
Page 1/2/Users/rstull17/Desktop/cmaq_ppm-code-fragment.txt
Saved: 2018-08-10, 6:54:56 PM Printed for: Roland B Stull

¬1

================================¬2

6) Use the HPPM method from CMAQ¬3

CW refers to the paper by Colella and Woodward.¬4

¬5

1-D domain covers grid points i = 1 to imax. But 1 and imax are boundary-¬6

condition cells. The main interior computation is for i = 2 to (imax-1).¬7

¬8

Pre-calculate some constants¬9

sixth = 1.0/6.0¬10

two3rds = 2.0/3.0¬11

oneoverdelx = 1.0 / delx¬12

¬13

Allocate the vectors¬14

dc = numeric(imax) # nominal difference in concentration across a cell¬15

clfirst = numeric(imax) # first guess of conc at left edge of cell i¬16

cr = numeric(imax) # conc at right edge of cell i¬17

cl = numeric(imax) # conc at left edge of cell i¬18

c6 = numeric(imax) # this corresponds to parabola parameter a6 of CW eq.(1.4)¬19

FL = numeric(imax) # pollutant flux into the left side of a grid cell¬20

FR = numeric(imax) # pollutant flux into the right side of a grid cell¬21

¬22

¬23

Iterate forward in time¬24

for (n in 1:nsteps) { # for each time step n¬25

 ¬26

 ¬27

 # To guarantee that solution is monotonic, check that the left edge of cell i ¬28

 # (which is between cells i and i-1) should not have a concentration lower ¬29

 # or higher than the concentrations in those two neighboring cells¬30

 # Namely, is clfirst between c[i] and c[i-1]. If not, then fix.¬31

 for (i in 2:(imax - 1)) { # for each interior grid point i¬32

 del_cl = conc[i] - conc[i-1] # concentration difference with cell at left¬33

 del_cr = conc[i+1] - conc[i] # concentration difference with cell at right¬34

 dc[i] = 0.5*(del_cl + del_cr) # 1st guess of avg conc difference across cell i¬35

 if ((del_cl*del_cr)>0.0) { # then revise average difference across cell i¬36

 dc[i] = sign(dc[i]) * min(abs(dc[i]) , 2*abs(del_cl) , 2*abs(del_cr)) ¬37

 } else {dc[i]=0.0} # for the special case of constant conc across cell¬38

 } # end of grid-point (i) loop¬39

 ¬40

 # First guess for concentration at left edge of each cell, using revised dc value¬41

 for (i in 2:(imax - 1)) { # for each interior grid point i¬42

 clfirst[i] = 0.5*(conc[i]+conc[i-1]) - sixth*(dc[i]-dc[i-1]) ¬43

 } # end of grid-point (i) loop ¬44

 ¬45

 # find parameters for the piecewise-continuous parabola in cell i¬46

 for (i in 2:(imax - 1)) { # for each interior grid point i¬47

 ¬48

 # conc at the right edge (cr) of cell i equals concen at left edge of cell i+1¬49

 cr[i] = clfirst[i+1] # concentration at right edge of cell i¬50

 cl[i] = clfirst[i] # concentration at left edge of cell i¬51

 ¬52

 # Check whether cell i is an extremum (is a peak or valley in the conc plot)¬53

 if (((cr[i]-conc[i]) * (conc[i] - cl[i])) > 0.0) { # then not extremum¬54

 ¬55

 # Find the two coefficients of the parabola: dc and c6: ¬56

 dc[i] = cr[i] - cl[i] # updated concen diff. between right and left edges¬57

 c6[i] = 6*(conc[i] - 0.5*(cl[i]+cr[i]))¬58

 ¬59

 if ((dc[i]*c6[i]) > (dc[i]*dc[i])) { # then adjust for overshoot at left edge¬60

 cl[i] = 3.0*conc[i] - 2.0*cr[i]¬61

 } else if ((-dc[i]*dc[i]) > (dc[i]*c6[i])) { # then adjust for overshoot at right¬62

 cr[i] = 3.0*conc[i] - 2.0*cl[i] ¬63

 } # end of block of "not extremum" calculations¬64

 ¬65

Page 2/2/Users/rstull17/Desktop/cmaq_ppm-code-fragment.txt
Saved: 2018-08-10, 6:54:56 PM Printed for: Roland B Stull

 } else { # For an extremum, don't use a parabola.¬66

 cl[i] = conc[i] # Instead, assume concen is constant across the cell,¬67

 cr[i] = cl[i] # Thus, left and right concentrations equal average conc.¬68

 } # end of grid-point (i) loop¬69

 ¬70

 # second guess of coefficients for the parabola, from CW eq. (1.5)¬71

 dc[i] = cr[i] - cl[i] ¬72

 c6[i] = 6.0*(conc[i] - 0.5*(cl[i] + cr[i]))¬73

 ¬74

 } # end of grid-point (i) loop¬75

 ¬76

 ¬77

 # Initialize to 0 the fluxes into the left and right sides of cell i¬78

 FL <- rep(0.0, imax)¬79

 FR <- rep(0.0, imax)¬80

 ¬81

 ¬82

 # Next, use parabolic fits within each cell to calculate the fluxes betweeen cells¬83

 ¬84

 # At left side of whole domain (i = 1), assume constant flux. Use FR[1] = FR[2]¬85

 if (u > 0.0) { # if wind enters left boundary of domain¬86

 y = u*delt # distance traversed by wind during delt¬87

 x = y*oneoverdelx # Courant number is fraction of grid cell traversed¬88

 # Find the flux leaving the right side of left boundary cell¬89

 FR[1] = y*(cr[2] - 0.5*x*(dc[2] - c6[2]*(1.0 - two3rds*x))) # parabolic in x¬90

 }¬91

 ¬92

 # In interior of whole domain, use parabola eqs. CW (1.12) to find the fluxes¬93

 for (i in 2:(imax-1)) { # for each interior grid point i¬94

 ¬95

 if (u < 0.0) { # for wind from right to left¬96

 y = -u*delt # distance traversed by wind during delt¬97

 x = y*oneoverdelx # Courant number is fraction of grid cell traversed¬98

 FL[i] = y*(cl[i] + 0.5*x*(dc[i] + c6[i]*(1.0 - two3rds*x))) # parabolic in x¬99

 }¬100

 ¬101

 if (u > 0.0) { # for wind from left to right¬102

 y = u*delt # distance traversed by wind during delt¬103

 x = y*oneoverdelx # Courant number is fraction of grid cell traversed¬104

 FR[i] = y*(cr[i] - 0.5*x*(dc[i] - c6[i]*(1.0 - two3rds*x))) # parabolic in x¬105

 }¬106

 ¬107

 } # end of loop over all interior grid cells¬108

 ¬109

 # At right side of whole domain (i = imax), assume const. flux. Use FL[imax] = FL[imax-1]¬110

 if (u < 0.0) { # if wind enters right boundary of domain¬111

 y = -u*delt # distance traversed by wind during delt¬112

 x = y*oneoverdelx # Courant number is fraction of grid cell traversed¬113

 FL[imax] = y*(cl[imax-1] + 0.5*x*(dc[imax-1] + c6[imax-1]*(1.0 - two3rds*x)))¬114

 }¬115

 ¬116

 ¬117

 # For a realistic case, you would want to impose the actual fluxes at the boundaries.¬118

 # But for our simple HW, impose boundry conditions of zero pollutant flux entering the domain.¬119

 if (u > 0.0) FR[1] = 0.0¬120

 if (u < 0.0) FL[1] = 0.0¬121

 ¬122

 ¬123

 # Update the concentrations in each grid cell. *** This is the forecast equation.***¬124

 ¬125

 for (i in 2:(imax-1)) { # for each interior grid point i¬126

 conc[i] <- conc[i] + oneoverdelx* (FR[i-1] - FR[i] + FL[i+1] - FL[i]) # CW eq. 1.13¬127

 } # end of loop over all interior grid cells i¬128

 ¬129

} # end of loop over all time iterations n¬130

