better than the raw ensemble-mean, except at Chjlliwack, where
it is slightly higher. The same can be said for KEK when compared to EK, with the larger
improvements for both EK and KEK at Hope. EK and KEK have UPPA values within the
EPA acceptance limit (4 20 %) at Langley, Abbotsford and Chilliwack, while they are ciose
to this limit at Hope and above 30 % at CYVR.

UPPA is the only parameter where the ensemble-mean does not have the best overall rank-
ing, even after the forecasts are KFP bias-corrected. Both EK and KEK have api)roximately

an average performance for UPPA, when compared with the other forecasts (Table 5.4).
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Unpaired Peak Prediclion Accuracy (%)

Ensemble Members

Figure 5.8: Similar to Figure 5.3, but for unpaired peak prediction accuracy (UPPA) values.
The continuous lines are the EPA acceptance values (+ 20 %). Values are within the interval

[0, 4+ oo], with a perfect peak forecast when UPPA = 0.

Table 5.4: Ranking for unpaired peak prediction accuracy of KFP bias-corrected 12 ensemble
members (01, 02, ---, 12), the ensemble-mean of the KFP bias-corrected forecasts (EK), and
the KFP bias-corrected EK (KEK) at the Vancouver International Airport (CYVR), Langley,

Abbotsford, Chilliwack and Hope stations.

01 02 03 04 05 06 07 08 09 10 11 12 EK KEK
CYVR 3 10 1 5 9 2 14 13 12 8 11 4 7 6
Langley 8§ 4 12 3 5 11 14 10 13 2 19 7 6
Abbotsford 8 10 13 2 4 11 12 14 9 5 6 7 1 3
Chilliwack 10 13 11 2 9 14 5 3 12 4 1 8 6 7
Hope 0 13 11 5 6 14 3 2 12 4 1 8 9 7
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5.5 Comparison with other Bias-correction Methods

Figure 5.9 shows the ensemble-mean RMSE vzﬂues for the five stations (CYVR, Langley,
Abbotsford, Chilliwack and Hope), for the 5-day period 11-15 August 2004. On the abscissa
are KEK, EK, the additive bias-correction (AC), the multiplicative bias-correction (MC), and
the raw ensemble-mean for comparison purposes.

The additive bias-corrected concentration is computed as follows:

Nhou'r
Cac(t, station =C t, station) — 1 C,(t, station) — C,(t, station 5.19
P o P
T t:]. .

whereas the multiplicative bias-corrected concentration is given by

Z&f‘” C,(t, station)

Cumcl(t, station) =
(t ) ngf” Cy(t, station)

Cp(t, station) (5.20)

Both AC and MC use observations throughout the experiment period, so the ozone time
series corrected with these methods cannot be considered forecasts, since they cannot be
computed in a predictor mode. Contrast this with both KEK and EK that are predictor post-
processing procedures of the forecasts, which use only observations available before the time
for which the forecast verify. In this sense, this is a stringent test for the KFP bias correction.

Nevertheless, at every station (except CYVR) KEK is the best, while EK in general is
better than MC, but has higher (worse) RMSE values than AC (except at Hope). Finally, at

CYVR, KEK is third while EK is better only than the raw ensemble-mean.
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Figure 5.9: Root mean square error (RMSE) values (ppbv) are shown for four different bias-
correction methods applied to the ensemble-mean. These methods are: the Kalman filter
predictor (KFP) bias-corrected ensemble-mean of the KFP bias-corrected forecasts (KEK), the
ensemble-mean of the KFP bias-corrected forecasts (EK), the Additive correction (AC), and
the Multiplicative correction (MC). The last values on the abscissa are for the raw ensemble-
mean with no corrections. Results are plotted at five stations [Vancouver International Airport
(CYVR), Langley, Abbotsford, Chilliwack, and Hope]|, for the 5-day period 11-15 August 2004.
Smaller values are better.

188




5.6 Discussion and Conclusions

In summary, the Kalman-filter predictor (KFP) bias-corrected forecasts and their ensemble-
mean have better forecast skill than the raw forecast, for the locations and days used here
to test théir performance. The corrected forecasts are irnproved.for cox;i‘elation, gross error,
root mean square error (RMSE), and unpaired peak prediction accuracy (UPPA), the latter
being the statistical parameter showing the less pronounced improvement after the KFP bias-
correction. In general, the ensemble-mean forecast benefits from the improvement of each
single Kalman-corrected ensemble member. In fact, the ensemble—méan of the KFP bias-
corrected forecasts (EK) and the KFP bias-corrected EK (KEK) are the second best and the
best forecasts overall when compared with the other 12 individual forecasts members and their
raw ensemble-mean. T he results in Section 5.4.3 showed also thqt only a limited number of
successive KF application to the same forecast would result in an improvement.

Those results indicate that the filter improves the forecast timing of maxima and minima
concentrations with respect to the observations, because the correla’gion is closer to one. From
the improved (decreased) RMSE and gross-error values, we infer that the KF improves the
forecast accuracy in reproducing the magnitude of ozone concentrations. Better (closer to
zero) UPPA and gross-error values indicdte that the filter improves the forecast ability to
capture rare (but important for health-related issues) events, such as the occurrence of ozone
concentration. peaks. Moreovef, the KF reduced systematic errors such as can be induced
by model error, as for example the poor representation of topographic complexity. Ensemble
averaging tended to remove the unsystematic errors, as showed‘ in Chapter 3. This is why the

combination of Kalman filtering and ensemble averaging results in the best forecasts; i.e., EK
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and KEK.

EK and KEK performances have been compared also with the performances of two other
bias-correction (not in predictor mode) techniques, the additive bias-correction v(AC), the
multiplicative bias-correction (MC). At every station (except CYVR) KEK is the best; while
EK is better than MC, but has higher (worse) RMSE values than AC (except at Hope).
Finally, at CYVR, KEK is third while EK is better only than the raw ensemble-mean.

A conéise way to summarize the results from Section 5.4 is given in Figures 5.10, 5.11, 5.12,
5.13, and 5.14. A Taylor’s diagram (Taylor, 2001) is used to create a multi-statistic plot of
correlation, centered RMSE (CRMSE: RMSE computed after the overall bias is ;emoved), and
standard deviation. CRMSE is the distance on the diagram between the point representing
the forecast and the one representing the observations. For each forecast (smaller arrows) and
for EK and KEK (bigger arrows, with different arrowhead), the arrow tail gives the standard
deviation and the correlation of a raw forecast, while the arrowhead represents the same values
for the KFP bias-corrected version of the same forecast. If the arrow points toward to the
observation (circle) it means t.hat the KFP is correcting the forecast statistically in the right
direction. The arrows representing EK and KEK are consecutive; i.e., the EK arrowhead
is also the KEK arrow tail, because EK is the raw version of KEK. The three concentric
lines centered over the point representing the observation indicate the CRMSE for the raw
ensemble-mean (dotted line), EK (thick dashed line), and KEK (thick continuous line).

At CYVR (Figure 5.10) the majority of arrows point away from the observation (including
the arrows with different arrowhead for EK and KEK), indicating that the KFP in those cases
degraded the raw forecasts. This is caused by the dominance of unsystematic errors at this

location (as discussed in Section 5.4.3), that prevent the filter to being able to do a successful
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correction.

At Langley (Figure 5.11) the forecasts tend to be improved, as indicated by the arrowsv
pointing closer té the observation. EK is better than the raw-ensemble-mean (which in turn
is better than all the individual deterministic forecasts), since the thick dashed line passing
through its arrowhead is closer to the observations than the dotted line passing through the
tail. KEK is the best being the closest to the observations (thick continuous line).

The same conclusions can be drawn for Abbotsford (Figure 5.12), with even larger im-
provements after the correction. At this location, the forecast standard deviations after the
correction are much more similar to fhe observation standard devi‘ations (but the same can be
said also at the other stations).

Figure 5.13 shows the same diagram for Chilliwack. The forecasts are improved, since the
arrows point toward the observations. At this location, EK is fourth best, while KEK is still
the best .>

The results for Hope are shown in Figure 5.14. All the forecasts are improved, with EK
and KEK being the fifth, and third best, respectively. In this case (as well as for Chilliwack)
the benefit of applying the KFP bias correction is even higher than at the other locations,
demonstrating that the KF correction is particularly efficient if the raw forecast shows high
systematic errors, as discussed in Section 5.4.3. This is evident since the arrows are on average
longer than at the other locations. At Hope, forecasts 07 and 08 are the first and second
best forecasts (by comparison Wi‘ﬁh Figure 3.19), while they were among the worst at other
locations, particularly at VCYVR, Langley at Abbotsford.

The KFP bias-correction approach for the locations and days used in this study success-

fully removes part of the forecast bias. The filter is able to recognize systematic errors in the
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Figure 5.10: Taylor’s diagram is plotted for Vancouver International Airport (CYVR). The az-
imuthal position gives the correlation, while the radial distance from the origin is proportional
to the standard deviation (ppbv). The smaller arrows represent the 12 ensemble members,
and the bigger arrows (with different arrowhead) represent the ensemble-mean of the Kalman
filter predictor (KFP) bias-corrected forecasts (EK) and the KFP bias-corrected EK (KEK).
Fach arrow tail represents the forecast statistics of a raw forecast, and the arrowhead indicates
KFP-corrected values. If the arrow points closer to the observation point (circle) it means that
the KFP is correcting the forecast in the right direction. The arrows representing EK and
KEK are consecutive; i.e., the EK arrowhead is also the KEK arrow tail, because EK is the
raw version of KEK. The distance between the observation and a given point is proportional
to the centered root mean square error (CRMSE) between the observation and the forecast.
The three concentric lines centered over the point representing the observation indicate the
CRMSE for the raw ensemble-mean (dotted line), EK (thick dashed line), and KEK (thick
continuous line). If the line passing through the arrowhead is closer to the observation than
the one passing through the tail, it means that that the KFP is improving (reducing) the
CRMSE.
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Figure 5.11: Taylor’s diagram for Langley (similar to Figure 5.10).
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Figure 5.12: Taylor’s diagram for Abbotsford (similar to Figure 5.10).
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Figure 5.13: Taylor’s diagram for Chilliwack (similar to Figure 5.10).
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Figure 5.14: Taylor’s diagram for Hope (similar to Figure 5.10).
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forecast, as for example the nighttime over-prediction of ozone concentration induced by a poor
representation of the nighttime boundary layer, or the errors at Chilliwack and Hope induced
by the systematic misrepresentation of topographic complexity in the model. As a cbnse—
quence of the‘ improved nighttime over prediction, the ozone distribution low-concentration
tail is better represented after the KF correction, resulting in forecasts having a variance that
resembles more closely the observation variance, as discussed above.

The experiments performed in this study suggest that betfer forecasts can be made with a
longer KF training period (such as 5 days), and with a longer CMAQ model spin-up. Moreover,
with the availability of a lﬁnger data set (a full month or season), including ozone forecasts
and observaﬁons with a broader variability of low and high ozone events, an optimal vaiue for
the sigmia ratio (as discussed in Section 5.2) could be found.

KEK, which combines the beneficial effects of ensemble averaging and KFP post-processing,
is overall the most skillful for}ecast for the locations and days tested here, where the ozone
modeling is particular challenging because the complex coastal mountain setting. For this
reason the approach used here to imprové ozone forecasts might be equally successful- when
implemented in other regions with similar or less complex topographical sgttings.

Finally, ensemble weather forecasts often provide information on the reliability of the fore-
cast: if the ensemble members have a large spread (defined as the standard deviation of the
ensemble members about the ensemble mean), this implies less confidence in the forecast.
Perhaps a similar spreaﬂ-skill relationship exists for air—quality forecasts. However, in Chap-
ter 3, neither a correlation nor .a relationship between the raw ensemblg spread and the raw
forecast error has been found. Similarly, a spread-skill relationship has not been found for the

Kalman-filtered AQ forecasts ih this study.
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Chapter 6

Conclusions

The goal of this research was to improve real-time short-term forecasts of tropospheric ozone

measured at near-surface receptor sites. This goal was achieved.

6.1 Summary of Methods and Procedures

This research was based on the hypothesis that the ensemble techniciue and Kalman-filter
postprocessing can be transferred to air-quality modeling, and can potentially yield similar
benefits as for NWP. The method used here was 3-D mesoscale NWP modeling coupled with A
3-D chemical numerical modeling. The procedure was to run these models using emission
inventories f;)r_ actual ozone episodes, and to calibrate and verify the results against near-
surface ozone observations.

This dissertation summarizes the results of an immense amount of numerical computations:

e Nine days run with the 3-D Eulerian NWP model MC2 with four (108, 36, 12, and 4 km

horizontal grid spacing) nested grids.

201




¢ Nine days run with the 3-D Eulerian NWP model MM5 with four (108, 36, 12, and 4

km horizontal grid spacing) nested grids.

e 36 (two NWP model by nine days by two grids) 1-day runs with the meteorological

pre-processor MCIP.

e 56 (four control runs by nine days plus four lagged runs by five days) 1-day runs with

the SMOKE emission pre-processor.

e 186 (four spin-up days by four control runs plus five days by 28 forecasts plus five days
by six lagged forecasts) 1-day run with the 3-D Eulerian CMAQ model (to perform the

12 AQ forecasts).

All the above resulted in few hundreds Gigabytes of data, and several hundreds of computa-
tional hours on processors of a high-performance computing Linux super—clusj:ér.

Chaos theory has been applied through the ensemble approach to improve our ability
to predict thg_ spatial and temporal distribution of tropospheric ozone concentration, and to
estimate in advance its magnitude. The ensemble approach is one method to represent the
time evolution of the probability density function describing the atmosphere’s initial state and
its uncertainty. The probability density function is represented by a limited set of points. The
evolution of each of these points would be a member.of the ensemble. Each of these members:
should ideally represents an equally likely evolution of the dynamical system.

Kalman-filter theory has been applied in this dissertation to remove ozone forecast bias;
i.e., systematic errors. The filter was applied as a post—processing procedure, in a predictor

mode. Previous bias values were used as input to Kalman filter. Once the future bias has
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been estimated, it was removed from the raw forecast to produce an improved forecast. Such
a corrected forecast should be statistically more accurate in a least-squares sense.

To accomplish this goal, the following research work was conducted:

e The realization and test of an air-quality ensemble built on a previous photochemical
model intercomparison study (see Chapter 2). This preliminary work demonstrated the

value of ensemble air-quality forecasts, and lead to more-detailed research.

e The realization and test of a new air-quality ensemble design, created by perturbating
the input fields that most affect the uncertainty of the air-quality photochemical models;

i.e., the meteorological and the emissions fields (see Chapters 3 and 4).

e The realization and test (introducing a new reliability index) of probabilistic forecasts

resulting from ensemble methods (see Chapter 4).

e The realization and test of a new method to remove systematic errors from air-quality

forecasts, based on the Kalman-filter-predictor algorithm (see Chapter 5).

6.2 Summary of Findings

The findings of this dissertation can be summarized as follows:

e An ensemble average computed from the ozone prediction of different photochemical
models is a more skillful ozone forecast than the one from a single deterministic model

(Delle Monache and Stull, 2003).

e An average of ensembles created by both meteorology and emission perturbations has

better-forecast performance than any individual ozone prediction, being able to filter out
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unpredictable components of the transport, diffusion, and chemical reactions governing

the ozone spatial and temporal distribution evolution (Delle Monache et al., 2005a).

Twenty-eight forecasts (grouped in 13 different ensembles) have been generated over the
Lower Fraser Valley, British Columbia, Canada, for the 5-day period 11-15 August 2004,
and they have been compared with 1-hour averaged measurements of ozone concentra-
tions over five stations. The different forecasts are obtained by combining four driving
meteorological input fields with seven emission scenarios: a control run, + 50 % NOg,

+ 50 % VOC, and + 50 % NO, combined with VOC (Delle Monache et al., 2005c).

— Both meteorology and emission perturbations are needed to have a skillful prob-
abilistic forecast system, and neither of two is sufficient alone to form a reliable
probabilistic forecast system with a good resolution for the whole spectrum of ozone

concentrations.

— The meteorology perturbation is important to capture the ozone temporal and
spatial distribution.

— The emission perturbation is needed to accurately predict the ozone concentration
magnitude. In particular, the emission perturbations are more important than
the meteorology ones to capture high (and rarely measured) ozone concentrations,
typically observed in the afternoon in areas such as the Lower Fraser Valley where
ozone production may be mainly attributed to local sources.

— Among the emission perturbations, the ones involving NO,, resulted in more skillful

probabilistic forecasts for the episode analyzed in this study.
— The + 50 % emission perturbations appeared to be not centered over an optimal

204




estimate, and shifting the pertlirbations toward lower values could improve the

forecasts by reducing the positive bias.

Since NO; has good (but positively biased) predictive skill, the &= 50 % limit seems

to efficiently span the emission uncertainties space for this case.

The ensemble formed by all the 28 ozone forecasts available is the best probabilistic

- forecast, -when considering both reliability and resolution.

The smoothing of peak values caused by ensemble averaging (Delle Monache et al.,
2005a) can be avoided if the ensemble-mean ozone peak is computed as the average

of the ensemble-member peak predictions (Delle Monache et al., 2005c).

The MC2 model has more variability than MMS5 in the 5-day period analyzed in
this study, and this resulted in the ensemble formed by all. the runs driven by
MC2 forming the more skillful ensemble-averaged ozone forecast. However, the 12-
member ensemble based on meteorology and NO, perturbations provided the best

ensemble-averaged prediction of the magnitude and timing of peak ozone.

The root-mean-square-error random component for the ensemble formed with all
the runs with 4 km horizontal spatial resolution is higher than the one formed with

the 12 km resolution runs.

With a hard limit on computational resources, the ensemble mean computed with
only the four control runs, where only meteorology is perturbed, has good skill at

predicting the magnitude of the ozone peak.

e The Kalman-filter predictor bias-corrected forecasts and their ensemble-mean have better

. forecast skill than the raw forecasts, for the locations and days used here to test their
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~performance (Delle Monache et al., 2005b). The corrected forecasts are improved for
correlation, gross error, root mean square error, and unpaired peak prediction accuracy,
the latter being the statistical parameter showing the least pronounced improvement

after the Kalman-filter predictor bias correction. Furthermore:

— The Kalman-filter predictor bias-correction approach successfully removes part of

the forecast’ bias for the locations and days used in this study.

— Only a limited number of successive Kalman-filter applications to the same forecast
would result in an improvement, since while the filter removes systematic errors, it

tends to amplify random errors.

— As a consequence of the raw-forecast nighttime over prediction, the ozone distribu-
tion low-concentration tail is better represented after the Kalman filter correction,
resulting in forecasts having a variance that resembles more closely the observed

variance.

e Ensemble averaging tends to remove the unsystematic errors. Its combination with
Kalman filtering (which removes part of the systematic errors) results in the best ozone

forecasts.

6.3 Discussion and Recommendations

This dissertation proved the necessity of considering the chaotic behaviour of the atmsphere
(associated with the nonlinearity of the chemistry) in any attempt to describe the evolution of
such a system. Any deterministic prediction of this evolution would most likely misrepresent

the nature of the problem. Ensemble and Kalman-filter methods can indeed significantly
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improve near-surface ozone forecasts, even in the complex coastal mountain setting of the
Lower Fraser Valley. There are.no intrinsic.limitations to these methods that would prevent
their application in real time to other geographic settings.

The reéults of this dissertation suggest that future ozone-forecast work should focus on
ensemble forecast systems involving both meteorology and emission perturbations. More
specifically, the abdve findings suggest that the emission perturbations could be based on
the temporal and spatial variability of different regimes. If (during a particular time of the
day and in a subset of the spatial domainj a NO_-sensitive regime is dominant, then a NO,
perturbation would be more useful than a VOC one to capture the ézone variability. Con-
versely, in VOC-sensitive regimes the VOC perturbations could be more efficient. In situations
‘where neither of these two regimes is well defined, probably a combination of NO,, @nd VOC
perturbations could be the best choice. These regimes could be ideptiﬁed in forecast mode by
looking at the control-model forecasts, for example by evaluating the Og /NO,, or H,O2/HNOg3
ratios (Sillman and He, 2002).

One of the findings of this dissertation is to shift the emission perturbations towa.r;i lower
values (for both NOz and VOC), to improve the forecasts by reducing their overall posi‘tive bias.
This correction will irﬁprove the forecasts on the west side (;f the spatial domain considered in
this dissertation, while for the eastern-most locations (i.e., Chilliwack and Hope) such a shift
' will not ifnprove the ozéne forecasts, or may deteriorate them slightly.

Ideally, éach ensemble member should be an equally likely time evolution and space dis-
tribution of the ozone concentration, and they should all be equally good estimates of truth.
With this in mind, the énsemble members should be “independent”, in the sense that none of

them should rely on other members for their realizations. This is not the case when nested
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grids are used, as for some of the probability f_orecast systems created in this dissertation.
Namely, CMAQ domains are linked using a 1-way nesting approach (similarly for MC2, but
MMS5 runs are implemented with 2-way nesting), and all the 4 km runs cannot be considered
independent of the coarser 12 km runs providing the driving meteorology and/ or the initia,l.
and boundary chemistry. The dependency among members of the same ensemble (no attempt
has been made in this study to measure it) would result in an “effective” ensemble size smaller
than the actual ensemble size. Moreover, a subset of the dependent members will span ap-
proximately the same Subspace of the air-quality modeling uncertainty space (or at least they
should be closer to each other than to other members), resulting in both probabilistic and
ensemble-averaged forecasts relying too heavily on the performances of these members than
on others.

Ensemble weather forecasts often provide information on the reliability of the forecasts; if
the ensemble members have a large spread (defined as the standard deviation of the ensemble
members about the ensemble meaql), this implies less confidence in the forecast. Howeverv, in
this research no correlation or relationship between ensemble spread and forecast error has
been found. |

Finally, the methodology developed in this study to improve ozone regional forecasts could

be implemented also to improve forecasts of particulate-matter and other pollutants.
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Appendix A

Kalman-filter Implementation

Here a step-by-step description of the filter implementation is given. First, o2 is estimated via

the Kalman filter algorithm as follows (by applying Equation (5.5)):

2

oe (0% 2 o2
Pyy—ns = (pt—At|t—2At + 00127)(1 - ﬂt]t—At) (A1)

where pof is the expected mean-square-error in the o2 estimate, agz is the variance of 0727, and
7l
503 is the Kalman gain when the filter is used to estimate 03. Next, the new Kalman gain

can be computed, similarly to Equation( 5.4):

2
o2 2
Pyji-at + 952

of _ A2
ﬁt+At|t o? +- 0_2 + 02 ( : )
Pijs—nns T 062 T 952

2

where o, is the variance of o?. Finally, 02 can be estimated by combining Equations (5.3)

and (5.8):

(e — yi-a)® 2 ]

2 _ 2 o2
Tct+atlt = Teplt—at T '8t|t—At[ 2t+r O tjt—At (A.3)

210




2

oZ, and agz are assumed constant, with values of 1 and 0.0005, respectively, as determined
€ 7

from previous works (e.g., Roeger et al., 2003).

2
€

Once ¢? is estimated, o2 can be computed as 62 = ro2. Then, Equations (5.5), (5.4),
and (5.3) can be applied in sequence, resulting in the final estimate of the bias (£). This
process is iterated trough different At, and for the first step, given initial values are used as

discussed in Section 5.2.
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