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1
2| # ==============SSsSsSsSs==sSsS======
3/# 6) Use the HPPM method from CMAQ
4| # CW refers to the paper by Colella and Woodward.
5
6|# 1-D domain covers grid points i = 1 to imax. But 1 and imax are boundary-
7|# condition cells. The main interior computation is for i = 2 to (imax-1).
8
9|# Pre-calculate some constants
10/ sixth = 1.0/6.0
11| two3rds = 2.0/3.0
12| oneoverdelx = 1.0 / delx
13
14| # Allocate the vectors
15/dc = numeric(imax) # nominal difference in concentration across a cell
16| clfirst = numeric(imax) # first guess of conc at left edge of cell i
17/ cr = numeric(imax) # conc at right edge of cell i
18/ cl = numeric(imax) # conc at left edge of cell i
19/ c6 = numeric(imax) # this corresponds to parabola parameter a6 of CW eq.(1.4)
20| FL = numeric(imax) # pollutant flux into the left side of a grid cell
21| FR = numeric(imax) # pollutant flux into the right side of a grid cell
22
23
24| # Iterate forward in time
25/ for (n in l:nsteps) { # for each time step n
26
27
28 # To guarantee that solution 1is monotonic, check that the left edge of cell i
29 # (which is between cells i and i-1) should not have a concentration lower
30 # or higher than the concentrations in those two neighboring cells
31 # Namely, is clfirst between c[i] and c[i-1]. If not, then fix.
32 for (i in 2:(imax - 1)) { # for each interior grid point i
33 del_cl = conc[i] - conc[i-1] # concentration difference with cell at left
34 del_cr = conc[i+1l] - conc[i] # concentration difference with cell at right
35 dc[i] = 0.5*(del_cl + del_cr) # 1st guess of avg conc difference across cell i
36 if ((del_cl*del_cr)>0.0) { # then revise average difference across cell i
37 dc[i] = sign(dc[i]) * min( abs(dc[i]) , 2*abs(del_cl) , 2*abs(del_cr) )
38 } else {dc[i]=0.0} # for the special case of constant conc across cell
39 } # end of grid-point (i) loop
40
41 # First guess for concentration at left edge of each cell, using revised dc value
42 for (i in 2:(imax - 1)) { # for each interdior grid point 1
43 clfirst[i] = 0.5*(conc[i]+conc[i-1]) - sixth*(dc[i]-dc[i-1])
44 } # end of grid-point (i) loop
45
46 # find parameters for the piecewise-continuous parabola in cell i
47 for (i in 2:(imax - 1)) { # for each interior grid point i
48
49 # conc at the right edge (cr) of cell i equals concen at left edge of cell i+1
50 cr[i] = clfirst[i+1] # concentration at right edge of cell i
51 cl[i] = clfirst[i] # concentration at left edge of cell i
52
53 # Check whether cell i 1is an extremum (is a peak or valley in the conc plot)
54 if (( (cr[i]l-conc[i]) * (conc[i] - cl[i]) ) > 0.0) { # then not extremum
55
56 # Find the two coefficients of the parabola: dc and c6:
57 dc[i] = cr[i] - cl[i] # updated concen diff. between right and left edges
58 c6[i] = 6*( conc[i] - 0.5*(cl[i]+cr[i]) )
59
60 if ( (dc[i]l*c6[i]) > (dc[il*dc[i]) ) { # then adjust for overshoot at left edge
61 cl[i] = 3.0*conc[i] - 2.0*cr[1i]
62 } else if ((-dc[i]l*dc[i]) > (dc[i]*c6[i])) { # then adjust for overshoot at right
63 cr[i] = 3.0*conc[i] - 2.0*cl[1i]
64 1 # end of block of "not extremum" calculations

(9}
(5]
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} else { # For an extremum, don't use a parabola.
cl[i] = conc[i] # Instead, assume concen is constant across the cell,
cr[i] = cl[i] # Thus, left and right concentrations equal average conc.
} # end of grid-point (i) loop

# second guess of coefficients for the parabola, from CW eq. (1.5)
dc[i] = cr[i] - cl[1i]
c6[i] = 6.0*(conc[i] - 0.5%(cl[i] + cr[i]))
} # end of grid-point (i) loop
# Initialize to 0 the fluxes into the left and right sides of cell i
FL <- rep(0.0, imax)
FR <- rep(0.0, imax)

# Next, use parabolic fits within each cell to calculate the fluxes betweeen cells

# At left side of whole domain (i = 1), assume constant flux. Use FR[1] = FR[2]

if (u > 0.0) { # if wind enters left boundary of domain
y = u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed
# Find the flux leaving the right side of left boundary cell
FR[1] = y*( cr[2] - 0.5*x*(dc[2] - c6[2]*(1.0 - two3rds*x)) ) # parabolic in x
}
# In interior of whole domain, use parabola eqs. CW (1.12) to find the fluxes
for (i in 2:(imax-1)) { # for each dnterior grid point i
if (u < 0.0) { # for wind from right to left
y = -u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed
FL[i] = y*( cl[i] + 0.5*x*(dc[i] + c6[i]*(1.0 - two3rds*x)) ) # parabolic in x
}
if (u > 0.0) { # for wind from left to right
y = u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed
FR[i] = y*( cr[i] - 0.5*x*(dc[i] - c6[i]1*(1.0 - two3rds*x)) ) # parabolic in x
}
1 # end of loop over all dinterior grid cells

# At right side of whole domain (i = imax), assume const. flux. Use FL[imax] = FL[imax-1]

if (u < 0.0) { # if wind enters right boundary of domain
y = -u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed

FL[imax] = y*( cl[imax-1] + 0.5*x*(dc[imax-1] + c6[imax-1]*(1.0 - two3rds*x)) )

# For a realistic case, you would want to impose the actual fluxes at the boundaries.

# But for our simple HW, impose boundry conditions of zero pollutant flux entering the domain.

0.0
0.0

if (u > 0.0) FR[1]
if (u < 0.0) FL[1]

# Update the concentrations in each grid cell. *** This is the forecast equation.***

for (i in 2:(imax-1)) { # for each qinterior grid point i
conc[i] <- conc[i] + oneoverdelx* (FR[i-1] - FR[i] + FL[i+1] - FL[i]) # CW eq. 1.13
} # end of loop over all dinterior grid cells i

# end of loop over all time iterations n



