/Users/rstulll7/Desktop/cmaq_ppm-code-fragment.txt

Page 1/2

Saved: 2018-08-10, 6:54:56 PM Printed for: Roland B Stull
1
2| # ==============SSsSsSsSs==sSsS======
3/# 6) Use the HPPM method from CMAQ
4| # CW refers to the paper by Colella and Woodward.
5
6|# 1-D domain covers grid points i = 1 to imax. But 1 and imax are boundary-
7|# condition cells. The main interior computation is for i = 2 to (imax-1).
8
9|# Pre-calculate some constants
10/ sixth = 1.0/6.0
11| two3rds = 2.0/3.0
12| oneoverdelx = 1.0 / delx
13
14| # Allocate the vectors
15/dc = numeric(imax) # nominal difference in concentration across a cell
16| clfirst = numeric(imax) # first guess of conc at left edge of cell i
17/ cr = numeric(imax) # conc at right edge of cell i
18/ cl = numeric(imax) # conc at left edge of cell i
19/ c6 = numeric(imax) # this corresponds to parabola parameter a6 of CW eq.(1.4)
20| FL = numeric(imax) # pollutant flux into the left side of a grid cell
21| FR = numeric(imax) # pollutant flux into the right side of a grid cell
22
23
24| # Iterate forward in time
25/ for (n in l:nsteps) { # for each time step n
26
27
28 # To guarantee that solution 1is monotonic, check that the left edge of cell i
29 # (which is between cells i and i-1) should not have a concentration lower
30 # or higher than the concentrations in those two neighboring cells
31 # Namely, is clfirst between c[i] and c[i-1]. If not, then fix.
32 for (i in 2:(imax - 1)) { # for each interior grid point i
33 del_cl = conc[i] - conc[i-1] # concentration difference with cell at left
34 del_cr = conc[i+1l] - conc[i] # concentration difference with cell at right
35 dc[i] = 0.5*(del_cl + del_cr) # 1st guess of avg conc difference across cell i
36 if ((del_cl*del_cr)>0.0) { # then revise average difference across cell i
37 dc[i] = sign(dc[i]) * min(abs(dc[i]) , 2*abs(del_cl) , 2*abs(del_cr))
38 } else {dc[i]=0.0} # for the special case of constant conc across cell
39 } # end of grid-point (i) loop
40
41 # First guess for concentration at left edge of each cell, using revised dc value
42 for (i in 2:(imax - 1)) { # for each interdior grid point 1
43 clfirst[i] = 0.5*(conc[i]+conc[i-1]) - sixth*(dc[i]-dc[i-1])
44 } # end of grid-point (i) loop
45
46 # find parameters for the piecewise-continuous parabola in cell i
47 for (i in 2:(imax - 1)) { # for each interior grid point i
48
49 # conc at the right edge (cr) of cell i equals concen at left edge of cell i+1
50 cr[i] = clfirst[i+1] # concentration at right edge of cell i
51 cl[i] = clfirst[i] # concentration at left edge of cell i
52
53 # Check whether cell i 1is an extremum (is a peak or valley in the conc plot)
54 if (((cr[i]l-conc[i]) * (conc[i] - cl[i])) > 0.0) { # then not extremum
55
56 # Find the two coefficients of the parabola: dc and c6:
57 dc[i] = cr[i] - cl[i] # updated concen diff. between right and left edges
58 c6[i] = 6*(conc[i] - 0.5*(cl[i]+cr[i]))
59
60 if ((dc[i]l*c6[i]) > (dc[il*dc[i])) { # then adjust for overshoot at left edge
61 cl[i] = 3.0*conc[i] - 2.0*cr[1i]
62 } else if ((-dc[i]l*dc[i]) > (dc[i]*c6[i])) { # then adjust for overshoot at right
63 cr[i] = 3.0*conc[i] - 2.0*cl[1i]
64 1 # end of block of "not extremum" calculations

(9}
(5]

/Users/rstulll7/Desktop/cmaq_ppm-code-fragment.txt

Saved: 2018-08-10, 6:54:56 PM

Printed for:

Page 2/2
Roland B Stull

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

} else { # For an extremum, don't use a parabola.
cl[i] = conc[i] # Instead, assume concen is constant across the cell,
cr[i] = cl[i] # Thus, left and right concentrations equal average conc.
} # end of grid-point (i) loop

second guess of coefficients for the parabola, from CW eq. (1.5)
dc[i] = cr[i] - cl[1i]
c6[i] = 6.0*(conc[i] - 0.5%(cl[i] + cr[i]))
} # end of grid-point (i) loop
Initialize to 0 the fluxes into the left and right sides of cell i
FL <- rep(0.0, imax)
FR <- rep(0.0, imax)

Next, use parabolic fits within each cell to calculate the fluxes betweeen cells

At left side of whole domain (i = 1), assume constant flux. Use FR[1] = FR[2]

if (u > 0.0) { # if wind enters left boundary of domain
y = u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed
Find the flux leaving the right side of left boundary cell
FR[1] = y*(cr[2] - 0.5*x*(dc[2] - c6[2]*(1.0 - two3rds*x))) # parabolic in x
}
In interior of whole domain, use parabola eqs. CW (1.12) to find the fluxes
for (i in 2:(imax-1)) { # for each dnterior grid point i
if (u < 0.0) { # for wind from right to left
y = -u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed
FL[i] = y*(cl[i] + 0.5*x*(dc[i] + c6[i]*(1.0 - two3rds*x))) # parabolic in x
}
if (u > 0.0) { # for wind from left to right
y = u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed
FR[i] = y*(cr[i] - 0.5*x*(dc[i] - c6[i]1*(1.0 - two3rds*x))) # parabolic in x
}
1 # end of loop over all dinterior grid cells

At right side of whole domain (i = imax), assume const. flux. Use FL[imax] = FL[imax-1]

if (u < 0.0) { # if wind enters right boundary of domain
y = -u*delt # distance traversed by wind during delt
X = y*oneoverdelx # Courant number 1is fraction of grid cell traversed

FL[imax] = y*(cl[imax-1] + 0.5*x*(dc[imax-1] + c6[imax-1]*(1.0 - two3rds*x)))

For a realistic case, you would want to impose the actual fluxes at the boundaries.

But for our simple HW, impose boundry conditions of zero pollutant flux entering the domain.

0.0
0.0

if (u > 0.0) FR[1]
if (u < 0.0) FL[1]

Update the concentrations in each grid cell. *** This is the forecast equation.***

for (i in 2:(imax-1)) { # for each qinterior grid point i
conc[i] <- conc[i] + oneoverdelx* (FR[i-1] - FR[i] + FL[i+1] - FL[i]) # CW eq. 1.13
} # end of loop over all dinterior grid cells i

end of loop over all time iterations n

